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Abstract  

The outburst of social functionalities in web-based applications has fostered the 

deployment of a social media landscape where people freely contribute, gather and 

interact with each other. The integration of various means for publishing and socializing 

allows us to quickly share, recommend and propagate information to our social 

network, trigger reactions, and finally enrich it. These shared spaces fostered the 

creation and development of interest communities that publish, filter and organize 

directories of references in their domains at an impressive scale with very agile 

responses to changes.  

In order to reproduce the information sharing success story of the web, more and more 

social platforms are deployed into corporate intranets. However, the benefit of these 

platforms is often hindered when the social network becomes so large that relevant 

information is frequently lost in an overwhelming flow of activity notifications. 

Organizing this huge amount of information is one of the major challenges of Web 2.0 

to achieve the full potential of Enterprise 2.0, i.e., the efficient use of Web 2.0 

technologies like blogs and wikis within the Intranet. 

This thesis proposes to help analyzing the characteristics of the heterogeneous social 

networks that emerge from the use of web-based social applications, with an original 

contribution that leverages Social Network Analysis with Semantic Web frameworks. 

Social Network Analysis (SNA) proposes graph algorithms to characterize the structure 

of a social network and its strategic positions. Semantic Web frameworks allow 

representing and exchanging knowledge across web applications with a rich typed graph 

model (RDF), a query language (SPARQL) and schema definition frameworks (RDFS 

and OWL). In this thesis, we merge both models in order to go beyond the mining of the 

flat link structure of social graphs by integrating a semantic processing of the network 

typing and the emerging knowledge of online activities. In particular we investigate 

how (1) to bring online social data to ontology-based representations, (2) to conduct a 

social network analysis that takes advantage of the rich semantics of such 

representations, and (3) to semantically detect and label communities of online social 

networks and social tagging activities. 
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Résumé 

L’explosion des fonctionnalités sociales au sein des applications du Web a favorisé le 

déploiement d'un panorama de médias sociaux permettant aux utilisateurs de librement 

contribuer, de se regrouper et d’interagir entre eux. La combinaison de divers moyens 

de publication et de socialisation permet de rapidement partager, recommander et 

propager l'information dans son réseau social, ainsi que de solliciter des réactions et de 

nouvelles contributions. Ces espaces partagés ont favorisé la création et le 

développement de communautés d'intérêts qui publient, filtrent et organisent de vastes 

répertoires de références dans leurs domaines, avec une impressionnante réactivité aux 

changements. 

Afin de reproduire les succès du Web dans la gestion d'information, de plus en plus de 

plates-formes sociales sont déployées dans des intranets d'entreprise. Cependant, 

l'avantage de ces plates-formes est fortement atténué lorsque le réseau social devient si 

grand que les informations pertinentes sont noyées dans des flux continus de 

notifications. Organiser cette énorme quantité d'informations est l'un des défis majeurs 

du Web 2.0 afin de tirer pleinement partie des bénéfices de l'Entreprise 2.0, à savoir, 

l'utilisation des technologies du Web 2.0, tel que les blogs et les wikis, dans un intranet. 

Cette thèse propose d’améliorer l’analyse des réseaux sociaux multiples et variés 

émergeant des usages sociaux du Web, au travers d’une contribution originale qui 

enrichit l’analyse des réseaux sociaux avec les technologies du Web Sémantique. 

L’analyse des réseaux sociaux propose des algorithmes de graphes pour caractériser la 

structure d'un réseau social et ses positions stratégiques. Les technologies du Web 

Sémantique permettent de représenter et d’échanger les connaissances entre des 

applications distribuées sur le Web avec un modèle de graphes richement typés (RDF), 

un langage de requête (SPARQL) et des langages de description de modèles (RDFS et 

OWL). Dans cette thèse, nous fusionnons ces deux modèles afin d'aller au-delà de 

l’analyse structurelle  des graphes sociaux en intégrant un traitement sémantique de leur 

typage et des connaissances qu’ils contiennent. En particulier nous examinons comment 

(1) modéliser des données sociales en ligne à base d’ontologies, (2) réaliser une analyse 

du réseau social qui tire partie de la sémantique de ces représentations, et (3) détecter et 

étiqueter explicitement des communautés à partir de réseaux sociaux et de 

folksonomies. 
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1. Introduction 

« The web is more a social creation than a technical one. » Tim Berners-Lee 

“Social Web” sounds like a pleonasm: user interactions and social networks are among 

the cornerstones of the Web. Human participation and freeform contributions are at the 

core of most popular web sites, creating shared spaces where people can freely gather, 

interact, and explicitly connect. From these usages, online communities of interests 

spontaneously emerge with roles and life cycles that are inherent in their members’ 

interactions and involvements. Guided by common interests and goals, these 

communities publish, filter and organize directories of references in their domains at an 

impressive scale with very agile responses to changes. Now, we have access to an ever-

growing long tail of information and knowledge.  

The main problem is no more to collect and publish resources but mainly to structure 

and mash them in a way that matters to people and to their communities. Consequently, 

intelligent agents are crawling web resources, mining and indexing them in order to 

provide added-value services and extended information to web users. Interested by the 

audience driven through such activities, content providers make explicit and available 

their public data through the form of API or mark-ups in their pages. The activity of 

these agents is made easier and easier by the growing adoption of Semantic Web 

technologies to capture, publish and access data with standard machine-readable 

formats and protocols. In particular, we are witnessing the outburst of standard semantic 

mark-ups inside HTML pages, thanks to their consideration by biggest web actors (e.g. 

Google, Facebook, Yahoo). This exponential growth of readily available semantic data 

foster the deployment of more and more intelligent software that consume these linked 
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and structured data to personalize, enrich and multiply user experiences (e.g. web 

augmented reality). 

Intranets of organizations are progressively reproducing various web evolutions and 

web based social applications are progressively deployed inside companies. For 

instance, Wikis are used to foster collaborative editions and knowledge capture, and 

social networking services to increase and ease sharing between employees. Intranet 

users are now able to partially adapt the flow of information inside the company to their 

daily tasks and evolving needs. However, social web applications inside intranets are 

more often disconnected, and corporate information is still more structured according to 

the organization chart rather than to how people use it. Beyond the reluctance related to 

emerging and auto-organized information, data that are produced by these applications 

lack the semantics and interoperability to be mashed and integrated in the intranet 

structure. The adoption of Semantic Web technologies could greatly benefit such social 

intranet by turning its information into structured data and connect it. Once semantically 

revealed, structured and connected, social data can in turn be exploited to develop 

functionalities that will structure information according to the need and the use of 

intranet users.  

In previous researches on semantic wikis [Buffa et al 2008a], we investigated how the 

integration of Semantic Web technologies in a wiki could enhance the experience of its 

users and help a community build and structure a shared vocabulary. On one hand, we 

used Semantic Web technologies to manipulate the inner structure of the wiki by typing 

its different elements with the concepts from a “wiki ontology” (“document”, “page”, 

“tag”, “link”, “backward link”); thus, we were able to reason on this structure, enrich it, 

and interoperate with others wikis. On the other hand, SweetWiki enabled its users to 

annotate pages with their own vocabulary that they can freely modify and restructure, 

through a user friendly interface (e.g. add/merge/remove concepts or declare 

hierarchical links). This synergy between automatically generated metadata and human 

contributions offers a rich structuring and interoperability of the wiki data while 

answering the specificities and evolving needs of the user community. 

Several researches have been conducted to develop this social semantic perspective of 

web based applications, and we now dispose of standards to capture, to represent and to 

interlink socially produced and structured metadata. However, this important step 

toward applications that easily collect, mash and publish data, puts users and companies 

in front of a huge amount of social signals that need to be filtered and organized to 

avoid hindering their initial benefits. In particular, socially issued metadata embed an 

emergent structure that is inherent in user relations, interactions, and affiliations. 

Revealing this social structure would enable its exploitation to help filtering and 

organizing this huge amount of data.  

This thesis investigates methods for identifying the social structure emerging from the 

semantic representation of online social activities. Building on top of Semantic Web 

technologies and classical graph theory, we propose a novel approach to take benefits of 

both models and conduct a semantic social network analysis. We will see how to 
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semantically represent, link and access online social networks, how to enable classical 

operators of social network analysis to consider the semantics of these networks, and 

how these semantics could be exploited to enhance community detection.  

These researches were part of the ISICIL1 project within the PUPE team of Orange2 

Labs, the Edelweiss3 team of INRIA - Sophia Antipolis4 and the Kewi team from the 

I3S Laboratory of the University of Nice. The ISICIL project proposes to study and to 

experiment the usage of Web 2.0 tools enhanced by Semantic Web technologies to 

assist corporate intelligence tasks. The PUPE team investigates prospective business 

services. The research team Edelweiss aims at offering models, methods and techniques 

for supporting knowledge management and collaboration in virtual communities 

interacting with information resources through the Web, , and collaborates a lot with the 

Kewi research team on these thematics. 

This thesis is organized as follow:  

Chapter 2 presents the scenario that motivated the realization of this thesis and the 

ISICIL project. The deployment of social web applications in corporate intranets 

promises to conduct innovative intelligence tasks, taking great benefits of a smart 

exploitation of the social signals emerging from free online contributions. However, in 

order to deal with the reactivity challenge of business intelligence, the numerous signals 

produced by Web 2.0 applications have to be structured and filtered.  

Chapter 3 reviews the literature and definitions of the basic notions related to 

social network analysis and online social networks. We present the traditional 

methods used to capture and represent social networks, the different metrics and 

algorithms of social network analysis, and their application to online social networks. 

Chapter 4 presents how Semantic Web technologies enable us to structure, link 

and exchange social networking data across web sites. Semantic web technologies 

provide a whole stack of languages and protocols to describe resources, to define 

vocabularies, to query and access such representations. In particular, many vocabularies 

have been designed to represent persons, relationships and web based activities. 

Chapter 5 presents the conceptual stack we designed to conduct a semantic social 

network analysis. We extend social network analysis operators using Semantic Web 

frameworks to include the semantics used to structure social links, and we propose a 

model to enrich social data with the results of the analysis. 

Chapter 6 proposes a semantic algorithm, SemTagP, to label and detect 

communities. This algorithm not only offers to detect but also to label communities, 

taking benefits of the tags used by people to classify web resources as well as the 

                                                
1 Information Semantic Integration through Communities of Intelligence online, http://isicil.inria.fr 
2 http://www.orange.com  
3 http://www-sop.inria.fr/edelweiss/ 
4 http://www.inria.fr/centre-de-recherche-inria/sophia-antipolis-mediterranee 
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semantic relations that can be inferred between tags. Doing so, we are able to refine the 

partitioning of the social graph with semantic processing and to label the activity of 

detected communities. 

Chapter 7 discusses some important issues and perspectives that I would like to 

address in future works. In particular, we discuss the importance of considering 

temporal data in social network analysis, we raise the time and space complexity of our 

approach for scaling to very large networks, and we propose some elements to turn the 

result of a semantic analysis into functionalities. 

This thesis is organized in order to progress from the initial scenario and problems that 

motivated these researches to the final technical solutions that advance its resolution. 

Chapter 2 and 3 define the general context of and the positioning of this thesis in respect 

with existing literature. Chapter 4 presents and argues the technological choices in 

which we ground our solution. Chapter 5 and 6 describe the contributions of this thesis 

and the experiments that were conducted to assess and evaluate the presented solutions. 

Finally, Chapter 7 presents perspectives that I consider as important evolutions of this 

thesis and that I would like to address in further researches. 
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2. Motivating Scenario 

« The intranet tends to follow trends from the web and social Networking is no exception » 

Nielsen Norman Group 

Since web users are core elements of most online applications, emergent contributions 

and free interactions form the main content of the web. People express themselves 

online, connect to exchange and to stay in touch, spontaneously gather and interact on 

similar interests. The outburst of social applications on the web produced a dramatic 

shift in information sharing and content production. These applications turned the 

privileged professional activities of producing, publishing and distributing content into 

massive amateur activities, enabling anybody to contribute. Massive and free 

contributions on the web have made information produced, shared, and accessible at an 

impressive scale and speed. The freeform of these applications enabled the development 

of financially non profitable activities that were forsaken by professionals. For instance, 

authoring tools like blogs enable the creation of a long tail of numerous precious source 

of information to the attention of small communities, so small that they were not 

targeted by professional editors. Moreover, in their online publications, authors refer to 

other documents (produced either by themselves or by others) by the means of 

hyperlinks, which implicate them in the evolution of the inner structure and in the 

organization of the web. Users are even more involved in this organization as most of 

online applications, like blogs, Flickr and Youtube, introduce explicitly their users in 

the classification of content with freely chosen labels, named tags. Consequently, the 

huge amount of online content is now organized and filtered by the mass of people. As a 

side effect of this collaborative classification, users of these applications are able to 

spontaneously and massively gather on shared interests at an unexpected large scale just 

by using the same tags. In addition, users of these applications are provided with 
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advanced functionalities for connecting, interacting, and gathering. Due to the massive 

adoption of these practices, "online communities of interest have emerged and started to 

build directories of references in their domains of interest at an impressive speed and 

with very agile responses to changes in these domains" [Gandon et al 2009]. These 

communities can freely emerge and evolve to very large scales, for any purposes and in 

every domain. 

Introducing such reactivity in the complex business processes and organizational chart 

of companies is an appealing opportunity to tackle the growing diversity of market and 

technological signals produced both internally and externally. Moreover, the 

generational turn over speaks up for challenging the acceptance of a corporate use of 

web 2.0 applications. In 2015, the generation Y, used to social medias in their daily 

personal activities, will represent 15% of the European population and 40% of workers 

in France5. This generation will ease and probably argue for the adoption of social 

medias in enterprises both for internal collaboration, public relationships and market 

insight. 

In the first section of this chapter, we will discuss the benefits and the issues of 

introducing Web 2.0 applications inside companies, namely the enterprise 2.0. In the 

second section we focus on the ISICIL project in which we investigate the application 

of enterprise 2.0 to business intelligence. Finally, we discuss the need of understanding 

emergent social structures and the lack of tools to reach such goal. 

2.1 Enterprise 2.0 
More and more social solutions (e.g. Socialtext6) are being deployed in corporate 

intranets to reproduce inside corporations the information sharing success stories from 

the open web. This new trend is often called Enterprise 2.0, which is defined by 

[McAfee 2009] as follow: 

Definition 1. Enterprise 2.0: the use of emergent social software platforms 
within companies, or between companies and their partners or customers. 

Definition 2. Emergent social software platforms: digital environments in 

which contributions and interactions are (1) globally visible and persistent over 

time, (2) performed with social softwares that enable people to gather, connect 

or collaborate through computer-mediated communication and to form online 

communities (3) emergent, freeform, with patterns and structure inherent in 

people’s interactions. 

Introducing such platforms inside an organization can provide different benefits for 

managing information and enhancing collaboration by enabling employees to: 

• easily share and publish the content and knowledge they discover or produce. 

                                                
5 http://fr.wikipedia.org/wiki/Génération_Y 
6 http://www.socialtext.com/  
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• collaboratively filter and organize both internal and external documents and 

sources. 

• spontaneously connect and gather on related working topics and objectives.  

• easily search and find information, documents and experts 

In order to achieve these benefits, [McAfee 2009] introduces the SLATES acronym that 

defines the features that should provide emergent social softwares: 

• Search for enabling employees to find information. 

• Links for strengthening the connectedness of information and fostering the 

discovery of new sources. 

• Authoring for providing employees with an easy and non technical way of 

publishing information. 

• Tags for enabling people to easily organize content with freely chosen labels, 

and enable a large scale and human classification. 

• Extensions for automatically proposing the discovery of new content suggested 

by pattern matching algorithms. 

• Signals for enabling web users to subscribe to targeted sources and topics, and to 

be automatically notified of new publications.  

However, while the freeform of these platforms enables to collectively handle "the 

diversity and the mass of information sources" [Gandon et al 2009], it is also their main 

problem for their acceptance in a corporate context. Firstly, companies have been 

working for decades at limiting the number of collaborators and actions each one of 

their employees has to handle for optimizing individual performances. Companies are 

driven by well defined business processes and formal structures while emergent social 

software platforms are characterized by free activities and freely evolving social 

structures. It is one of the main reasons of the reluctance of many companies to 

introduce social solutions in their business practices. Secondly, some companies face 

strong information security and confidentiality restrictions and cannot even accept 

unexpected practices and interactions in their processes. Finally, some decision makers 

simply fear their employees will loose time and efficiency in sharing and consuming 

non controlled and unsupervised information. Consequently, social web applications 

cannot just be deployed in companies' intranets without being fully integrated in their 

formal organizations and their business processes. Many challenges have to be tackled 

to fully achieve the objectives promised by the advocate of the enterprise 2.0. All the 

corporate reluctances that are cited above highlight common expectations for using 

these tools: a better effectiveness, supervision and control of the flow of data and 

information. 
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2.2 ISICIL: Information Semantic Integration through 

Communities of Intelligence onLine 

In the ISICIL project, we investigate the application of enterprise 2.0 to business 

intelligence, with a framework that takes advantage of collaborative platforms to allow 

conducting innovative strategic watch. The goal is to introduce social interactions into 

every step of the intelligence cycle: searching, monitoring, collecting, handling, 

disseminating. Information produced by different sources becomes socially connected, 

can be quickly shared and permanently enriched with comments, tags and new related 

sources. Figure 1 shows how emergent social softwares are integrated in every steps of 

the business intelligence cycle. People are not only connecting together, they connect 

themselves to documents, data and information: 

• Searching is no more a lonely task consisting in looking for relevant information 

and sources; we now collectively search information in document but also 

through people and expert that become one of the main sources of information. 

Even more, searching is sometime unnecessary, information is simply 

propagated to people by people. 

• Monitoring is not only about monitoring document sources but about listening to 

human sensors, namely collaborators and expert activities.  

• Collecting consists in selecting and organizing the information, a task supported 

by a collaborative pre-treatment of the social network which proposes its insight 

on sources and information, and organizes it, in particular through the means of 

social tagging.  

• Analysing consists in synthesizing the collected information to detect and 

highlight weak signals, tendencies and prospective deductions. This step is 

crucial to support decision making and is once again preciously leveraged by the 

insight of the crowd and the benefit of collaboration. 

• Disseminating is greatly favoured by social networks and online social 

applications: information and documents are better connected and are de facto 

easier to find while their propagation is empowered by people that are better 

interconnected, whatever their locations and affiliations are. 
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Figure 1. Business intelligence 2.0. 

 

While this socialization of business intelligence leverages the information management 

and increases the cooperation, it also augments the amount of information employees 

are exposed to. The benefit of collaborative tools is often hindered when the social 

network becomes so large that relevant information is lost in an overwhelming flow of 

notifications. Users are facing huge objects, evolving all the time with a growing 

amount of information that exceeds their attention span, which is unacceptable in 

organizations. Moreover, it complicates the management of confidentiality and security 

of strategic information. Organizing this huge quantity of information is necessary for 

achieving the full potential of Enterprise 2.0. (1) We need to link and organize the huge 

amount of shared and produced data.  (2) We need to reconcile the free activity of web 

2.0 applications with formal processes of companies. (3) We need to reconcile 

spontaneous relationships and community structure that emerge through online 

collaboration with formal organizational charts. 

In the ISICIL project, we propose to tackle these issues with a multidisciplinary 

approach [Gandon et al 2009] to deal with: 

• the sociological and usability challenges for reconciling web 2.0 approaches 

with organizational charts and processes. 

• the technological challenges of capturing, representing and processing the 

diversity of decentralized data emerging from the use of different online social 

applications. 

We focus here on the technological issues, which are tackled with Semantic Web 

technologies by offering data interoperability between applications and for leveraging 

information processing. We need to deal with heterogeneous data (involving actors, 

content and relationships) that are generated and spread across the internet and intranet 
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networks on different sites. Semantic web technologies answer this problem with 

standard languages and protocols for 

• describing and exchanging resources and data across applications on a network 

with a uniform structure. 

• representing and linking the models and the domain vocabularies used to define 

the semantics of these descriptions.  

• querying and accessing distant data describing both resources and models. 

These technological advances enable us to handle the indexing and the processing of the 

data that are produced by the decentralized and disconnected web applications. First, 

interoperability between applications and the exchange of data is enhanced by the use of 

standard languages and protocols for describing, querying and accessing data on 

networks. Then processing and handling the semantics and the models use to structure 

exchanged data is consequently eased with the standardization and the linkage of their 

representation.  

[Passant et al 2009] argue that a Semantic Web layer on top of an enterprise 2.0 

information system enable to deal with "information fragmentation and heterogeneity of 

data formats", "knowledge integration and re-use", and "tagging and information 

retrieval". Once structured and represented in a uniform way, social data can be mined 

and leveraged to meet enterprise requirements for (1) linking information, (2) detecting 

and structuring emergent process, and (3) providing insight into and from spontaneous 

communities and emergent collaborative structures. 

The Figure 2 describes how a business intelligence conducted with emergent social 

software platforms can be enhanced by a semantic layer on top of all these applications: 

• Searching is enhanced and better assisted with a global and more relevant search 

across applications, thanks to the explicit semantic of the nature, the context and 

the meaning of data. 

• Monitoring is enhanced by a semantic based filtering and structuring of data, 

and augmented with related information by a semantic processing of data links. 

• Collecting is assisted by suggestions of concepts for classifying content, based 

on the semantic inferred from emerging vocabulary. Moreover, when collecting 

and classifying content, users become implicated (both implicitly and explicitly) 

in the structuring process of their company's vocabulary. 

• Anlysing will benefits of semantic perspectives on collected data and of social 

signals, which will enable advanced interactions and smart filtering. 

• Disseminating will be supported in the targeting of relevant communities for 

sharing produced content, while the members of these communities will be 

notified of the creation of content that is relevant to their interests. 
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Figure 2. Business intelligence 2.0 enhanced by a semantic layer. 

In order to achieve such an evolution of the business intelligence cycle we not only need 

to support web 2.0 approaches with Semantic Web technologies but also to tackle two 

important scientific challenges: 

• Integrating the light classifications of resources performed by web 2.0 users with 

freely chosen labels and formal ontologies to get the best of both worlds. In 

other words the goal is to classify resources with an evolving vocabulary that is 

both structured and representative of users' knowledge perception. 

• Reifying and exploiting the dynamic and rich social networks that are embedded 

in the emerging social data of web 2.0 applications, in order to foster 

interactions and collaborations, to help user positioning in these networks and 

filtering overwhelming social notifications.  

While the first issue is tackled by Freddy Limpens in its Ph.D. thesis [Limpens 2010], 

we focus here on the analysis of the semantic representation of web 2.0 social networks.  

2.3 Semantic Analysis of Social Networks 

The social data that emerge in online social applications embed rich social links, 

between their users, that have to be revealed and reified in order to be mined and 

exploited. In particular, these applications enable their users to connect, interact and 

develop interest affiliations between each other, which enable us to build and mine the 

resulting social networks. However the structures of these social networks are complex 

to represent, due to the multiplicity of context, roles and identities, and to their 

distribution across applications. Each user of an application represents a person, in a 

particular role and a given context that constitute a fragment of its identity. 

Consequently, a person develops different social links, across several applications, 
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which are contextualized by the different fragments of its identity. An effective mining 

of the resulting global social network should consider such specificities and require thus 

an adequate representation. 

In the previous section we argued that Semantic Web technologies answer the 

problematic of exchanging, mashing and querying data across applications. Based on 

these technologies, we need to reuse existing models and develop new ones, if 

necessary, to smartly represent people, user profiles and their different social links for 

revealing the online social networks they form. Once represented in a uniform structure, 

these social networks can then be mined for extracting the metrics that will be used for 

managing social data.  

Social Network Analysis is particularly well suited for understanding and determining 

the global structure of a social network, the distribution of actors and activities, and the 

strategic positions and actors. The result of the network analysis can be exploited for 

leveraging the social experience of collaborative tools. On one hand, we can better 

organize and filter social data in every step of the business intelligence process. During 

the searching, monitoring, collecting and handling steps, the presentation of social data 

to the users should consider the insight of a network analysis as well for classification 

purposes as for information quality indicators. During the disseminating step, the 

network analysis metrics will help propagating the produced information toward the 

relevant part of the network and connect it to the targeted communities. On the other 

hand, the analysis can be used for strengthening the network structure in order to 

increase its efficiency, both locally and globally. At a local scale, the analysis can be 

used to assist applications' users in maintaining their relationships and developing 

relevant new ones that could best serve their efficiency. At a global scale the analysis 

could be used to stimulate new connections that would empower the whole network 

efficiency, such as bridging disconnected communities that would benefit from 

collaborating  

However, social network analysis' algorithms are only based on the linking structure of 

the network and do not exploit the semantics that are embedded in such typed 

representations from which they could highly benefit. The richness and the specificities 

of online social networks offer many perspectives for conducting more accurate 

analyses. In particular, the online artifacts that mediate interactions and develop 

affiliations provide social networks with the purposes of the creation, the maintenance 

or the disappearance of social links. In addition, the semantic structuring of the 

vocabulary generated by the users provides social networks with the knowledge that is 

produced, maintained and shared by their members to support their exchanges. Social 

network analysis is now provided with these multidimensional representations that 

include not only the linking structure but also the shared knowledge of the social 

network.  

Our objective is to leverage social network analysis metrics for handling the semantic 

representations of social networks, which is a necessary step for fully achieving the 

social evolution of the business intelligence proposed by the ISICIL project.  
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3. State of the Art on Social Network 

Analysis and Its Application on the Web 

« When we change the way we communicate, we change the society » Clay Shirky 

Social Network Analysis (SNA) provides graph algorithms to characterize the structure 

of social networks, strategic positions in these networks, specific sub-networks and 

decompositions of people and activities. This domain has raised lots of interests and the 

outburst of social data on the web has led to the collection of the biggest social 

networks ever. 

In this chapter, we will review (1) the traditional methods and models that are used to 

build and represent social networks, (2) the different metrics and algorithms of social 

network analysis, and (3) the applications of social network analysis to online social 

networks. 
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3.1 Capture, Detect and Represent Social Networks 
A social network is made of actors that are linked by social relations. Social actors can 

be people, organizations, or groups of actors.  A wide range of social relations exists 

between actors; we can group these relations in three categories: 

• explicit and declared relations between humans. 

• interactions between actors. 

• affiliation between actors.  

Explicit relations include all the relations we can define between persons (e.g. parent, 

sibling, cousin, friendship, love, simple acquaintance, co-worker, etc.), between persons 

and organizations (e.g. member, employee, etc.), and inside organizations (e.g. owner, 

manage, etc.).  

Interactions represent all the exchanges that could be observed between actors such as a 

discussion, a collaboration, a meeting or any action that involves at least two actors. 

Some interactions actively implicate all the concerned actors, like a synchronous 

discussion. Others are initiated by some actors and target other actors, like a single 

message that has a sender and a recipient. 

Affiliations correspond to any similarity between actors that links them, like, for 

instance, sharing the same attributes, the same interests, the same activities, the same 

objects, or the same organizations.  

The type of social links is determinant in the construction of the corresponding social 

networks. While the first social networks have been collected and analyzed by 

interviewing people or by observing social actors, social networks have also been 

extracted from many sources in order to achieve different purposes and confirm varied 

sociological hypothesis. 

3.1.1 Explicit Relationship Networks 

Initially data about social networks were mainly collected with interviews, pen and 

paper. Social networks were built from experiment with people who declared explicitly 

their relationships with other persons. Today, online social network services offer huge 

databases of such declared relationships that are easier to collect on the web; this part 

will be detailed in chapter 4, for now we present examples of the famous historical 

social networks. 

One of the most popular social networks is the university-based karate club of 

Zachary [Zachary 1977]. Following the appearance of different internal conflicts in 

the club, the social structure emerging from the evolution of social links, i.e. creation 

and destruction, highlighted a break-up in the social cohesion. Consequently, this karate 

club was divided in two separate clubs due to relationships fission. The corresponding 

dataset was collected with interviews about the relationships among actors with the 

purpose of understanding how the fission occurred in this network. By observing the 



Ph.D. thesis.    Guillaume Erétéo 

16 

evolution of social linkage, the authors have extracted patterns that enable us to predict 

an upcoming break-up in a social network. The Figure 3 proposes a visualisation of the 

collected network. Members of the first sub-club are represented by white circles and 

members of the other one are represented by grey squares. We can clearly witness a 

difference of social cohesion between the two groups and the whole network. 

 

Figure 3. The Zachary karate club has been divided in two clubs in 1977. Members of 
the first club are represented by round white nodes and members of the second one 
by grey square nodes. 

Many social networks were built from asking people to name some of their friends. 

Such social networks are consequently built from data such as Peter states Jack is his 

friend. Such methods may produce non reciprocal relationships as Peter can name Jack 

as its friend but not vice-versa. There are three ways to interpret such data. First we can 

infer that if Peter considers Jack as his friend, Jack also considers Peter as his friend, 

and we can define a symmetric friendship relation between Peter and Jack. Then we can 

also define a relationship only between persons that reciprocally declared them as 

friend. Finally we can simply define directed relationships and consider exploiting this 

specificity in the analysis. [Moody 2001] applied this interview method to build the 

friendship network of a U.S. school. This experiment highlighted the tendency of people 

to bond with people that share some attributes. He observed a clear separation between 

white and black individuals and between younger and older ones. The Figure 4 proposes 

a visualisation of this social network. The black people are on the right while the white 

people are on the left part of the visualisation. Similarly, we observe a horizontal 

division between younger and older people. The combination of age and colour 

attributes produces four main dense groups with poor linkage between these groups. 
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Figure 4. Frienship network of a U.S. school, which highlight a high tendency of 
children to bind with similar others. 

3.1.2 Interaction Networks 

Generally, social networks based on interactions are built from observation of actions, 

or traces of actions, involving at least two actors. Any action involving an exchange 

between actors is considered as an interaction and is used to set a relationship between 

them. The large variety of possible interactions between social actors offers many ways 

to detect and collect social network data. 

Milgram conducted a famous experiment to measure the average distance between 

people in a very large social network [Milgram 1967]. people from one city of the 

United States were asked to send a letter to other people in a socially and geographically 

opposite city of the U.S. To make the letter reach its recipient, each holder of the letter 

had to write its name on the letter and give the letter to the person he thought was the 

closest from the final recipient. Milgram exploited the sequence of names on the letter 

to reconstitute the paths from the initial holders to the final recipients of the letters. Two 

persons which names are adjacent in the name list on a letter that reached its destination 

are linked by a “mail interaction”. Doing so, Milgram built a network from the traces on 

the letters, of the interactions between players of the experiment. He observed that the 

average paths between any two persons in the United States were of length 6. This 

result is also known as "six degrees of separation" (however, some criticisms of this 

experiment were recently published [Kleinfeld 2002]).  

The U.S. College Football network is also an interaction network in which actors are 

football teams, namely organizations, and relations "represent regular-season games 

between the two teams they connect" [Girvan & Newman 2002]. Consequently, every 

time a game was played between two teams, a relationship was set, representing the 
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interaction of playing a same game. Teams are grouped into conferences, namely 

divisions of teams, and more games are played between teams of the same conference 

than between teams of different conferences. Consequently Newman observed more 

relationships among members of a same conference than between members of different 

conferences. Consequently, this network has a strong community structure and has been 

frequently used by researchers as a dataset for evaluating community partition 

algorithms.  

3.1.3 Affiliation Networks 

A broad range of social networks have been inferred and collected by analyzing 

similarities between actors. Similarities between actors are frequently a source of 

interactions. Moreover people that share characteristics tend to behave similarly. 

Similarity based relationships are more generally called affiliations.  

Social network analysis has gained a lot of interest from economical sciences. In 

particular it is interesting to analyze how organizations and their members interact in 

order to understand economical mechanisms. In particular, an affiliation social network 

was built from the membership to the director board of U.S. industry firms and banks 

[Mariolis 1975]. The actors of this social network are the directors. A link between two 

directors is set whenever two directors are members of the same directory board. The 

analysis of this affiliation network highlighted many interest conflicts and showed how 

banks control and interlock such industry directory boards.  

Another interesting affiliation network is the social network populated by the characters 

of Victor Hugo's novel "Les Miserables" [Knuth 1993]. A relation is set between two 

characters of the novel when they co-appear in a scene, and thus an affiliation network 

is built. This social network has been used in many experiments, in particular for 

evaluating community detection algorithms. The Figure 5 highlights a community 

partition of this social network. 

Many affiliation networks were also extracted from scientific paper databases, in order 

to build co-authorship networks. The actors are the authors of the papers. A relation is 

set between two actors who are co-authors of the same paper. These networks have been 

widely used to test social network analysis algorithms, in particular community 

detection algorithms and centrality algorithms. The Figure 6 represents the co-

authorship network studied in [Newman 2006b]. 
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Figure 5. Co-appearance social network of the characters of Victor Hugo's novel "Les 
Misérables". 

 

Figure 6. Visualisation of the co-authorship network studied in [Newman 2006b]. 
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3.1.4 Social Network Representation 

In order to graphically visualize social networks, in 1930’s, Moreno systematized the 

first representations of social networks: the sociograms [Moreno 1933]. Sociograms 

consist in representing people by points and relationships by lines connecting points. 

These representations were also named 'web' due to their spider web aspect, this is an 

interesting unintentional coincidence of history. As little innovative as it may appears 

today, this type of visualisations offered to quickly detect some network features that 

are highlighted by specific visual patterns. As an example, Moreno introduced the 

concept of "star" for designing people having the most connections in a social network, 

due to the star shape formed by a point and its numerous connected lines. Sociograms 

were the first step for further involvement of mathematicians in social network analysis. 

[Harary & Norman 1953] were among the first mathematicians who made the relation 

between graphs and sociograms and who built mathematical models of social networks 

based on graph theory. In a graph, the nodes represent the actors and the edges represent 

relationships. [Scott 2000] proposes an historical overview of the first applications of 

graph theory to social network analysis in the mid of the 20th century. Today, Graph 

structure has been adopted as the main mathematical model for social networks in social 

sciences, computer science or economical sciences. Having a mathematical model 

enables us to better formalize the analysis of social networks, and propose algorithms to 

detect and compute graph patterns that characterize social organizations. 

3.1.4.1 Definitions  

Definition 3. Node: basic unit of a network that represents a resource, also called 
a vertex. In a social network we talk about actors or agents.  

Definition 4. Edge: a connexion between two nodes. We also use the terms arcs 

or links. 

Definition 5. Hyperedge: an edge than connects more than two nodes. 

Definition 6. Directed edge: an edge used in only one direction, from its source 
node to its end node. In opposition, an undirected edge can be used in both 

directions and does not distinguish its extremity nodes. 

Definition 7. Weighted edge: an edge with an assigned a value, called a weight, 

to represent the importance of this edge. 

Definition 8. Labelled edge: an edge with a term used to label the relation. 
Definition 9. Graph: a graph is defined by a set of nodes and a set of edges. 

Definition 10. Hypergraph: an hypergraph is defined by a set of nodes and a set 

of hyperedges [Berge 1985] 

Definition 11. Directed graph: a directed graph is defined by a set of nodes and 
and a set of directed edges. 

Definition 12.  Weighted graph: a weighted graph is defined by a set of nodes 

and a set of weighted edges. 

Definition 13.  Labelled graph: a labelled graph is defined by a set of nodes and a 
set of labelled edges.  
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Definition 14. Multipartite graph: a multipartite graph is decomposed in k set of 

nodes, each set contains a unique type of node, with edges that connect nodes 

of different sets.  

Definition 15.  Bipartite graph: a multipartite graph with only 2 types of nodes.  
Definition 16.  Tripartite graph: a multipartite graph with only 3 types of nodes.  
Definition 17.  Degree:  the degree of a node is its number of adjacent edges. 
Definition 18.  Path: list of nodes of a graph, each linked to the next by an edge. 
Definition 19.  Directed path: a sequence of directed edges from a source node to 

an end node. 

Definition 20.  Geodesic and shortest path: shortest sequence of edges between 

two given nodes. 

Definition 21. Diameter: the length of longest geodesics of the network.  

Definition 22. Complete graph: a graph having an edge between any two pair of 

its nodes. 

Definition 23. Connected graph: a graph having a path between any two pair of 
its nodes. 

3.1.4.2 Notations 

• A node is noted v and an edge between two nodes vi and vj is noted (vi, vj). 

• A graph is noted G = (V, E) with V a set of nodes, E a set of edges, Vn =  the 

number of nodes, Em =  the number of edges and, vi the i
th node. 

• A subgraph of G=(V,E) is noted G' = (V', E') with VV ⊂' , E '⊂ E  | 

v i,v j( )∈ E '⇒ v i ∈V '&v j ∈V ' , '' Vn =  and '' Em = .  

• A bipartite graph is noted G = (U, V, E) with U and V two sets of nodes and E a 

set of edges, vi the i
th node of V and ui the i

th node of U. 

• A tripartite graph is noted G = (U, V, W, E) with U, V, and W three sets of nodes 

and E a set of edges, ui the i
th node of U, vi the i

th node of V and, wi the i
th node 

of W. 

• The degree of a node vi is noted d(vi). 

• gij represent a geodesic between the nodes vi et vj, and |gij| represents the length 

of a geodesic between vi et vj. 

3.1.4.3 Using Different Types of Graphs 

The famous social network of the Zachary karate club in Figure 3 is represented by a 

simple graph with undirected an unlabeled edges. More generally, social networks with 

symmetric relationships (e.g. married) are represented by undirected graphs. Inversely, 

directed graphs are well suited to model social networks with directed relationships 

(e.g. manages). For instance the interactions emerging from the sent letters in the 

Milgram experiment can be modelled with directed edges. In weighted graphs, weights 

are associated to edges to specify the intensity of the relationships, and in particular for 
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representing the frequency of interactions between people. In the U.S. College Football 

network, weights on edges can be used to represent the number of games played 

between teams. Labelled graphs are well suited to represent social networks containing 

different types of relationships (e.g. family, friends, colleague). Bipartite graphs are 

generally used to model affiliation networks using two types of nodes, the actors and the 

objects of the affiliation, and edges that always link nodes of each type. For instance in 

a graph representing directory boards of companies, we have 2 types of nodes, the 

companies and their directors, with edges linking companies to their directors. More 

complex social network with complex relationships involving more than two types of 

resources (e.g. an author, a paper, and a keyword) are represented by hyperedges 

producing hypergraphs.  

3.1.4.4 Representing Graphs With Matrices 

Definition 24.  Matrix: A matrix is a rectangular table of values, in which each 

cell is noted aij with i and j that are the row and the column of the cell.  

Matrices are popular mathematical objects for handling graphs. Usually, when 

modelling a graph with a matrix, the rows and the columns of a matrix represent the 

nodes of the graph, and the value in the cell aij in the matrix represents an edge (or an 

absence of edge) between the corresponding nodes vi and vj.  Generally, two types of 

matrices are used for representing social networks: (1) adjacency matrices which rows 

and columns represent the same sets of nodes, and (2) incidence matrices which rows 

and columns represent different sets of nodes. 

Definition 25.  Adjacency Matrix: An adjacency matrix is a squared matrix in 

which rows and columns are labelled by the same list of nodes (the ith row and 

the ith column represent the same node).  

Definition 26.  Incidence Matrix: An incidence matrix have two types of nodes 

(e.g. authors and papers) with rows representing one type and columns the 

other one.  

An adjacency matrix is well suited to represent a graph with only one type of nodes 

(e.g. rows and columns that represent persons). Consequently, a graph G = (V, E) with 

n=|V| can be represented with a matrix M with n lines and n columns. If there is no 

relationship between vi and vj this value is 0. If a relationship exists between vi and vj 

this value is 1 in the case of a non weighted graph, and the weight of the relationships in 

the case of a weighted graph. In the case of a directed graph the rows and the columns 

represent respectively the source nodes and the end nodes of edges. A directed edge 

from vi to vj will be only represented by a positive value in cell aij. It is also possible to 

use a negative value in the cell aji to represent a directed edge from vi to vj. The Figure 7 

is an example of a matrix representing a social network built from the interaction (e.g. 

“collaborates with”) of 4 employees. This social network is undirected, so we have aij= 

aji, i.e. the matrix is symmetric. The values that are contained in the matrix cells 

represent the intensity of the corresponding collaborations. The Figure 8 is a sample of 

the adjacency matrix representing the Zachary karate club of the Figure 3.  
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 Employee1 Employee2 Employee3 Employee4 

Employee1 0 1 3 1 

Employee2 1 0 1 0 

Employee3 3 1 0 2 

Employee4 1 0 2 0 

Figure 7. Adjacency matrix of employees collaborating together, the value in a cell 
represents the number of shared projects between corresponding employees. 

 

 V1 V2 V3 V4 V5 V6 V7 … 

V1 - 1 1 1 1 1 1 … 

V2 1 - 1 1 0 0 0 … 

V3 1 1 - 1 0 0 0 … 

V4 1 1 1 - 0 0 0 … 

V5 1 0 0 0 - 0 1 … 

V6 1 0 0 0 0 - 1 … 

V7 1 0 0 0 1 1 - … 

… … … … … … … … … 

Figure 8. Sample of the adjacency matrix of the Zachary karate club. 

An incidence matrix is well suited to represent affiliation networks with bipartite 

graphs. Consequently, a bipartite graph G = (U, V, E) with p=|V| and q=|U| can be 

represented with a matrix M with p lines and q columns. In this case the value of the cell 

aij represents the relation between nodes vi and uj. The principles to define weighted and 

directed edges are identical to the principles of adjacency matrices, presented above. A 

p*q incidence matrix can be converted into two squared adjacency matrices of size p 

and q, one for each type of resource. The values of the cells of these adjacency matrices 

represent the number of shared connections in the incidence matrix. Figure 9 represents 

an example of incidence matrix built from the directory board of companies; rows and 

columns respectively represent companies and directors.  The Figure 10 is the adjacency 

matrix of companies deduced from the shared directors of companies in the incidence 

matrix of Figure 9. For instance, the company 1 and the company 2 are both connected 

to the director 1 and the director 2. Consequently, in the adjacency matrix of 

companies, the value of the cells a12 and a21 is 2, and represents the intensity of the 

interlock between the corresponding companies. Similarly the Figure 11 is the 

adjacency matrix of directors deduced from the companies shared by directors in the 
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incidence matrix of Figure 9. The values of the cell of this matrix represent the intensity 

of collaboration of the corresponding directors.  

 

 Director 1 Director 2 Director 3 Director 4 Director 5 

Company 1 1 1 1 0 0 

Company 2 1 1 0 1 1 

Company 3 0 1 1 0 0 

Company 4 0 0 1 1 1 

Figure 9. Example of incidence matrix of the social network of directory boards. 
 

 Company 1 Company 2 Company 3 Company 4 

Company 1 - 2 2 1 

Company 2 2 - 1 2 

Company 3 2 1 - 1 

Company 4 1 2 1 - 

Figure 10. Adjacency matrix of companies deduced from the Figure 9, each cell 
represents the number of directors shared by the corresponding companies. 

 

 Director 1 Director 2 Director 3 Director 4 Director 5 

Director 1 - 2 1 1 1 

Director 2 2 - 2 1 1 

Director 3 1 2 - 1 1 

Director 4 1 1 1 - 2 

Director 5 1 1 1 2 - 

Figure 11. Adjacency matrix of directors deduced from the Figure 9, each cell 
represents the number of companies shared by the corresponding directors. 

Finally particular matrices are frequently used to encode the degree of the nodes of the 

graph that they represent. Such matrices are particularly well suited to compute 

structural properties of the graphs.  
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Definition 27.  Degree Matrix: The degree matrix of a graph is a diagonal matrix 

with the degree of the graph's nodes on the diagonals 

Definition 28.  Laplacian Matrix: The Laplacian Matrix (or Kirchhoff matrix) of 

a graph is the difference between its degree matrix and its adjacency matrix. 

The value of the cells of a Laplacian Matrix is defined as follow: 
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3.2 Social Network Analysis 
SNA tries to understand and exploit the key features of social networks in order to 

manage their life cycle and predict their evolution. Much research has been conducted 

on SNA using graph theory [Scott 2000] [Wasserman & Faust 1994]. Among important 

results is the identification of sociometric features that characterize a network. SNA 

metrics can be decomposed into two categories; (1) some provide information about the 

position of actors and how they communicate and (2) others give information about the 

global structure of the social network. 

3.2.1 Strategic Position and Important Actors 

The Centrality highlights the most important actors and the strategic positions of 

the network. The main question of centrality is to define what makes an actor more 

central than another one. Different criteria have been considered to define the centrality, 

and the chosen criteria enable to obtain different information about the position of 

actors. The three main definitions of centrality are resumed by [Freeman 1979]: the 

degree centrality, the betweenness centrality and the closeness centrality. 

Definition 29. Degree Centrality: The Degree centrality considers nodes with the 

highest degrees (number of adjacent edges) as the most central.  

[Shaw 1954] introduced the idea to measure point centrality with its degree. It 

highlights the local popularity of the network, actors that influence their neighbourhood 

and ones who are highly visible in their community. In directed graphs the out-degree 

and in-degree are alternative definitions that take into account the direction of edges, 

representing respectively the influence and the support of the actor [Nieminem 1973]. In 

a directed graph, the outgoing and ingoing edges of a node respectively have this node 

as source and end. Consequently the out-degree and the in-degree of a node are 

respectively the number of its outgoing and ingoing edges. The n-degree is an 

alternative definition that widens the neighbourhood considered to a distance of n or 

less [Garrison 1960] [Pitts 1965]. The distance between two actors is the minimum 

number of relationships that link them. In respect with this definition the n-degree of an 

actor is the number of others actors he is linked to by a sequence of n relationships or 

less. However the n-degree is rarely used with n higher than 2 as it has been shown that 
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we cannot see, nor influence more distant network [Burt 1992]. The reach is equivalent 

to a 2-degree (3-degree in rare cases) and represents the network that an actor can see 

and/or influence. For instance, in the social network of Zachary karate club, the actors 

1, 33 and 34 have degrees well above the rest of the network and are the most central 

both in terms of degree (Figure 12). 

Definition 30.  Betweenness Centrality: The betweenness centrality considers 

nodes that are more often on shortest path between other nodes as the most 

central.  

[Bavelas 1948] introduced the idea that actors are more central when they are located on 

communication paths of the social network.  The betweenness centrality focuses on the 

ability of an actor to be an intermediary between any two other actors in the network. 

An actor located on a geodesic path has a strategic position in the cohesion of a network 

and the flow of information, especially if this path is unique. For instance, an agent 

located on the only road connecting two groups of actors has a strong control on the 

communication between these groups. Consequently, a network is highly dependent on 

actors with high betweenness centrality and these actors have a strategic advantage due 

to their position as intermediaries and brokers [Shimbel 1953] [Cohn & Marriott 1958] 

[Burt 1992] [Holme et al 2002] [Burt 2004]. These actors have the power to choose to 

leverage or to lower the communication between groups and have a privileged access to 

information of each group [Burt 2004]. The more intermediate a node is, the more 

strategic its position is in the network. In a directed graph, the interpretation of the 

betweenness centrality is still the same but we only considered path without any change 

of direction. For instance, in the social network of Zachary karate club, the actors 3, 9, 

14, 20, 31 and 32 are the most central in terms of betweenness, their absence or the 

failure of their links with one of the clubs would weaken the cohesion of the network 

(see Figure 12). 

Definition 31. Closeness Centrality: The closeness centrality considers as most 

central the nodes that have the smallest average length of the roads (sequence 

of relationships) linking an actor to others.  

[Leavitt 1951] considers the centrality as a measure of closeness in the social graph. The 

closeness centrality reveals the ability of a node to quickly connect with all the other 

actors of the network. In directed graphs, the interpretation of the closeness centrality is 

modified when we consider the direction of edges. The closeness centrality computed 

on outgoing and ingoing edges respectively represents the capacity of an actor to reach 

or to be reached in the whole network. For instance, in the social network of Zachary 

karate club, the actors 1, 33 and 34 are closer to other nodes in the network due to their 

high degrees and are the most central both in terms of degree and closeness. 
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Figure 12. Important actors in the Zachary karate club. Nodes 1, 33 and 34 have the 
highest degree and closeness centralities and nodes 3, 9 14, 20 and 32 have the 
highest betweenness centralities. 

The three measures of centrality discussed above are nuanced if one takes into account 

the orientation of the arcs. In all these definitions of centrality, we nuanced their 

interpretation when considering the direction of relationships. This highlights the 

semantic embedded only in the direction of relationships when building the network. 

For example, in order to analyze the propagation of information in a network, the 

direction of relationships is essential to convey information from Peter to Jack, only 

paths from Peter to Jack with no change of direction have to be considered. Generally, 

in directed graphs, an incoming arc is considered as a support for the target node while 

an outgoing arc represents an influence from that node. 

In a social network, the direction of relationships contains a lot of semantics. Taking 

into account the direction of relations leads to the notion of prestige that differentiate 

incoming and outgoing edges to characterize the position of actors in respect with their 

neighbours. An incoming edge is considered as a support for the target node while an 

outgoing edge represents an influence from that node. The three measures of centrality 

discussed above are qualified if one takes into account the direction of the edges. 

[Scott 2000] discusses an interesting approach, arguing that the centrality measure of a 

node should take into account the centrality of its adjacent nodes. Indeed, a node close 

to another node having a higher centrality enjoys some of the advantages offered by this 

position. Thus, the centrality of a node should consider the centralities of each of its 

neighbours. For instance, the degree centrality should be the sum of its degree and a 

fraction if its neighbours degree. 

Other approaches have focused on the egocentric centrality: 
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Definition 32.  Egocentric Centrality: centrality of a node on the sub network of 
its neighbourhood 

This type of centrality measures the influence and the position of an actor in its adjacent 

social network. This approach is considered by [Everett & Borgatti 2005] demonstrating 

a correlation between the centrality and the ego-centrality of a node. 

In relation with the betweenness centrality, [Burt 1992] introduced the concept of 

structural hole that defines a separation or a weak linkage between two groups of 

redundant contacts. Contacts are redundant when they belong to the same sub-group of 

dense contacts and when they share several connections. The structural holes offer two 

majors advantages to those controlling them. Firstly, the people who control the 

structural holes have a strategic networking advantage and can make the most of their 

position as intermediary in the communication and the information flows. Then 

structural holes provide an informational benefit, allowing quick access to non 

redundant information. The closest contacts of structural holes are better informed and 

faster. In [Burt 2004], the author shows that people close to the structural holes are more 

likely to have "good ideas", with the informational benefits brought by structural holes. 

In a redundant group of contacts, information is usually shared with the majority, and 

new information in a coherent group generally comes from outside. Structural holes are 

the communication channels for this information. 

3.2.2 Global Metrics and Network Structure 

Metrics help understanding the global structure of the network which enables us to: 

• evaluate the effectiveness of the network at communicating. 

• estimate the resilience of the network to connection failures. 

• anticipate its evolutions. 

• understand repartition of people and activities.  

The density indicates the cohesion of the network.  

Definition 33.  Density: number of edges of the network expressed as a proportion 
of the maximum possible number of edges: n*(n-1), with n the number of  

nodes.  

According to [Scott 2000], this measure can be used in the context of (1) an egocentric 

or (2) a socio-centric analysis.  

• An ego-centric analysis measures the density of links around a node. Such an 

analysis shows the influence of the analyzed node on the density subgraph it 

belongs to with its neighbours.  

• A socio-centric analysis computes the density on the whole graph and measure 

the constraint on the network on its members.  

The calculation of density is relative to the maximum number of edges a graph can 

contain. However, this maximum number is itself a function of the size of graph, and 
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any comparison between densities of graph of different sizes does not provide any 

significant result. [Scott 2000] proposes an interesting approach in calculating the 

maximum number of connections in a social network. Indeed, the management of social 

relationships is time-consuming, and time limits the number of contacts a person can 

maintain, implying that the bigger is a social network the lower is the density. The 

Dunbar limit argues on the cognitive cost inherent in the maintenance of social 

relationships and proposes 150 as the average number of relationships one can maintain 

[Dunbar, 1998]. The density also varies depending on the types of relationships in a 

social network. A love network is much less dense than a professional network due the 

characteristics of ties (e.g. exclusive relationship, more or less time consuming 

maintenance, etc.). So the type of relationships in a social network would parameterize 

the density (e.g. considering the sub graph of an exclusive relationships, the density 

could be maximum when every nodes has a connection).  

The global centralization of the network enables us to estimate the dependency of a 

network structure on its members. Freeman explains how to assess the centralized 

nature of the structure of a social network [Freeman 1979]. The overall centrality, or 

centralization, of a social network is calculated from local centralities of nodes. The 

calculation of centralization depends on the definition of local centrality that we 

consider, whether one considers the centrality as control, independence or activity. If we 

consider local degree centralities, the overall centrality highlights the existence of points 

of high interest within a social network, namely an activity concentrated around certain 

actors. A measure of the global centralization based on local betweenness centralities, 

provides an indication of the dependence of the network connectivity and efficiency 

over its actors. Finally a global centrality based on local proximity centralities measures 

the performance of the communication network, including traffic information. 

The network resilience to the withdrawal of nodes or edges enables us to evaluate 

the strength of the network connectivity in case of failure, such an actor leaving the 

network or the brokerage of relationships. [Newman 2003a] gives us an overview on 

network resilience. We have seen that the extent of centralization of a network shows 

the dependence of a network over its vertices. This dependence can also be measured by 

the impact on connectivity of the network of withdrawing nodes or edges. Indeed, the 

removal of a strategic node or edge, such as nodes with high betweenness centrality, 

may increase the length of the shortest path between many other nodes or even split the 

network into unconnected sub networks. We can test the resilience of a network with 

two types of removals: random or targeted. In general, the structures of social networks 

are quite resistant to random withdrawals of vertices or edges, while targeted 

withdrawals can seriously affect these structures. For example, the removal of a bridge 

between two groups of strongly connected vertices reduces or cuts off communication 

between these two groups. [Holme et al 2002] points to possible strategies for attacking 

networks focused on strategic nodes and the authors extend these strategies to attacks 

based on the edges. The main targeted strategies consist in iteratively withdrawing the 

most central nodes and edges for a given definition of the centrality. 
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Community detection helps understanding the distribution of actors and activities 

in the network by detecting groups of densely connected actors [Scott 2000]. The 

community structure influences the way information is shared and the way actors 

behave [Burt 1992] [Burt 2001] [Burt 2004] [Coleman 1988]. The concept of network 

closure argues that in a community the density of connections enable its members to be 

aware and have access to the information held by each [Coleman 1988]. Moreover, the 

redundancy of contacts enables information to quickly spread and facilitates both the 

penalty and confidence in a community [Burt 2001]. Penalties may include isolation in 

the network and loss of confidence, easing the decision of trusting someone and 

increasing the information quality. In an educational or business context, social network 

analysis helps forming productive working groups and helps improving the efficiency of 

communication channels. 

[Scott 2000] proposes three main graph patterns to detect cohesive subgroups of 

actors that play an important role in community detection:  

Definition 34.  Component: A component is an isolated connected sub graph.  

Definition 35.  Clique: A Clique is a complete sub graph. 

Definition 36.  Cycle: A Cycle is a path returning to its point of departure. 

Alternative definitions extend these initial concepts that are too restrictive for social 

networks or do not handle important network characteristics.  

Definition 37. Strong Component: A strong component is a component whose 

paths that connect nodes do not contain change of direction while a weak 

component ignores direction changes.  

Definition 38. Strong cycle: A strong cycle is a path that does not contain any 

change of direction while a weak cycle ignores direction changes.  

Definition 39.  k-plex: A k-plex is  a component in which every node is connected 

to all the other nodes of the k-plex except a maximum number of k nodes.  

Definition 40. n-clique: An n-clique is a component in which every node has a 

maximum distance of n to any other members of the n-clique.  

The paths connecting the vertices of an n-clique may contain vertices excluded from 

this clique. For instance, in Figure 13 Gérard helps connecting the 2-clique, which is 

composed of the other nodes, but is not contained in it because he has a distance of 3 to 

Pierre. This last case is excluded by the n-clan that restricts the definition of n-clique as 

follow: 

Definition 41.  n-clan: An n-clan it is a set of nodes all connected by paths of 

maximum length n that forming a sub graph with a diameter less than or equal 

to n. 

Definition 42. LS-SET: An LS-SET is subset of vertices S such that any proper 

subset of S (subset of S different from S) has more links to its complement in S 

than to the outside of S. 
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Figure 13. Pierre, Paul, Jacques, Carmen and Yvonne form a 2-clique but a 3-clan as 
the only geodesic between Yvonne and Jacques has a length of 2 but go through 
Gérard. 

Definition 43.  Triad: A triad is a cycle of length 3, so named as it connects three 
different nodes.  

Triads are frequent patterns in social networks that have a strong tendency to clustering, 

namely two nodes connected to one same node have a high probability of being linked. 

This tendency to clustering is measured by the clustering coefficient that is the ratio of 

triads on the maximum number of possible triads for in a given network. 

Definition 44.  Clustering Coefficient: Let |TRIAD| the number of triads, and 

|2_PATH| the number of paths of length 2 in the network, the clustering 

coefficient is: 

3× TRIAD

2_PATH
 

Definition 45. Node Clustering Coefficient: Let |TRIADi| the number of triads, 

and |2_PATHi| the number of paths of length 2 having the node vi, the 

clustering coefficient of vi is:  

CCi =
TRIADi

2_PATHi
 

We can alternatively compute the clustering coefficient of the network with the local 

values of each node:  

∑
i

CCi
n

1
 

Social networks generally highlight structural properties that are present in most 

complex networks [Newman 2003a]. The most popular one is the small world 

property, which was first highlighted by the famous experiment of Milgram in 1967 
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[Milgram 1967]. Every actor in a social network is connected to any other actor by a 

short path of lengths, initially observed, as an average of 6. In fact the shortest path 

between two vertices in a social network of size n tends to be of an order of log(n). 

Thus, when the network size increases, the length of the shortest paths also increases 

but slightly. Moreover members of social networks have the ability to easily find these 

shortest paths [Newman 2003a]. Another characteristic is derived from the human 

tendency to socialize in a group that provides social networking with a strong tendency 

to clustering and community structure, due to an important transitivity of social 

relationships. If Peter and Jack are both connected to Paul, then Peter and Jack have a 

high probability to be connected too. Such transitivity produces a community structure, 

namely densely connected groups of nodes that are connected by bridges. Then this 

connection in the network frequently follows a tendency to affiliation between nodes 

that have similar properties (e.g. in [Moody 2001] people tend to connect with other 

people of the same colour and same age); this property of social networks is named 

assortative mixing [Newman 2003a]. Finally the degree distribution follows the 

classical power law, namely that few nodes have the highest degrees. Figure 14 shows 

the degree distribution of the social network of the Zachary karate club of Figure 3 and 

Figure 12. 
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Figure 14. Degree distribution of the Zachary karate club social network. 

The definitions presented in this part to define community structure are still too 

theoretical and restrictive, and do not reflect the communities' characteristics of real 

social networks. Moreover, algorithms to detect some patterns are exponential 

problems, such as detecting all cliques in a graph [Bron & Kerbosch 1973]. For 

example, in the social network of Zachary karate club, we can clearly distinguish two 

groups in a visual way, and none has strictly the properties listed above. Consequently, 

broader notions have been taken into account to detect communities in social networks. 

We will now discuss these concepts in the next part that presents different community 

detection algorithms. 
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3.2.3 Community Detection Algorithms 

Community detection algorithms give an overview of a social network and global view 

of the distribution of actors and activities. We can classify these algorithms in two 

categories: hierarchical algorithms and heuristic based. 

3.2.3.1 Hierarchical Algorithms 

First, there are hierarchical algorithms that build a hierarchical tree of communities, 

called a dendrogram, namely a tree of denser and denser communities from top to 

bottom. The Figure 15 proposes an example of dendrogram. These algorithms start by 

assigning weights to each pair of nodes or edges. These weights represent the 

connectivity of the corresponding pairs of nodes in the network. Then they build a tree 

whose nodes are groups of vertices more or less similar. The deepest communities of 

the tree represent more densely connected groups of nodes. Thus, the more you go up in 

the tree the larger the communities are, with the root representing the whole network. 

Two main strategies for building these trees are used, grouping hierarchical algorithms 

into two categories: (1) agglomerative algorithms and (2) divisive algorithms. They 

differ in the construction of the tree and in the logic of allocating importance to the 

edges. Agglomerative algorithms start from the leaves of the tree, and group nodes in 

larger and larger communities, while divisive algorithms start from the root of the tree, 

and group nodes in denser and denser communities. 

• Agglomerative Algorithms 

In these algorithms, there are three main criteria for allocating weights to pairs of nodes. 

The first criterion is the number of paths that go through these nodes. The other two 

criteria are variants of the first criterion; one restrains the number of paths to paths 

having no nodes in common and the other to paths having no edges in common. Once 

these weights are assigned, they iteratively include nodes in the tree by considering the 

weights in descending order, until you have considered all the weights. The main 

drawback of these algorithms is that they exclude in most cases the peripheral members, 

which are more isolated from their community.  

[Donetti & Munoz 2004] use the eigenvectors of the Laplace matrix of the graph to 

measure similarities between nodes, their algorithm runs in time O(n3). 

The Netwalker algorithm of [Zhou & Lipowsky 2004] is "based on the average time for 

reaching a summit by random walks" to measure the similarity between nodes. Its time 

complexity is O(n
3
). 

The SCAN algorithm [Xu et al 2007] offers to find overlapping communities. It is based 

on the basic idea that the community structure of a node is defined by its neighbours; 

this algorithm forms communities by establishing a minimum score of structural 

similarity between a node and its neighbours.  The structural similarity between two 

nodes is based on the number of neighbours they share. 
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Newman offers an fast algorithm [Newman 2004a] for detecting communities in large 

networks with a complexity of O(n.log ² (n)). This algorithm provides a cut of the graph 

by optimizing a modularity function: 

²)( i

j

ij aeQ −=∑  

with eij the fraction of edges of the network that link nodes belonging to same 

communities in the network, ai is defined by: 

∑=
j

iji ea  

In other words, the modularity measures the fraction of edges within communities in the 

network minus the expected value of the same quantity in a network with the same 

community partition but with random connections between nodes  (the randomization of 

connections preserves the degree of the nodes).  

Definition 46.  Modularity: let m be the number of edges of the network,  d<i>  the 

degree of vertex i, Aij the number of edges between i and j, ci the community of 

i, δ(ci,cj) = 1 if ci = cj, 0 otherwise, the modularity is: 
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The higher the modularity is, the better the community partition is. When a partitioned 

network has a high modularity, it means that there are more connections between nodes 

within each community than between nodes from different communities. Many variants 

were proposed to measure the modularity and to take into account different graphs 

characteristics. The modularity is generalized for directed graphs in [ Leicht & Newman 

2008], proposing an alternative approach to this community detection algorithm: 

Definition 47.  Directed Modularity: let m be the number of edges of the 

network,  in

id ><  and out

id ><  the in-degree and out-degree of vertex i, Aij the 

number of edges between i and j, ci the community of i, δ(ci,cj) = 1 if ci = cj, 0 

otherwise, the directed modularity is: 
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[Djidev 2008] reduces the problem of modularity optimization to the weighted min-cut 

problem and proposes an algorithm that runs in time O(n.log(n) + m) for weighted 

graphs. [Barber 2007] proposes a definition of modularity for bipartite graphs. Finally 

[Chen et al 2009] proposed a variant that maximizes the edges within community and 

minimizes the outgoing edges of communities. 

• Divisive Algorithms 
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These algorithms build the tree in reverse. They assign a weight to each edge to set a 

divisive criterion between nodes. The tree is built from the whole graph, iteratively 

removing edges by descending weight. 

The most popular of these algorithms is that of [Girvan & Newman 2002] which sets 

the weights of the edges according to their capacity to be on geodesic paths between any 

two nodes of the network. The "most intermediary" nodes are removed first and so on. 

This technique provides very good cuts of a network and is adapted to the community 

structure of social networks. However, this algorithm requires the calculation of 

betweenness centralities and has consequently a high time complexity O(m².n). It is 

therefore usable only on small networks. The Figure 15 presents the dendrogram of the 

Zachary karate club network computed with this algorithm. The Figure 16 proposes a 

visualization of the community partition obtained by applying this algorithm on the 

collaboration network of scientists in a university. Different variants of this algorithm 

have been proposed. In particular, [Fortunato et al 2004] optimized the quality of the 

resulting partition but with a higher time complexity, O(m
3
.n), and [Bothorel & Bouklit 

2008] adapted this algorithm for hypergraphs. 

 

Figure 15. Hierarchical tree of the Zachary karate club network computed with the 
community detection algorithm of [Girvan & Newman 2002]. "The initial split of 
the network into two groups is in agreement with the actual factions observed by 
Zachary, with the exception that node 3 is misclassified."  

 [Radicchi et al 2004] extend the concept of clustering coefficient to edges and propose 

an algorithm that iteratively removes the edges with the lowest coefficient. The 

clustering coefficient of an edge is the fraction of the number of cycles of a given length 

that go through this edge divided by the number of possible cycles of the same length 

that could have gone through it, depending on the degree of the extremities. 



Ph.D. thesis.    Guillaume Erétéo 

36 

 

Figure 16. Community partition of the "the largest component of the Santa Fe 
Institute collaboration network" computed with the algorithm of [Girvan & Newman 
2002]. Each shape represents a community. 

 

3.2.3.2 Heuristic Based Algorithms 

Several non-hierarchical algorithms have also been proposed, they are based on 

heuristics related to the community structure of networks and to community 

characteristics. 

[Wu 2004] focus on similarities between a social network and an electrical network and 

provides an algorithm based on the simulation of electricity circulation. This method 

provides a result in linear time in practice but imposes a major constraint: fixing the 

number of resulting communities in advance, which is not possible in most cases. 

Several other algorithms are based on random walks in a graph. These algorithms are 

based on the assumption that a random walk in a graph tends to end up "trapped" in 

parts of the graph corresponding to highly connected communities. One of the most 

popular among these algorithms is the Markov Cluster Algorithm that simulates flows 
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in a graph [Dongen 2000] with successive matrix operations. The Figure 17 presents the 

different groups of nodes that are detected and isolated along the different loops of the 

matrix operation process. Among community detection algorithms that are based on 

random walk, the algorithm of [Pons et al 2005] has the most efficient time complexity 

in practice, O(n².log(n)), but it is the most expensive in space O(n²). An overview of 

random walk based algorithm is proposed in [Pons et al 2005]. 

 

Figure 17. Detection and isolation of densely connected groups of nodes by random 
walks with the Markov Cluster Algorithm [Dongen 2000]. 

The label propagation algorithm of [Raghavan et al 2007] is the most efficient algorithm 

in practice, but its ending is not deterministic (however in practice it always ends). 

Every node is given an initial random unique label representing the community to which 

it belongs. At each step each node changes its label by taking the most used one in its 

neighbourhood. This iterative process leads in practice to a consensus with a unique 

label for each community. [Gregory 2009] proposes a variant of this algorithm to detect 

overlapping communities.  

The Figure 18 summarizes the performances and the characteristics of the algorithms 

mentioned above. Other algorithms are also described in [Danon 2005] [Newman 

2004b] [Girvan & Newman 2004] and [Leskovec et al 2010].  
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Algorithm 
category 

Reference Time 
complexity 

Graph 
size 

Graph type 

Hierarchical 
Agglomerative 

[Donetti & 
Munoz 
2004] 

O(n
3
) 103 nodes Unlabelled 

Undirected 
Not weighted 

[Zhou & 
Lipowsky 
2004] 

O(n
3
) 104 nodes Unlabelled 

Undirected 
Not weighted 

[Newman 
2004a] 

O(n.log²(n)) 105 nodes Unlabelled 
Undirected 
Not weighted  

[Newman 
2008] 

O(n.log²(n)) 105 nodes Unlabelled 
Directed 
Not weighted 

Hierarchical 
Divisive 

[Girvan et 
Newman 
2002] 

O(m².n) for not 
weighted graph 
O(m².n.log(n)) 
for weighted 
graphs 

104 nodes Unlabelled 
Undirected 
Weighted 

[Radicchi et 
al 2004] 

O(n²) 104 nodes Unlabelled 
Undirected 
Not weighted 

Heuristic 
based 

[Djidev 
2008] 

O(n.log(n)+m) 105 nodes Unlabelled 
Undirected 
Not weighted 

[Wu 2004] O(n+m) 105 nodes Unlabelled 
Undirected 
Not weighted 

[Pons et al 
2005] 

O(m.n²) 

theorical 
O(n².log(n)) in 
practice 

104 nodes Unlabelled 
Undirected 
Not weighted 

[Raghavan 
et al 2007] 

O(n) non 

determinitic 

106 nodes Unlabelled 
Undirected 
Not weighted 

Figure 18. Categories and performances of community detection algorithms. 

3.2.3.3 Evaluating a Community Partition 

[Bolshakova & Azuaje 2003] propose three indices to evaluate the quality of a graph 

community partition. The Silhouette index compares the silhouette of the obtained 

clusters with the whole network silhouette, namely it compares characteristics such as 

the diameter to evaluate the heterogeneity of the obtained communities. The Dunn index 

and the Davies-Bouldin index, compare the intra-cluster distance and the inter-cluster 

distance to determine the quality of obtained community partition. 
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In [Girvan & Newman 2004], an alternative approach is proposed: the calculation of 

modularity. Its value ranges between 0 and 1. The closer the value is to 1, the better the 

partition. The modularity is currently the baseline measurement for assessing the quality 

of a cut into communities. In [Gustafsson et al 2006], a comparison is made between the 

modularity and the Silhouette index and modularity is found to be more relevant. 

[Rattigan 2007] proposes two complementary indices to measure the quality of a 

community partition. These two indices are (1) the proportion of inter-edges and (2) the 

proportion of intra-community edges. Values are both measured between 0 and 1. A 

good community partition has a low rate of intercommunity edges and a high rate of 

intra-community edges. 

Finally [Leskovec et al 2010] compares the different properties of the output 

communities computed by community detection algorithms, when applied to different 

networks. Each of these algorithms approximates different objective functions for 

finding groups of nodes with more and/or better interactions amongst their members 

than between their members and the rest of the network. Thus, the output communities 

highlight different characteristics of each algorithm, depending on the input network. 

Consequently, when selecting a community detection algorithm, one should take care of 

the characteristics of both the analyzed network and the algorithms' output communities 

in respect with its objectives and performance constraints. 

3.2.3.4 Partial Conclusion 

Most of the community detection algorithms, consider only unlabeled and undirected 

graphs, while they rarely provide non-overlapping clusters. None of these algorithms 

works on directed, labelled graph and proposes overlapping communities. Ignoring the 

orientation of edges leads to some loss of properties of community formation, in the 

same way that the interpretation of centralities is different when considering edge 

direction. Typing, or labelling, of links in a social network also brings a lot of 

semantics, as well as the typing of nodes that helps us describe a social network with 

different types of actors. In addition, when one actor may belong to different 

communities with different membership involvement, most of these algorithms will 

only make that actor a member of a single community. 

3.2.4 Algorithms for Computing Centralities 

The centrality measure is useful for detecting strategic positions in a social network. We 

saw in section 3.2.1 that there are different kinds of centralities (degree, betweenness, 

closeness). In this section we will review existing methods. We will also focus on 

algorithms that compute the betweenness centrality, which is the trickiest to compute 

efficiently. 

3.2.4.1 Formulas and Principles 

[Freeman 1979] suggests two methods of calculation for each of the three measures of 

local centrality (degree, betweenness, closeness). He presents a measure that is function 
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of the network size and another one that does not take into account these parameters. 

The former is used to measure the influence of the activity of a node in a network, while 

the latter is used to compare centralities between different networks.  

Definition 48.  Degree Centrality: The degree of centrality of a node is simply its 
degree [Nieminem 1974]. 

The method for calculating the betweenness centrality of a node consists in adding the 

values of partial betweenness of that node for each pair of other nodes in the network. 

The partial betweenness of a node b for a couple of node x and y is the ratio of the 

number of geodesic paths between x and y containing b divided by the total number of 

geodesic paths between x and y, namely the probability of  b to be on a shortest path 

between x and y [Freeman 1977]. 

Definition 49.  Partial Betweenness: Let nb
g
(b,x,y) the number of geodesics 

between x and y going through b and nb
g
(x,y) the total number of geodesics 

between x and y, then the partial betweeness of b for x and y is: 
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Definition 50.  Betweenness Centrality: Let B(b, x, y) the partial betweenness of 
a node b for a couple of node x and y, then the betweenness centrality of a node 

b is:  
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For instance, in the Figure 19, the node B is located on one of the two shortest paths 

going from A to D and has consequently a probability of 0.5 to act as an intermediary 

between these two nodes. Thus the partial betweenness of B for the nodes A and D is 

0.5. However, B is on the only shortest paths going from A to E, so it has a partial 

betweenness of 1 for this pair of nodes. B is not located on any others shortest paths 

between other pairs of nodes so its betweenness centrality in this network is 1.5. 

 

Figure 19. In this toy example, B has the highest betweenness centrality with a value 
of 1.5. 
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The closeness centrality of a node is measured as the inverse of the sum of distances 

from this node to all the other nodes [Freeman 1979].  

Definition 51.  Closeness Centrality: Let g(k,x) be a shortest path between k and 

x, and length(g(k,x)) the length of such a shortest path, the closeness centrality 

is: 
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To make these measurements independent from the network size, Freeman suggested in 

both cases to divide the result by the maximum possible value of the centrality in a 

network of the same size. The maximum value is always reached by the most central 

node in a star network, i.e. a network with one node connected to all the other nodes. So 

for a network of size n, the maximum value of the degree is n-1, the maximum value of 

betweenness is (n² - 3n + 2) / 2, and the maximum value of the closeness centrality is 

1/(n-1) (the minimum sum of distances is n-1, for a point that is adjacent to everyone). 

Finally Freeman provides a formula for calculating the global centralization of a 

network for each of the 3 measures of local centralities. The principle is to measure the 

difference between the value of the highest centrality and the centralities of the other 

nodes in the graph. 

While the calculation of the degree centrality is obviously trivial, computing the 

betweenness and closeness centralities requires computing all the geodesic paths, which 

has an important time complexity of O(m.n). However the small world property of 

social networks enables to consider the degree as a good estimator of the closeness 

centrality of a node; nodes with higher degrees are closer to other nodes in the network, 

thanks to their good connectivity.  

In social network analysis the betweenness centrality is one of the most significant 

measures as it highlights highly strategic positions, both for the information channels 

and the network resilience.  

We will now review the different algorithms that were proposed to compute the 

betweenness centralities.  

3.2.4.2 Algorithms for Computing the Betweenness Centrality 

Different types of algorithms have been proposed to compute the betweenness 

centrality: 

• exact algorithms compute the formal definition of the betweenness centrality 

• sampling algorithms propose to estimate the betweenness centrality 

• parallel algorithms have been proposed to deal with very large graphs 

Exact algorithms 
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Several algorithms that compute the exact betweenness centrality have been proposed. 

They are applicable on small networks, with an order of 105 nodes for the most efficient 

ones. These algorithms usually offer a version for weighted and not weighted graphs. 

The main ones only consider geodesic paths between nodes [Brandes 2001] [Newman 

2001]. The others are based on an optimal distribution of information flow in the 

network between the different possible paths [Freeman & Borgatti 1991], or combine 

both approaches [Latora & Marchiori 2004]. The most efficient exact algorithm is 

described in [Brandes 2001], it provides a result with a space complexity of O(n+m) 

and a time complexity of O(n.m) and O(n.m+log²(n)), respectively for not weighted and 

weighted graphs. This algorithm is based on a set of lemmas that consider only the 

necessary computations and reduce the complexity of the optimal methods that 

computes the geodesics. For example, if vs is on a geodesic from vr to vt, then distrt <= 

distrs = distst. [White & Borgatti 1994] takes also into account the orientation of the 

arcs. 

[Brandes 2008], performs an overview of the alternatives proposed for the computation 

of the betweenness centrality. These variants include the importance of the position of 

nodes on geodesics, the importance of the path lengths, edge betweenness (namely 

edges located on geodesics), betweenness for group of nodes and betweenness in 

multipartite networks. He adapted the algorithm of [Brandes 2001] for each of these 

alternatives. 

The computation of betweenness centrality in multipartite network is poorly treated in 

the literature. We note especially [Flom et al 2004] and [Brandes 2008], who treat 

betweenness centrality in networks with nodes of two different types, namely bipartite 

graphs. [Everett and Borgati 1999] adapt the core concepts of node betweenness 

centrality to group of nodes. Nodes that share a given attribute, such as sex or age, are 

considered as members of the same group. However, the type of the nodes could be 

considered as an attribute, offering the possibility to use their approach as a solution for 

computing the betweenness centrality in multipartite graph in general. 

[Everett & Borgatti 2005] provides a method for calculating the betweenness centrality 

in an egocentric network, namely betweenness of a given node over the network formed 

by its adjacent nodes. This measure is used to extract the most influent actors in the 

neighbourhood of a given node. 

Finally [Bothorel & Bouklit 2008] propose an algorithm that adapts the definition of 

betweenness centrality to hypergraphs. 

Sampling and Heuristic based Algorithms 

Several other algorithms provide estimates of the betweenness centrality [Radicchi et al 

2004] [Newman 2003b] [Brandes & Pitch 2007] [Bader et al 2007] [Geisberg et al 

2008]. These algorithms give slightly less accurate results but with much better 

performance, making them usable for networks of around 106 nodes. [Brandes & Pitch 

2007] [Bader et al 2007] [Geisberg et al 2008] propose algorithms that compute the 

betweenness centrality from a sample of randomly distributed nodes in the network. The 
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quality of these algorithms depends on the sampling technique; the more representative 

of the whole network is the sample the more accurate is the result. [Radicchi et al 2004] 

and [Newman 2003b] are based on heuristics that exploit the small world property of 

social networks. 

Parallel Algorithms 

Finally [Bader & Madduri 2006] and [Santos et al 2006] provided major contributions 

in terms of performance with two parallel algorithms for treating social networks of the 

order of 106 nodes with exact results for the first one and with an estimation for the 

other. The algorithm of [Santos et al 2006] is also particularly interesting as it proposes 

an incremental approach, where the accuracy of the results improves as new data are 

processed. This algorithm is well suited for huge and for evolving graphs. The 

algorithm of [Bader & Madduri 2006] provides an accurate result by parallelizing the 

algorithm of [Brandes 2001]. 

The Table of the Figure 20 summarizes the performances and the characteristics of the 

algorithms mentioned above. 
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Reference Complexity Graph size characteristics Graph type 

[Newman 

2001] 

O(n.m) and  O(n.m.log(n) 

respectively for not 

weighted and weighted 

graphs 

105 nodes Exact Unlabelled 

Undirected 

weighted 

[Brandes 

2001] 

O(n.m) and 

O(n.m + n².log(n)) 

respectively for not 

weighted and weighted 

graphs 

105 nodes Exact Unlabelled 

Undirected 

weighted 

[Geisberger 

et al 2008] 

[Brandes et 

Pich 2007] 

Like [Brandes 2001] but 

estimated with k nodes, k 

< n. 

106 nodes Incremental Unlabelled 

Undirected 

weighted 

[Bader & 

Madduri 

2006] 

O(n.m) and O(n.m + 

n².log(n)) respectively for 

weighted and not 

weighted graphs 

106 nodes Parallel 

Exact 

Unlabelled 

Undirected 

weighted 

[Santos et 

al 2006] 

Not estimated 105 nodes Incremental 

Parallel 

Unlabelled 

Undirected 

Weighted 

Figure 20. Types and performances of betweenness centrality algorithms. 

3.2.5 Datasets 

The quality and performance of the algorithms have been evaluated on several datasets. 

These datasets are artificially generated or based on real networks. Regarding the 

generation of networks, three main methods are used, (1) the random graphs of [Gilbert 

1959], (2) the "preferential attachment" algorithm of [Barabasi & Albert 1999] and (3) 

the "small world" model of [Watts & Strogatz 1998]. The random graph generation 

produces networks without taking into account the properties of social networks. The 

"preferential attachment" model of  [Barabasi & Albert 1999] proposes to generate a 

random graph with a power law distribution of the degrees. The model of [Watts and 

Strogatz 1998] reproduces the small world property of social networks. However these 

networks are automatically generated and are mostly used as witness dataset for 

comparing different community detection algorithms.   
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Several real datasets are regularly used to assess the effectiveness and quality of an 

algorithm for analyzing social networks. The earliest studied networks were built from 

manual surveys, for example by asking people to cite friends. The social network of the 

Zachary karate club has only thirty members but is often used as proof of proper 

functioning of a clustering algorithm. However, testing the time and space performances 

and limits of algorithms requires networks of large sizes to assess their performance, to 

judge their quality and observe their limits. Samples of the web graph can be easily 

extracted from the hyperlinks structure of web pages and offered the opportunity to get 

very large networks. The co-author and citation networks formed by scientific papers 

are also extensively used. CiteSeer is one the main sources for extracting such networks 

(http://citeseer.ist.psu.edu/). 

However we will see in the section 3.3 that the web provides numerous social data that 

are now used as sources for all the domains that have interests in social network 

analysis. 

3.2.6 Partial Conclusion 

We discussed here the main methods and algorithms for analyzing social networks; In 

particular, we reviewed algorithms for computing community partition and betweenness 

centrality. Many community partition algorithms have been proposed, with different 

time and space performances and with different partition quality. On one hand 

algorithms with the best time complexity produce a low community partition quality or 

are just applicable in some cases. On the other hand algorithms producing good 

community partition are time and/or space consuming and can't be applicable on very 

large graphs (millions of nodes). However, while modularity based algorithms like 

[Newman 2004a] are favoured for not too large networks, more and more heuristic 

based algorithms are proposed and exploit smart heuristics to handle community 

properties with a lower cost [Raghavan et al 2007]. [Radicchi et al 2004] has opened the 

door for detecting communities with heuristic based betweenness centralities.  

Approximating social network analysis measures, and graph sampling are probably the 

solution for dealing with very large networks. We started witnessing several advances in 

graph sampling for estimating SNA measures. [Rattigan et al 2006] proposes a method 

to index the graph structure and use this to highly improve computation of different 

measures such as shortest paths or betweenness centrality. These indexes are also used 

to optimize algorithms, including [Girvan & Newman, 2002]. Graph sampling for 

betweenness centralities have been deeply investigated by [Brandes and Pitch 2007] 

[Bader et al 2007] [Geisberg et al 2008], leading to new ways for estimating the 

betweenness centrality with an efficient computational cost on large graphs. Such an 

estimation of the betweenness centrality could be an interesting approach for reducing 

the computation time of community detection algorithms based on this centrality 

measure such as the one by [Girvan & Newman 2002]. [Maiya et al 2010] have 

proposed an innovative and efficient approach "to produce sub graph samples 

representative of the community structure". The authors show that community detection 
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algorithms on such samples produce representative community partition of the original 

network and propose a method for affiliating the nodes of the whole network to the 

detected communities. 

Finally some of the mentioned algorithms can be adapted to take into account the 

orientation, the weights and the labelling of edges, and also the attributes of nodes. 

[Brandes 2008] propose different version of the algorithm of [Brandes 2001] to 

separately take into account these graph characteristics.  However none of the 

algorithms we presented considers all these graph properties as this would increases the 

complexity of the network analysis. Consequently the problem of analyzing a rich social 

network represented with directed typed weighted graph and handling very large graphs 

is still an open problem 

We shall now see how the outburst of Web 2.0 and the emergence of Semantic Web 

technologies bring new perspectives, and open new problems for social network 

analysis, in particular in the detection and the construction of rich semantic social 

graphs. 

3.3 Social Data on the Web 

[Buffa, 2008] recalls the history of collaborative tools of the era preceding the arrival of 

the web as we know it today. The "liberalization" of the Internet in the late 80s has been 

quickly followed "by the creation of the web by Tim Berners Lee" in the early 90s. The 

synchronous and asynchronous means of communication offered by these technologies 

have been widely adopted, first by individuals and then by business organizations. 

Sociologists have soon highlighted a great interest in the quickly emerging social 

networks through these new means of communication, bigger and easier to reconstruct 

than by forms and questionnaires. The outburst of knowledge on the web motivated 

researches in web mining, a discipline aimed at exploring and extracting knowledge 

from web resources, including mining social networks. Internet has offered to 

breakdown geographical barriers and was quickly perceived as a boon for easing and 

stimulating collaboration. Since the mid-90s and the emergence of the first wiki7 (see 

[Buffa 2008] for an history of the wikis), created by Ward Cunningham, social 

applications have proliferated on the Web and provide users with the opportunity to 

greatly improve their visibility and become important players in the landscape of the 

Web and its content.  

The communication tools of the Web became progressively necessary as major modes 

of interaction in our society. Computer-mediated interactions between people on the 

internet and especially later on the World Wide Web reveal social network structures 

with properties that are close to those observed in the physical world [Wellman 2001]. 

Consequently, the interactions of internet users are sources of choice for extracting and 

analyzing social networks of very large sizes. Researchers have extracted social 

                                                
7 http://www.wiki.org,   
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networks from synchronous and asynchronous discussions (e.g., emails, mailing-list 

archives, IRC, instant messaging), the hyperlink structure of homepage citations, co-

occurrence of names in web pages, and from the digital data created by Web 2.0 

application usages. Turning the read web into a read/write web, the emergence of the 

Web 2.0, firstly mentioned by Tim O'Reilly in 2005 [O'Reilly 2005], has led to dramatic 

growth in the different possibilities for interacting and connecting, which started 

producing a huge amount of heterogeneous social data. Today the massive adoption of 

Web 2.0 collaborative tools gives the opportunity to study new networks with actors 

who always provide information not only about themselves but also about those with 

whom they interact.  

In addition to [Wellman 2001], many results argue that online relationships form virtual 

social networks that are representative of real social networks. In fact, these virtual 

networks are created from interactions initiated by individuals. This argument is 

confirmed by [Mika 2007], but Mika stressed the incomplete nature of these social 

networks because of the online absence of some components of the offline world. 

However, [Hendler & Golbeck 2008] shows that the Web 2.0 and the Semantic Web 

amplify user connectivity and help online networks reproducing offline networks. 

Today, in 2010, more and more people are represented online and the sizes of many 

online social networks are now close to those of the populations of big countries. The 

growing mobile access to social networks on the web is also amplifying the 

convergence of offline networks and online networks. 

This section deals initially with the application of social network analysis techniques on 

online social networks, then, it details the need for richer graph representations and for 

the exploitation of semantics in the analysis of a social network. 

3.3.1 Social Network Analysis and Online Social Data 

[Mika 2007] distinguishes three categories of social network sources on the web: 

• Implicit social networks inferred with web mining techniques: links between 

personal homepages and co-occurrence of names in web pages. 

• Online discussions: mails, chat, forum.  

• The social applications of Web 2.0: publishing tools (wiki, blog, news), social 

networking and sharing sites (content, products, events, etc.) and collaborative 

games. 

3.3.1.1 Web mining 

[Adamic & Adar 2003] extracted the friendships networks of Stanford University and 

MIT, from the hyperlink structure of students' personal homepages. Students from these 

universities used to add, on their homepage, hyperlinks to the personal homepage of 

their friends. The authors showed that the graph formed by the hyperlink structure of 

these homepages highlights the same properties than offline social networks: "small 

world" graphs, power law distribution of the degrees in the graph, and a high clustering 
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rate. Then, an index of similarity between the personal homepages is defined from the 

co-occurrence of text elements and the presence of hyperlinks between pages. 

[Kautz et al 1997] [Mika 2005b] [Matsuo et al 2006] and [Jin et al 2007] extracted and 

analyzed social networks based on co-occurrences of names on Web pages. The 

principle of these methods is to measure the strength of a relationship between two 

persons based on the co-occurrences of their name in web pages. [Kautz et al 1997] and 

[Mika 2005b] use the Jaccard coefficient that is defined, for a pair of names X and Y, by 

(nX∩Y / min(nX,nY), with nX and nY the number of pages containing the names X and nX∩Y 

the number of pages containing both X and Y. [Matsuo et al 2006] and [Jin et al 2007] 

using the recovery coefficient which is defined with the same notation, as 

nX∩Y/min(nX,nY). The number of pages containing a name or a co-occurrence of names is 

obtained by querying a search engine, Altavista for [Kautz et al 1997] and Google for 

the others. These four approaches provide pretty similar methods for extracting social 

networks but for different purposes. [Kautz et al 1997] provide an exploration tool of an 

extracted social network for finding experts. [Mika 2005 bis] and [Matsuo et al 2006] 

apply the co-occurrence between names and terms in order to extract affiliation 

networks. [Mika 2005 bis] has used this method to build an affiliate network between 

the concepts manipulated by members of the Semantic Web community. [Matsuo et al 

2006] provide a coordination tool for communities of researchers, POLYPHONET, 

which extracts and exploit affiliation networks. [Jin et al 2007] reapplies the techniques 

of [Matsuo et al 2006] for extracting online affiliation networks of artists and major 

Japanese firms. 

3.3.1.2 Synchronous and Asynchronous Discussions  

[Tyler et al 2003] constructed an interaction of a company's employees from the 

analysis of email headers containing the sender and the recipient. Having demonstrated 

that this network has the social network characteristics, the authors identified sixty six 

communities of practice with the clustering algorithm of [Wilkinson and Huberman 

2002]. The authors validate the obtained community partition with interviews of the 

members of seven communities, randomly chosen among the sixty six found 

communities. 

[Leskovec & Horvitz 2008] analyzed a huge dataset of instant messaging 

communications extracted from the Microsoft Messenger system. They extracted, from 

this dataset, a social network of 180 million people, making it one of the largest ever 

analyzed. At the time of their experimentation, they observed that this social network 

has similar characteristics than offline social networks. First, they found an average 

distance of 6.6 between Microsoft Messenger users, which is close to the observed 

value in offline social networks. Then, the corresponding social graph is "well-

connected and robust to node removal". Finally, they observed the classical tendency of 

people to bind with similar others, with more communication between people of similar 

age, language, and location. 
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3.3.1.3 Web 2.0 

 

Figure 21. Social media Landscape proposed by Fred Cavazza in a blog post8. 

The Figure 21 summarizes the social media landscape proposed by Fred Cavazza in a 

blog post8. He breaks down these social tools into 4 main categories, "expressing tools 

allow users to express themselves, discuss and aggregate their social life", "sharing tools 

allow users to publish and share content", "networking tools allow users to search, 

connect and interact with each other" and "playing services that now integrate strong 

social features". Social platforms, like Facebook, Orkut, Hi5, etc., are at the centre of 

this landscape as they enable us to host and aggregate these different social applications. 

For instance, you can publish and share your del.icio.us bookmarks, your RSS streams 

or your microblog posts via the Facebook news feed, thanks to dedicated Facebook 

applications. This integration of various means for publishing and socializing enables us 

to quickly share, recommend and propagate information to our social network, trigger 

reactions, and finally enrich it. Sociologists now have access to a valuable source of 

social data that capture characteristics of our societies with permanently evolving web 

usages and web technologies. The need for some appropriate representation to exploit 

them has consequently emerged. 

Historical graphs representations are applied to model and manipulate these online 

social networks in the same manner as for offline social network. Social networks with 

symmetric relationships like Facebook are represented by undirected graphs similar to 

the one in Figure 23. Inversely, directed graphs are well suited to model social networks 

                                                
8  http://www.fredcavazza.net/2009/04/10/social-media-landscape-redux/ 
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with non-symmetric relations like the "follows" relationships of Twitter. In weighted 

graphs, weights are useful for representing the frequency of interactions between people 

through messages or comments. Social networks like Facebook propose adding labels 

(e.g. family, friends, favourite) on relationships to represent the type of social links they 

represent and help user filter their contacts. Finally, sharing sites (e.g., Flickr, Youtube, 

Delicious) allow interaction on shared content (e.g. photos, videos, bookmarks), 

connecting them through virtual artefacts. Such social networks are represented with 

bipartite graphs, with two types of nodes and edges that link nodes of each type. These 

sites sometime produce complex relationships involving more than two types of 

resources (e.g. a user, a document and a tag) that are represented by hyperedges 

producing hypergraphs. 

The social tagging activity, which consists in collaboratively classifying resources by 

annotating them with tags, emerged with the advent of Web 2.0, and became the 

dominant tool for classification of online shared resources (Flickr, del.icio.us). A set of 

tags built from usage of such applications forms a folksonomy that can be seen as a 

shared vocabulary that is both originated by, and familiar to, its primary users. 

[Limpens 2010] defines a folksonomy as follow: 

Definition 52.  Folksonomy: A folksonomy is defined as a collection of taggings. 

In formal term, a folksonomy is defined by [Hotho et al 2006] as a tuple F := 

(U, T, R, Y) where U, T, and R are finite sets, whose elements are called users, 

tags, and tagged resources, respectively. Y is the set of tagging instances such 

that Y  U × T × R. [Mika 2005a] also proposed a graph definition where a 

folksonomy can be seen as tripartite hypergraph H(F) = (V, E) where the 

vertices are given by V = U ∪ T ∪ R and the edges by E = u,t,r | (u,t,r) ∈ F. 

This collaborative classification of web resources can be further analyzed in order to 

decipher implicit links between users who use similar vocabularies or tag the same 

content, highlighting the existence of common interests. As more people use these 

social applications they expose more and more of their lives and of their social 

networks. [Mika 2005a] models the social tagging with a tripartite graph (see Figure 

22), where the nodes are users, tags and annotated resources while the edges of this 

graph represent the ternary association of a tag to a resource by an actor. Then Mika 

extracts and focuses more closely at two bipartite subgraphs. The first one connects 

actors to the tags they use to annotate resources. This graph allows inferring an affiliate 

social network; edges connect actors who used that shared tags with weights 

representing the number of shared tags. Mika deduces similarly a network of tags, 

where an edge between two tags is weighted by the number of users using both these 

tags. The second extracted bipartite graph connects the tags to the resources and 

provides an additional network of tags; a link between two tags is weighted by the 

number of instances annotated with these tags. Mika builds such graphs from a social 

tagging dataset extracted from the social bookmarking service delicious.com. He ran 

different metrics of social network analysis to infer lightweight semantics between tags. 

In particular he focused on the tags networks. He observed that tags with higher local 
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clustering coefficients represent more specialized concepts. Inversely, tags with lower 

clustering coefficients and a high betweenness centrality represent broader concepts. 

Finally, running a community detection algorithm offers to detect interest communities 

of interests on the affiliate network of users sharing same tags. 

 

Figure 22. Tripartite graph of a folksonomy. Each edge links a person (in blue), a tag 
(in green) and a resource (in grey) [Limpens 2010]. 

[Bothorel & Bouklit 2008] model a folksonomy extracted from Flickr with a 

hypergraph. They generalized the community detection algorithm of [Girvan & 

Newman 2002] to tripartite graphs in order to generate thematic tag clouds and detect 

consensus or conflicts in the use of tags among the communities. 

[Brandes et al 2009] propose an interesting approach to analyse interactions in 

Wikipedia and to get insight into the communities emerging from collaborative writing 

of knowledge writing. They define links between the different authors of versions of a 

same page, considering co-editing and revising a page as mediated interactions. 

Moreover, they propose to label these interactions by defining and detecting three 

possible actions on the content of a wiki page version: augment its content, partial 

delete or total removal by restoring a previous version. Moreover, as authors tend to 

contribute many times on one page and several times on domain related page, same 

authors interact regularly on different versions and pages. Consequently, they add 

weights on the interactions between authors to highlight the intensity of their 

interactions. With the combination of the weights and the different types of interactions 

between authors it is possible to infer agreements, disagreements and even conflicts. 

With this approach, the authors obtained three weighted graphs, one for each type of 

interaction, on which they performed a network analysis. In particular they detected 

communities and highly intermediary people, highlighting conflicting communities and 

topics. 
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The online social networking sites have becomed key applications of Web 2.0 and 

experience the highest audience. Among the former, we find Friendster9 and Orkut10, 

but the best known and most visited today are Facebook11 and Twitter12. These sites 

allow their users (1) to maintain their offline relationships and (2) to develop online 

affiliations. The huge audience of these sites (over 500 million for Facebook [Facebook 

statistics 2010] and more than 100 millions for Twitter in 2010) and the accessibility of 

their social data by REST13 APIs constitute valuable sources to analyze social networks 

of very large sizes. Indeed, as users explicitly state their relationships and interactions, it 

is no more necessary to infer social networks with heuristics or interviews as the very 

nature of these relationships is provided. However, most of the time inferences are still 

necessary to merge identities and relationships across social network services which run 

on their own data silos and do not offer interoperability. It is true that some aggregating 

services propose to centralize content from multiple social networks. But aggregation of 

a new service requires learning a new API. Some initiatives like Google Open Social14 

tried to overcome such issues by proposing the use of a single common API but are still 

not adopted by most of the major social services. Figure 23 shows a part of the social 

network of Guillaume Erétéo on Facebook built with the TouchGraph15 application that 

exploits the Facebook API.  

[Bonneau et al 2009] sampled and analyzed the student networks of Stanford and 

Harvard on Facebook, using only the eight friends displayed on the public profiles of 

students on Facebook. To obtain this sample they simply crawled the public Facebook 

profile of students that randomly highlights eight of their friend. By performing a social 

network analysis of this social network sample, they have shown that a small subset of 

the network is enough to obtain relevant information about the network itself. In 

particular they accurately estimated the global structure of the social network such as 

the community structure, the diameter and the density. They also obtained a great 

insight into strategic positions with most central people according to their degrees and 

their betweenness centralities. 

                                                
9 http://www.friendster.com  
10 http://www.orkut.com  
11 http://www.facebook.com  
12 http://www.twitter.com  
13 Representational State Transfer http://fr.wikipedia.org/wiki/Representational_State_Transfer  
14 Google Open Social http://code.google.com/intl/fr/apis/opensocial/  
15 http://www.touchgraph.com  
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Figure 23. Visualisation of the social network of Guillaume in September 2010. 

Twitter is another one of the largest social networks. The principles of Twitter consist in 

publicly publishing short posts (also called statuses), no longer than 140 characters, 

directly visible to users following the author's posts (and accessible through search 

otherwise), and to follow other users to watch their own posts. This “follow principle” 

works in a directed way: Peter can follow Paul's posts while Paul is not necessarily 

following Peter. Based on this simplicity of use, conventions in post contents enable 

users to interact in a richer way. One can mention a user by prefixing his username with 

the character '@'. Then, one can share the post of a user he follows with a "retweet", by 

mentioning the initial emitter and adding the string 'RT' (or 'via' in some cases) at the 

beginning of the tweets he is going to forward. Finally, people gather in a public 

conversation, accessible through the search functionality, by negotiating a common tag 

they add in their posts. These tags are  keywords prefixed with the character '#', they are 

called hashtags. Twitter is currently considered as one of the most efficient way to share 

information and raises lots of interests in the social network analysis community. In 

particular, [Kwak et al 2010] obtained interesting and questioning results by analyzing a 

huge datasets extracted from Twitter containing both posts and connections between 

people. Despite the directed nature of the “follow relations” of Twitter, which could 

have made longer connections between users, they found an average distance of 4 

between any Twitter users. This average distance is considerably shorter than the one 



Ph.D. thesis.    Guillaume Erétéo 

54 

historically observed in offline social networks. In fact it is a direct consequence of the 

absence of reciprocity in Twitter way of linking. Without this constraint, creating links 

becomes so free that the density of links get very high and some people reach huge in 

and out degrees (e.g. some stars have millions of followers). However, the authors 

conclude that this non usual network structure probably results in the fact that Twitter is 

now more a new media than a real social network. But, despite of its simplicity, Twitter 

offers many ways of interaction, namely social links, between its users, which still are 

social actors. Consequently even if some users do not act socially, i.e. with broadcasting 

purposes in mind, Twitter is still a real social network according to the social links it 

offers and the social nature of the majority of its members. In my opinion, the real 

question is: how can we analyze relevant relationships to obtain relevant insights on 

social networks? We previously described how [Brandes et al 2009] started answering it 

by handling different types of interactions in wikis to obtain a better interpretation of 

the community structure of Wikipedia. [Kwak et al 2010] also started answering this 

question by comparing different users’ ranking methods, the “follow link” structure 

(degrees and page rank) or post "retweet" by other users, which result in a completely 

different classification of "most influential users". 

3.3.2 Social Network Analysis: the Need for Semantics 

You have probably ever been surprised to discover a relationship between two of your 

acquaintances and concluded: "This is definitively a small world". Effectively, we have 

previously seen in this chapter that the "small world" property it is one of the most 

famous characteristics of social networks highlighted by the historical experiment of   

[Milgram 1967] described in section 3.1.2. In this section, we will underline that the 

conclusion of this experiment has to be contextualized with the semantics of the 

relationships and the mode of communication used to transmit the letters. In order to 

reach the final recipient the current possessor of the letter has to mail it to a person he 

knew and that he thinks would be the most efficient one to help sending the letter to its 

destination. So the type of communication is the mail and the type of relationship is 

knows. Let us decompose and analyze these two constraints. However, the know 

relationship is very broad and include friends, family, works or even simple 

acquaintance. Do we only consider reciprocal or also consider directed relationships? 

How many steps would have been observed if we asked to transmit the letter through 

family relationships? In addition, the mail was probably one of the most used one to one 

means of communication in 1967 but it's clearly no more the case. How many steps 

would have been observed if we had asked to transmit the letter hand to hand? How 

many steps would have been observed if we had asked to transmit the message of the 

letter with a one to many communication mean, such as a high audience radio or TV 

channel? All these questions highlight sub cases of the guidelines proposed by Milgram 

that could impact the conclusion of the experiment.  

Today, nearly 2 billion people have an internet access. More and more communicating 

tools and social applications have been built on top of internet. In particular 

conversation solutions have been developed, such as IRC, mail and instant messaging. 
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Consequently, these communication solutions have rained interests and social networks 

have been extracted from email and instant messaging communication [Tyler et al 

2003] [Leskovec & Horvitz 2008]. How many steps are necessary to reach anyone by 

instant messages? On the Microsoft instant messaging network, [Leskovec & Horvitz 

2008] observed "that there are about '7 degrees of separation' among people". In 

addition, since its creation in 1992, the World Wide Web is connecting more and more 

users, all around the world, a phenomenon that the so-called web 2.0  [O'Reilly 2005] 

has amplified. In particular social networking sites, such as Facebook and Twitter, have 

gather hundred of millions of persons. How many steps are necessary for news to 

propagate on such online social networks? [Kwak et al 2010] answered that despite the 

directed nature of the follow links of Twitter, every 2 users of this network are linked by 

an average of 4 relations. 

These few examples clearly highlight "the diversity of degrees of separation" when we 

focus on the diversity of types of relationships and interactions between people. In fact 

the evolution of communication technologies has soon produced dramatic changes to 

come in our society in particular by leveraging the density of the human connections. 

After having overcome space limits by transporting people in most points of the world, 

the human tackled the time limit of communication. The first major change was the 

deployment of telegraph network in the first part of 19th century, which offered near 

instant communication and launched the area of telecommunication. The birth of this 

technology has been quickly understood as a major evolution in our society, as 

underlined by the famous quote of Hawthorne: "Is it a fact - or have I dreamt it - that, by 

means of electricity, the world of matter has become a great nerve, vibrating thousands 

of miles in a breathless point of time?" [Hawthorne 1851]. Then, the time and 

geographical limits of communication have been continuously tackled with notably the 

first transatlantic cable in 1858 and the invention of the phone in 1867 by Graham Bell.  

While the 19th century revolutionized the time dimension of the communication, the 20th 

dramatically changed the mode of communication. In the beginning of the 20th century, 

the creation of the radio and the TV promoted a new mode of communication:  

broadcasting. The telegraph and the phone enable a real time bidirectional 

communication, while broadcasting is a one-way instant communication: from one 

emitter to many receivers. Consequently, some important actors (e.g. brands, politics, 

celebrities, etc.) gained a privileged access to the starting point of broadcasting channels 

to diffuse their messages toward a mass of people. The early hours of the Web 

revolutionized this approach and democratized broadcasting communication, by 

enabling anyone to publish a web page on top of Internet. However, this possibility 

initially required some technical knowledge prerequisites, which still restricted the 

access to this broadcasting communication. The evolution of web technologies has 

quickly overcome these technical limits. Web sites were turned into web applications 

that made web resources writable through a web browser. This led to the Web 2.0 that 

promoted not only new tools but new means of communication: social medias. The 

beginning of the 21th century witnessed the outburst of a many to many communication.  
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Toward a "smaller world"?  

While the range of online social tools is still growing, the easy and massive adoption of 

these tools by nearly 2 billion of web users started producing a huge social impact: 

"When we change the way we communicate, we change the society" [Shirky 2008]. 

One of the earliest striking examples is the history of the Stolen Sidekick phone in 2006 

in New York. In order to retrieve a stolen smart phone in New York, a man managed to 

gather attention of millions of people on this thief by smartly exploiting online 

communication. As a consequence, this stolen phone, among millions of others ones, 

got back to its proprietary in only 3 weeks while any other one would have definitively 

vanished in one of the biggest cities. This early example of social impacts, introduced 

by online collaboration, illustrates how millions of people became "closer" with the 

World Wide Web, and how easily they connect and gather. By putting web users at the 

core of web applications, we introduced many new types of links between persons.  

First, online social network services, such as Facebook and Twitter, have turned the 

theoretical cognitive limit of 150 stable relationships that one can maintain, the Dunbar 

number [Dunbar 1998], into much higher values. On one hand, these services assist the 

relationship maintenance in diffusing information to its social network and getting 

reactions about it. In the other hand, these services also assist relationship maintenance 

for getting information from its social network and pushing reactions. In 2010, having 

reached more than half a billion users, if Facebook was a country it would be the third 

in terms of size. Facebook's statistics state that the average number of contacts of this 

service's users is 130 [Facebook press 2010], and it is common to find users with a 

number of contacts ranging between 200 and 500. 

Then content sharing sites and publishing platforms link people through online artefacts 

that affiliate web users and foster interactions. For instance, readers of a blog can 

engage in the same conversation through comment, social bookmarking users can share 

and bookmark the same pages, Facebook users can declare a similar interest about 

online resources using functionalities of the Facebook's Open Graph Protocol, and 

people become implicitly affiliated by the specific vocabulary of their community 

through search engine and tagging systems.  

Finally, data and knowledge representations produce a growing number of links and 

affiliations between web users. Data connect distributed identities and activities. The 

striking example is the classical "friend finder" options of many online applications that 

offers to connect users that have already communicated by mail or by other Web 2.0 

services. Some data enable to disambiguate identities and activities even if they are 

located on different web sites. Then, people can be affiliated by the metadata used to 

describe their resources or elements of their profiles, which can support future 

interactions. For instance if Peter annotates a resource with the tag "photovoltaic" and 

jack another resource with the tag "renewable energy", they can be affiliated by the fact 

"photovoltaic is related to renewable energy". 
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Until which point can we consider a link, subjectively considered as social or not, 

between two web users? What is the real nature of these links and which interpretation 

can we deduce from an analysis of the corresponding networks and sub networks? With 

the very large range of types of links offered by means of a simple URL, are social web 

users getting closer to "one degree of separation" than "six degree of separation"? This 

is a whole matter of semantics. The interpretation of the analysis of a network is highly 

related to the meaning, and the interpretation, given to the links used to analyze the 

social network. 

How to analyze this whole set of heterogeneous social links? 

Network characteristics are modified by considering different semantics and types of 

relationships in the social network. While the advances of telecommunication produce 

more and more interaction, and affiliation means, the resulting social network highlights 

different dimensions and perspectives. Each of these perspectives represents a sub 

network with its own characteristics in terms of structure, distribution of activities, and 

strategic positions. More and more social software highlights the need to better handle 

the characteristics of social networks, both for providing services to the actors of these 

social networks and for interacting with them. In particular, our scenario of social 

business intelligence (described in chapter 2) highlight a great interest in efficiently 

mining social data, for detecting online strategic positions and gaining insight from 

emerging communities. We have seen that social network analysis offers effective 

algorithms to investigate the linking structure of social network. However, the 

consideration of the diversity of relationships that can be mined argues for a rich 

representation of social networks and a social network analysis that exploits this 

richness. This is where Semantic Web frameworks can help by offering a richly typed 

graph structure and an efficient querying language to mine such graphs. 

On one side social network analysis proposes metrics and graph algorithms to 

characterize the structure of a social network, understand the distribution of 

actors and activities, and identify important actors and strategic positions. While 

these algorithms mine efficiently the flat graph structure of the network to extract 

structural characteristics, they do not leverage, for instance, the types of the links, the 

different profiles or roles of the actors. However, these may be extremely important 

when looking at the social activity from different perspectives for instance in the 

context of your professional, family, or friend activity.  

On the other side, Semantic Web frameworks enable us to represent distributed 

identities, activities and relationships in a uniform directed typed graph structure 

while being located on different sites. Both nodes and relationships of social graphs 

can be richly typed with concepts from specific vocabularies. It offers a semantic 

dimension to social graphs that semantic engines can mine and enrich with inferences 

like transitive closure for subsumption (e.g. if someone is a man the system knows he is 

also a person) and automatically handled for querying and transforming such data. 

However, while this whole stack of semantic technologies is efficient for representing, 
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exchanging and extracting rich social data, it still lacks graph operators for meeting 

SNA requirement. 

There is clearly a need to combine both graph models and merge their capabilities. 

In particular we need to investigate (1) how to query and transform semantic social 

graphs to perform a social network analysis that takes advantage of the semantic 

dimension of social networks and (2) how to augment social data with the output of 

semantic social network analysis in order to organize and structure them. 
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4. Semantic Social Network Representation 

While human interactions in web 2.0 sites produce a huge amount of social data, 

capturing more and more aspects of physical social networks, this decentralized process 

suffers from interoperability and linking between diffused data. In fact, such rich and 

spread-out data cannot be represented using only the models of graph theory outlined in 

the precedent chapter without some loss of information. These representations lack of 

typing and are not necessarily adapted for exchanging and mining social data across 

applications. Semantic web technologies tackle these requirements and are now used to 

represent online social networks and exchange social data across applications.  
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4.1 From Data Silos to a Global Semantic Social Graph 

Average web users have accounts on different social networks (Facebook, LinkedIn, 

Twitter, etc.), chat services (Microsoft Messenger, AIM, etc.), sharing platforms 

(Youtube, Flickr, delicious, etc.), and many of them manage one or more blogs. Some 

use even a wider set of social sites ranging from main opinion and recommendation 

sharing sites (about products, places, events, etc.) to niche networks and alternative, 

underground sites that appeared with the web 2.0 sites. In addition, most of classical 

personal applications such as mails and bookmarks that are available in the form of web 

applications now dispose of strong social features. All these applications are used for 

different purposes, in different context and collect different characteristics of their users. 

The freeform of online contributions make unpredictable the way people will use them. 

Consequently, users define freely and unpredictably their personal goals, their own 

context of use and the details of the information they share. This behaviour results in a 

sparse distribution of identities, roles and activities across web applications. People 

share different parts of their identities and play different roles depending of the social 

service they use. Moreover they sometime use avatars (e.g. in forums) or simply express 

themselves anonymously (e.g. in blog comments). Along these different uses they build 

different types of relationships, which are characterized by the context and the roles 

used when they are initiated.  

Most social services propose a set of REST web services accessible through some kind 

of APIs, to create and to modify the social data of their users from external applications 

or browser extensions. For instance, applications aggregating social services (e.g. 

FriendFeed16, Seesmic17, Tweedeck18) exploit these APIs to offer a unique access point 

to all these distributed activities.  However, when third applications propose to match 

social data coming from different sites, they suffer the lack of interoperability between 

data. Despite some initiatives that tried to propose consensus for designing social API, 

most of the social services still have (1) their own way of accessing their data, and (2) 

their own format to represent these data. First, even if most of the APIs of social sites 

are accessible through REST web services, these APIs differ in the signature of their 

web services and in their architecture even if they offer similar functionalities and 

expose equivalent data. Then, these APIs also differ in the schemas of the data they 

return. They all expose data in structured format, XML and JSon in most of the cases, 

but with different data models and without any semantics while they represent similar 

concepts.  

Users access several social web sites and produce data that form explicitly or implicitly 

social graphs. But since the data of these graphs are trapped in the data silos of the 

                                                
16 http://friendfeed.com/  
17 http://seesmic.com/  
18 http://www.tweetdeck.com  
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different social services, these graphs remain disconnected. In order to consolidate and 

interconnect these social graphs we need standards to describe data, to connect their 

semantics, and a common protocol to access them. Semantic web frameworks answer 

the problem of representing and exchanging data on the web with a rich typed graph 

model (RDF19), schema definition frameworks (RDFS19 and OWL19), and a protocol 

with a query language for accessing data (SPARQL19). 

4.1.1 RDF: a Standard Resource Description Framework 

RDF enables us to make assertions and describe resources with triples (subject, 

predicate, object) that can be viewed as "the subject, verb and object of an elementary 

sentence", "a natural way to describe the vast majority of the data processed by 

machines" [Berners-Lee 2001]: 

• The subject represents the described resource. 

• The predicate represents the property used to describe the resource. 

• The object represents the value of the property for the described resource. 

RDF provides the basis to make such triple description on top of the linking structure of 

the web: 

• URIs are used to identify the subject and the predicate of a triple which enable 

the description to reference, without any ambiguity, the resource that is 

described and the property that is used to make this description. The object can 

be as well a URI to link the subject to another resource or a literal to provide a 

value. Blank nodes may also be used to introduce anonymous subjects or 

objects. 

• The predicate rdf:type  is the basis property to type resources.  

• The type rdf:Property  is the base type to define properties that are with URIs 

the atomic elements of a triple. 

With this basis, “anyone can make any statements about any resource”20. Any property 

can be declared to define an attribute, which can be used to describe any resource, since 

it is identified by a URI. For instance to describe the paper "the semantic web" by 

declaring its attribute creator with the resource Tim Berners Lee, namely "the semantic 

web" has for creator Tim Bernes Lee, we produce the following triple: 

(<http://www.scientificamerican.com/article.cfm?id= the-
semantic-web>, <http://purl.org/dc/elements/1.1/cre ator>, 
<http://www.w3.org/People/Berners-Lee/card#i>) 

With respectively: 

                                                
19 Semantic Web, W3C, http://www.w3.org/2001/sw/  
20 Resource Description Framework (RDF):Concepts and Abstract Syntax http://www.w3.org/TR/2004/REC-
rdf-concepts-20040210/#section-anyone 
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• http://www.scientificamerican.com/article.cfm?id=th e-

semantic-web  the URI that identifies the article "the semantic web". 

• http://purl.org/dc/elements/1.1/creator  the URI that identifies the 

property creator. 

• http://www.w3.org/People/Berners-Lee/card#i  the URI that 

identifies Tim Berners-Lee 

Similarly, we can state that Tim-Berners Lee's first name is "Tim" with the following 

triple:  

(<http://www.w3.org/People/Berners-Lee/card#i>, 
<http://xmlns.com/foaf/0.1/firstName>, "Tim") 

With respectively: 

• http://www.w3.org/People/Berners-Lee/card#i  the URI that 

identifies Tim Berners-Lee 

• http://xmlns.com/foaf/0.1/firstName  the URI that identifies the 

property first name. 

• Tim  the string value representing the first name of Tim Berners Lee 

By means of URIs, descriptions share uniform identifiers that link them between each 

other. These triples can be seen as arcs (properties) between nodes (URIs, literals) 

providing RDF with a directed labelled graph structure that is well suited to represent 

and link data and metadata about heterogeneous content on different web sites. They 

allow data to be spread across the internet and intranet networks, representing actors, 

content and relationships, while being represented and linked with a uniform RDF graph 

structure. The URIs are used to identify resources and properties, link distributed 

identities and activities. Same URIs identify the same resources and two URIs 

describing the same resource can be unified with a single description stating so. For 

instance, the Figure 24 represents the graph that corresponds to the two precedent 

descriptions about Tim Berners-Lee. This graph can be freely augmented by any 

description. For instance, the graph of the Figure 25 augments the graph of the Figure 

24 with two triples that propose the descriptions stating that Tim Berners-Lee holds the 

online account http://twitter.com/timberners_lee and that the account 

http://twitter.com/ereteog follows http://twitter.com/timberners_lee. 
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Figure 24. Graph representation of the triples that describe the sentences "the 

semantic web" has for creator Tim Bernes Lee and Tim-Berners Lee's first name is 

"Tim". 

 

Figure 25. Graph representation of the triples that describe the sentences (1)"the 
semantic web" has for creator Tim Berners Lee and (2) Tim-Berners Lee's first 

name is "Tim" augmented with the triples describing the sentences (3) Tim Berners-

Lee holds the online account http://twitter.com/timberners_lee and (4) 
http://twitter.com/ereteog follows http://twitter.com/timberners_lee 

 

Formally speaking the triples of an RDF description can be seen as the labelled arcs of 

an Entity-Relation graph [Baget et al 2008], ERGraph, defined as follow: 

Definition 53.  ERGraph: An ERGraph relative to a set of labels L is a 4-tuple 

G=(EG, RG, nG, lG) where :  
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• EG and RG are two disjoint finite sets respectively, of nodes called entities 

and of hyperedges called relations. 

• nG : RG → EG
* associates to each relation a finite tuple of entities called 

the arguments of the relation. If nG(r)=(e1,...,ek) we note nG
i
(r)=ei the i

th 

argument of r. 

• lG : EG ∪ RG → L is a labelling function of entities and relations. 

4.1.2 Ontologies and Resource Description Framework Schema 

An ontology is "a set of representational primitives with which to model a domain of 

knowledge or discourse. The representational primitives are typically classes (or sets), 

attributes (or properties), and relationships (or relations among class members). The 

definitions of the representational primitives include information about their meaning 

and constraints on their logically consistent application" [Gruber 2009].  

RDF enables us to define properties and descriptions about concepts in order to 

structure them and describe domain knowledge. However RDF does not provide the 

basis primitives to define any logical application of properties, which is necessary for 

defining an ontology. RDF schema (RDFS) defines a vocabulary, on top of RDF, that 

provides, in combination with RDF, the basis primitives to define ontologies: 

• The resource rdfs:Class  is a primitive to define the classes of a domain 

knowledge 

• The properties rdfs:domain  and rdfs:range  enable us to positively 

constrain the use of properties and define “the classes of resource to which they 

apply”21. A domain of a property defines a class typing for the resources that 

are the subject of this property. A range of a property defines a class typing for 

the resources that are the object of this property. 

• The properties rdfs:subPropertyof  and rdfs:subClassOf  enable us to 

structure the property and the classes of an ontology to define taxonomical 

relations. The inheritance properties are frequently used between classes and 

properties to define taxonomies (e.g., a Post is a sub class of Document and 

brother is a sub property of sibling). rdfs:subPropertyof  and 

rdfs:subClassOf  are transitive. 

These three basic elements, offer to richly type the resource and the properties of an 

RDF graph with structured classes and properties, while providing a minimum of 

logical constraint to reason on such graphs. In addition we have a set of type inference 

rules that enable us to enrich RDF triples. In particular, the positive constraint on the 

domain and the range offer to enrich the types of its resources when they are involved in 

a property. We talk about positive constraints because a resource that has (or resp. is the 

value of) a property will be typed with all the classes that are declared as domain (resp. 

                                                
21 RDF Schema, http://www.w3.org/TR/rdf-schema/ 
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range) of this property. Other type inference rules are available22 such as the transitive 

closure. 

The Figure 26 represents a sample of the linked schemas FOAF [Brickley & Miller 

2004] and SIOC (that are detailed in section 4.2). This piece of schemas represents the 

link between a person and his online accounts, and the follows relation that is a common 

relation between users of social applications.  The property foaf:account  defines an 

online account of a resource and implies that its subject is a foaf:Agent  and its value 

is a foaf:OnlineAccount . The property sioc:follows  implies that both its subject 

and object are typed with the class sioc:UserAccount , which is a subclass of 

foaf:OnlineAccount .  

 

Figure 26. Sample of the linked schemas FOAF [Brickley & Miller 2004] and SIOC 
[Breslin et al 2005] (that are detailed in section 4.2). This piece of schemas 
represents the link between a person and its online accounts, and the frequently used 
follows relation between users of social applications. 

This schema enables us to enrich the triple represented by the graph of the Figure 25. In 

particular, it enables us to complete the typing of its resources with type inference from 

the positive constraints that are defined on properties. For instance the resource 

<http://www.w3.org/People/Berners-Lee/card#i>  is the subject of the 

property foaf:account  which has for domain foaf:Agent  so we type this resource 

with the class foaf:Agent . Then, the range of this property is 

foaf:OnlineAccount , so this class is inferred as the type of the resource 

<http://twitter.com/timberners_lee> . Similarly, the property sioc:follow  

has for domain and range sioc:UserAccount , so the two resources 

<http://twitter.com/timberners_lee>  and 

<http://twitter.com/ereteog>  are inferred as typed with the class 

sioc:UserAccount . Since, sioc:UserAccount  is a subclass of 

foaf:OnlineAccount , we also type with this last class the resources 

                                                
22 http://www.w3.org/TR/rdf-mt/ 
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<http://twitter.com/timberners_lee>  and 

<http://twitter.com/ereteog> . The Figure 27 represents the graph that results 

from the type inference from the schema of the Figure 26 on the triples of the Figure 25.  

 

Figure 27. The graph that results from the type inference from the schema of the 
Figure 26 on the triples of the Figure 25. 

4.1.3 An Ontology Web Language for Richer Reasoning on Data 

While RDF Schema offers core primitives to structure classes, properties and their 

applications, OWL (Ontology Web Language) defines additional logical properties that 

can be applied to classes, properties and individuals. These properties provide a 

powerful mechanism for enhanced reasoning. The Figure 28 summarizes the 

characteristics that can be defined on classes, properties or individuals with OWL.  

Individuals are mainly provided with relations that enable us to differentiate or join 

identities. The property owl:sameAs  enable us to state that two URIs identify the same 

individual. Inversely, the property owl:differentFrom  enables us to disambiguate 

identities and state that two URIs identify different individuals. 

Similarly classes are provided with properties about the typing of their individuals. 

These properties are mainly about the set of individuals typed with classes like 

equivalence, disjunction or intersection. The property owl:equivalentClass  enables 

us to declare that two classes are equivalent and have the same individuals. For 

instance, "Car can be stated to be equivalentClass to Automobile"23 and individuals of 

the type Car are also of the type Automobile, and vice-versa. Inversely, the property 

owl:disjointWith  enables us to declare that the set of individuals of two types are 

disjoint. The property owl:intersectionOf  enables us to declare that the set of 

individuals of a class is the intersection of the sets of individuals of others classes. For 

instance, the class Man is the intersection of the classes Male and Human. 

                                                
23 http://www.w3.org/TR/2004/REC-owl-features-20040210/#equivalentClass  
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Properties are provided a broad set of primitives that address the context of their 

applications. Among other characteristics and relations OWL offers to define restriction 

on the cardinality and the values of properties, equality and disjunction between 

properties and rich typing of properties (e.g. symmetry, transitivity). These properties 

are used to automatically infer new triples and detect inconsistencies among data. For 

example, a property ancestorOf can be defined as transitive and the inverse of 

descendantOf. Consequently, the triples Paul ancestorOf Jack and Jack ancestorOf 

Peter is augmented with the triples Jack descendantOf Paul, Peter descendantOf Jack, 

Paul ancestorOf Peter and Peter ancestorOf Paul. 

 

Figure 28. "Owl in One" by Fabien Gandon24. 

With the combination of RDF, RDF schema and OWL we dispose both a resource 

description framework and schema expressivity to build richly typed social graphs. 

Both nodes and relationships can be richly typed with classes and properties of 

ontologies with powerful reasoning mechanisms to reason on typing and relations. This 

provides social graphs with a semantic dimension. Since October 2009, OWL 225 is a 

recommendation that refines and extends OWL with additional constructs and 

fragments. 

4.1.4 SPARQL: Protocol and RDF Query Language for Querying and Accessing 

Data 

Once provided with a semantic dimension, we can query this graph with SPARQL26 

(SPARQL Protocol and RDF Query Language). SPARQL is an RDF query language 

and data access protocol. It defines a query language to query triples, different protocols 

to send queries and their results across the web, and a result format to exchange these 

results. The queries are composed of four blocks: 

• PREFIX "to declare the schemas used in the query"27, this clause is optional. 

                                                
24 http://www.flickr.com/photos/55704792@N00/3567718085/  
25 http://www.w3.org/TR/owl2-overview/ 
26 SPARQL  Protocol and RDF Query Language 
27 http://www.slideshare.net/fabien_gandon/sparql-in-a-nutshell  
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• A clause to determine the type of query and identify the values to be returned. 

We have three types of clauses:  

o SELECT: "returns all, or a subset of, the variables bound in a query 

pattern match". 

o CONSTRUCT: "returns an RDF graph constructed by substituting 

variables in a set of triple templates".  

o ASK "returns a boolean indicating whether a query pattern matches or 

not". 

o DESCRIBE: "returns an RDF graph that describes the resources found". 

• FROM clause "to identify the data source to query"27. This clause is optional and 

the default graph is queried when it is not used. 

•  WHERE clause, "a conjunction of triples" that defines "the triple/graph pattern 

to be matched against the triples/graphs of RDF"27. 

The following example proposes to return all the agents and their first names (and only 

the persons that have a first name): 

PREFIX foaf: < http://xmlns.com/foaf/0.1/> 

SELECT ?person ?name 

WHERE { 

?person rdf:type foaf:Agent 

?person foaf:firstName ?name 

} 

The conjunction of triples of the WHERE clause forms an ERGraph with existing 

resources and variables. This graph is mapped on the queried RDF graph in order to 

match same patterns and determine values for the variables of the query. The Figure 29 

represents a mapping of the graph of a query on an RDF graph. 
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Figure 29. Mapping of a query graph on an RDF graph. 

Intuitively, a mapping associates entities of a query ERGraph to entities of an ERGraph 

in a knowledge base of ERGraphs. Mapping entities of graphs is a fundamental 

operation for comparing and reasoning with graphs [Baget et al 2008]:  

Definition 54.  EMapping: Let G and H be two ERGraphs, an EMapping from H 

to G is a partial function M from EH to EG i.e. a binary relation that associates 

each element of EH with at most one element of EG; not every element of EH 

has to be associated with an element of EG unless the mapping is total.  

In addition to the mapping of entities linked by the graph, we may want the mapping to 

enforce that the relations of the graph being mapped are also preserved [Baget et al 

2008]: 

Definition 55.  ERMapping: Let G and H be two ERGraphs, an ERMapping from 

H to G is an EMapping M from H to G such that: Let H' be the SubERGraph of 

H induced by M-1
(EG),∀ r'∈RH' ∃ r∈ RG such that card(nH'(r'))= card(nG(r)) 

and ∀ 1≤ i≤ card(nG(r)), M(nH' 
i
(r'))= nG 

i
(r). We call r a support of r' in M and 

note r∈M(r') 

Finally, the mapping of the labels of the entities or relations may be done according to 

an external schema of types of classes and properties. For instance, in the Figure 30 the 

type of the <http://www.w3.org/People/Berners-Lee/card#i> is 

foaf:Person , but we use the schema of FOAF that state that the class foaf:Person  

is a subclass of foaf:Agent  to perform the mapping. 
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Figure 30. Mapping of a query graph on an RDF graph. 

 

A mapping that takes into account an ontology and in particular the pre-order relation 

defined by its taxonomical skeleton is defined by [Baget et al 2008] as follow: 

Definition 56. Definition of an EMapping<X>: Let G and H be two ERGraphs, 

and X be a binary relation over L×L. An EMapping<X> from H to G is an 

EMapping M from H to G such that ∀e∈ M
-1
(EG), (lG(M(e)), lH(e))∈ X. 

By combining structural constraints and constraints on labelling, we now define the 

notion of ERMapping<X>. In the special (but usual) case where X is a preorder over L, 

the mapping defines the well-known notion of projection [Baget et al 2008]: 

Definition 57. ERMapping<X>: Let G and H be two ERGraphs, and X be a binary 

relation over L×L. An ERMapping<X> M from H to G is both an EMapping<X> 

from H to G and an ERMapping from H to G such that:  

• Let H' be the SubERGraph of H induced by M-1
(EG) 

• ∀r'∈RH' ∃ r∈M(r') such that (lG(r), lH(r'))∈ X. We call r a support<X> of r' 

in M and note r∈M<X>(r') 

Definition 58. Homomorphism<X>: Let G and H be two ERGraphs, a 

Homomorphism<x> from H to G is a total ERMapping<X> from H to G where X 

is a preorder over L. 

A Homomorphism<x> is also called a Projection. Mapping, especially total mapping, is a 

basic operation used in many more complex operations e.g. rule application, or query 

resolution. The semantic engines used in this thesis, CORESE [Corby et al 2004] and 

KGRAM [Corby & Faron-Zucker 2010], implement the Homomorphism<X> to 

operationnalize the SPARQL query language for RDF. 
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4.1.5 Linked Data on the Web 

Having a standard language for describing resources, for designing schemas that enable 

us to perform rich reasoning, a standard data access protocol, and a query language, we 

now need to use connected ontologies in order to achieve the goal of designing a global 

semantic social graph. The goal of the linked data initiative is to achieve such an 

objective with any web data.  

"Linked Data is about using the Web to connect related data that wasn't previously 

linked, or using the Web to lower the barriers to linking data currently linked using 

other methods. More specifically, Wikipedia defines Linked Data as 'a term used to 

describe a recommended best practice for exposing, sharing, and connecting pieces of 

data, information, and knowledge on the Semantic Web using URIs and RDF."28 

The best practices for linking data are summarized by the five following principles: 

1. Use RDF to publish your data 

2. Use URIs to identify the things you describe. 

3. Use HTTP URIs so that these things can be referred to and looked up 
("dereferenced") by people and user agents. 

4. Provide useful information about the thing when its URI is dereferenced, using 
standard formats such as HTML when a person looks up or RDF/XML when an 

agent looks up. 

5. Include links to other, related URIs in the exposed data to improve discovery of 
other related information on the Web. 

This initiative has led to the creation of connected vocabularies to link data from 

different domain knowledge. These connected vocabularies form a cloud of data typed 

with connected ontologies, which is now named the linked data could. The Figure 31 is 

a representation of this cloud, with, in particular, a set of connected social data. 

                                                
28 Linked Data http://linkeddata.org  
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Figure 31. The Linked Data Cloud by Richard Cyganiak (DERI, NUI Galway) and 
Anja Jentzsch (Freie Universität Berlin). 

The next section presents how to build and query a global semantic social graph by 

using, in particular, some of the ontologies of the linked data cloud. We present how to 

represent and query (1) profiles of peoples and agents on the web, (2) social networks 

with richly type relationships between persons, (3) published content and mediated 

interactions, and (4) the vocabulary and affiliations that emerge from social tagging.  

4.2 Linking and Enriching Social Data with Semantics 

Online social data can be seen as a threefold structure:  

• Data describing agent profiles. Agent could be persons, groups or organizations. 

• Data describing the social network structure. 

• Data describing the activities of users and the content they share. 

Several ontologies already exist to represent online social networks, and we use them as 

a basis for our model. All the ontologies we describe are included in the linked data 

cloud in which the profiles of agents and their networks are described with the FOAF 

[Brickley & Miller 2004] ontology and user accounts with the SIOC ontology [Breslin 

et al 2005]. The most popular ontology for describing people, their relationships and 

their web-based activities is FOAF. The SIOC schema is linked to FOAF, and provides 

primitives to describe precisely the activities of web people and the content they share. 

These two ontologies in combination with other more specific ontologies provide the 

basis to build semantic social networks. 
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I present here how to represent and query a social network represented with these 

ontologies. In particular, I show how to query the data built with this models in order to 

propose the same functionalities than classical online social networks. Web based social 

services offer different social functionalities: 

• to consult the profile of a person.  

• to connect with other agents and manage its contacts.  

• to generate content and consult the activities of a user or a given network. 

4.2.1 Representing and Querying Profiles 

The FOAF [Brickley & Miller 2004] ontology provides a set of primitives to define the 

typical attributes of an agent that describe its identity, its online coordinates and its 

basic web based activities. These attributes match the typical fields that are present in 

the profile of a person or a group in an online social service.  

FOAF propose different properties for describing in particular: 

• The identity: foaf:title, foaf:name, foaf:firstName, 

foaf:familyName, foaf:nick, foaf:birthday, foaf:dep iction , 

etc. 

• The coordinates: foaf:mbox, foaf:homepage, foaf:jabbered , etc. 

• The web based activities: foaf:account, foaf:publication, 

foaf:interest , etc. 

 

Figure 32. Sample of the FOAF profile of Guillaume Erétéo. 

Having the URL of the FOAF profile of a person, we can for example ask for his name 

and his age with the following query with this URL in parameter (an extension of the 

CORESE SPARQL engine): 
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select ?age ?name where{ 

 param[url] foaf:name ?name 

 param[url] foaf:age ?age 

} 

The conjunction of triples presented in the precedent query can be extended and 

modified to retrieve any other attributes of an agent.  

In some cases we do not dispose of the URL of the FOAF profile to query but only 

some values of its attributes. These values can be used as well to perform a search or 

use a unique combination of attributes for identifying an agent. For instance, the 

following query retrieves the name and the age of the person that holds the online 

account, which URI is <http://twitter.com/ereteog> : 

select ?age ?name where{ 

 ?person foaf:account <http://twitter.com/ereteog> 

 ?person foaf:name ?name 

 ?person foaf:age ?age 

} 

All the combinations of triples that are possible, offer different possibilities to search for 

agents or retrieve the elements of a profile with its URI or exploiting the values of its 

different attributes. 

4.2.2 Representing Social Links and Networks 

FOAF also provides the basis to define relationships between persons and groups of 

agents. The property foaf:knows  enables us to declare a directed relationship between 

two persons and state that the subject person knows the object person. The class Group 

enables us to type a resource as a group and the member agents of a group are related by 

the property foaf:member . 

On top of these bases, the RELATIONSHIP ontology provides a whole set of properties 

for a richer typing of relationships between persons. Most of these properties are sub 

properties of foaf:knows for describing  

• Family relationships: rel:siblingOf , rel:childOf , rel:parentOf  or 

rel:spouseOf . 

• Love, friend and current life relationships: rel:friendOf , 

rel:lifePartnerOf , rel:neighborOf , rel:hasMet  or rel:ennemyOf .  

• Professional relationships such as rel:worksWith , rel:colleagueOf , 

rel:collaboratesWith  or rel:apprenticeTo . 

Some relationships do not extends the foaf:knows  property and mainly represent 

reputations or feelings such as rel:ambivalentOf , rel:influencedBy  or 

rel:whouldLikeToKnow . 
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The properties of this ontology are described with OWL primitives that enable us to 

perform inference on relationships and augment the social network with new 

relationships. While foaf:knows  is not symmetrical, several properties of the 

RELATIONSHIP ontology are declared as symmetrical to represent reciprocal 

relationships, such as rel:spouseOf , rel:friendOf  or rel:worksWith . Other 

relationships are declared as inverse properties such as rel:mentorOf  and 

rel:apprenticeTo . 

The combination of FOAF and RELATIONSHIPS offers a broad range of relationships 

that exist between persons. While these ontologies address the most common links 

between persons, many other relationships exist and can be represented as well by 

extending the basis of these two ontologies. The Figure 33 represents a small social 

network built with these two ontologies. 

 

Figure 33. A toy social network built with the RELATIONSHIP and FOAF 
ontologies. 

Typing and structuring relationships between persons offer a semantic dimension to the 

social network structure. The Figure 34 presents an example of a social network that is 

enhanced by a semantic schema, and more precisely in this case with a taxonomy of 

relationships. 



Ph.D. thesis.    Guillaume Erétéo 

76 

  

Figure 34. Typical social network represented with types relations and nodes. 

 

Having the URL of the FOAF profile of a person that is given in parameter, the 

following query retrieves all its friends: 

select ?friends where { 

param[url] rel:friendOf ?contact 

}  

If we query a relationship that is modelled with a property that has sub properties, the 

sub properties will be automatically considered during the mapping in triple stores 

having inference engines. For instance, in the relationship ontology, many properties are 

sub properties of foaf:knows . So when we ask for the foaf:knows  neighbours of a 

person, we automatically focus on this sub network by considering, among others, the 

properties: rel:friendOf , rel:parentOf  or rel:worksWith . In the previous 

query, if we parameterized the predicate of the only triple we obtain a reusable query to 

filter properties and focus on different sub networks: 

select ?contact where { 

 param[person] param[rel] ?contact 

} 

Here again, if we only have values of attributes of a FOAF profile with a unique 

combination of attributes identifying an agent, we can retrieve his neighbours in the 

network. Having the URL of an online account of a person, we can modify the previous 

query with this URL in parameter:  

select ?contact where { 

?person foaf:account param[url] 

?person param[rel] ?contact 

} 
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4.2.3 Representing and Linking User Accounts and Generated Content 

The SIOC ontology provides the basis for describing social web sites and online 

communities [Breslin et al 2005]. In particular, SIOC defines primitives for describing a 

user, the content he produces and the actions of other users on this content. The SIOC 

ontology link a user account to the FOAF profile of the person that owns it, with the 

class sioc:UserAccount  which is a sub class of foaf:OnlineAccount . Based on 

this SIOC provides a core of primitives to describe user generated content and user 

interactions on this content: 

• The class sioc:UserAccount  is used to type user accounts. 

• The class sioc:Item  is used to type published elements. 

• The property sioc:has_creator , which domain is a sioc:Item  and range is 

sioc:UserAccount , defines the publisher of an element. 

• The property sioc:has_reply  defines a response to an item. Its domain and 

its range are both of the type sioc:Item . 

• The property sioc:follows  describes that a user follows another user. Its 

domain and its range are both of the type sioc:UserAccount . 

• The property sioc:topic  describe the topic of a published item. 

SIOC types, an extension of SIOC, provides different subclasses of the class 

sioc:Item  in order to type more precisely the resources that are produced online. The 

class sioc:Post , sioct:ImageGallery , sioct:Weblog  and sioct:Comment  are 

respectively used to model posts, photo albums, blogs and comments on resources. 

The SIOC primitives are sufficient to describe most of user generated content and user 

profiles across web 2.0 sites. The association of these SIOC primitives to FOAF 

profiles, thank to the property foaf:account  and the class foaf:OnlineAccount , 

enables us to link the distributed activities and identities of an agent on the web. The 

Figure 35 is an illustration of the links between the data describing a person and its 

different user accounts.  

Consequently we can query all the elements published by a person on its different user 

accounts with the URL of its FOAF profiles: 

select ?item where { 

param[url] foaf:account ?userAccount 

?item sioc:has_creator ?userAccount 

} 

Then we can modify the triples of this query and add others to perform any type of 

filtering and retrieve contributions with different perspectives. For instance we could 

ask only for the elements of the type given in parameter with their responses: 
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select ?item ?reply where { 

param[person] foaf:account ?userAccount 

?item sioc:has_creator ?userAccount  

?item rdf:type param[?type] 

optional{ ?item sioc:has_reply ?reply } 

} 

 

Figure 35. FOAF and SIOC link distributed identities and activities29. 

Using the combination of FOAF an SIOC, we are able to retrieve the activities of a 

whole network. A common perspective on the activities of a network is the timeline of a 

user, also named news feed that is proposed by most social web applications. This 

timeline proposes to a user different view of the content produced by its contacts. 

The following query retrieves all the activities of the contacts of a person that are 

ordered by date of publications, with different parameters, the URL of its FOAF profile, 

the type of relationships and the type of item: 

select ?contact ?item ?date where { 

param[url] param[rel] ?contact 

?contact foaf:account ?userAccount  

?item sioc:has_creator ?userAccount 

?item rdf:type param[type]   

?item sioc:created ?date 

} order by ?date 

In addition of linking agent profiles to their multiple user accounts and online activities, 

SIOC produces emergent interaction data which constitute valuable source of social 
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network. First the property sioc:follows  enables us to declare interests from a user 

for the activities and content produced by other users. This results in a social network of 

people that monitor the activities of each others. Then the property sioc:has_reply  

highlight mediated interaction that emerge in reaction of the content that is produced by 

users. The Figure 36 highlights how to represent online social network and user 

activities with FOAF, RELATIONSHIP and SIOC. At the top, we have the networking 

data produced by declared relationships. At the bottom, we have the networking data 

produced by the interactions mediated by generated content. 

 

Figure 36. FOAF and RELATIONSHIPS enable us to describe direct and declared 
relationships while SIOC captures emergent interaction data. 

Consequently we can modify the previous query by focusing on user interaction. For 

instance, the following query retrieves the activities of the users that are followed by the 

different user profiles of a person: 

select ?contact ?item ?date where { 

param[url] foaf:account ?userAccount  

?userAccount sioc:follows ?otherUserAccount 

?item sioc:has_creator  ?otherUserAccount  

?item sioc:created ?date 

} order by ?date 
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4.2.4 Organizing and Structuring User Generated Content 

While the SIOC ontology proposes a primitive to define the topic of published items, 

the SKOS  ontology is a vocabulary for organizing concepts with lightweight semantic 

properties (e.g., skos:narrower, skos:broader, skos:related ). This 

lightweight semantics can be used to structure and link the topics of SIOC descriptions. 

The Figure 37 illustrates how SKOS can be combined with FOAF and SIOC to 

structure the topics of user-generated content.  

 

Figure 37. Alignment of FOAF, SIOC and SKOS29. 

Today, social tagging is the most popular practice to annotate and classify online 

resources. As explained in the previous chapter, social tagging consists in allowing 

users to associate freely chosen keywords, called tags, with the resources they publish 

and exchange such as blog posts, medias, or bookmarks. The result of the collection of 

such associations, called “taggings”, is a folksonomy.  

Tags in folksonomies remain at the stage of flat organization but folksonomies can be 

improved by adding semantics that structure and link tags together. First, successive 

ontologies were proposed to model social tagging such as [Gruber 2005] [Newman et al 

2005] [Kim et al 2007]. These descriptions can deal with the author of the tag, or the tag 

itself as a character string, but also with additional properties such as the service where 

                                                
29 http://sioc-project.org/node/158 
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this tag is shared, or even a vote on the relevance of this tag. Then, since tags are neither 

explicitly structured nor semantically related, researchers proposed going further by 

linking tags with explanations of their meaning [Passant & Laublet 2008], or more 

generally, by bridging folksonomies, thesauri and ontologies to leverage the semantics 

of tags (see overview in [Limpens et al. 2008]). [Limpens et al 2010] proposes a 

methodology to structure tags with the lightweight semantic primitives of the SKOS 

vocabulary  

The Figure 38, illustrates how, once semantically typed and structured, the relationships 

between topics and between topics and users also provide a new source of social 

networks. In fact social structures can be analyzed to type data produced by social 

actors and vice versa, data produced by social actors can be analyzed to type social 

networks. Consequently, the knowledge emerging from user interactions and affiliations 

can be used to link people, with the help of semantics (by identifying, for instance, 

communities that share same interests).  

 

Figure 38. SKOS provides a new source of social network data by linking people with 
the knowledge that emerges through computer mediated interactions. 
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4.2.5 Analysis of Semantic Social Network Representation 

Billion of triples are now published on the web and in particular social data with, among 

others, more than 60 Millions of FOAF profiles and more than 50 Millions of SIOC 

profiles30. This results in a massive amount of structured data that linked identities and 

activities across web applications.  This massive deployment was fostered by different 

initiatives. First, the FOAF ontology was soon adopted by web 2.0 platforms with large 

audiences to represent the profiles of their users with, for example, sites such as 

www.livejournal.net and www.tribe.net. Then, many exporting tools appeared for major 

web 2.0 services to export the data that are exposed by the mean of RDF API using the 

FOAF and SIOC schemas (e.g. FOAF exporter application for Facebook31). In addition, 

many plugins are now available for automatically exporting SIOC metadata from 

popular weblog engines (e.g. wordpress32), forums (e.g. phpBB33) and Content 

Management Systems (e.g. Drupal34). This constitutes a huge source of online SIOC 

metadata and valuable structuring and linking of emerging content. Finally, recent 

results proposed a decentralized single sign-on system, which combines signed FOAF 

profiles and SSL, for building decentralized social networks and give back to people the 

control of their information [Story et al 2009]. The progressive adoption of standardized 

ontologies for online social networks will lead to increasing interoperability between 

them and to the need for uniform tools to analyze and manage them.  

While some researchers have applied classical SNA methods to these graphs for 

studying, mining, and extracting knowledge from the structure of these networks, others 

have extended SPARQL to leverage its expressivity and provide this RDF querying 

language with powerful graph operators. 

A pioneering work by [Mika 2005] showed that folksonomies could be exploited using 

social network analysis in order to identify user groups and interest emergence. 

Moreover, the author exploited social network analysis on the hypergraph of 

folksonomies to infer lightweight semantics between terms. For instance, he observed 

that community detection enables us to find thematic communities (e.g travel, business, 

web design, etc.), and terms between these communities, with lowest clustering 

coefficient and highest betweenness centralities, are general terms (e.g. up, cool, hot, 

etc.). [Golbeck et al 2003] exploited the network structure of FOAF profiles linked by 

the property foaf:knows , for studying trust propagation in social networks using 

Semantic Web frameworks.  [Finin et al 2005] performed an analysis of a FOAF social 

network, using the property foaf:knows , to analyze the structure of such network and 

they verified the power law of the degrees and community structures in FOAF profiles. 

                                                
30 http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics  
31 http://www.facebook.com/apps/application.php?id=2626876931  
32 http://sioc-project.org/wordpress/  
33 http://sioc-project.org/phpbb  
34 http://sioc-project.org/drupal  
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In addition, they proposed rules to merge profiles representing same persons. [Goldbeck 

& Rothstein 2008] also worked on merging FOAF profiles, in order to unify identities 

used on different sites, while [Rowe & Ciravegna 2010] worked on disambiguating 

identities in identity web references. [Paolillo & Wright 2006] studied the acquaintance 

and interest networks respectively formed by the properties foaf:knows  and 

foaf:interest  properties of FOAF in order to identify communities of interest from 

the network of LiveJournal.com. [San Martin & Gutierrez 2009] presents how to use 

SPARQL to transform and enrich social networks, while using an export toward a raw 

graph format to use a classical social network analysis tool. In these studies, due to 

some limits of Semantic Web technologies, authors chose to build their own non typed 

graphs, each corresponding to a type of link from the richer RDF social graphs (e.g. 

[Paolillo & Wright 2006] has built 2 non typed graphs from the social network of FOAF 

profiles, one for the property foaf:knows  and another one for the property 

foaf:interest ). Unfortunately, knowledge is lost in this transformation while it 

could be used to parameterize social network indicators, improve their relevance and 

accuracy, filter their sources and customize their results.  

In fact, SPARQL has been shown to be "equivalent from an expressiveness point of 

view to Relational Algebra" [Angles & Gutierrez 2008]. While SPARQL is well suited 

for retrieving and building rich semantics of a social network, it cannot perform global 

queries similar to the ones currently used in social network analysis (e.g., compute the 

diameter, the density, the centrality) [San Martin & Gutierrez 2009]. Consequently, 

researchers have tackled the expressiveness of SPARQL and, in particular, they 

extended it in order to find property paths between semantically linked resources in 

RDF-based graphs [Alkhateeb et al 2007] [Anyanwu et al 2007] [Corby 2008] [Pérez et 

al 2008] [Kochut & Janik 2007]. At the time of this writing, SPARQL 1.1 is being 

discussed35 and the current version of the working draft36 proposes operators to handle 

the querying of property paths. 

4.3 Conclusion 
In the first part of this chapter, we presented how Semantic Web technologies answer 

the problem of richly representing, exchanging, and querying online data. The RDF 

language provides the base primitives to perform triple descriptions of online resources, 

with URI and properties as the core of any assertion. RDF triple descriptions, 

(subject, property, object) , form directed labelled graph. Ontologies, 

described in RDFS or OWL, enable to structure and constrain the concept used to label 

RDF graph. They enable (1) to turn the labelling of RDF graph into a rich typing, and 

(2) to reason on this graph and enrich it. This rich typed graph can be then accessed, 

queried and transformed with SPARQL. 

                                                
35 At the time of this writing, the standard version is Sparql 1.0 
36 http://www.w3.org/TR/2010/WD-sparql11-query-20100601 
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In the second part of this chapter, we presented ontologies that were built to define, 

structure and link vocabularies of online social graphs. FOAF is a base vocabulary for 

describing people, their attributes, their acquaintances and their online account. The 

RELATIONSHIP and SIOC ontologies extend FOAF in order to precisely describe 

relationships between people and their activities on social web sites. SCOT and others 

ontologies propose vocabularies of social tagging, and tags as well as topics of web 

publications can be then semantically structures with the lightweight semantic 

primitives of SKOS. Analyses that have been conducted on the semantic representations 

did note exploit the rich semantics they contain, while it could have been used to refine 

their results. 

This whole stack of tools provides the basis to richly represent, linked and query online 

social graph. We now dispose of a directed typed graph model to represent, link and 

query online social graphs across web sites. We have seen in chapter 3, that graph 

theory offers many algorithm and metrics to analyse the link structure of raw graph. We 

will see in the next chapter how we can merge this approaches to conduct a social 

network analysis that takes benefits of the ontological primitives use to type and 

structure online social graphs.  
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5. Analysis of Semantic Representation of 

Social Networks 

On one side, social network analysis provides efficient operators for mining the flat 

graph structure of networks and for extracting their structural characteristics. However 

they do not leverage, for instance, the types of the links, the different profiles or the 

roles of the different actors. On the other side, Semantic Web technologies enable us to 

connect distributed social data on the web and to richly type both nodes and 

relationships of social graphs with classes and properties of domain ontology. However, 

while Semantic Web languages are efficient for representing, exchanging and extracting 

rich social data, they still lacks of graph operators for meeting SNA requirement, like 

global metric querying. 

In this chapter, we address this challenge and propose a model that extends SNA 

operators using Semantic Web frameworks in order to include the semantics of these 

graph-based representations in the analysis. This makes it possible to take benefits of 

the diversity of the relationships and interactions.  

We first present the stack of tools we designed for conducting the semantic social 

network analysis. Then we present the results of this approach on a real social network 

with 60,000 users connecting, interacting and sharing content. 
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5.1 A Semantic Web Framework for Social Network analysis 

 

Figure 39. Abstraction Stack for Semantic Social Network Analysis. 

The Figure 39 presents the stack of tools that we designed to conduct a semantic social 

network analysis. The goal of this stack is to provide a framework that enables us to 

consider not only the network structure embedded in social data, but also the schemas 

that are used to structure, link and exchange these data. This stack is composed of (1) 

tools for building, representing and exchanging social graphs and (2) tools for extracting 

social network analysis metrics and leveraging social graphs with their characteristics. 

We represent the social graphs in RDF, which provides a directed typed graph structure. 

We showed in the chapter 4 that RDF is well suited for representing social graphs and 

that this format eases the sharing and the interoperability of social data between 

applications. Then we leverage the typing of nodes and edges with the primitives of 

existing ontologies together with specific domain ontologies if needed. With this rich 

typing, semantic engines are able to perform type inferences from data schemas for 

automatically enriching the graph and checking its consistency. For increasing 

interoperability, we recommend to use (and extend if needed) the ontologies of the 

linked data cloud presented in the chapter 4. Doing so will ease the discovery of related 

knowledge and the enrichment of the graph. In particular we detailed in the chapter 4, 

ontologies for representing social data on the web. We use the FOAF ontology for 

describing people, their relationships and their activity. The properties defined in the 

RELATIONSHIP ontology enable us to type more precisely relationships between 

persons (e.g. the relation rel:livesWith  specializes the relation foaf:knows ). We 

use the primitives of the SIOC ontology for modelling online user accounts, the content 

they publish and corresponding mediated interactions. Finally SCOT enables us to 

describe social tagging activities while SKOS offers a way to organize tags and topics 

of emerging content with lightweight semantic properties (e.g. skos:narrower, 

skos:closeMatch, skos:related ). 

Some social data are already readily available in a semantic format (e.g. RDF, RDFa) 

and can be used straightforward. Data provided in RDF can be directly queried in 

SPARQL. RDFa and µformats are mark-ups embedded in XHTML web pages for 

defining the semantics of some elements of the pages and have to be extracted and 

transformed in RDF before being queried. Algorithms for extracting this data from 
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documents are available and GRDDL37 defines how to link a document to these 

algorithms. However, today, most of the data are still only accessible through APIs (e.g. 

Flickr, Facebook, Twitter) that format their response in XML or JSON using different 

schemas. Other data are also retrieved by crawling web pages and need to be converted. 

Consequently crawled data and web 2.0 APIs have to be wrapped in order to be 

structured in RDF and to be interoperable and mashable with any data.  

We propose to leverage social data with the results of their analyses. [Limpens et al 

2010] designed a methodology to enrich social tagging data with semantics with a 

combination of human contributions and algorithms for analysing tags' labels and 

folksonomy structures. On our side, we designed SemSNA to enrich social data with the 

characteristics of the semantic social graph they form. This ontology that is detailed in 

section 5.1.3 defines different SNA metrics ranging from the annotation of strategic 

positions and strategic actors, to the description of the structure of the network. In 

addition, SemSNA enables us to qualify SNA metrics with the sub graph and the 

semantic of properties that were analyzed. With this ontology, we can (1) abstract social 

network constructs from domain ontologies to apply our tools on existing schemas by 

having them extend our primitives; and we can (2) enrich the social data with the SNA 

metrics that are computed on the network. These annotations enable us to manage more 

efficiently the life cycle of an analysis, by pre-calculating relevant SNA indices and 

updating them incrementally when the network changes over time. Moreover they can 

be used during the querying of social data for ordering and filtering the results. 

On top of SemSNA we propose SPARQL formal definitions of SNA operators handling 

the typing of the semantic representations of social networks. Building on top of results 

on graph-based representation and reasoning for RDF/S and OWL [Corby et al 2004] 

[Baget et al 2008] [Corby 2008], we exploit the RDF graph representations of social 

networks with qualified queries. This querying, qualified by the typing of the graph, 

focuses automatically on specific path patterns, involving specific resource or property 

types. The SPARQL queries that we designed are based on the powerful extensions of 

the standard SPARQL language that are implemented in the semantic graph engine 

CORESE [Corby et al 2004]. In particular, the property path extension of CORESE 

[Corby 2008] enables us to extract paths in RDF graphs by specifying multiple criteria 

such as the type of the properties involved in the path with regular expressions, or edge 

directions or constraints on the vertices that paths go through. These extensions leverage 

the expressivity of CORESE, and we present in section 5.1.2 how it extends the 

definition of Entity Graphs and their mapping. 

In this section we will see, (1) how to wrap social data with CORESE, (2) how 

SPARQL can be used to query RDF social data with different perspectives, and (3) the 

description of SemSNA and how it can be used to annotate social networks.  

                                                
37 http://www.w3.org/2004/01/rdxh/spec  
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5.1.1 Wrapping Social Data with CORESE 

CORESE proposes SPARQL extensions that enable us to query heterogeneous sources 

of data and a rule engine for enriching RDF graphs [Corby et al 2009]. CORESE 

proposes functions to nest SQL and XPATH queries in the SELECT clause of a 

SPARQL query and to bind their variable with SPARQL variables. Consequently it 

offers to mash different sources of data of different formats with a single query. On top 

of this, CORESE allows us to combine a CONSTRUCT block with a SELECT block 

and reuse, in the construction of new triples, the resources that were computed by a 

function. Finally, once the resources are in the RDF format, they can be automatically 

enriched and transformed with rules, using the rule engine of CORESE. 

5.1.1.1 Querying XML and Relational Databases with CORESE 

Corese has an extension that enables us to nest SQL and XPATH queries within 

SPARQL queries [Corby et al 2009]. This feature is useful for querying XML and 

relational databases and for designing wrappers for non RDF data. 

CORESE offers to nest any function in a SPARQL query. In particular, the querying of 

databases is done by means of the sql()  function that returns a sequence of results for 

each variable in the SQL select clause. The parameters of this function are the URL of 

the database server, the class of the jdbc  driver, the login and the password for opening 

a session, and the SQL query. The results of this function, namely the SQL variables 

with their matched values, are bound to SPARQL variables. Similarly the querying of 

an XML source is done by means of an xpath()  function, whose parameters are the 

URL of the XML source and the xpath  expression to match. Here again, the results of 

this function, namely the elements of the queried XML document that match the xpath  

expression, are bound to SPARQL variables. 

In the following example, we show how we retrieve the friend relationships from a 

relational database, having a table of relations with two columns, one for each actor of 

the relation. We use this sql()  function and another one, genIdUrl() , that generates 

URIs from relational database primary keys: 

construct { ?person1 rel:friendOf ?person2 } 

select sql('jdbc:mysql://…/mysql_server', 

'com.mysql.jdbc.Driver', 'user', 'pwd', 

'SELECT user1_id, user2_id from relations) as (?id1 , 
?id2) fun:genIdUrl(?id1, 'http://…/people/') as ?pe rson1  

fun:genIdUrl(?id2, 'http://…/people/') as ?person2  

where {  } 

The twitter API offers to query its social networks, and in particular to retrieve the 

followers of a user with its user name and the following URL: 

http://api.twitter.com/1/followers/ids.xml?screen_n ame=username 
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For instance, to obtain all the followers of my twitter account in the XML, format, one 

should call the following URL: 

http://api.twitter.com/1/followers/ids.xml?screen_n ame=ereteog 

The resulting XML document is a list of ids: 

<?xml version="1.0" encoding="UTF-8"?> 

<id_list> 

<ids> 

<id>161965514</id> 

<id>113573751</id> 

<id>55826821</id> 

(…) 

</ids> 

</id_list> 

The following query enables us to nest an xpath  function that queries this document: 

construct {  

?follower sioc:follows <http://twitter.com/ereteog>  

} 

select 

xpath(<http://.../followers/ids.xml?screen_name=ere teog> 

, "/ids/id")) as ?userId  

  fun:genIdUrl(?userId, 'http://twitter.com/') 

as ?follower  

where { } 

These CORESE extensions offer a simple way to construct RDF on top of frequently 

used formats for representing social data. 

5.1.1.2 Rules and Enrichment of RDF Social Network 

Semantic Web frameworks offer different ways to enrich RDF data with reasoning 

mechanisms. In the chapter 4, we presented how ontologies that are formalized in RDFS 

and OWL are used by semantic graph engine to enrich RDF with new inferred triples, 

using the positive constraints that are expressed on classes and properties. However, 

other processing can also enrich the semantics of RDF graphs, such as rules crawling 

the network to add types or relations whenever they detect a pattern. In CORESE, once 

exported in RDF, a social network can be processed to leverage the semantics of its 

graph representation with (1) SPARQL queries using a construct  block and (2) 

inference rules on the graphs.  

[San Martin & Gutierrez 2009] have shown how to enrich a social network with a 

construct  block. When you execute a construct  SPARQL query as a rule to enrich 
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your network, the where  block will be the pattern to match and the construct  block 

will be the conclusion. In fact using a construct  SPARQL query as a rule could be 

viewed as a forward chaining rule inference.  

For instance, if a user comments a post from another user, we could deduce that the two 

persons that own these accounts have acquaintances: 

construct{ ?person2 rel:acquaintance ?person1} 

where {  

?person1 foaf:account ?user1  

?person2 foaf:account ?user2  

?user1 foaf:creator ?post  

?post sioc:has_reply ?comment 

?user2 foaf:creator ?comment   

} 

Such queries produce RDF triples in respect with the construct  block, which can be 

stored next. However, Corese enables us to re-inject the knowledge produced directly 

into the knowledge base with an add  clause, which replaces the construct  clause: 

add{ ?person2 rel:acquaintance ?person1} 

where {  

?person1 foaf:account ?user1  

?person2 foaf:account ?user2  

?user1 foaf:creator ?post  

?post sioc:has_reply ?comment 

?user2 foaf:creator ?comment   

} 

Similarly, some transformations can be automated by inference rules that are performed 

on a rule engine. Here, it consists in a forward chaining rule inference. We have first a 

condition block that describes a pattern to match and then a conclusion block that 

defines the triples to generate whenever the condition pattern is matched. 

CORESE has a proprietary rule format that propose such forward chaining rule 

inference, and the previous example can be as well performed with the following 

CORESE rule: 
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<cos:if> 

{ ?person1 foaf:account ?user1  

?person2 foaf:account ?user2  

?user1 foaf:creator ?post  

?post sioc:has_reply ?comment 

?user2 foaf:creator ?comment } 

</cos:if> 

<cos:then> 

{ ?person2 rel:acquaintance ?person1 } 

</cos:then> 

The preceding syntax is specific to Corese but the Rule Interchange Format38 (RIF) proposes 

XML dialects for expressing and exchanging rules on the Web, and providing interoperability 

between the different rule engines. These dialects include in particular SWX that proposes an 

interoperability of RIF with RDF, RDFS and OWL. 

5.1.2 Extract SNA Concepts with SPARQL 

The web evolves very quickly, new social platforms with new features and usages 

frequently appear with new forms of social exchanges; Semantic Web technologies are 

designed to handle such evolutions. Querying social data with SPARQL eases the 

evolution of social platform models and the integration of new ones as long as they are 

expressed with ontologies. We present here how to extract social network analysis 

metrics by combining structural and semantic characteristics of the network with 

queries performed with Corese. 

In [San Martin & Gutierrez 2009], researchers have shown that SPARQL "is expressive 

enough to make all sensible transformations of networks". However, this work also 

shows that SPARQL is not expressive enough to meet SNA requirements for global 

metric querying (density, betweenness centrality, etc.) of social networks. Such global 

queries are mostly based on result aggregation and path computation, which are missing 

from the standard SPARQL definition. Extensions are currently discussed to provide 

SPARQL 1.1 with operators that fit this void. However, the Corese search engine 

[Corby et al 2004] already provides such features with result grouping, aggregating 

functions (e.g. sum()  or avg() ) and path retrieving [Corby 2008].  

5.1.2.1 Exploit Rich Typing of Relationships 

Corese implements SPARQL with the Homomorphism<x>, defined in chapter 4, which 

takes into account the semantic of schemas for mapping the graph of a SPARQL query 

on an RDF graph. Consequently, when querying an RDF social graph that is richly 

typed with ontological primitives, we are able to focus on different types of 

relationships while taking into account the sub networks implied by the defined 

                                                
38 RIF Working Group http://www.w3.org/2005/rules/wiki/RIF_Working_Group 
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patterns. Implementing SNA operators with SPARQL offers to directly work on RDF 

graphs and automatically consider it semantics without producing any other graph in 

another format. SNA operators become qualified by the properties that represent the 

analyzed relationships. The Figure 40 illustrates the computation of a qualified degree 

where only family relations are considered by exploiting the hierarchy of relationships. 

 

Figure 40. A parameterized degree that considers a hierarchy of relationships. 

5.1.2.2 Extract Complex Relationships with Property Paths 

Paths in graph represent how nodes are interconnected and, in a social network, how 

resources are interacting. Providing SPARQL with property path operators offers to 

detect rich relationships among the diversity of online interactions (e.g. two users 

annotated a same resource with a same concept). The principle of the property path 

extension consists in searching a sequence of properties, which match a regular 

expression, between two resources in the RDF graph. For this we extend the definitions 

of ERGraph (Definition 53 in chapter 4) to include paths in the graphs and mappings: 

Definition 59.  PERGraph: A PERGraph relative to a set of labels L is a 4-tuple 

G=(EG, RG,PG, nG, lG) where: 

• G’=(EG, RG, nG, lG) is an ERGraph 

• PG is a disjoint set from EG and RG of hyperedges called paths. 

• nG : RG  ∪ PG → EG
* associates to each relation and path a finite tuple of 

entities called the arguments of the relation or the path. 

• lG : EG ∪ RG ∪ PG → L is a labelling function of entities, relations and paths. 

Definition 60.  PERMapping<X>: Let G and H be two PERGraphs, and X be a 

binary relation over L×L. A PERMapping from H to G is an ERMapping<X> M 

from H to G such that: Let H' be the SubERGraph of H induced by M-1
(EG), 

∀ p’∈ PH' ∃ p= (r1,..., rn)∈ RG
n
 such that: 

• ∀ 1≤ i≤ card(nG(r)), M(nH' 
i
(r'))∈ nG (r1) ∪ nG (rn) 
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• ∀ 1≤ i ≤ n (lG(ri), lH(p'))∈ X. 

To exploit this extension of the model, we introduced a syntactic convention in Corese 

for path extraction. A regular expression is used instead of the property variable to 

specify that a path is searched and to describe its characteristics. Corese implements a 

subset of the property path functionalities designed in SPARQL 1.139 as follow: 

Syntax Form Matches 

Uri A URI or a prefixed name. A path of length one. 

(elt) A group path elt , brackets control precedence. 

elt1 / elt2 A sequence path of elt1 , followed by elt2  

elt1 | elt2 A alternative path of elt1 , or elt2  (all possibilities are tried). 

elt* A path of zero or more occurrences of elt . 

elt+ A path of one or more occurrences of elt . 

elt? A path of zero or one elt . 

Figure 41. Elements and operators of the regular expression of a property path defined 
in SPARQL 1.1 Property Paths working draft39 of 2010-01-26: “uri  is either a URI 
or a prefixed name and elt  is a path element, which may itself be composed of path 
syntax constructs”. 

Corese proposes a supplementary operator, !  (not), to exclude an expression from the 

matched path. The following example proposes a regular expression to retrieve a path 

between two resources ?x  and ?y  starting with zero or more foaf:knows  properties 

and ending with the rel:worksWith  property: 

?x foaf:knows*/rel:worksWith::$path ?y 

As Corese supports RDFS entailment, it implements the PERMapping<X> and thus takes 

into account sub-properties of the properties of the regular expression, unless specified 

otherwise. 

Corese proposes additional features for retrieving paths. First it proposes to restrict the 

retrieved path with characteristics that are defined by adding options before the regular 

expression: 's'  to retrieve one shortest path and 'sa'  to retrieve all shortest paths. 

For instance, the following query asks for only one shortest path between two 

resources ?x  and ?y  starting with zero or more foaf:knows  properties and ending 

with the rel:worksWith  property: 

?x s foaf:knows*/worksWith ?y  

Then, Corese enables us to bind a path with a variable specified after the regular 

expression. This variable can be reused as input of a defined function. In particular 

Corese proposes the function pathLenght()  to compute the length of a path. The 

                                                
39 SPARQL 1.1 Property Paths http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/  
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previous example is restricted in the following example to paths of length equal to or 

less than 3: 

?x foaf:knows*/rel:worksWith::$path ?y 

filter(pathLength($path) <= 3) 

Finally, an extension enables us to enumerate and constrain the triples belonging to the 

path that has been found, by exploiting it as a graph. It uses the graph  clause where the 

graph variable is a path variable. The example below enumerates the foaf:knows  

triples of the path and imposes that a least one of its resources knows Michel: 

graph $path { ?x foaf:knows ?y } 

?x foaf:knows <http://www.i3s.unice.fr/Michel> 

Path retrieval enables us to exploit the hierarchy of properties, by taking into account 

sub-properties at each step. Consequently we compute SNA metrics with parameterized 

queries that accept as argument a regular expression of properties.  

5.1.2.3 Global Querying and Aggregating Operators 

CORESE SPARQL extensions propose operators to group projections of a query on an 

RDF graph and to compute and extract not only patterns but also global characteristics 

of graphs.  

The group by  clause enables us to group results having the same values for a given list 

of variables (this option is also implemented in most existing RDF engines and defined 

in SPARQL 1.1). The priority of the grouping is performed in respect with the order of 

the variables in the given list. For instance the following query returns for each person 

the group of persons he knows: 

select ?p1 ?p2 where { 

  ?p1 ?foaf:knows ?p2 

} group by ?p1 

Then aggregating functions compute additional results from groups of projections. By 

definition they are used together with the group by  clause.  For instance for a group of 

results: 

• the count()  function counts the occurrences of matched results for a given 

variable 

• the sum()  function sums the matched numerical values for a given variable 

• the avg()  function compute the average value of the matched numerical values 

for a given variable. 

The following query returns for each person the number of persons he knows: 

select ?p1 count(?p2) as ?nbwhere { 

  ?p1 ?foaf:knows ?p2 

} group by ?p1 
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CORESE extends these sets of operators with additional ones. In particular, it extends 

the expressivity of result grouping. The keyword any  offers to group results having the 

same value for any result variables. In the table of the Figure 43 this operator is used to 

retrieve components, namely connected sub graphs, with the following query: 

select ?x ?y where { 

?x param[rel] ?y 

}group by any 

The merge  keyword merges all the projections in one single result with distinct values 

for each variable. It is an important feature for retrieving global metrics on the graph 

when no grouping criterion is possible between projections. For instance, in the table of 

the Figure 43, the following query computes the number of actors involved as subject of 

a given relationship: 

select merge count(?x) as ?nbsubj where{ 

?x param[rel] ?y 

} 

5.1.2.4 SPARQL Operationalization of Parameterized SNA Metrics 

Based on the enhanced SPARQL language of CORESE, we propose a set of queries 

(Figure 43) to compute SNA metrics adapted to the directed labelled graphs described 

in RDF (Figure 42). These queries exploit different SPARQL extension, including 

property paths, grouping and aggregating functions. We implemented and tested all the 

presented operators. 

In some cases, the implementation of complex SNA algorithms will require post-

processing to deal with (1) remaining lacks of expressivity of our extended SPARQL 

version, and (2) performances issues of a complete delegation of the process to a 

semantic graph engine. Consequently, in these cases, we use SPARQL for any semantic 

treatments, for extracting relevant parts of the graph, and for pre-processing different 

steps of algorithms. Then we iterate on the results to compute the final centrality values. 

The betweenness centrality is an example of algorithm that cannot be computed directly 

with a SPARQL query because it requires different processing steps on the graph. We 

use the CORESE engine to retrieve shortest property paths between resources of the 

graph and intermediary resources. Consequently the semantic processing are still 

delegated to the semantic engine that will takes into account the sub properties of the 

properties used in the regular expression for characterizing the searched paths. Then the 

definition of the betweenness centrality is computed with a post process on the results 

of the query. 
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SNA indices and definition Notation 

Graph: defined in chapter 4. G=(EG, RG, nG, lG) where :  

EG and RG are two disjoint finite sets 

respectively, of nodes and relations. 

nG : RG → EG
* associates to each relation 

a couple of entities called the arguments 

of the relation. If nG(r)=(e1,e2) we note 

nG
i
(r)=ei the i

th argument of r. 

lG : EG ∪ RG → L is a labelling function 

of entities and relations. 

Number of actors: the 

number of actors of a given 

type (or subtype).  
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Path: a list of nodes of a 

graph G each linked to the 

next by a property of type rel 

(or subtype). 
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Component: a connected sub 

graph for a given property 

rel (and sub-properties) with 

no link to resources outside 

the component 
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where  Gk is a subgraph of G such that 

for every pair of nodes ni, nj of Gk there 

exist a path p<rel> from ni to nj in G. 

Degree: number of paths of 

properties of type rel (or 

subtype) having y at one end 

and with a length smaller or 
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local popularities. 
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In-Degree: number of paths 

of properties of type rel (or 

subtype) ending by y and 

with a length smaller or 

equal to dist. It highlights 

supported resources. 
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Figure 42. Definition of SNA notions in labelled oriented graphs and notations used 
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SNA indices SPARQL formal definition 

)(Gnbactor

type><  select merge count(?x) as ?nbactor from <G> 
where{ 
  ?x rdf:type param[type] 
} 

)(Gnbactor

rel><  select merge count(?x) as ?nbactors from <G> 
where{ 
  {?x param[rel] ?y} 
  UNION{?y param[rel] ?x} 
} 

)(Gnb subject

rel><  select merge count(?x) as ?nbsubj from <G> 
where{ 
  ?x param[rel] ?y 
} 

)(Gnb object

rel><  select merge count(?y) as ?nbobj from <G> 
where{ 
  ?x param[rel] ?y 
} 

)(Gnb relation

rel><  select cardinality(?p) as ?card from <G> 
where { 
{ ?p rdf:type rdf:Property 
   filter(?p ^ param[rel]) } 
UNION 
{ ?p rdfs:subPropertyOf ?parent 
 filter(?parent ^ param[rel]) } 
} 

)(GComp rel><  select ?x ?y  from <G> where { 
 ?x param[rel] ?y 
}group by any  

)(, yD distrel ><  

 

select ?y count(?x) as ?degree where { 
{?x (param[rel])*::$path ?y 
filter(pathLength($path) <=  param[dist])} 
UNION 
{?y param[rel]::$path ?x 
filter(pathLength($path) <=  param[dist])} 
}group by ?y 

)(, yD in

distrel ><  

 

select ?y count(?x) as ?indegree where{ 
?x (param[rel])*::$path ?y 
filter(pathLength($path) <=  param[dist]) 
}group by ?y 

)(, yDout

distrel ><  

 

select ?x count(?y) as ?outdegree where { 
?x (param[rel])*::$path ?y 
filter(pathLength($path) <=  param[dist]) 
}group by ?x  

),( tofromg rel><   
select ?from ?to $path pathLength($path) as 
?length where{ 
?from sa (param[rel])*::$path ?to  
}group by ?from ?to  

)(GDiamrel>  select pathLength($path) as ?length from <G> 
where { 
?y s (param[rel])*::$path ?to  
}order by desc(?length)  
limit 1 

),( tofromnb g

rel><   select ?from ?to count($path) as ?count 
where{ 
?from sa (param[rel])*::$path ?to 
}group by ?from ?to 
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),,( tofrombnb g

rel><   select ?from ?to ?b count($path) as ?count 
where{ 
?from sa (param[rel])*::$path ?to 
graph $path{?b param[rel] ?j}  
filter(?from != ?b) 
optional { ?from param[rel]::$p ?to } 
filter(!bound($p)) 
}group by ?from ?to ?b 

)(yC c

rel><  

 

select distinct ?y ?to pathLength($path) as 
?length (1/sum(?length)) as ?centrality 
where{ 
?y s (param[rel])*::$path ?to  
}group by ?y 

),,( tofrombB rel><   select ?from ?to ?b 
(count($path)/count($path2)) as ?betweenness 
where{  
?from sa (param[rel])*::$path ?to  
graph $path{?b param[rel] ?j}  
filter(?from != ?b)  
optional { ?from param[rel]::$p ?to } 
filter(!bound($p))  
?from sa (param[rel])*::$path2 ?to 
}group by ?from ?to ?b  

( )bC b

rel><  
Non SPARQL post-processing on shortest paths. 

Figure 43. Formal definition in SPARQL of semantically parameterized SNA indices. 

5.1.3 SemSNA: the Ontology of Social Network Analysis  

SemSNA is an ontology of Social Network Analysis to annotate social networks with 

their characteristics. This allows us to reinject the results of an analysis in the RDF 

representation of the social network. The presented version models strategic positions, 

based on Freeman’s definition of centrality [Freeman 1979], and different definitions of 

groups with useful indices to characterize their properties. The primitives of SemSNA 

can be decomposed in 3 groups, (1) core primitives that describe the context of the 

analysis, (2) primitives that describe strategic position and strategic resources, (3) 

primitives that describe the network structure. The Figure 44 proposes a global view of 

this ontology. 
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Figure 44. Schema of SemSNA: the ontology of Social Netwtok Analysis 

5.1.3.1 SemSNA core 

A core of primitives enables us to define an SNA concept and its context, namely the 

graph that has been analyzed and the properties for which it has been computed. The 

Figure 45 proposes a schema of this core of primitives. The main class 

semsna:SNAConcept  is used as the super class for all SNA concepts. All the classes 

representing a concept of social network analysis in SemSNA extend this class. The 

property semsna:isDefinedForProperty  indicates for which relationship, i.e., sub-

network, an instance of the SNA concept is defined. In addition, the same relationships 

should be analyzed on different graphs, and the property semsna:analyzedGraph  

specifies the named graph [Carroll et al 2005] in which the concept has been computed. 

This property enables analysis to be shared, and exchanged across applications. The 

resource that is described by a metrics is attached to an SNA concept with the property 

semsna:hasSNAConcept . Finally, the class semsna:SNAIndice  is a subclass of 

semsna:SNAConcept , and describes valued concepts such as centrality; the associated 

value is set with the property semsna:hasValue .  
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Figure 45. Schema of SemSNA: core concepts  

5.1.3.2 Strategic Positions 

Strategic positions are related to strategic paths in the network and different definitions 

of the concept of centrality. Consequently, SemSNA defines a super class for describing 

path, semsna:Path , and a super class for defining Centrality, semsna:Centrality . 

The class semsna:Path , which is a sub class of semsna:SNAConcept , with the 

properties semsna:hasPathLength  and semsna:pathExtremity , which 

respectively describe the length an the extremity of a path, are the basic primitives to 

represent a path. The class semsna:DirectedPath  represents a directed path, which 

source and destination are defined by two sub-properties of  

semsna:pathExtremity,  semsna:from  and semsna:to . Then, different types of 

paths are represented by the sub-classes of semsna:Path:  semsna:CyclicPath , 

semsna:NonCyclicPath , and semsna:GeodesicPath  

The centrality is a valued concept, so the class semsna:Centrality  is a sub-class of 

semsna:SNAIndice . The property semsna:hasCentralityDistance  defines the 

distance of the neighbourhood taken into account to measure the centrality. SemSNA 

defines sub classes of semsna:Centrality  to represent different centrality 

definitions. The classes semsna:Degree , semsna:InDegree , semsna:OutDegree , 

represent the three definitions of degree centrality. The classes 

semsna:BetweennessCentrality and semsna:Betweenness , respectively 

represent the betweenness centrality and the partial betweenness. The property 

semsna:betweennessExtremity  specify for which nodes the partial betweenness 

has been computed. The closeness centrality is represented by the class 

semsna:ClosenessCentrality .  
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Figure 46. Schema of SemSNA: paths and strategic positions. 

5.1.3.3 Network Structure 

We propose a set of primitives to define and annotate groups of resources linked by 

particular properties. The class semsna:Group  is a super class for all classes 

representing alternative concepts of group of resources. The class semsna:Component  

represents a set of connected resources. The class semsna:StrongComponent  defines 

a component of a directed graph where the paths connecting its resources do not contain 

any change of direction. The class semsna:Diameter , subclass of semsna:Indice , 

defines the length of the longest geodesics (shortest paths between resources) of a 

component. The property semsna:maximumDistance  enables us to restrict 

component membership to a maximum path length between members. A clique is a 

complete sub graph, for a given property according to our model. An n-clique extends 

this definition with a maximum path length (n) between members of the clique; the 

class semsna:Clique  represents this definition, and the maximum path length is set 

by the property semsna:maximumDistance . Resources in a clique can be linked by 

shortest paths going through non clique members. semsna:NClan  is a restriction of a 

clique that excludes this particular case. semsna:KPlex  relaxes the clique definition to 

allow connecting to k members with a path longer than the clique distance; k is 

determined by the property semsna:nbExcept . Finally the concept 

semsna:Community  supports different community definitions: 

InterestCommunity , LearningCommunity , GoalOrientedCommunity , 

PraticeCommunity  and EpistemicCommunity  [Conein 2004] [Henri & Pudelko 

2003]. These community classes are linked to more detailed ontologies like [Vidou et al 

2008] used to represent communities of practice. 
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Figure 47. Schema of SemSNA: groups and communities  

Annotating social data with SemSNA enables us to query directly the social network in 

a cheaper way and to focus on important values of indices. Moreover, time-consuming 

queries can’t be done in real time. We compute them as batch reporting and generate 

relevant SNA annotations enriching the graph in order to respond quickly to queries on 

demand. The Figure 48 proposes an example of a semantic social graph that is enriched 

with SemSNA primitives. In this social network, Guillaume has both family and 

professional relationships. The SemSNA annotations state that: the degree of Guillaume 

for a neighbourhood at distance 2 and the property colleague  (a super property of 

supervisor ) is 4. 
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Figure 48. Example of a social graph enriched with social network analysis results.  

5.2 Experiment and Results 

We have experimented and evaluated this framework on a real online social network: 

Ipernity.com. This social network, offers users several options for building their social 

network and sharing multimedia content. Every user can share pictures, videos, music 

files, create a blog, a personal profile page, and comment on other’s shared resources. 

Every resource can be tagged and shared. To build the social network, users can specify 

the type of relationship they have with others: friend, family, or favourite (simple 

contact you follow). Relationships are not symmetric, Fabien can declare a relationship 

with Michel but Michel can declare a different type of relationship with Fabien or not 

have him in his contact list at all; thus we have a directed labelled graph. Users have a 

homepage containing their profile information and pointers to the resources they share. 

Users can post on their profile and their contacts’ profiles depending on access rights. 

All these resources can be tagged including the homepage. A publisher can configure 

the access to a resource to make it public, private or accessible only for a subset of its 

contacts, depending on the type of relationship (family, friend or favourite), and can 

monitor who visited it. Groups can also be created with topics of discussion with three 

kinds of visibility, public (all users can see it and join), protected (visible to all users, 

invitation required to join) or private (invitation required to join and consult). 

5.2.1 Representing and Leveraging Ipernity Relational Data with Semantics 

The social data of Ipernity.com were provided as a dump of their database that we 

mined to build a semantic social network. Existing ontologies like FOAF and SIOC 

presented in chapter 4 were sufficient to model the core elements of the social graph of 

Ipernity. However, we extended the primitives of these ontologies for finely handling 

the semantics of the rich interactions embedded in this social network. We designed 
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these primitives in a domain ontology: SemSNI, that stands for Semantic Social 

Network Interactions.  

We used FOAF in combination of RELATIONSHIP to represent persons in Ipernity, 

and their relationships. First, we declared an instance of foaf:Person  for any user of 

Ipernity, to represent the person that hold the Ipernity account. Then, we linked the 

created persons with their relationships. We used the properties rel:friendOf  and 

rel:knowsByReputation  to represent respectively the friend and favourite 

relationships. RELATIONSHIP proposes many properties to represent family links 

however it does not provide a super property for them, which would have been suited 

for the family links of Ipernity. Consequently, we defined a sub property of 

foaf:knows  to type the family relationships: semsni:family . Finally we created an 

instance of sioc:UserAccount  for any Ipernity user that we linked to the 

corresponding foaf:Person  instance with the property foaf:account . The Figure 

49 presents how these bases represent persons, their account, and the structure of their 

social network. 

 

Figure 49. Schema of basic primitives representing persons, users and content in 
Ipernity.  

Then we represented the content produced by Ipernity users, which mediates their 

interactions. Primitives that extend the class sioc:Item  represent shared content. The 

Figure 50 presents an overview of the ontology we designed to model this social 

network, and how this ontology is linked to existing models. In order to model 

homepages, private messages, discussion topics, and documents that do not exist in 

SIOC types with the required semantics, we designed different primitives. SemSNI 

defines the class semSNI:UserHome, semSNI:PrivateMessage, semSNI:Topi c  

and semSNI:Document  as subclasses of sioc:Item  (semSNI:Document also 

extends foaf:Document ). The class semSNI:Visit  and the properties 

semSNI:visitedResource  and semSNI:hasVisitor  enable us to describe the 

visits of a user to a resource. In order to infer new relationships between users from 

their interactions and the content they share, SemSNI defines the class 

semsni:Interaction  and the property semSNI:hasInteraction  (domain: 
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sioc:User , range: sioc:User ). The classes representing exchanges on a content 

(sioct:Comment, semSNI:Visit  and semSNI:PrivateMessage ) are defined as 

subclasses of semSNI:Interaction  and we can infer a relation 

semSNIhasInteraction   between the creator of the resource and its consumer. We 

did not type more precisely such relations, but we can extend this property in order to 

increase the granularity in the description of interactions between users. We use the 

types of access defined in the Access Management Ontology (amo:Public, 

amo:Private, amo:Protected ) [Buffa & Faron-Zucker 2010] in combination with 

the property semSNI:sharedThroughProperty  to model the kind of sharing for 

resources. 

  

Figure 50. Schema of SemSNI; an ontology of Social Network Interactions for 
modelling and enriching the social data of Ipernity.com  

Based on these presented primitives, we used the Corese graph engine to extract a 

semantic social graph from the database of Ipernity, with the method presented in 

section 5.1.1.  Once in RDF, we queried this social network and exploited its semantics 

with Corese. In the next section we present and interpret the results of analyzing this 

social network with different semantic perspectives using the queries presented in 

section 5.1.2. 

5.2.2 Results 

We tested our algorithms and queries on a bi-processor quadri-core Intel(R) Xeon(R) 

CPU X5482 3.19GHZ, 32Gb of RAM. We applied the defined queries on relations and 

interactions from Ipernity.com. We analyzed the three types of relations separately 

(favourite, friend and family) and also used polymorphic queries to analyze them as a 

whole using their super property: foaf:knows . We also analyzed the interactions 
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produced by exchanges of private messages between users, as well as the ones produced 

by someone commenting someone else's shared item. 

We first applied quantitative metrics to get relevant information on the structure of the 

network and activities: the number of links and actors, the components and the 

diameters. 61,937 actors are involved in a total of 494,510 relationships. These 

relationships are decomposed in 18,771 family relationships between 8,047 actors, 

136,311 friend relationships involving 17,441 actors and 339,428 favourite relationships 

for 61,425 actors. These first metrics show that the semantics of relations are globally 

respected, as family relations are less used than friend and favourite. 7,627 actors have 

interacted through 2,874,170 comments and 22,500 have communicated through 

795,949 messages. All these networks are composed of a largest component containing 

most of the actors (Figure 51) and few very small components (less than 100 actors) that 

show "the effectiveness of the social network at doing its job" [50], in connecting 

people. The interaction sub networks have a very small diameter (3 for comments and 2 

for messages) due to their high density. The family network has a high diameter (19), 

consistent with its low density. However the friend and favourite networks have a low 

density and a low diameter revealing the presence of highly intermediary actors. 

The betweenness and degree centralities confirm this last hypothesis. The favourite 

network is highly centralized, with five actors having a betweenness centrality higher 

than 0, with a dramatically higher value for one actor who has a betweenness centrality 

of 1,999,858 and the 4 other ones who have a value comprised between 2.5 and 35. This 

highest value is attributed to the official animator of the social network who has a 

favourite relationship with most actors of the network, giving him the highest degree: 

59,301. In the friend network 1,126 actors have a betweenness centrality going from 0 

to 96,104 forming a long tail, with only 12 with a value higher than 10,000. These 

actors do not include the animator, showing that the friend network has been well 

adopted by users. The family network has 862 actors with a betweenness centrality from 

0 to 162,881 with 5 values higher than 10,000. Only one actor is highly intermediary in 

both friend and family networks. The centralization of these three networks presents 

significant differences showing that the semantics of relations have an impact on the 

structure of the social network. The betweenness centralities of all the relations, 

computed using the polymorphism in SPARQL queries with the foaf:knows  property, 

highlight both the importance of the animator who has again the significantly highest 

centrality and the adoption by users with 186 actors playing a role of intermediary. The 

employees of Ipernity.com have validated these interpretations of the metrics that we 

computed, showing the effectiveness of a social network analysis that exploits the 

semantic structure of relationships. 
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Figure 51. Number of actors and size of the largest component of the studied 
networks  

The Corese engine works in main memory and such an amount of data is memory 

consuming. The 494,510 relations declared between 61,937 actors use a space of 4.9 

Gb. Annotations of all messages use 14.7 Gb and the representation of documents with 

their comments use 27.2 Gb. On the other hand working in main memory allows us to 

process the network very rapidly. The path computation is also time and space 

consuming and some queries had to be limited to a maximum number of graph 

projections when too many paths could be retrieved. However, in that case 

approximations are sufficient to obtain relevant metrics on a social network, i.e., for 

centralities [Brandes and Pitch 2007] [Bader et al 2007] [Geisberg et al 2008]. 

Moreover, we can limit the distance of the paths we are looking for by using others 

metrics. For example, we limit the depth of paths to be smaller or equal to the diameter 

of the components when computing shortest paths. The table of the Figure 52 

summarizes the performances of some queries on this social network using different 

parameters. 
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Indice Relation Query time Nb of graph 

projections 

)(GDiamrel>  

 

Knows 1 m 41.93 s  10,000,000 

Favourite 1 m 51.37 s 10,000,000 

Friend 1 m 42.62 s  10,000,000 

Family 1 m 54.28 s 10,000,000 

Comment 35.06 s  1,000,000 

Message 1 m 50.84 s 10,000,000 

)(Gnb relactors ><  

 

Knows 1 m 9.62 s  989,020 

Favourite 2 m 35.29 s  678,856 

Friend 11.67 s  272,622 

Family 0.68 s  37,542 

Message 17.62 s  1,448,225 

Comment 8 m 27.25 s 7,922,136 

)(GComp rel><  Knows 0.71 s  494,510 

Favourite 0.64 s  339,428 

Friend 0.31 s  136,311 

Family 0.03 s  18,771 

Message 1.98 s  795,949 

Comment 9.67 s  2,874,170 

)(1, yD rel ><  
Knows 20.59 s  989,020 

Favourite 18.73 s  678,856 

Friend 1.31 s  272,622 

Family 0.42 s  37,542 

Message 16.03 s  1,591,898 

Comment 28.98 s 5,748,340 

Shortest paths 

used to calculate 

)(bC relb ><  

Knows Path length <= 2: 2h 56m 
34.13s   

1,000,000 

Favourite Path length <= 2: 5h 33m 
18.43s 

2,000,000 

Friend Path length <= 2: 1m 12.18 s  1,000,000 

Family Path length <= 2 : 27.23 s 
Path length <= 3 : 1m 10.71 s 

1,000,000 
1,000,000 

Figure 52. Performance of queries 
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5.3 Partial Conclusion 
Our work aims at extending social network analysis to ontology-based representations 

of users, communities, links and relationships. We propose to bring ontology modelling 

to social network representation and analysis by extending social network analysis to 

ontology-based social graph inferences to detect and stimulate communities of interest. 

We exploit ontology-based representation of social networks to support new algorithms 

for discovering and monitoring a community’s activity. The ultimate goal is to support 

functionalities that foster exchanges using ontology-based representations, and to 

exploit feedback from usage to drive the evolution of these representations. 

Our framework allows analyzing these rich typed representations of social networks and 

handling the diversity of interactions and relationships with parameterized SNA metrics. 

Classical SNA ignores the semantics of richly typed graphs like RDF and classical 

Relational Database approaches do not offer simple mechanisms for handling the 

semantics of type lattices. Subsumption relations are natively taken into account when 

querying the RDF graph in SPARQL with an engine like CORESE. Parameterized 

operators formally defined in SPARQL rely on this to allow us to adjust the granularity 

of the analysis of relations. Moreover, a new range of pre-processing can be used such 

as rules crawling the network to add types or relations whenever they detect a pattern 

(e.g., an actor frequently commenting on posts by another actor is linked to him by a 

relation “monitors”).  

New queries that compute new operators can be defined at anytime and SemSNA can 

be extended. Network assortativity [Newman 2003a] is an example of future operators 

that could both leverage the semantics of the schemas (e.g., similarity between two 

nodes) and extension mechanisms of SPARQL (e.g., counting the number of shared 

connections). In addition, using a schema to add the results of our queries (or rules) to 

the network also allows us to decompose complex processing into two or more stages 

and to factorize some computation among different operators, e.g., we can augment the 

network with in-degree calculation and betweenness calculation and then run a query on 

both criteria to identify nodes with an in-degree > y and a betweenness > x. 

Furthermore we validated this framework on a real social network and revealed the 

importance of considering the diversity of relationships and their semantic links. The 

sub-networks we analyzed present different characteristics that highlight in particular 

the strategic actors and the partitioning of the different activities. The approach is 

applied as batch processing on large RDF triple store (CORESE is a freeware handling 

millions of nodes but other engines with the same extensions could be used just as 

well). Consequently we annotate the social data with the results of these parameterized 

SNA metrics using SemSNA ontology to provide services based on this analysis (e.g. 

filter social activity notifications), to use them in the calculation of more complex 

indices or (in the future) to support iterative or parallel approaches in the computations. 

Computation is time consuming and even if CORESE runs in main memory, 
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experiments reported in the paper show that handling a network with millions of actors 

is out of our reach today. We started to study different approaches for addressing that 

problem: (1) identifying computation techniques that are iterative, parallelizable, etc. (2) 

identifying approximations that can be used and under which conditions they provide 

good quality results (3) identifying graph characteristics (small worlds, diameters, etc.) 

that can help us cut the calculation space and time for the different operators. 
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6. SemLP: When Semantics Improve 

Community Detection in Folksonomies 

Building on top of our results on semantic social network analysis, we present a 

community detection algorithm, SemTagP, that takes benefits of the semantic data that 

were captured while structuring the RDF graphs of social networks. SemTagP not only 

offers to detect but also to label communities by exploiting (in addition to the structure 

of the social graph) the tags used by people during the social tagging process as well as 

the semantic relations inferred between tags. Doing so, we are able to refine the 

partitioning of the social graph with semantic processing and to label the activity of 

detected communities. We tested and evaluated this algorithm on the social network 

built from Ph.D. theses funded by ADEME, the French Environment and Energy 

Management Agency. We extracted from this dataset 1853 actors, 13,982 relationships, 

6,583 tags and 3,570 skos:narrower  relations between 2,785 tags and we showed the 

communities that can be detected. 
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6.1 Community Detection by Label Propagation and 

Folksonomies 

Community detection helps understanding the distribution of actors and activities. 

Algorithms that tackle this problem are either hierarchical or based on heuristics (see 

overview in chapter 3). Hierarchical algorithms produce a tree of community partitions 

by iteratively dividing the network into sub communities (top-down) or by merging 

communities into larger one (bottom-up). Heuristics based algorithms, for instance the 

ones based on random walk or the ones based on analogies with electrical networks, 

exploit network’s characteristics to determine densely connected group of nodes. 

Among heuristics based algorithms, one uses label propagation [Raghavan and al 2007]. 

This algorithm, also known as RAK in reference to the initials of its authors, proposes 

to detect communities by propagating labels in the social network as follows:  

(1) The algorithm assigns a unique random label to each node. 

(2) Each node n replaces its label by the label most used by its neighbors (adjacent 

nodes) in the graph, if its own label is different. In case several labels are the most used, 

one is chosen randomly. 

(3) If at least one node changed its label, go to step 2 

(4) Else nodes that share the same label form a community.   

The Figure 53 presents this algorithm on a toy example. 

 

Figure 53. Toy example of the execution of the RAK algorithm. 

Social web applications made social tagging popular: users categorize resources (e.g. 

media, blog posts, etc.) with freely chosen keywords called tags. This process generates 

a folksonomy: a set of actors describing a set of objects with a set of tags. A pioneering 

work by Peter Mika [Mika 2005] investigated folksonomies as lightweight ontologies 

emerging from the usages of communities. Each tag may represent a community of 

interest that is composed of all the actors using this tag. Tags enable people to easily 

classify online resources for their personal use or for targeted communities, and to 

freely join online interactions. Tags shared by several users form a new source of links 

between users: "interaction produces similarity, while similarity produces interaction" 

[Mika 2005]. For instance, during the Iran election, people overcame the media 

censorship with the Twitter social network by annotating their posts with the same tag, 

#iranelection, in order to interact and gather their information. Tags enable to link users 

and to label their emerging community. 
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Some tags are semantically related (hyponyms, synonyms, etc.) and a set of linked tags 

can also be viewed as a vocabulary shared by members of a community. Different 

approaches were proposed to structure folksonomies and identify semantic relations 

between tags with automatic processing or user contributions (see overview in [Limpens 

2010]). Recently, [Limpens 2010] defined a method to combine automatic processing 

and manual user contributions to help online communities semantically enrich 

folksonomies and structure their own vocabularies. Once folksonomies are typed and 

structured, the relations between the tags and between tags and users provide a new 

source of affiliation networks, which enables us in this article to refine the labeling 

process of communities. 

In this chapter we propose to merge these three approaches (RAK, tag based labeling 

and folksonomy structuring) in order to perform community detections that take 

benefits, not only of the link structure of the social network, but also of the emerging 

semantics of folksonomies. We first introduce SemTagP, an algorithm that turns the 

RAK random label propagation into a semantic tag propagation in order to detect 

communities and meaningfully label them. Then we present how we implemented this 

algorithm with Semantic Web frameworks in order to take benefits of the ontological 

primitives used to type RDF graphs. Finally, we present the result that we obtained with 

a social network built from Ph.D. theses funded by the ADEME, the French 

Environment and Energy Management Agency. 

6.2 SemTagP: Semantic Tag Propagation in Networks 

SemTagP is an algorithm that detects and characterizes communities from the directed 

typed graph formed by RDF descriptions of (social) networks and folksonomies. Using 

existing ontologies to represent online social networks (see chapter 4), we can link and 

type online social networks, associate their actors to tags and semantically relate tags to 

each other (see Figure 54). 
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Figure 54. Example of an RDF description of a social network and a structured 
folksonomy. 

SemTagP is an extension of the RAK algorithm that turns the label propagation into a 

semantic propagation of tags: instead of assigning and propagating random labels, we 

assign to actors the tags they use and we propagate them using generalization relations 

between tags (e.g. skos:narrower/skos:broader ) to merge over specialized 

communities and generalize their labels to common hyperonyms. 

 

Figure 55. Toy example of a semantic tag propagation. 

We use the directed modularity on RDF directed graphs [Leitch & Newman 2008] (see 

Definition 47 in chapter 3) to assess the quality of the community partition obtained 

after each propagation loop. When a partitioned network has a high modularity, it 

means that there are more connections between nodes within each community than 

between nodes from different communities.  

SemTagP iteratively propagates the tags in the network in order to get a new 

partitioning: nodes that share the same tag form a community. During a propagation 

loop each actor chooses the most used tag among its neighbors, for a tag t we count 1 

occurrence for each neighbor using t and 1 occurrence for each neighbor using a 

skos:narrower  tag of t. We iterate until the modularity stops increasing. The 

penultimate partitioned network is the output of the algorithm. 
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In our previous results on semantic social network analysis (see chapter 5), we 

highlighted the importance of considering the diversity and the semantic of links 

between actors. Propagating tags through different types of relations, namely in 

different sub-networks, could produce different community partitions. Consequently, 

SemTagP is parameterized by the type of the analyzed relation. We formalize SemTagP 

as follow: 

Algorithm SemTagP(RDFGraph network, Type relationTy pe) 

 DO 

   old_network = network 

   //propagate tags (i.e. compute new partitions) 

   FOREACH user in network.users 

     user.tag = mostUsedNeighborTag(user, relationT ype) 

   END  

 WHILE modularity(network) > modularity(old_network )  

 RETURN old_network 

Algorithm mostUsedNeighborTags(User user, Type 
relationType) 

 resultTag = null; max = 0; tagTable = new hashTabl e() 

 FOREACH agent in user.neigbors[relationType] 

   IF tagTable.exists(agent.tag) 

     tagTable[agent.tag] ++ 

   ELSE 

     tagTable[agent.tag] = 1 

   IF(max < tagTable[agent.tag]){ 

     resultTag = agent.tag;  max = tagTable[agent.t ag] 

   FOREACH broaderTag in agent.tag.broaders 

    IF tagTable.exists(broaderTag) 

      tagTable[broaderTag] ++  

    ELSE 

      tagTable[broaderTag] = 1 

    IF max < tagTable[broaderTag] 

      resultTag = broaderTag; max = tagTable[broade rTag] 

   END 

 END 

 RETURN resultTag 

In our first experimentation, we witnessed that some tags with many skos:narrower  

relations absorbed too many tags during the propagation phase, such as the tag 

environnement (environment), which is ubiquitous in the corpus of the ADEME agency. 
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Such tags grouped actors in very large communities. Consequently, we added an option 

to refine manually the results: after the first propagation loop we present the current 

community partition and labeling to a user that can reject the use of skos:narrower  

relations of tags labeling too large communities. Then, we restart the algorithm and 

repeat this process until no more relation is rejected, before completing the algorithm 

described above. For instance, during the partitioning of a social network with tags 

related to web topics, the user can reject skos:narrower  relations of web such as web 

skos:narrower  semantic web, in order to reveal the semantic web community.  

We formalized here our algorithm. We will now see how we implemented this 

algorithm with the semantic graph engine KGRAM [Corby & Faron-Zucker 2010] that 

supports SPARQL 1.1 RDF query language. We delegate all the semantic processing 

performed on the graph to the semantic graph engine, taking benefits of SPARQL 

queries to exploit semantic relations between tags. Notice that the pattern matching 

mechanism of KGRAM's SPARQL implementation is based on graph homomorphism 

that is an NP complete problem. However, many optimizations enable us to 

significantly cut the time calculation of the RDF graph querying. 

6.2.1 Semantic Tags Assignment and Folksonomy Enrichment 

Different ontologies have been proposed to model folksonomies and social tagging 

activities and are used to generate RDF annotations. In particular, the SCOT ontology 

provides “a consistent framework for expressing social tagging at a semantic level in 

machine-understandable way”. Tagging ontologies identify tags with URIs and 

consequently turn these social labels into real objects (in the RDF sense) that can be 

semantically described. Thus we can leverage the meaning of these apparently flat 

labels by using them as the subject or the object of a triple. In particular, we can infer 

semantic relations between tags in order to structure the folksonomy with lightweight 

semantics. Recently, a complete life-cycle has been proposed to enrich folksonomies by 

combining automatic processing of tags and users’ contributions through user-friendly 

interfaces [Limpens 2010]. This cycle starts with a composite metric that combines 

several string-based metrics to reveal 3 main types of relations between tags: related, 

spelling variant and hyponym. The SKOS model is used to respectively represent these 

relations with the properties: skos:related, skos:closeMatch  and 

skos:narrower  (see Figure 56). Then users can validate, reject, or propose semantic 

relations through a web navigation tool, and emerging conflicts are solved by a referent 

user that maintains a consensual point of view. This cycle is iteratively restarted to 

maintain a folksonomy consensually augmented with semantic assertions.  

We describe in the next section the way we use the resulting structured folksonomy to 

propagate tags, taking benefit of RDF typed graphs and SPARQL requests to ease the 

implementation of the different steps required by the algorithm. 
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Figure 56. Sample of the structured folksonomy obtained in [Limpens 2010] 

 

6.2.2 Semantic Tag Propagation 

The propagation step consists in iteratively assigning to each actor the most frequent tag 

among the actors he is linked to. In order to consider generalization relations between 

tags, we strengthen the score of a tag with the score of its skos:narrower  tags. For 

instance, we exploit the semantic statement energy skos:narrower  renewable energy 

by counting one more occurrence of the tag energy for each occurrence of the tag 

renewable energy.  

We start each loop with a query that extracts for each actor the tags of its neighbors (for 

a given parameterized relation), their broader tags, and we order the results by actors 

and tags:   

 

1.select ?user ?tag ?y where { 

2.  ?user param[rel] ?neighbor   

3.  { {?neighbour scot:hasTag ?tag }  

4.   UNION  

5.   { ?neighbour scot:hasTag ?tag2 . 

6.     ?tag skos:narrower ?tag2 

7.     filter(exists{?x scot:hasTag ?tag})}}  

8.} order by ?user  ?tag  
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Different parts of the mostUsedNeighboursTags()  function described above are 

encoded in this query: 
• line 2 encodes the selection of a user’s neighbour 
• line 3 encodes the selection of the tag of a user's neighbours 
• lines 5 to 7 encode the selection of a tag that is broader than the tag of a user 's 

neighbor 
• line 8 orders the projections for each user and tag to ease the post processing 

After the completion of this request we perform a post processing on the result and 

replace the tag of each actor by the best ranked tag among its neighbors.  

In order to handle the rejection of a generalization between two tags, we add a filter 

clause in the second block of the UNION clause (line 5 to 7) to exclude the use of a the 

specified broader tag, e.g. filter(?tag != <http://ademe.fr/energie>) .  

Notice that the analyzed relationship is parameterized and can be replaced by any type 

of relation defined in the RDF graph (e.g. sioc:follows, rel:worksWith, 

foaf:member ).  

6.2.3 Computing the Modularity of an RDF Graph 

The triples of an RDF description form a directed labelled graph that can be seen as the 

labelled arcs of an Entity-Relation graph [Baget et al 2008] (see Definition 53 in chapter 

4). Thus, we define the modularity of an Entity-Relation graph as follow: 

Definition 61. modularity of an ERGraph: the modularity of an Entity-Relation 
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We implement this definition of the modularity by querying the RDF graph with 

SPARQL queries that compute different parts of this formula. In chapter 5, we defined 

queries to retrieve different network metrics that enable us to compute p

GR , )(, Gd in

ip >< and 

)(, Gd out

ip >< . First we compute p

GR  with a query that simply retrieves the number of pairs 
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of RDF resources that are linked by the property p. Then we retrieve the in and out 

degrees of all the RDF resources linked by a property p, with two queries that compute 

)(, Gd in

ip >< and )(, Gd out

ip >< for every possible value of i. For instance, the in-degrees of all 

resources linked by a parameter given property are computed by: 

1. select ?agent count(?y) as ?indegree where {  

2.   ?y param[property] ?agent 

3. }group by ?agent 

We compute the formula by iterating on the results of the two queries below. 

The following query retrieves all pairs of connected resources belonging to the same 

community for the property given as a parameter: 

1. select ?user1 ?user2 ?tag where { 

2.   ?user1 param[property] ?user2  

3.   ?user1 scot:hasTag ?tag 

4.   ?user2 scot:hasTag ?tag 

5. }group by ?user1 ?user2 ?tag 

The following query retrieves all pairs of disconnected resources belonging to the same 

community for the property given as a parameter: 

1. select ?user1 ?user2 ?tag where {  

2.   ?user1 scot:hasTag ?tag 

3.   ?user2 scot:hasTag ?tag  

4.   filter(?user1 != ?user2) 

5.   filter(not exists{?user1 param[property] ?user 2}) 

6. } group by ?user1 ?user2 ?tag 

We then perform a post processing on the outputs of the above queries to compute the 

modularity of the corresponding community partition. 

6.3 Experiments and Results 

In order to validate the benefits of our approach, we applied our algorithm on a dataset 

of the Ph.D. theses funded by the ADEME. Ph.Ds theses have been classified using tags 

and involve several actors that form a social network made of ADEME employees and 

academic researchers that collaborate on the funded theses. Academic agents are the 

Ph.D. students, the Ph.D. supervisors, and the laboratories and institutes they belong to. 

On the ADEME side, each thesis is followed by an engineer and attached to an internal 

organization called a "secteur" (sector). Free labels are used to tag the theses, for 

classifying purposes.  From this dataset, we extracted an RDF graph (that comprises 

both the folksonomy and a description of the network), then we applied our algorithm in 
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order to understand the community structure and activities of the different actors, 

labeled with the tags that have been used. 

6.3.1 Dataset 

The ADEME dataset we analyzed was provided as a relational database and we used the 

method presented in section 5.1.1 to build the corresponding RDF descriptions. Figure 

57 shows a schema of the concepts we used to represent the ADEME Ph.D. network 

with the ontologies described in section 4.2 and an ADEME domain ontology that we 

designed for this analysis. Persons (engineers, students and supervisors) are declared as 

instances of foaf:Person  and laboratory and sectors as instances of 

foaf:Organization . The membership of a person to an organization is described 

with the property foaf:memberOf . A student is linked to its supervisor by the property 

rel:mentorOf  and to its thesis by the property dc:creator . We created the property 

ademe:follows , to link an ADEME engineer to a Ph.D. thesis he follows. Finally, we 

generated a URI for each tag used to describe a Ph.D. thesis and we used the 

scot:hasTag  property to link a thesis to its tags. 

Figure 58 describes how we enriched the RDF descriptions of the ADEME Ph.D. theses 

in order to reveal and structure the corresponding social network. We linked two 

persons working on the same Ph.D. with the property rel:worksWith . We 

specifically defined the property ademe:collaboratesWith  to link two 

foaf:Agent  (foaf:Person  or foaf:Organization ) implicated in the same thesis. 

Two engineers of the same sector are linked with a rel:colleagueOf  property. We 

structured these social links by declaring the property rel:worksWith  as a 

subproperty of ademe:collaboratesWith . Finally, we attached the tags of a Ph.D. 

to all its involved actors with the property scot:hasTag , producing a folksonomy with 

agents associating tags to thesis. We semantically enrich this folksonomy with the 

output of the experiment of [Limpens et al 2010] that was conducted also in our 

research group on the same dataset. 
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Figure 57. Ecosystem of a Ph.D. funded by the ADEME. 

 

Figure 58. Social network of the PhDs funded by the ADEME. 

6.3.2 Experiment 

We focused our experiment on the sub network of relationships among Ph.D. academic 

supervisors and ADEME engineers, which are the most active actors of this network. 

Using the semantic social network analysis method we detailed in chapter 5, we 

measured the characteristics of this dataset: 

• 1,853 agents with 1,597 academic supervisors and 256 ADEME engineers. 
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• 13,982 relationships with 10,246 rel:worksWith  relations between ADEME 

engineers and academic supervisors, and 3,736 rel:colleagueOf  relations 

between ADEME engineers. 

• 6,583 tags, with 3,570 skos:narrower  relations between 2,785 tags (forming a 

tree with a depth of 3). 

This network is a connected graph that has a diameter of 8, but has a low density 

(0,004) and a low clustering coefficient (0,031). This network is highly centralized 

around the 256 engineers that have a total of 8859 relationships while the 1,597 

academic actors have a total of only 5,123 relationships. Indeed, engineers follow 

several Ph.D. theses and have colleagues inside the ADEME while the most active 

academic actors supervised a maximum of 14 Ph.D. theses. Figure 59 and Figure 60 

represent respectively the degree distribution of the ADEME engineers and academic 

supervisors, which highlight the very centralized nature of the ADEME Ph.D. social 

network: the 256 engineers have a total of 8859 relationships while the 1597 academic 

actors have a total of only 5123 relationships. 
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Figure 59. Distribution of the degrees (Y axis) of the ADEME engineers (X axis). 
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Figure 60. Distribution of the degrees (Y axis) of the academic supervisors (X axis). 

In order to evaluate the benefits of introducing semantics in the label propagation, we 

compared the community that we detected with 4 different algorithms on this dataset 

(algorithm 2, 3, 4 are variants we developed for comparison purposes): 
1. RAK: random label propagation.  
2. TagP (Tag Propagation): propagation of tags without exploiting semantic relations 

between tags.  
3. SemTagP without manual intervention.  
4. Controlled SemTagP, which introduces a manual control to avoid the use of some 

relations between tags. We use the notation SemTagP(tag1, tag2, ...) to specify 
between parenthesis the tags which skos:narrower  relations are ignored; e.g., 
SemTagP(env, energ, model) excludes skos:narrower  relations with the tags  
environnement, energetique and modelisation. 

We analyzed the evolutions of the modularity of the community partition given by the 4 

algorithms and we compared these evolutions in order to observe the added-value of 

propagating tags (instead of random labels) and exploiting their semantics. Fig. 6 

presents the curves of the evolution of the modularity of the community partition 

obtained after each propagation loop. We observe that SemTagP(env, energ, model) 

offers a community partition, which modularity outperforms the result of RAK, TagP 

and SemTagP. The RAK algorithm offers the weakest community partition quality on 

this dataset that is highly centralized with a low density of links. In other words the 

social links of this datasets are not sufficient enough for revealing the community 

structure of this social network, using RAK random label propagation. TagP and 

SemTagP produce community partitions with a significantly better modularity than 

RAK, however, when considering semantics between tags with SemTagP, we still have 

a modularity value close to the modularity obtained with TagP. This is due to a very 

broad tag: environnement (environment), that has many skos:narrower  relations and 

that aggregates most of the actors in a single community. With SemTagP(env), we 

exclude the exploitation of skos:narrower  relations with the tag environnement, this 

considerably improves the modularity value, but with lots of actors in one community 
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tagged with energetique (energetic). Finally we obtain a pretty good modularity, 0.12, 

with SemTagP(env, energ, model) that excludes the use of skos:narrower  relations 

of the tags: environnement (environment), energetique (energetic) and modelisation 

(modeling).   
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Figure 61. Modularity (Y axis) of the community partition obtained, after each 
propagation loop (X axis), with RAK, TagP, SemTagP, and 3 controlled SemTagP. 

Figure 62 highlights the numerous skos:narrower  relations of the tag environnement 

(environment) and the skos:narrower  relations of the corresponding 

skos:narrower  tags. Ignoring the use of skos:narrower  relations of the tag 

environnement is equivalent of removing a root of the skos:narrower  tree  of the 

structured folksonomy. Figure 63 presents the remaining relations when we ignore these 

relations. This highlight the numerous tags that are no more absorbed during the 

semantic propagation and that can take benefits from their own skos:narrower  

relations. 
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Figure 62. Visualization of the graph of skos:narrower  relations of the tag 
environnement (environment) and  skos:narrower  relations between these 
narrower tags. 
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Figure 63. Visualization of the graph of skos:narrower  relations between the tags 
that are skos:narrower  than the tag environnement (environment). 

 

The table of Figure 64 presents the distribution of the 30 most used tags in the initial 

folksonomy, with the tag propagation without semantic, and with SemTagP(env, energ, 

model). We observe a significant difference between these three folksonomies, which 

highlight that the number of users of a tag in a folksonomy is not sufficient enough to 

determine the existence of a community. The connectivity of the actors that use a tag 

and its semantic links with other tags are important elements for determining the 

importance of a community and its activities. TagP is effective at revealing tags that are 

used by well connected groups of actors, but reveals smaller communities because it 

cannot link tags. SemTagP amplifies this benefits and reveals larger communities 

labelled with tags representing semantically related tags. 
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Initial folksonomy TagP SemTagP (env, energ, model) 

Tags number 
of actors Tags number 

of actors Tags number of 
actors 

Modelisation 250 Modelisation 103 Pollution 301 
Developpement 
durable 204 

developpement 
durable 85 Dechets 276 

Environnement 187 Adsorption 58 Biomasse 175 

Pollution 105 environnement 39 
developpement 
durable 114 

Optimisation 86 Absorption 38 Modelisation 92 
Changement 
climatique 79 Aerosols 33 Metaux 87 

Energie 77 
changement 
climatique 33 Solaire 80 

metaux lourds 75 Biomasse 33 Chimie 67 
Pollution 
atmospherique 68 Agriculture 28 Analyse 66 
Biomasse 68 Arsenic 26 Economie 57 
Dechets 67 Acv 25 developpement 54 
Energies 
renouvelables 65 Biodiversite 20 Agriculture 41 

Sols 64 
Aide a la 
decision 19 Transports 40 

Simulation 63 biocarburants 18 Mobilite 36 
Sol 59 air interieur 16 co2 35 
Efficacite 
energetique 59 

absorption 
racinaire 14 Energie 32 

Experimentation 56 
amenagement 
du territoire 13 Silicium 29 

Gouvernance 55 Bois 12 Membrane 27 
Energie 
renouvelable 54 Atmosphere 12 Changement 24 
Adsorption 54 bioremediation 12 Moteur 17 
Evaluation 54 Batiment 10 pile a 16 

Transport 51 
énergies 
renouvelables 10 Batiment 15 

Metaux 51 amenagement 10 Adsorption 15 

Photovoltaique 49 

cellule solaire 
silicium 
polycristallin 
couches minces 9 Emissions 13 

Innovation 48 Dechets 9 Diphasique 12 
Recyclage 48 bioaccumulation 9 caracterisations 11 

France 47 
analyse du cycle 
de vie 9 Acv 10 

Cov 46 Analyse 9 Recyclage 9 
Evaluation 
environnementale 45 

accumulateur li-
ion 9 

Composes 
organiques volatils 8 

Biodiversite 44 co2 9 Architecture 8 
Electrochimie 42 Adaptation 9 Cov 7 

Figure 64. comparison of the tag distribution of the 30 most used tags in the initial 
folksonomy, with TagP, and with SemTagP(env, energy, model). 

We observe 4 different patterns of tag propagation in the ADEME network that 

highlight the exploitation of both the link structure and of the emerging semantics of 
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folksonomies. On one side the tag propagation helps partitioning the network into 

densely linked groups of actors, and on the other side the use of semantic relations 

between tags helps preserving the identity of small communities, aimed to disappear 

during the propagation, by gathering them into broader but semantically related 

communities:  

• Some tags used by scattered users in the social network tend to quickly disappear, 

even if they are used by a large number of users, and do not label a community in the 

final partition.  

• Some tags used by well connected group of users are strengthened by the 

propagation and still labelling a community in the resulting partition.  

• Some tags used by well connected group of users are generalized to broader tags that 

include and label their community in the resulting community partition. 

• Some tags are strengthened by the exploitation of the semantic relations that enable 

the algorithm to connect semantically related tags and to gather actors working on 

similar topics but using narrower tags representing different sub topics. 

The table of Figure 65 compares the size of the communities labelled with 7 tags, 

initially used by a similar number of users (ranged between 48 and 54), with TagP and 

SemTagP(env, energ, model). We observe the 4 different propagation patterns described 

above: 
• the tags évaluation (evaluation), photovoltaïque (photovoltaic) and innovation 

disappeared in both cases because these tags and their skos:narrower  tags were 
used by scattered users in the networks.  

• the tags adsorption and recyclage have respectively only 1 and 2 skos:narrower  
relations (with tags used by less than 5 actors). These tag have not been absorbed 
during the propagation phase, nor with TagP, nor with SemTagP(env, energe, 
model. 

• The tag transport disappeared with both propagations but has been generalized by 
SemTagP(env, energ, model) to a spelling variant, considered as a broader tag: 
transports, which has 38 skos:narrower  tags.  

• The tag metaux (metals) that nearly disappeared with TagP is reinforced with 
SemTagP by its semantic relations. In particular, this tag has a skos:narrower  
relation with the tag metaux lourds (heavy metal) that is used by 75 actors in the 
initial folksonomy.  
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Tag Inititial 

folksonomy 

TagP SemTagP(env, energ, model) 

adsorption 54 58 15.  

This tag has 1 non pertinent  

skos:narrower  relation with 

absorption spectroscopy (only 2 users) 

Evaluation 

(evaluation) 

54 4 0.  

This tag has 0 skos:narrower  tags. 

Transport 51 1 0 

This tag has 28 skos:narrower  tags. 

transports skos:narrower  transport. 

Métaux 

(metal) 

51 2 87 

This tag has 14 skos:narrower  tags.  

photovoltaïque 

(photovoltaic) 

49 5 0 

2 skos:narrower  tags. 

Innovation 48 0 0 

6 skos:narrower  tags. 

Recyclage 

(recycling) 

48 8 9 

2 skos:narrower  tags. 

Figure 65. Comparison of the of the size of communities labelled with 7 tags (used by 
a similar number of actors in the initial folksonomy) in the initial folksonomy, with 
TagP and SemTagP (env, energ, model). 

The Figure 66 presents a visualization of the ADEME social network with the tags of 

the communities output by SemTagP(env, energ, model). We used a graph visualization 

tool, GEPHI, with a force layout. The size of the nodes is proportional to their degrees, 

and the size of the tags is proportional to the size of the labeled communities. Groups of 

densely linked actors are gathered around few tags, which highlight the efficiency of the 

algorithm at partitioning the network. Moreover, communities that are labeled with tags 

representing related topics are close in the visualization, which enable us to build 

thematic area of the network using the labeling of the communities. 

In Figure 68, communities displayed in framed area are respectively labeled with tags 

related to: pollution (1), sustainable development (2), energy (3), chemistry (4), air 

pollution (5), metals (6), biomass (7), and wastes (8). For instance, the area 3 contains 

tags related to energy production and consumption with the tags energie (energy), 

silicium, solaire (solar), moteur (motor), bâtiment (building) and transports. This 

observation shows that SemTagP labeled closest communities with related labels. 
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Figure 66. Ph.D. social network of the ADEME with tags labeling the communities 
obtained with SemTagP(env, energ, model). Red, blue and green nodes are 
respectively the tags, the ADEME's engineers and the academic supervisors.  

Figure 68 to Figure 96 present a detailed view of the main communities of the 8 

thematic areas highlighted by the Figure 67. In particular, we focus on the 30 biggest 

communities obtained with SemTagP(env, energy, model) that are described in tha table 

of Figure 64. 
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Figure 67. Decomposition in thematic areas of the visualization of Figure 67. The 
communities of the areas are labelled with tags related to: pollution (1), sustainable 
development (2), energy (3), chemistry (4), air pollution (5), metals (6), biomass (7), 
wastes (8).  

The Figure 68 presents a focus of the thematic area that groups tags related to pollution, 

and Figure 69 to Figure 78 highlight the different communities that are embedded in 

this area. The Figure 69 shows all the actors of this area that are members of the biggest 

community that is described with the broader tag of this area: pollution. This 

community is the main one of this area but many other tags are important and represent 

more specialized communities. In fact, this area is the biggest and can be decomposed 

into 4 other smaller areas having tags related to different pollution topics: air pollution, 

metals, biomass and waste (see Figure 68).  
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Figure 68. Visualization of the thematic area composed of communities labeled with 
the tag pollution.  
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Figure 69. Visualization of the community labeled with the tag pollution.  

Figure 70 and Figure 71 highlight very close communities labeled with tags that could 

not be considered as semantically related: dechets (wastes) and agriculture. However, 

the agriculture is an important source of soil pollution due to all the wastes that are 

produced by this activity. Consequently these two communities are related and very 

close in visualization. 
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Figure 70. Visualization of the community labeled with the tag dechets (wastes).  

 

Figure 71. Visualization of the community labeled with the tag agriculture.  
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Figure 72 and Figure 73 propose the visualization of two close communities: metaux 

(metals) and recyclage (recycling). Metals are one of the main materials that recycled 

and recycling them is also an important challenges for the environment. 

 

Figure 72. Visualization of the community labeled with the tag metaux (metals).  

 

Figure 73. Visualization of the community labeled with the tag recyclage (recycling).  

Figure 74 represents the community labelled with the tag biomass. This is the third biggest 
community and it is closely related to wastes and metals in the visualization. This community 
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could probably be decomposed into two communities to reflect the point of view of the notion 
of biomass:  

• In ecology, the biomass is “the mass of living biological organisms in a given area or 
ecosystem at a given time”40. 

• As a renewable energy source, the biomass is “biological material from living, or 
recently living organisms, such as wood, waste, (hydrogen) gas, and alcohol fuels”41. 

Tags that are skos:narrower  than biomass, reflect both points of view with for instance the 
tags gazefication de la biomasse (biomass gasification) or biomass algale (algal biomass). 

 

Figure 74. Visualization of the community labeled with the tag biomasse (biomass).  

Figure 75 to Figure 79 represent communities labeled with tags related to air pollution. 

In particular Figure 75 and Figure 76 represent 2 close communities that are labeled 

                                                
40 http://en.wikipedia.org/wiki/Biomass_(ecology) 
41 http://en.wikipedia.org/wiki/Biomass 
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with tags representing the same subject composes organiques volatils (organic volatile 

compounds) and cov which is simply an acronym of the first one. This observation 

could be used to semantically relate these tags and merge these two communities. 

 

Figure 75. Visualization of the community labeled with the tag composes organiques 

volatils (volatile organic compounds).  

 

Figure 76. Visualization of the community labeled with the tag cov, which stands for 
composes organiques volatils (volatile organic compounds). 
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Figure 77. Visualization of the community labeled with the tag co2.  

 

Figure 78. Visualization of the community labeled with the tag emissions.  
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Figure 77 and Figure 78 represent close communities labelled with tags that represent 

concepts that are frequently associated: co2 and emissions. In this case we could 

probably also only consider one community about co2 emissions. 

Figure 79 proposes a visualisation of the community labelled with the tag adsorption. 

The adsorption, which “is the adhesion of atoms, ions, biomolecules or molecules of 

gas, liquid, or dissolved solids to a surface”42, is a process used in particular for 

capturing wastes in water or recovering gaseous pollutant emissions. 

 

Figure 79. Visualization of the community labeled with the tag adsorption.  

Figure 80 to Figure 84 represent communities labeled with tags related to sustainable 

development. Figure 81, Figure 82, Figure 83 and Figure 84 highlight the communities 

respectively labeled with the tags: developpement durable (sustainable development), 

developpement  (development), changement (change), and economie (economy).  

The community labeled with the tag economie (economy), has the particularity to group 

people working on two different topics representing the two notions represented by the 

term economy. Economy can be seen either as (1) “the quality of being efficient or 

frugal in using resources”43, e.g. the tag economie is skos:broader  than economie 

d’energie (energy economy), or (2) “the human activity that consists in producing, 

exchanging, distributing, and consuming goods and services”43, e.g. the tag economie is 

skos:broader  than economie de l’environnement (environment economy). However 

these two definitions are both related to sustainable development which consists in 

conducting economic and social developments that preserve environmental and social 

resources. 

                                                
42 http://en.wikipedia.org/wiki/Adsorption 
43 http://en.wikipedia.org/wiki/Economy_(disambiguation) 
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Figure 80. Visualization of the thematic area having communities labeled with tags 
related to sustainable development.  
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Figure 81. Visualization of the community labeled with the tag developpement 

durable (sustainable development).  
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Figure 82. Visualization of the community labeled with the tag economie (economy).  

 

Figure 83. Visualization of the community labeled with the tag economie (economy).  
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Figure 84. Visualization of the community labeled with the tag changement (change).  



Ph.D. thesis.    Guillaume Erétéo 

146 

 

Figure 85. Visualization of the energy community, which is composed of tags 
representing topics like solar, building or transport. 

Figure 85 to Figure 93 represent communities related to energy. Figure 85 proposes an 

overview of this area, which is mainly composed of tags related to solar energy and 

energy consumption. Figure 86, Figure 87 and Figure 88 show communities mainly 

related to the notion of solar energy with the tag energie (energy), solaire (solar) and 

silicium (used in photovoltaic cells).  Figure 90 to Figure 93 highlight communities 

labeled with tags related to energy consumption: moteur (motor), architecture, batiment 

(building), transports, mobilite (mobility). 
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Figure 86. Visualization of the community labeled with the tag energie (energy) 

 

Figure 87. Visualization of the community labeled with the tag silicium.  
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Figure 88. Visualization of the community labeled with the tag solaire (solar)  
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Figure 89. Visualization of the community labeled with the tag moteur (motor).  

 

Figure 90. Visualization of the community labeled with the tag architecture.  
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Figure 91. Visualization of the community labeled with the tag batiment (building).  
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Figure 92. Visualization of the community labeled with the tag transports.  

 

Figure 93. Visualization of the community labeled with the tag mobilite (mobility).  
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Figure 94. Visualization of the community labeled with the tags related to chemistry.  

Figure 94 to Figure 97 represent communities related to chemistry. Figure 94 shows an 

overview of this area in which shared tags are also present in the area related to air 

pollution and energy (see Figure 67), such as adsorption (Figure 79) and silicium 

(Figure 87). Figure 95, Figure 96, and Figure 97 focus on the communities labeled with 

the tags chimie (chemistry), pile (battery) and diphasique (diphasic) 
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Figure 95. Visualization of the community labeled with the tag chimie (chemistry). 

 

Figure 96. Visualization of the community labeled with the tag pile a (battery).  
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Figure 97. Visualization of the community labeled with the tag diphasique (diphasic).  

6.4 Discussion 
We could go further in exploiting semantic links between tags. (1) In [Limpens et al 

2010] The ADEME's folksonomy was also enriched with skos:related  and 

skos:closeMatch  relations between tags, which exploitation should be investigated. 

For instance, the triple (photovoltaic skos:related  renewable energy), could be 

exploited to count one more occurrence of the tag renewable energy for each occurrence 

of the tag photovoltaic. (2) We can exploit other semantic relations between tags and 

use OWL entailments such as transitive properties. For instance, SKOS offers properties 

like skos:transitiveNarrower  (notice that this transitive closure is indirectly 

performed by the iterative propagation of SemTagP); this could give better grouping of 

tags but perhaps produce too broad generalizations. Semantic statements like energy 

skos:transitiveNarrower  renewable energy and renewable energy 

skos:transitiveNarrower  photovoltaic could be exploited to count one occurrence 

of the tag energy for each occurrence of the tag photovoltaic. (3) The ontological 
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primitives used to type the links between actors can describe different intensity of 

relationships. Consequently, when we choose to propagate tags through different 

properties, we could give more weight to tags propagated through given properties. For 

instance, in a working environment, tags used by rel:worksWith  neighbors could be 

weighted twice more than tags used by rel:colleagueOf  neighbours. (4) The tree 

formed by the skos:narrower  relations of the dataset that we used for our experiment 

have a depth of 3, with most of the branches with a depth of 1 or 2. It could be 

interesting to test the propagation with a deeper tree of skos:narrower  relations 

between tags. A deeper skos:narrower  tree has intermediary tags between very broad 

tags and very narrow tags, which could help the propagation stop before labeling 

communities with too broad tags with less human control. (5) The algorithm may 

generate disconnected communities labeled with the same tag. This could be a way to 

detect structural holes [Burt 1992], namely communities that would benefits of 

exchanging but that cannot. (6) Finally, the current algorithm propagates only one tag 

per actor, an interesting extension would be to allow several tags to be propagated, 

which would also allow detect overlapping communities. 

6.5 Partial Conclusion 
SemTagP is a novel community detection algorithm that takes benefits of the semantics 

of RDF descriptions of social networks in order to reveal its communities and to 

meaningfully label their activities. To our knowledge, this is the first community 

detection that both detects and meaningfully labels communities. Based on a semantic 

propagation of tags, SemTagP turns large folksonomies into a subset of significant tags 

identifying and characterizing communities. The introduction of semantics in the RAK 

label propagation algorithm offered to handle not only the link structure of social graphs 

but also the semantic of the tags used by its actors. The label propagation mechanism 

was designed to exploits the social network link structure and trap labels in dense group 

of nodes. The assignation of tags, instead of random labels, improves the propagation 

with the shared vocabulary used to annotate the resources of the network. The 

exploitation of semantic relations between tags, inferred from the flat folksonomy, 

improves the propagation with the shared knowledge emerging from the social tagging 

process. 

We tested this algorithm on the social network emerging from the Ph.D. theses funded 

by the ADEME agency, which enabled us to detect and characterize the distribution of 

its agents and activities. We compared the quality of the partition obtained with 4 

different types of propagations: RAK, TagP, SemTagP and a controlled SemTagP. The 

controlled SemTagP outperformed the results of the 3 others algorithms, highlighting 

that the introduction of both the tags and the semantics between tags offers a significant 

improvement to the RAK algorithm. 
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7. Perspectives and Applications 

 

In this thesis, we focused on the technological issues related to analyzing semantic 

representations of online social networks. However in order to leverage the social 

experience of a business intelligence that is conducted with emergent social software 

platforms, we need to go further in the analysis and to turn its results into 

functionalities. In this chapter, we discuss about some open issues that have to be 

tackled and that I would like to address in future researches.  

In the first section, we present the challenge of considering temporal data in the social 

graph and during the analysis. Then, we present some perspectives to conduct analyses 

that scale to very large networks. Finally we review some human science literature that 

could help designing smart social functionalities that exploit the results of a semantic 

social network analysis 
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7.1 Temporal Social Network 

In this thesis we have proposed a method to analyze social networks by considering 

their semantic representations. In particular, we focused our algorithms and experiments 

on the exploitation of the ontological primitives that were used to type and structure 

social networks. However, real social networks are very dynamic structures that can be 

considered as permanently evolving objects. An analysis that considers the temporal 

dimension of a social network could provide valuable information about its 

characteristics and give clues about its past and future evolutions. For instance, the date 

of interactions between actors could be used to refine community detection by focusing 

on recent activities. Furthermore, understanding how an actor became well positioned in 

a network can help anticipating and detecting the development of others important 

positions. 

7.1.1 Temporal Semantic Network Model  

Considering temporal information in network analysis implies to capture such 

information into the social network representation. [Kostakos 2009] defined a model of 

temporal graphs with “a graph representation that can retain rich temporal information”. 

Each actor is represented by a set of nodes, one set for each social contact in time (e.g. 

send or receive an email at time ti) with a weighted edge that links 2 consecutive 

contacts and encode the duration between them, and unweighted edges that link nodes 

of 2 actors engaged in a same contact. [Tang et al 2009] proposed a richer and simpler 

representation of temporal graphs based on “a sequence of time windows, where for 

each window we consider a snapshot of the network state at that time interval”, which is 

formalized as follow: 

Definition 62. Temporal graph: let a network trace starting at tmin and ending at 

tmax, 
s

jiR , a contact between i and j at time s, and w a time range, a temporal 

graph Gw(tmin, tmax) is a sequence of graphs Gtmin, Gtmin+w,…, Gtmax, with 

Gt=(V, E) such that Vji ∈),(  if and only if there exists s

jiR , with wtst +≤≤ . 

This last definition of temporal graphs can be easily adapted to RDF representations of 

social networks. [Carroll et al 2005] extended the syntax and semantics of RDF to cover 

the definition of named graphs, which enables us to identify and describe RDF graphs. 

This extension of RDF is being discussed for the next version of RDF. Consequently, 

RDF descriptions could be decomposed into named graphs described with temporal 

data, each one would contain RDF descriptions related to a given time window.  

Some ontological models define temporal primitives that enable us to directly insert 

temporal data into the RDF descriptions. In particular, the Dublin core ontology 

provides the property dcterms:created  to describe the date and time when a 

resource was created, which is reused by many others ontologies. For instance, SIOC 

(described in chapter 4) recommends using this property to describe the date of creation 
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of online resources. However, even if online contributions contain valuable social 

networking data (e.g. emerging interactions and affiliations), many social data represent 

relationships between people and are typed with ontological primitives that do not 

contain any temporal data (e.g. foaf:knows , rel:worksWith , etc.). 

If these previous solutions (named graphs and ontological primitives) enable us to 

integrate temporal data into RDF graphs, they are not necessarily adapted to fully obtain 

a temporal semantic graph. Temporal data can encode a large range of information. For 

instance, a temporal data can represent the date or the duration of an action as well as 

the date or the validity of an RDF description. Consequently, different perspectives and 

issues have to be considered to design a temporal semantic graph model. 

7.1.2 Analysis of Temporal Semantic Social Network 

Once integrated into the RDF graph, temporal data are valuable in the analysis. 

[Kostakos 2009] and [Tang et al 2009] have adapted classical social network analysis 

metrics to their own definition of temporal graphs. In particular they focused on the 

analysis of paths in such graphs, and have shown how the consideration of temporal 

data modifies the perception of distances between actors of a social network. For 

instance, with the model of [Kostakos 2009], if Peter has sent a mail to Jack at time t, 

and Jack has then sent a mail to Paul at time t+1, then the distance between Peter and 

Paul is of 1 in the chosen time unit, instead of a sequence of relations. Consequently, 

metrics that are based on the notion of path in graphs are directly impacted in temporal 

graphs. [Tang et al 2009] adapted different graph theory metrics to their model and 

highlighted how the granularity of the chosen time window can impact the results and 

the interpretations of an analysis. 

In addition, the previous approaches only consider the temporal dimension of the social 

network, and they do not integrate any semantic information in their analysis like the 

classical network analysis method based on graph theory (see chapter 3). A temporal 

social network represented in RDF would enable us to not only consider the temporal 

dimension of a social network, but also the semantics used to typed and structure social 

links between actors by extending the method that we develop in this thesis. 

How a temporal network analysis should be conducted on RDF descriptions of social 

network? How such analysis could take benefits of both the semantics and temporal 

data of RDF graphs? 

7.2 Large Scale Network Analysis 
In chapter 5, we conducted an experiment with a semantic social network composed of 

60k nodes and millions of typed edges (representing both declared relationships and 

interactions). Simple metrics like the degree or the components were efficiently 

computed when considering the semantics of the network. However more complex 

queries involving path computation were so time consuming that we chose to limit the 

number of projections on the graph.   Considering the semantics of social graphs in the 
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analysis is time and space consuming, which is one of the main drawbacks of our 

approach to scale to very large networks. More generally, computing complex metrics 

of network analysis is time consuming and experiments reported in chapter 3 show that 

handling very large networks need other approaches: (1) identifying computation 

techniques that are iterative, parallelizable or distributed, or (2) identifying 

approximations and heuristics that can be used with necessary conditions to obtain good 

quality results. 

7.2.1 Iterative, Parallelizable or Distributed Algorithms 

Incremental, parallelizable and distributed algorithms offer a more efficient use of 

computational resources as well as the possibility to dispose of more powerful ones. 

First, incremental algorithms should compute network metrics once and then update 

them by considering graph modifications instead of computing new results from the 

complete new graph. Such approach would require iterative definitions of network 

analysis metrics as well as their implementations on semantic graphs.  

Then, parallelizing the computation of network metrics would enable the execution of 

different tasks at the same time on many processing devices and put back together each 

output to get the final result. For instance, the clustering coefficient of a network can be 

computed as the sum of local values (see chapter 3), which could be computed in 

parallel and then summed. 

Finally the ability to implement existing algorithms on distributed architecture would 

enable to exploit more powerful computational resources in order to analyze very large 

graphs. For instance, virtualization solutions44 enable us to automate the distribution of 

algorithms on several processing devices.  

7.2.2 Approximation and Heuristics 

In chapter 5, when we limited the number of projections of queries we only obtained a 

sampling of the total amount of possible graph projections, from which we 

approximated the results of the computed metrics. However, in this case, the quality of 

the approximation was highly related to the index of the semantic engine, from which 

the graph projections are performed. Further investigations have to be conducted to 

evaluate and improve the quality of such approximations. In classical graph theory, 

different solutions have been investigated to approximate network analysis metrics. 

Some proposed sampling algorithms that enable to obtain good approximations of the 

computed metrics. Others defined heuristics, generally based on social network 

characteristics (e.g. small world property), to reduce initial problems to less complex 

ones.  

In particular, different sampling algorithms have been investigated to compute the 

betweenness centrality [Brandes & Pitch 2007] [Bader et al 2007] [Geisberg et al 2008]. 

                                                
44 http://en.wikipedia.org/wiki/Hardware_virtualization 
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The main issues tackled by these algorithms are to select a sampling of nodes that is 

representative of the whole graph, and to limit the bias of this selection on the final 

results (e.g. centralities of nodes that are adjacent of selected ones tend to be 

overestimated). The best results were obtained with a sampling performed with a 

random selection of nodes. 

Recently, [Bonneau et al 2009] have conducted a social network analysis on a sample of 

the Facebook social network that was built from a crawl of the public profiles. The 

authors analyzed this sample and were able to accurately approximate the degrees and 

betweenness centralities of nodes, find shortest paths between users, and detect 

communities. This experiment shows the efficiency of analysing a sample in order to 

understand the organization of a network. 

In our case, the limitation of the number of projections could be considered as a 

sampling, which quality could be improved by (1) adapting the querying of the RDF 

graph to analyze a random sampling, and/or (2) adapting the indexing of the semantic 

graph engine to propose sampling features in queries.  

We started investigating a sampling method to compute the betweenness centrality on 

RDF graphs by adapting the algorithm of [Brandes & Pich 2007]. We process as follow: 

1. select all the actor of the network involved in a given type of relation: 

select ?actors where{ 

  {?x param[rel] ?y} UNION {?y param[rel] ?x} 

} 

2. select a random sample of actors among the results of this query. 

3. Adapting the shortest path query of chapter 5, iteratively ask for the shortest paths 
starting and ending from each of the actors of the selected sample, and sum for 

each intermediary actor the corresponding partial betweenness. 

4. Actors having the highest sums of partial betweenness have the highest 
betweenness centralities. 

Our first investigations based on probabilistic methods confirm the relevancy of this 

approach, but a deeper analysis is required to assess its quality [Fedou 2009].  

Step 1 and 2 enable us to extract the graph sample. However, the sampling of the actors 

could probably be an option of the semantic engine, and for instance we could apply 

directly the queries that ask for shortest paths with an option that enable a random 

sampling. Recently, SPARQL 1.1 introduces the Sample  function that returns an 

arbitrary value from the set passed to it. This function could probably be used to define 

queries that perform a random sampling with a limited number of results.  

7.3 Functionalities and Applications  
« It’s better to organize information according to how people use it, rather than what 

department owns it » Jackob Nielsen 
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In this thesis we designed the SemSNA ontology (described in chapter 5) that enables 

us to enrich social data with the graph characteristics of their corresponding social 

networks. Thus, we are able to structure the overwhelming flow of social data that are 

produced during a social business intelligence cycle. We now need to go beyond these 

technological advances, and develop functionalities and intelligent agents that leverage 

the experience of the consumers of these data.  

Human scientists have investigated how people and organizations should manage their 

relationships and their locations in a social network. In particular they developed a 

network theory of social capital, which is defined by [Lin 2008] as follow: 

Definition 63.  Social Capital: “resources embedded in one’s social network, 
resources that can be accessed and mobilized through ties in the network” [Lin 

2008].  

“The premise behind the notion of social capital is rather simple and straightforward: 

investment in social relations with expected returns” [Lin 1999]. Helping users of 

emergent social software to better access and enrich their social capital should be an 

objective of functionalities that are aimed to improve the experience of a social business 

intelligence. In particular, one should be able to understand the global structure of its 

social network, to mobilize the relevant resources that are accessible, and to develop 

relationships that enrich this capital.  

7.3.1 Detecting and Highlighting Strategic Relationships 

In an enterprise 2.0, [McAfee 2009] classifies the relationships of a person as follow: 

• Strong links represent relationships that are frequently activated with a 

significant substance; typically people working in the same team are linked by 

strong links and interact regularly on working subjects.  

• Weak links represent relationships without significant meaning; typically a 

simple acquaintance in a working place between people working separately.  

• Potential links represent absent relationships but a social proximity; typically 

collaborators of collaborators are likely to become linked.  

• Absent relationships are not likely to appear unless randomly, namely the 

remainder of the social network. 

Human scientists have widely discussed the benefits of strong and weak links. On one 

hand dense strong links and closure of network may increase the sharing of resources 

and strengthen trust in a group [Coleman 1988]. On the other hand, weak links and 

sparse networks may facilitate access to more varied resources and sources of 

information [Granovetter 1973] [Burt 1992]. Generally, social networks are composed 

of dense groups separated by structural holes and bridged by few weak links: people in 

either side of a structural hole circulate in different flows of information [Burt 2001]. 

The development of new relationships could strengthen the density of a group or 
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connect different groups; the resources that are available through potential links are 

considered as potential social capital [Lin 2008].  

7.3.2 Managing Relationships and Strengthening Networking Positions 

We have seen that the diverse relationships of a person provide different opportunities 

that have to be highlighted. In [Lin 2008], the author argues that the benefit of these 

opportunities depend on the purpose of actors’ actions.  

"For expressive action, the purpose is to maintain and preserve existing resources (e.g., 

to highlight production, to foster collaboration, or to strengthen community cohesion). 

The network strategy for expressive action is easily understood: to bind with others who 

share similar resources, who are sympathetic to one's needs to preserve resources, who 

are prepared to provide support or help" [Lin 2008]. Consequently, in order to reinforce 

the sharing of resources and receive support for propagating information it is important 

to maintain and develop a dense core of strong relationships.  

"For instrumental action, the purpose is to obtain additional or new resources". Burt and 

Lin both argue that an actor cannot find new social capital in its inner circle and should 

access it through structural holes. [Lin 2008] argues it as follow: "where additional and 

better resources are needed, binding and bonding relations may not be sufficient. 

Accessing better social capital may require extending one's reaching beyond inner 

circles – bridging through weaker ties or non-redundant ties (e.g. structural holes)." 

[Burt 2004] argues that people that are close to structural holes have an informational 

benefit, consequently for instrumental action it is interesting to develop relationships 

with people that have a low clustering coefficient and a high betweenness centrality. 

People do not necessarily know all the benefits provided by their network position and 

relationships, nor how to efficiently develop it. They should be assisted in it, with for 

instance ergonomic social information about their contacts, smart social notifications or 

the social context of search results. 

7.3.3 Accessible, Mobilized and Potential Social Capital 

Web based social tools have put at the disposal of their users a wild range of resources, 

shared by their own social network or socially distant people. People could interact with 

this content in different ways, search, consult, contribute, promote, etc. However, due to 

the huge amount of available resources, a wild range of interesting resources will not be 

mobilized, while less relevant ones will be. It is important to help users better select and 

collect these resources. In particular, users should know the resources that were 

published by their direct contact (i.e. their social capital), by socially close actors (i.e. 

potential social capital), and by socially distant actors. Moreover this content should be 

also augmented with data about the network position of related actors, which could 

provide insight on the redundancy or the novelty of its information. 

In addition, it is also important to differentiate accessible capital and mobilized capital: 

"accessed social capital as well as actual use of social capital should be both measured 

and closely examined" [Lin 2008]. Differentiating access and mobilization is very 
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pertinent in online platforms to help the users reuse yet mobilized resources and 

discover new ones. In social web applications, different elements highlight the 

mobilization of a resource such as a click on a link, references in posts, bookmarks, 

tagging actions, comments, etc. Consequently a user can be linked by many data to its 

mobilized social capital. Inversely, all the resources his contacts have made available to 

their network represent accessible social capital, which he is not even aware of the 

existence. Highlighting these resources is necessary to help users search and navigate in 

this consequent amount of unexploited resources.  
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8. Conclusion 

This thesis proposes an approach to help analyzing the characteristics of the 

heterogeneous social networks that emerge from the use of web-based social 

applications. These researches are grounded in a social business intelligence scenario 

that integrates Web 2.0 tools for advanced collaborations, and Semantic Web 

technologies for data interoperability and information processing. In this scenario, the 

need for understanding emergent social organizations arises when the benefits of online 

collaboration is hindered by the frequent lost of relevant information in overwhelming 

flows of blinking social signals. Our contribution leverages Social Network Analysis 

with Semantic Web frameworks for analyzing and structuring semantically captured 

social data. We go beyond the mining of the flat link structure of social graphs by 

integrating a semantic processing of the network typing and the shared knowledge that 

emerges from online activities.  

8.1 Contributions 
The contributions of this dissertation can be exploited (1) to bring online social data to 

ontology-based representations, (2) to conduct a social network analysis that takes 

advantage of the rich semantics of such representations, and (3) to semantically detect 

and label communities of online social networks and social tagging activities. 

8.1.1 Leveraging Online Social Data to Ontology-based Representations 

In chapter 4, we presented how Semantic Web technologies, along with already existing 

ontologies, can be used to build, exchange, and query directed typed graph 

representations of online social data. Building on top of RDF (to perform triple 

descriptions of URI named resources), OWL and RDFS (to define ontologies and 
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positively constrain the use of their primitives), different ontologies have been designed 

to semantically describe and link online social networks. FOAF is a base vocabulary for 

describing people, their attributes, their acquaintances and their online account. 

RELATIONSHIP and SIOC extend FOAF in order to precisely describe relationships 

between people and their online activities. SCOT and others ontologies propose 

vocabularies of social tagging, and tags as well as topics of web publications can be 

then semantically structured with the lightweight semantic primitives of SKOS.  

While most online social data are still only accessible in XML, JSON or are trapped 

into relational databases, we have shown in chapter 5 how CORESE could be used to 

wrap, link and open these data with ontology-based metadata in RDF. CORESE 

SPARQL extensions offer to query heterogeneous data sources with SPARQL and build 

RDF on the fly. Once structured into RDF, we showed how a range of pre-processing 

can be applied to add types or relations whenever they detect a pattern, such as 

construct  SPARQL queries, ontological constraint reasoning, or also proprietary 

rules engines.  

8.1.2 Extending Social Network Analysis to Ontology-based Representations 

In chapter 5, we extended social network analysis to ontology-based representations of 

online profiles, relationships, activities and emergent vocabularies. We extended social 

network analysis operators in order to parameterize them with the ontological primitives 

used to type the nodes and the links of their RDF representation. These semantically 

extended operators allow conducting rich analyses of social networks and handling the 

diversity of interactions and relationships with parameterized social metrics. We 

implemented these operators with SPARQL queries, which offer a native handling of 

subsumption relations in an engine like CORESE while classical SNA ignores the 

semantics of RDF graphs. This SPARQL operationalization of parameterized operators 

allows us to adjust the granularity of the analysis of relations. In addition, we are able to 

automatically focus on different sub-graphs while still working on the same initial 

graph. The SPARQL queries that we defined and tested implement the parameterized 

definitions of several classical SNA operators including the extraction of the degrees, 

the geodesics, the diameter, or the components. Once computed, the characteristics of 

the analyzed social networks can be used to enrich RDF descriptions of social data, 

using the SemSNA ontology that defines different SNA metrics. SemSNA includes 

primitives that describe (1) the context of the analysis, (2) strategic positions, and (3) 

the global network structure. This analytic based enrichment of social data enable us to 

more efficiently manage the life cycle of an analysis, and to offer advanced social 

functionalities that takes benefits of the emergent organization of the network. 

This SNA method benefits of the evolutionary approach of Semantic Web technologies. 

Thus, new queries that compute new operators can be defined at anytime and SemSNA 

can be readily extended with appropriate semantics. However, several queries are based 

on SPARQL extension mechanisms of CORESE; some were already implemented in 

the engine and others were specifically designed or adapted for these researches (e.g. 
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the group by any  clause used to query components was initially introduced for this 

specific need). The integration of many of these extensions into SPARQL1.1 (e.g. 

property paths, group by  clause, aggregating functions) enables the reuse (or 

adaptation) of most of the presented queries with other semantic engines.  

8.1.3 Semantic Community Detection and Labelling 

Building on top of our results on semantic social network analysis, we proposed in 

chapter 6 an original approach that attempts to open a new perspective to community 

detection. We designed a community detection algorithm, SemTagP, that takes benefits 

of the semantic RDF descriptions of social networking and social tagging data, in order 

to not only detect communities but also to meaningfully label their activities. Extending 

the RAK algorithm [Raghavan et al 2007] that detects communities by random label 

propagation, SemTagP takes benefits of the linking structure of the network with a 

propagation mechanism and takes also advantage of the emerging semantics of social 

tagging with an ontology based labeling. First, the assignation of tags, instead of 

random labels, improves the propagation with the shared vocabulary used to annotate 

the resources of the network and offered a meaningful labeling of the communities. 

Then, the consideration of the inferred semantics between tags refines the labeling 

process and improves the propagation with the shared knowledge of the network. 

Finally, we introduced a human control option to refine the partitioning and avoid too 

broad generalizations between tags, which improved the results in the experiment that 

we conducted. 

8.2 Publications 
The researches that we conducted during my Master degree and the contributions 

proposed in this Ph.D. thesis led to 10 publications in workshops, conferences, books 

and a journal. 

Our results on Semantic Wikis, to which I contributed during my Master degree, led to 

several publications in a French national conference [Buffa et al 2007], in the major 

journal on Semantic Web [Buffa et al 2008a], and in a book chapter [Buffa et al 2008b] 

The first publications of my thesis were aimed at positioning our researches according 

to existing literature and other works conducted by different partners. In [Erétéo et al 

2008] we proposed a state of the art on social network analysis and its application on a 

Social Semantic Web, and we positioned our contribution to this domain.  Then, we 

published a position paper that highlights the articulation of different works conducted 

in our research group to analyze and capture collective intelligence from online 

interactions [Erétéo et al 2009a]. Finally, we published two papers that ground our 

researches and collaborations in the social business intelligence scenario of the ISICIL 

project [Gandon et al 2009] [Leitzelman et al 2009]. 

In the last publications, we published our method and different results we obtained to 

conduct a social network analysis with Semantic Web Frameworks in major venues. In 
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[Erétéo et al 2009b], we present our Semantic Web stack of tools to enhance social 

network analysis with semantics, we show how to parametrize and operationalize 

different centrality measures with SPARQL, and we describe the core primitives of 

SemSNA. In [Erétéo et al 2009c], we provide formal definitions in SPARQL of several 

SNA operators parameterized by ontological primitives, we extend SemSNA ontology, 

and we present the semantic social network analysis that we conducted on a real online 

social network. Finally we presented the complementary aspects of our results to 

semantically analyze social networks and those of [Limpens 2010] to semantically 

structure folksonomies, for Studying Virtual Communities [Erétéo et al 2011]. 
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Definition 45. Node Clustering Coefficient: Let |TRIADi| the number of triads, and 

|2_PATHi| the number of paths of length 2 having the node vi, the clustering 

coefficient of vi is: ....................................................................................... 31 

Definition 46. Modularity: let m be the number of edges of the network,  d< i>  the degree of 

vertex i, Aij the number of edges between i and j, ci the community of i, 

δ(ci,cj) = 1 if ci = cj, 0 otherwise, the modularity is: .................................... 34 
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Definition 47. Directed Modularity: let m be the number of edges of the network,  in

id ><  

and out

id ><  the in-degree and out-degree of vertex i, Aij the number of edges 

between i and j, ci the community of i, δ(ci,cj) = 1 if ci = cj, 0 otherwise, the 

directed modularity is:................................................................................. 34 

Definition 48. Degree Centrality: The degree of centrality of a node is simply its degree. 40 

Definition 49. Partial Betweenness: Let nb
g
(b,x,y) the number of geodesics between x and 

y going through b and nb
g
(x,y) the total number of geodesics between x and y, 

then the partial betweeness of b for x and y is: ............................................. 40 

Definition 50. Betweenness Centrality: Let B(b, x, y) the partial betweenness of a node b 
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Definition 51. Closeness Centrality: Let g(k,x) be a shortest path between k and x, and 

length(g(k,x)) the length of such a shortest path, the closeness centrality is:. 41 

Definition 52. Folksonomy: A folksonomy is defined as a collection of taggings. In formal 

term, a folksonomy is defined by [Hotho et al 2006] as a tuple F := (U, T, R, 

Y) where U, T, and R are finite sets, whose elements are called users, tags, 

and tagged resources, respectively. Y is the set of tagging instances such that 

Y  U × T × R. [Mika 2005a] also proposed a graph definition where a 

folksonomy can be seen as tripartite hypergraph H(F) = (V, E) where the 

vertices are given by V = U ∪ T ∪ R and the edges by E = u,t,r | (u,t,r) ∈ F. 50 

Definition 53. ERGraph: An ERGraph relative to a set of labels L is a 4-tuple G=(EG, RG, 

nG, lG) where : ........................................................................................... 63 

Definition 54. EMapping: Let G and H be two ERGraphs, an EMapping from H to G is a 

partial function M from EH to EG i.e. a binary relation that associates each 

element of EH with at most one element of EG; not every element of EH has to 

be associated with an element of EG unless the mapping is total. ................. 69 

Definition 55. ERMapping: Let G and H be two ERGraphs, an ERMapping from H to G is 

an EMapping M from H to G such that: Let H' be the SubERGraph of H 

induced by M-1
(EG),∀ r'∈RH' ∃ r∈ RG such that card(nH'(r'))= card(nG(r)) 

and ∀ 1≤ i≤ card(nG(r)), M(nH' 
i
(r'))= nG 

i
(r). We call r a support of r' in M 

and note r∈M(r') ......................................................................................... 69 

Definition 56. Definition of an EMapping<X>: Let G and H be two ERGraphs, and X be a 

binary relation over L×L. An EMapping<X> from H to G is an EMapping M 

from H to G such that ∀e∈ M
-1
(EG), (lG(M(e)), lH(e))∈ X. ........................... 70 

Definition 57. ERMapping<X>: Let G and H be two ERGraphs, and X be a binary relation 

over L×L. An ERMapping<X> M from H to G is both an EMapping<X> from H 

to G and an ERMapping from H to G such that: .......................................... 70 

Definition 58. Homomorphism<X>: Let G and H be two ERGraphs, a Homomorphism<x> 

from H to G is a total ERMapping<X> from H to G where X is a preorder over 

L. ................................................................................................................ 70 
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Definition 59. PERGraph: A PERGraph relative to a set of labels L is a 4-tuple G=(EG, 

RG,PG, nG, lG) where: ................................................................................... 92 

Definition 60. PERMapping<X>: Let G and H be two PERGraphs, and X be a binary 

relation over L×L. A PERMapping from H to G is an ERMapping<X> M from 

H to G such that: Let H' be the SubERGraph of H induced by M-1
(EG), 

∀ p’∈ PH' ∃ p= (r1,..., rn)∈ RG
n
 such that: .................................................... 92 

Definition 61. modularity of an ERGraph: the modularity of an Entity-Relation graph 

),,,( GGGG lnREG =  relative to a set of label L, for a given label of relation 

Lp ∈ , is: .................................................................................................... 120 

Definition 62. Temporal graph: let a network trace starting at tmin and ending at tmax, 
s

jiR , a 

contact between i and j at time s, and w a time range, a temporal graph 

Gw(tmin, tmax) is a sequence of graphs Gtmin, Gtmin+w,…, Gtmax, with Gt=(V, E) 

such that Vji ∈),(  if and only if there exists s

jiR , with wtst +≤≤ . .......... 157 

Definition 63. Social Capital: “resources embedded in one’s social network, resources that 

can be accessed and mobilized through ties in the network” [Lin 2008]..... 161 

 


