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Goals for Network Algorithms: Scalability

Growing size of communication networks

Social networks (Facebook ≥ 1.79 billion users)

Data Centers (Microsoft ≥ 1 million servers)

the Internet (≥ 55811 Autonomous Systems)

“Efficient” algorithms on these graphs?

polynomial → quasi-linear time
quadratic → (sub)linear space

First issue

need for revisiting textbook (polynomial) graph algorithms
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Goals for Network Algorithms: Privacy

Raise of privacy concerns online

Online discrimination (Machine Learning,
heuristics)

Violation of data policies (ex: Google App
Education)

Second issue

differential privacy: preventing data leakage

Web’s transparency: monitoring data use
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Main lines of the thesis
Information propagation in networks =⇒ combinatorial problems on graphs

Finer-grained complexity analysis of graph problems

NP-hardness, complexity in P, parallel complexity, query complexity, . . .

Part I: Metric tree-likeness in graphs

(with COATI team)

Study of geometric properties of the (shortest) path distribution

Computation of related parameters (hyperbolicity, treelength,

treebreadth, treewidth)
algorithmic graph theory

Part II: Privacy at large scale in social graphs

(with Social Networks lab, Columbia)

Solution concepts for dynamics of communities

Ad Targeting Identification
game and learning theory

4 / 44



Metric tree-likeness in graphs

Skitter data depicting a macroscopic snapshot of Internet connectivity, with selected backbone ISPs (Internet Service Provider)
colored separately. By K. C. Claffy (http://www.caida.org/publications/papers/bydate/index.xml)
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Key notions

treelikeness ∼ closeness of a graph to a tree (w.r.t. some property)

Motivation: optimization problems easier to solve

Tree decompositions [Robertson and Seymour’86]

Representation of a graph as a tree preserving
connectivity properties.

Algorithm on the tree representations

Gromov hyperbolicity [Gromov’87]

(Local) closeness of the graph metric to a tree
metric.

f(hyperbolicity)-approximation for distance problems

on graphs

6 / 44



Gromov hyperbolicity

Definition

G is δ-hyperbolic ⇐⇒ every 4-tuple u, v , x , y ∈ V (G ) can be mapped to
the nodes of a tree (possibly edge-weighted) with distortion:

max
s,t∈{u,v ,x ,y}

|distG (s, t)− distT (ϕ(s), ϕ(t))| ≤ δ.

Trees are 0-hyperbolic

Cliques are 0-hyperbolic
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Examples

• Block graphs are 0-hyperbolic
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• Cycle Cn with n vertices is bn/4c-hyperbolic

2δ ≥ ε = bn/2c
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On computing Gromov hyperbolicity

Four-point definition [Gromov’87]

The hyperbolicity of a connected graph G = (V ,E ), denoted by δ(G ), is equal to
the smallest δ such that for every 4-tuple u, v , x , y of V :

distG (u, v) + distG (x , y) ≤
max{distG (u, x) + distG (v , y), distG (u, y) + distG (v , x)}+ 2δ

Computing hyperbolicity

State of the art:

combinatorial algorithms in O(n4)-time

[Cohen, Coudert, Lancin’15]

[Borassi, Coudert, Crescenzi, Marino’15]

in O(n3.69)-time (using matrix product)

[Fournier and Vigneron’15]
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Recognition of graphs with small hyperbolicity

Computing hyperbolicity

Complexity in P
1/2-hyperbolic graphs [SIDMA'14]

Related work

0-hyperbolic graphs are block-graphs

−→ O(n + m)-time recognition.

[Howorka’79]

Contribution: Recognition of
1/2-hyperbolic graphs

[Coudert and D. SIDMA’14]

Deciding δ(G ) ≤ 1 cannot be done in
O(n2−ε)-time (under SETH)

[Borassi, Crescenzi, Habib’16]
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Subcubic equivalence
both problems can be solved in truly subcubic-time or none of them can.

Theorem [Coudert and D. SIDMA’14]

The two following problems are subcubic equivalent:

deciding whether a graph has hyperbolicity equal to 1/2;

deciding whether a graph contains an induced cycle of length four.

no combinatorial truly subcubic algorithm is likely to exist

Key ingredients:

• characterization by forbidden isometric subgraphs [Bandelt and Chepoi’03]

no cycles Cn, n /∈ {3, 5} + . . . +

• (modified) graph powers

G j = (V (G ), {{u, v} | 0 < distG (u, v) ≤ j})
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C4-free detection ∝ 1/2-hyperbolic recognition

Observation: G 1/2-hyperbolic =⇒ G C4-free

Remove all other obstructions by lowering diam(G ) to 2
−→ by adding a universal vertex

12 / 44



1/2-hyperbolic recognition ∝ C4-free detection

Reinterpret obstructions as C4’s in (modified) graph powers

δ(G ) = 1/2 =⇒ G j , j ≥ 1 and G [2] (modified square) are C4-free

obstructions to δ(G ) = 1/2 of size ≤ c =⇒ C ′4s in GO(c) or G [2]
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1/2-hyperbolic recognition ∝ C4-free detection

Theorem [Coudert and D. SIDMA’14]

G = (V ,E ) is 1/2-hyperbolic if and only if none of the graphs G j , j ≥ 1
and G [2] contain an induced cycle of length four.

Problem: O(n) powers to test

Solution: Use a c-factor approx

=⇒ obstructions to δ(G ) ≤ 1/2 have size O(c)

=⇒ O(c) modified powers to test
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Improved algorithms in some graph classes

Computing hyperbolicity

Complexity in P
1/2-hyperbolic graphs [SIDMA'14]

Lower bounds: new techniques for graph hyperbolicity
−→ applications to Data Center networks [Coudert and D. TCS’16]

Preprocessing: preservation of hyp. under graph decompositions

−→ clique-decomposition [Cohen, Coudert, D., Lancin Submitted’17+]
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Preservation of hyperbolicity under graph decomposition

Related work
preservation under modular and split decompositions

edge cutsets inducing complete bipartite subgraphs [Soto’11]

Our approach

Clique-decomposition: decomposition of the graph in its atoms, i.e.,
inclusion maximal subgraphs with no clique-separators.

(in O(nm)-time [Tarjan’85])
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Clique-decomposition and hyperbolicity

Theorem [Cohen, Coudert, D., Lancin Submitted’17+]

Let G = (V ,E ) and let δ∗ be the maximum hyperbolicity over the atoms
of G . Then, δ∗ ≤ δ(G ) ≤ δ∗ + 1 and the bounds are sharp.
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Clique-decomposition and hyperbolicity

Improvements

Exact computation by modifying the atoms (in O(nm)-time)

Linear-time algorithm for computing δ(G ) in outerplanar graphs

Finer-grained complexity analysis of clique-decomposition
[Coudert and D. Submitted’17+]

Two ingredients

distortion of hyperbolicity under disconnection by bounded-diameter
separators

atoms represent the bags of a tree decomposition
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Tree decompositions

19 / 44



Tree decompositions

Representation of a graph as a tree preserving connectivity properties.

nodes of the tree ∼ subgraphs of G (bags)
the decomposition spans all the vertices and all the edges

edges of the tree ∼ separators of G
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Optimizing the properties of tree decompositions

minimizing the size of bags

width = max size of bags −1

treewidth = min width of tree decompositions

minimizing the diameter of bags in the graph

length = max diameter of bags

treelength = min length of tree decompositions
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Treelength vs. Treewidth: Uncomparability

treewidth � treelength.

Complete graph Kn: treewidth n − 1, treelength 1.

treewidth � treelength.
Cycle Cn: treewidth 2, treelength

⌈
n
3

⌉
.

Relationship with hyperbolicity: δ ≤ tl ≤ 2δ · log n + 1
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Treelength vs. Treewidth: Complexity

tw ≤ k?

exact: in kO(k3) · n-time [Bodlaender’96]

5-approximation: in 2O(k) · n-time [Bodlaender et al.’13]

√
tw -approximation: in nO(1)-time [Feige, Hajiaghayi, Lee’08]

tl ≤ k?

NP-complete for every k ≥ 2 [Lokshtanov’10]

3-approximation: in O(n + m)-time [Dourisboure and Gavoille’07]

Treelength “easier” to approximate than treewidth
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Our result

Related work

tw(G ) < 12 · tl(G ) if G is planar [Dieng and Gavoille’09]

tl(G ) ≤ bk/2c if G is k-chordal [Dourisboure and Gavoille’07]

Theorem [Coudert, D., Nisse SIDMA’16]

For every apex-minor free graph G with bounded shortest maximal
cycle basis we have that tl(G ) = Θ(tw(G )).

More precisely:

tw(G ) ≤ 72
√

2(g + 1)3/2 · tl(G ) +O(g 2) if G has genus at most g

tl(G ) ≤ b`/2c · (tw(G )− 1) if G has shortest maximal cycle basis `

Improves on [Diestel and Müller’14]
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Shortest maximal cycle basis

Cycle space: Eulerian subgraphs + symmetric difference on the edges

Cycle basis: Basis of the cycle space composed of cycles

G has shortest maximal cycle basis ≤ ` ⇐⇒ the cycles of length at most `
in G generate the cycle space

generalizes chordality + longest isometric cycle
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Diameter of minimal separators
tree decomposition ∼ family of pairwise parallel minimal separators

[Parra and Scheffler’97]

Theorem [Coudert, D., Nisse SIDMA’16]

Every minimal separator S has diameter ≤ b`/2c · (|S | − 1)

∀S , diam(S) ≤ c · |S | =⇒ tl(G ) ≤ c · tw(G )
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Diameter of minimal separators

G` class of graphs with shortest maximal cycle basis ≤ `

Choose G ∈ G` a minimum counter-example

∃ S min sep of G s.t.:

S is a stable set of size |S | ≥ 2

all the vertices in S are pairwise at distance > b`/2c.

Pick a minimal separator S

Connect two components of G [S ]

Symmetric difference of cycles of length ≤ `

Two components of G [S ] at distance ≤ b`/2c
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Conclusion for this part

Computing hyperbolicity
Computing tree decompositions

Complexity in P
clique-decomposition

NP-hardness
treebreadth
pathbreadth  [IWOCA'16]
pathlength

Treewidth vs. Treelength

improved algorithms [Submitted'17+]
Preprocessing

line graph, clique graph [DAM'16]

Lower Bounds
Data Centers [TCS'16]

Complexity in P
1/2-hyperbolic graphs [SIDMA'14]

[SIDMA'16]

clique-decomposition [Submitted'17+]

28 / 44



Conclusion for this part

Finer-grained complexity of polynomial problems
(hyperbolicity, clique-decomposition)

Relationship between treewidth and treelength

Open problems

Computing tree decompositions of width O(tl(G ))

Recognizing graphs with large hyperbolicity

Extension of the concepts to directed graphs
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Privacy at large scale in social
graphs

(http://www.computerweekly.com/)
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Modeling online communities

Information-sharing in social networks [Kleinberg and Ligett’13]

Every user is in one community
Communities = Partition of the users

Goals for a user:

Avoid conflicts with users

Maximize size of her community

Game on a conflict graph

users ←→ nodes

conflicts ←→ edges

Extension to edge-weighted graphs (not presented)
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Coloring games in graphs

input: graph G = (V ,E ).

vertices in V
(proper) vertex-colorings of G

color of a vertex
utility function

←→
←→
←→
←→

agents of the game
configurations of the game
strategy of an agent
#vertices in her color class

What about coalitions?
Better-response: change color one by one (if beneficial)
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Local process and individual optimization

k-deviations

Any subset of ≤ k agents joining the same color class – or creating a new
one – so that all the agents in the subset increase their utility.

Equilibria

The coloring is k-stable iff, there is no k-deviation.

A k-stable coloring is a k-strong Nash equilibrium
A 1-stable coloring is a Nash equilibrium

A graph is called k-stable when there exists a k-stable coloring.

Existence? Time of convergence?
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State of the art: complexity of coloring games

Theorem [Panagopoulou and Spirakis’08] [Kleinberg and Ligett’13]

For every G = (V ,E ), the better-response dynamic converges to a Nash
equilibrium (k = 1) within O(|V |2) steps.

Potential game:
∑

utilities

Theorem [Escoffier, Gourvès, Monnot’10] [Kleinberg and Ligett’13]

For every G = (V ,E ), for every k ≤ 3, the better-response dynamic
converges to a k-strong Nash equilibrium within O(|V |3) steps.

Potential game:
∑

(utilities)2

Conjecture [Escoffier, Gourvès, Monnot’10]

For every G = (V ,E ), for every k ≥ 1, the better-response dynamic
converges to a k-strong Nash equilibrium within O(|V |2) steps.

No polynomial potential [Kleinberg and Ligett’13]
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For every G = (V ,E ), for every k ≤ 3, the better-response dynamic
converges to a k-strong Nash equilibrium within O(|V |3) steps.

Potential game:
∑

(utilities)2

Conjecture [Escoffier, Gourvès, Monnot’10]

For every G = (V ,E ), for every k ≥ 1, the better-response dynamic
converges to a k-strong Nash equilibrium within O(|V |2) steps.

No polynomial potential [Kleinberg and Ligett’13]
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Our contributions: Better-response dynamics (1/2)

Theorem [D., Mazauric, Chaintreau SUGC’13]

For every G = (V ,E ), for every k ≥ 1, the better-response dynamic
converges to a k-strong Nash equilibrium within exp[O(

√
n)] steps.

Exponential potential

Theorem [D., Mazauric, Chaintreau SUGC’13]

For every G = (V ,E ) with |V | =
(m

2

)
+ r nodes, for every k ≤ 2, the

better-response dynamic converges to a k-strong Nash equilibrium within
at most 2

(m+1
3

)
+ mr = Θ(|V |3/2) steps and this is sharp.

Worst-case: E = ∅

Reinterpret colorings as integer partitions
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Our contributions: Better-response dynamics (2/2)

Conjecture [Escoffier, Gourvès, Monnot’10]

For every G = (V ,E ), for every k ≥ 1, the better-response dynamic
converges to a k-strong Nash equilibrium within O(|V |2) steps.

Theorem [D., Mazauric, Chaintreau SUGC’13]

There are graphs G = (V ,E ) such that for every k ≥ 4, the
better-response dynamic converges to a k-strong Nash equilibrium within
superpolynomial Ω(|V |Θ(log |V |)) steps in the worst case.

Based on cascading sequences of 4-deviations
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Superpolynomial cascading sequences for k ≥ 4

no edges =⇒ longest chain in a DAG

square ←→ node
heap ←→ color class

as k grows, new types of deviations can occur

recursive construction of sequences
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Superpolynomial cascading sequences for k ≥ 4
no edges =⇒ longest chain in a DAG

square ←→ node
heap ←→ color class

...

⇣1 ⇣3 ⇣4⇣2

⇣1
⇣3

⇣1

⇣2

⇣1

⇣1

⇣1

⇣1

⇣1

⇣1

⇣2

⇣2

⇣2

⇣3

as k grows, new types of deviations can occur
recursive construction of sequences
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Our contributions: Parallel complexity
Need for better understanding of the complexity of coloring games

Parallel complexity classes

NC i : O(logi n)-time with poly(n) processors [Bloch’97][Cook’83]

Theorem [D. SAGT’16]

Computing a Nash equilibrium for coloring games is P-hard under
NC 1-reductions.

Consequences:

the problem is inherently sequential

it cannot be solved in polytime and polylogarithmic workspace

Distributed algorithms: processors = vertices + edges

−→ no protocol with polylogarithmic communication complexity
and local computation time.
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Conclusion for this part

Coloring games:

Complexity of better-response dynamics

Exact convergence time for k ≤ 2

Superpolynomial lower-bound for k ≥ 4

Parallel complexity

Coloring games are inherently sequential

Open problems:

Parallel complexity of graphical games

Complexity of computing 4-stable colorings
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Conclusion

()
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Summary of the thesis

Analysis of large-scale networks: Metric treelikeness

Complexity in P

(conditional lower-bounds)

Graph decompositions

(line graph, tree decompositions, clique-decomposition)

Algebraic methods

(cycle basis, graph endomorphisms)

tools from algorithmic graph theory
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Summary of the thesis

Dynamics of information flows: Privacy and Web’s transparency

Potential games

Combinatorics on integer partitions

(longest sequences in better-response dynamics)

Parallel complexity

PAC-learning

(Ad Targeting Identification)

tools from algorithmic game theory and learning theory
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Perspectives

Relationships between treelength and graph minor decompositions

FPT algorithms?

Constructive relationship between treewidth and treelength?

Random models for directed social networks (Twitter, . . . )

Metric treelikeness in directed graphs?

Finer-grained complexity of graphical games

Parallel complexity of unweighted games and implications for weighted games.
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Any questions?
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