Metric properties of large graphs Propriétés métriques des grands graphes

PhD Candidate: Guillaume Ducoffe Advisor: David Coudert

Université Côte d'Azur, Inria, CNRS, I3S, France

December 9th, 2016

Goals for Network Algorithms: Scalability

Growing size of communication networks

Social networks (Facebook \geq 1.79 billion users) Data Centers (Microsoft \geq 1 million servers)

the Internet (\geq 55811 Autonomous Systems)

"Efficient" algorithms on these graphs?

 $\frac{\text{polynomial}}{\text{quadratic}} \rightarrow \text{quasi-linear time}$ $\frac{\text{quadratic}}{\text{quadratic}} \rightarrow (\text{sub}) \text{linear space}$

First issue

need for revisiting textbook (polynomial) graph algorithms

Goals for Network Algorithms: Privacy

Raise of privacy concerns online

Online discrimination (Machine Learning, heuristics)

Violation of data policies (ex: Google App Education)

Second issue

differential privacy: preventing data leakage

Web's transparency: monitoring data use

Main lines of the thesis

Information propagation in networks \Longrightarrow combinatorial problems on graphs

Finer-grained complexity analysis of graph problems

NP-hardness, complexity in P, parallel complexity, query complexity, ...

Part I: Metric tree-likeness in graphs

(with COATI team)

- Study of geometric properties of the (shortest) path distribution
- Computation of related parameters (hyperbolicity, treelength, treebreadth, treewidth)

algorithmic graph theory

Part II: Privacy at large scale in social graphs

(with Social Networks lab, Columbia)

- Solution concepts for dynamics of communities
- Ad Targeting Identification

game and learning theory

Metric tree-likeness in graphs

Skitter data depicting a macroscopic snapshot of Internet connectivity, with selected backbone ISPs (Internet Service Provider) colored separately. By K. C. Claffy (http://www.caida.org/publications/papers/bydate/index.xml)

Key notions

treelikeness \sim closeness of a graph to a tree (w.r.t. some property)

Motivation: optimization problems easier to solve

Representation of a graph as a tree preserving **connectivity properties**.

Algorithm on the tree representations

Gromov hyperbolicity [Gromov'87]

(Local) closeness of the graph metric to a **tree metric**.

f(hyperbolicity)-approximation for distance problems on graphs

Gromov hyperbolicity

Definition

G is δ -hyperbolic \iff every 4-tuple $u, v, x, y \in V(G)$ can be **mapped to** the nodes of a tree (possibly edge-weighted) with distortion:

$$\max_{s,t\in\{u,v,x,y\}} |dist_G(s,t) - dist_T(arphi(s),arphi(t))| \leq \delta_{x,t}$$

Trees are 0-*hyperbolic Cliques are* 0-*hyperbolic*

Examples

• Block graphs are 0-hyperbolic

• Cycle C_n with *n* vertices is $\lfloor n/4 \rfloor$ -hyperbolic

On computing Gromov hyperbolicity

Four-point definition [Gromov'87]

The hyperbolicity of a connected graph G = (V, E), denoted by $\delta(G)$, is equal to the smallest δ such that for every 4-tuple u, v, x, y of V:

 $dist_G(u, v) + dist_G(x, y) \le \max\{dist_G(u, x) + dist_G(v, y), dist_G(u, y) + dist_G(v, x)\} + 2\delta$

State of the art:

[Cohen, Coudert, Lancin'15]

[Borassi, Coudert, Crescenzi, Marino'15]

• in $\mathcal{O}(n^{3.69})$ -time (using matrix product)

[Fournier and Vigneron'15]

Recognition of graphs with small hyperbolicity

Related work

• 0-hyperbolic graphs are block-graphs $\longrightarrow \mathcal{O}(n+m)$ -time recognition.

[Howorka'79]

• Deciding $\delta(G) \leq 1$ cannot be done in $\mathcal{O}(n^{2-\varepsilon})$ -time (under SETH)

[Borassi, Crescenzi, Habib'16]

Recognition of graphs with small hyperbolicity

Computing hyperbolicity

Related work

• 0-hyperbolic graphs are block-graphs $\longrightarrow \mathcal{O}(n+m)$ -time recognition.

[Howorka'79]

• **Contribution:** *Recognition of* 1/2-*hyperbolic graphs*

[Coudert and D. SIDMA'14]

• Deciding $\delta(G) \leq 1$ cannot be done in $\mathcal{O}(n^{2-\varepsilon})$ -time (under SETH)

[Borassi, Crescenzi, Habib'16]

Subcubic equivalence

both problems can be solved in truly subcubic-time or none of them can.

Theorem [Coudert and D. SIDMA'14]

The two following problems are **subcubic equivalent**:

- deciding whether a graph has hyperbolicity equal to 1/2;
- deciding whether a graph contains an induced cycle of length four.

no combinatorial truly subcubic algorithm is likely to exist

Subcubic equivalence

both problems can be solved in truly subcubic-time or none of them can.

Theorem [Coudert and D. SIDMA'14]

The two following problems are **subcubic equivalent**:

- deciding whether a graph has hyperbolicity equal to 1/2;
- deciding whether a graph contains an induced cycle of length four.

no combinatorial truly subcubic algorithm is likely to exist

Key ingredients:

• characterization by forbidden isometric subgraphs [Bandelt and Chepoi'03] no cycles $C_n, n \notin \{3,5\} + \ldots +$

• (modified) graph powers

C₄-free detection \propto 1/2-hyperbolic recognition

- Observation: $G \ 1/2$ -hyperbolic $\implies G \ C_4$ -free
- Remove all other obstructions by lowering diam(G) to 2
 → by adding a universal vertex

1/2-hyperbolic recognition $\propto C_4$ -free detection

Reinterpret obstructions as C₄'s in (modified) graph powers

• $\delta(G) = 1/2 \Longrightarrow G^j, j \ge 1$ and $G^{[2]}$ (modified square) are C_4 -free

• obstructions to $\delta(G) = 1/2$ of size $\leq c \implies C'_4 s$ in $G^{\mathcal{O}(c)}$ or $G^{[2]}$

1/2-hyperbolic recognition \propto C4-free detection

Theorem [Coudert and D. SIDMA'14]

G = (V, E) is 1/2-hyperbolic if and only if none of the graphs $G^{j}, j \ge 1$ and $G^{[2]}$ contain an induced cycle of length four.

- <u>Problem</u>: $\mathcal{O}(n)$ powers to test
- Solution: Use a *c*-factor approx

 \implies obstructions to $\delta(G) \leq 1/2$ have size $\mathcal{O}(c)$

 $\implies \mathcal{O}(c)$ modified powers to test

Computing hyperbolicity

Lower bounds: new techniques for graph hyperbolicity

 \longrightarrow applications to Data Center networks [Coudert and D. TCS'16]

Computing hyperbolicity

Lower bounds: new techniques for graph hyperbolicity
 → applications to Data Center networks [Coudert and D. TCS'16]
 Preprocessing: preservation of hyp. under graph decompositions

Computing hyperbolicity

Lower bounds: new techniques for graph hyperbolicity

 → applications to Data Center networks [Coudert and D. TCS'16]

 Preprocessing: preservation of hyp. under graph decompositions

 → clique-decomposition [Cohen, Coudert, D., Lancin Submitted'17+]

Preservation of hyperbolicity under graph decomposition

Related work

preservation under *modular* and *split* decompositions

edge cutsets inducing complete bipartite subgraphs [Soto'11]

Preservation of hyperbolicity under graph decomposition

Related work

preservation under modular and split decompositions

edge cutsets inducing complete bipartite subgraphs [Soto'11]

Our approach

Clique-decomposition: decomposition of the graph in its **atoms**, *i.e.*, inclusion maximal subgraphs with no clique-separators.

(in $\mathcal{O}(nm)$ -time [Tarjan'85])

Clique-decomposition and hyperbolicity

Theorem [Cohen, Coudert, D, Lancin Submitted'17+]

Let G = (V, E) and let δ^* be the maximum hyperbolicity over the atoms of G. Then, $\delta^* \leq \delta(G) \leq \delta^* + 1$ and the bounds are sharp.

Clique-decomposition and hyperbolicity

Improvements

- **Exact computation** by modifying the atoms (in $\mathcal{O}(nm)$ -time)
- Linear-time algorithm for computing $\delta(G)$ in outerplanar graphs
- Finer-grained complexity analysis of clique-decomposition [Coudert and D. Submitted'17+]

Two ingredients

- distortion of hyperbolicity under disconnection by bounded-diameter separators
- atoms represent the bags of a tree decomposition

Tree decompositions

Tree decompositions

Representation of a graph as a tree preserving connectivity properties.

nodes of the tree \sim subgraphs of *G* (*bags*)

the decomposition spans all the vertices and all the edges

edges of the tree \sim separators of *G*

Optimizing the properties of tree decompositions

• minimizing the size of bags

width = max size of bags -1

treewidth = min width of tree decompositions

Optimizing the properties of tree decompositions

- minimizing the size of bags
 width = max size of bags -1
 treewidth = min width of tree decompositions
- minimizing the diameter of bags in the graph *length* = max diameter of bags

 treelength = min length of tree decompositions

Treelength vs. Treewidth: Uncomparability

• treewidth \gg treelength.

Complete graph K_n : treewidth n - 1, treelength 1.

• treewidth \ll treelength.

Cycle C_n : treewidth 2, treelength $\left\lceil \frac{n}{3} \right\rceil$.

Treelength vs. Treewidth: Uncomparability

• treewidth \gg treelength.

Complete graph K_n : treewidth n - 1, treelength 1.

• treewidth \ll treelength.

Cycle C_n : treewidth 2, treelength $\left\lceil \frac{n}{3} \right\rceil$.

Relationship with hyperbolicity: $\delta \leq tl \leq 2\delta \cdot \log n + 1$

Treelength vs. Treewidth: Complexity

• $tw \leq k$?

• exact: in $k^{\mathcal{O}(k^3)} \cdot n$ -time[Bodlaender'96]• 5-approximation: in $2^{\mathcal{O}(k)} \cdot n$ -time[Bodlaender et al.'13]• \sqrt{tw} -approximation: in $n^{\mathcal{O}(1)}$ -time[Feige, Hajiaghayi, Lee'08]

• $tl \leq k?$

- NP-complete for every $k \ge 2$ [Lokshtanov'10]
- 3-approximation: in $\mathcal{O}(n+m)$ -time [Dourisboure and Gavoille'07]

Treelength "easier" to approximate than treewidth

Our result

Related work

 $tw(G) < 12 \cdot tl(G)$ if G is planar

[Dieng and Gavoille'09]

 $tl(G) \leq \lfloor k/2 \rfloor$ if G is k-chordal

[Dourisboure and Gavoille'07]

Theorem [Coudert, D, Nisse SIDMA'16]

For every **apex-minor free** graph *G* with bounded **shortest maximal** cycle basis we have that $tl(G) = \Theta(tw(G))$.

Improves on [Diestel and Müller'14]

Our result

Related work

 $tw(G) < 12 \cdot tl(G)$ if G is planar

[Dieng and Gavoille'09]

 $tl(G) \leq \lfloor k/2 \rfloor$ if G is k-chordal

[Dourisboure and Gavoille'07]

Theorem [Coudert, D., Nisse SIDMA'16]

For every **apex-minor free** graph *G* with bounded **shortest maximal** cycle basis we have that $tl(G) = \Theta(tw(G))$.

More precisely:

- $tw(G) \le 72\sqrt{2}(g+1)^{3/2} \cdot tl(G) + O(g^2)$ if G has genus at most g
- $tI(G) \leq \lfloor \ell/2 \rfloor \cdot (tw(G) 1)$ if G has shortest maximal cycle basis ℓ

Improves on [Diestel and Müller'14]

Shortest maximal cycle basis

Cycle space: Eulerian subgraphs + *symmetric difference* on the edges

Cycle basis: Basis of the cycle space composed of cycles

G has shortest maximal cycle basis $\leq \ell \iff$ the cycles of length at most ℓ in G generate the cycle space

generalizes chordality + longest isometric cycle

Diameter of minimal separators

tree decomposition \sim family of pairwise parallel minimal separators

[Parra and Scheffler'97]

Theorem [Coudert, D., Nisse SIDMA'16]

Every minimal separator S has diameter $\leq \lfloor \ell/2 \rfloor \cdot (|S|-1)$

$$\forall S, diam(S) \leq c \cdot |S| \Longrightarrow tl(G) \leq c \cdot tw(G)$$

Diameter of minimal separators

 \mathcal{G}_{ℓ} class of graphs with shortest maximal cycle basis $\leq \ell$ Choose $G \in \mathcal{G}_{\ell}$ a minimum counter-example $\exists S$ min sep of G s.t.:

- S is a stable set of size $|S| \ge 2$
- all the vertices in S are pairwise at distance $> \lfloor \ell/2 \rfloor$.

\mathcal{G}_{ℓ} class of graphs with shortest maximal cycle basis $\leq \ell$ Choose $G \in \mathcal{G}_{\ell}$ a minimum counter-example $\exists S$ min sep of G s.t.:

• S is a stable set of size $|S| \ge 2$

• all the vertices in S are pairwise at distance $> \lfloor \ell/2 \rfloor$.

Pick a minimal separator S

 \mathcal{G}_{ℓ} class of graphs with shortest maximal cycle basis $\leq \ell$ Choose $G \in \mathcal{G}_{\ell}$ a minimum counter-example $\exists S$ min sep of G s.t.:

- S is a stable set of size $|S| \ge 2$
- all the vertices in S are pairwise at distance $> \lfloor \ell/2 \rfloor$.

Pick a minimal separator S

Connect two components of G[S]

 \mathcal{G}_{ℓ} class of graphs with shortest maximal cycle basis $\leq \ell$ Choose $G \in \mathcal{G}_{\ell}$ a minimum counter-example $\exists S$ min sep of G s.t.:

- S is a **stable set** of size $|S| \ge 2$
- all the vertices in S are pairwise at distance $> \lfloor \ell/2 \rfloor$.

Pick a minimal separator SConnect two components of G[S]Symmetric difference of cycles of length $\leq \ell$

 \mathcal{G}_{ℓ} class of graphs with shortest maximal cycle basis $\leq \ell$ Choose $G \in \mathcal{G}_{\ell}$ a minimum counter-example $\exists S$ min sep of G s.t.:

- S is a **stable set** of size $|S| \ge 2$
- all the vertices in S are pairwise at distance $> \lfloor \ell/2 \rfloor$.

Pick a minimal separator S Connect two components of G[S]Symmetric difference of cycles of length $\leq \ell$ Two components of G[S] at distance $\leq |\ell/2|$

Conclusion for this part

Conclusion for this part

- *Finer-grained complexity of polynomial problems* (hyperbolicity, clique-decomposition)
- Relationship between treewidth and treelength

Open problems

- Computing tree decompositions of width $\mathcal{O}(t/(G))$
- Recognizing graphs with large hyperbolicity
- Extension of the concepts to directed graphs

Privacy at large scale in social graphs

(http://www.computerweekly.com/)

Modeling online communities

Information-sharing in social networks [Kleinberg and Ligett'13]

Every user is in **one** community Communities = Partition of the users

Goals for a user:

- Avoid **conflicts** with users
- Maximize size of her community

Game on a conflict graph

 $users \longleftrightarrow nodes$

```
conflicts \longleftrightarrow edges
```

Extension to edge-weighted graphs (not presented)

input: graph G = (V, E).

- vertices in $V \leftrightarrow$ agents of the game
- (proper) vertex-colorings of $G \leftrightarrow$ configurations of the game
 - color of a vertex \longleftrightarrow strategy of an agent
- - utility function $\leftrightarrow \#$ vertices in her color class

input: graph G = (V, E).

vertices in $V \iff$ agents of the game

(proper) vertex-colorings of $G \leftrightarrow$ configurations of the game color of a vertex \leftrightarrow strategy of an agent utility function \leftrightarrow #vertices in her color class

input: graph G = (V, E).

vertices in $V \leftrightarrow$ agents of the game (proper) vertex-colorings of $G \leftrightarrow$ configurations of the game color of a vertex \leftrightarrow strategy of an agent utility function \leftrightarrow #vertices in her color class

input: graph G = (V, E).

 $\begin{array}{rcl} & \text{vertices in } V & \longleftrightarrow & \text{agents of the game} \\ \text{(proper) vertex-colorings of } G & \longleftrightarrow & \text{configurations of the game} \\ & \text{color of a vertex } & \longleftrightarrow & \text{strategy of an agent} \\ & & \text{utility function } & \longleftrightarrow & \#\text{vertices in her color class} \end{array}$

input: graph G = (V, E).

 $\begin{array}{rcl} & \mbox{vertices in } V & \longleftrightarrow & \mbox{agents of the game} \\ (\mbox{proper}) \mbox{vertex-colorings of } G & \longleftrightarrow & \mbox{configurations of the game} \\ & \mbox{color of a vertex} & \longleftrightarrow & \mbox{strategy of an agent} \\ & \mbox{utility function} & \longleftrightarrow & \mbox{\#vertices in her color class} \end{array}$

Better-response: change color one by one (if beneficial)

input: graph G = (V, E).

 $\begin{array}{rcl} & \mbox{vertices in } V & \longleftrightarrow & \mbox{agents of the game} \\ (\mbox{proper}) \mbox{vertex-colorings of } G & \longleftrightarrow & \mbox{configurations of the game} \\ & \mbox{color of a vertex} & \longleftrightarrow & \mbox{strategy of an agent} \\ & \mbox{utility function} & \longleftrightarrow & \mbox{\#vertices in her color class} \end{array}$

Better-response: change color one by one (if beneficial)

input: graph G = (V, E).

 $\begin{array}{rcl} & \mbox{vertices in } V & \longleftrightarrow & \mbox{agents of the game} \\ (\mbox{proper}) \mbox{vertex-colorings of } G & \longleftrightarrow & \mbox{configurations of the game} \\ & \mbox{color of a vertex} & \longleftrightarrow & \mbox{strategy of an agent} \\ & \mbox{utility function} & \longleftrightarrow & \mbox{\#vertices in her color class} \end{array}$

What about *coalitions*?

Better-response: change color one by one (if beneficial)

input: graph G = (V, E).

 $\begin{array}{rcl} & \mbox{vertices in } V & \longleftrightarrow & \mbox{agents of the game} \\ (\mbox{proper}) \mbox{vertex-colorings of } G & \longleftrightarrow & \mbox{configurations of the game} \\ & \mbox{color of a vertex} & \longleftrightarrow & \mbox{strategy of an agent} \\ & \mbox{utility function} & \longleftrightarrow & \mbox{\#vertices in her color class} \end{array}$

What about *coalitions*?

Better-response: change color **k** by **k** (if beneficial)

input: graph G = (V, E).

 $\begin{array}{rcl} & \mbox{vertices in } V & \longleftrightarrow & \mbox{agents of the game} \\ (\mbox{proper}) \mbox{vertex-colorings of } G & \longleftrightarrow & \mbox{configurations of the game} \\ & \mbox{color of a vertex} & \longleftrightarrow & \mbox{strategy of an agent} \\ & \mbox{utility function} & \longleftrightarrow & \mbox{\#vertices in her color class} \end{array}$

What about *coalitions*?

Better-response: change color **k** by **k** (if beneficial)

Local process and individual optimization

k-deviations

Any subset of $\leq k$ agents joining the same color class – or creating a new one – so that all the agents in the subset increase their utility.

Local process and individual optimization

k-deviations

Any subset of $\leq k$ agents joining the same color class – or creating a new one – so that all the agents in the subset increase their utility.

Equilibria

- The coloring is k-stable iff, there is no k-deviation.
 - A *k*-stable coloring is a *k*-strong Nash equilibrium
 - A 1-stable coloring is a Nash equilibrium
- A graph is called k-stable when there exists a k-stable coloring.

Local process and individual optimization

k-deviations

Any subset of $\leq k$ agents joining the same color class – or creating a new one – so that all the agents in the subset increase their utility.

Equilibria

- The coloring is k-stable iff, there is no k-deviation.
 - A *k*-stable coloring is a *k*-strong Nash equilibrium
 - A 1-stable coloring is a Nash equilibrium
- A graph is called k-stable when there exists a k-stable coloring.

Existence? Time of convergence?

State of the art: complexity of coloring games

Theorem [Panagopoulou and Spirakis'08] [Kleinberg and Ligett'13] For every G = (V, E), the better-response dynamic converges to a Nash equilibrium (k = 1) within $\mathcal{O}(|V|^2)$ steps.

Potential game: \sum utilities

State of the art: complexity of coloring games

Theorem[Panagopoulou and Spirakis'08][Kleinberg and Ligett'13]For every G = (V, E), the better-response dynamic converges to a Nash
equilibrium (k = 1) within $\mathcal{O}(|V|^2)$ steps.

Potential game: \sum utilities

Theorem	[Escoffier, Gourvès, Monnot'10]	[Kleinberg and Ligett'13]
For every $G = (V, E)$, for every $k \leq 3$, the better-response dynamic		
converges to a <i>k</i> -strong Nash equilibrium within $\mathcal{O}(V ^3)$ steps.		

Potential game: $\sum (utilities)^2$

State of the art: complexity of coloring games

Theorem[Panagopoulou and Spirakis'08][Kleinberg and Ligett'13]For every G = (V, E), the better-response dynamic converges to a Nash
equilibrium (k = 1) within $\mathcal{O}(|V|^2)$ steps.

Potential game: \sum utilities

Theorem [Escoffier, Gourvès, Monnot'10] [Kleinberg and Ligett'13] For every G = (V, E), for every $k \le 3$, the better-response dynamic converges to a *k*-strong Nash equilibrium within $\mathcal{O}(|V|^3)$ steps.

Potential game: $\sum (utilities)^2$

Conjecture [Escoffier, Gourvès, Monnot'10]

For every G = (V, E), for every $k \ge 1$, the better-response dynamic converges to a k-strong Nash equilibrium within $\mathcal{O}(|V|^2)$ steps.

No polynomial potential [Kleinberg and Ligett'13]

Our contributions: Better-response dynamics (1/2)

Theorem [D., Mazauric, Chaintreau SUGC'13]

For every G = (V, E), for every $k \ge 1$, the better-response dynamic converges to a k-strong Nash equilibrium within $\exp[\mathcal{O}(\sqrt{n})]$ steps.

Exponential potential

Theorem [D., Mazauric, Chaintreau SUGC'13]

For every G = (V, E) with $|V| = {m \choose 2} + r$ nodes, for every $k \le 2$, the better-response dynamic converges to a k-strong Nash equilibrium within at most $2{m+1 \choose 3} + mr = \Theta(|V|^{3/2})$ steps and this is sharp.

Worst-case: $E = \emptyset$

Reinterpret colorings as integer partitions

Our contributions: Better-response dynamics (2/2)

Conjecture [Escoffier, Gourvès, Monnot'10]

For every G = (V, E), for every $k \ge 1$, the better-response dynamic converges to a k-strong Nash equilibrium within $\mathcal{O}(|V|^2)$ steps.

Theorem [D., Mazauric, Chaintreau SUGC'13]

There are graphs G = (V, E) such that for every $k \ge 4$, the better-response dynamic converges to a k-strong Nash equilibrium within superpolynomial $\Omega(|V|^{\Theta(\log |V|)})$ steps in the worst case.

Based on cascading sequences of 4-deviations

- no edges \implies longest chain in a DAG
- square $\leftrightarrow \rightarrow$ node
 - heap \longleftrightarrow color class

as k grows, new types of deviations can occur

- no edges \implies longest chain in a DAG
- $\mathsf{square} \longleftrightarrow \mathsf{node}$
 - heap \longleftrightarrow color class

as k grows, new types of deviations can occur

- no edges \implies longest chain in a DAG
- square \longleftrightarrow node
 - $\textbf{heap}\longleftrightarrow\textbf{color class}$

as k grows, new types of deviations can occur

- no edges \implies longest chain in a DAG
- $\mathsf{square} \longleftrightarrow \mathsf{node}$
 - $\textbf{heap}\longleftrightarrow\textbf{color class}$

- no edges \implies longest chain in a DAG
- $\mathsf{square} \longleftrightarrow \mathsf{node}$
 - $\textbf{heap}\longleftrightarrow\textbf{color class}$

no edges \implies longest chain in a DAG

 $\textbf{square} \longleftrightarrow \textbf{node}$

 $\textbf{heap}\longleftrightarrow\textbf{color class}$

no edges \implies longest chain in a DAG

 $\textbf{square} \longleftrightarrow \textbf{node}$

 $\textbf{heap}\longleftrightarrow\textbf{color class}$

no edges \implies longest chain in a DAG

 $square \longleftrightarrow node$

heap \longleftrightarrow color class

Our contributions: Parallel complexity

Need for better understanding of the complexity of coloring games

• Parallel complexity classes

 NC^{i} : $\mathcal{O}(\log^{i} n)$ -time with poly(n) processors [Bloch'97][Cook'83]

Theorem [D. SAGT'16]

Computing a Nash equilibrium for coloring games is P-hard under NC^1 -reductions.

Our contributions: Parallel complexity

Need for better understanding of the complexity of coloring games

• Parallel complexity classes

 NC^{i} : $\mathcal{O}(\log^{i} n)$ -time with poly(n) processors [Bloch'97][Cook'83]

Theorem [D. SAGT'16]

Computing a Nash equilibrium for coloring games is P-hard under NC^1 -reductions.

Consequences:

- the problem is inherently sequential
- it cannot be solved in polytime and polylogarithmic workspace
- **Distributed algorithms**: processors = vertices + edges

 \longrightarrow no protocol with polylogarithmic communication complexity and local computation time.

Conclusion for this part

Coloring games:

• Complexity of better-response dynamics

Exact convergence time for $k \leq 2$

Superpolynomial lower-bound for $k \ge 4$

• Parallel complexity

Coloring games are inherently sequential

Open problems:

- Parallel complexity of graphical games
- Complexity of computing 4-stable colorings

Summary of the thesis

Analysis of large-scale networks: Metric treelikeness

• Complexity in P

(conditional lower-bounds)

Graph decompositions

(line graph, tree decompositions, clique-decomposition)

• Algebraic methods

(cycle basis, graph endomorphisms)

tools from algorithmic graph theory

Summary of the thesis

Dynamics of information flows: Privacy and Web's transparency

- Potential games
- Combinatorics on *integer partitions* (*longest sequences in better-response dynamics*)
- Parallel complexity
- PAC-learning
 - (Ad Targeting Identification)

tools from algorithmic game theory and learning theory

Perspectives

• Relationships between treelength and *graph minor decompositions FPT algorithms*?

Constructive relationship between treewidth and treelength?

- Random models for **directed** social networks (Twitter, ...) *Metric treelikeness in directed graphs?*
- Finer-grained complexity of graphical games

Parallel complexity of unweighted games and implications for weighted games.

Any questions?

