
UNIVERSITÉ CÔTE D’AZUR

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

T H È S E
pour obtenir le titre de

Docteur en Sciences

de l’Université Côte d’Azur
Mention : Informatique

Présentée et soutenue par

Guillaume Ducoffe

Propriétés métriques des grands
graphes

Thèse dirigée par David Coudert

préparée à l’Inria Sophia Antipolis, Projet COATI
soutenue le 9 décembre 2016

Jury :

Rapporteurs : Victor Chepoi - Aix-Marseille Université
Laurent Viennot - Inria (GANG)

Directeur : David Coudert - Université Côte d’Azur, Inria, CNRS, I3S, France
Examinateurs : Michele Flammini - Università degli Studi dell’Aquila

Cyril Gavoille - LaBRI
Nicolas Nisse - Université Côte d’Azur, Inria, CNRS, I3S, France
Robert Tarjan - Princeton University and Intertrust Technologies

Invité : Igor Litovsky - Université Côte d’Azur, CNRS, I3S, France

Acknowledgements

Je remercie d’abord les membres de mon jury de thèse. Merci en particulier à Victor
Chepoi et Laurent Viennot pour avoir eu la gentillesse de rapporter ma thèse.
J’attends avec impatience la version roumaine de son rapport, promise par Victor.
Je remercie également Robert Tarjan pour m’avoir fait l’honneur d’accepter d’être
membre de mon jury de thèse et d’avoir fait un long déplacement depuis les États-
Unis à cette occasion. Enfin, merci à Igor Litovsky, dont je n’oublie pas qu’il a
été le premier à me pousser vers la recherche, et que je remercie chaleureusement
ainsi que Paul Franchi, Ioan Bond et Christophe Papazian.

Mes remerciements vont de même à Jean-Claude Bermond, pour m’avoir en-
cadré lors de mon tout premier stage de recherche, et depuis pour m’avoir guidé
et sagement conseillé dans mes choix de carrière. . . et battu systématiquement au
trash ping-pong! Un très grand merci du fond du coeur à mon encadrant, David
Coudert, tant pour sa (très) grande patience que sa disponibilité, ses conseils sci-
entifiques et humains précieux, et les efforts de qualité qu’il a mis afin que cette
thèse se déroule dans les meilleures conditions possibles. Je tiens bien sûr à re-
mercier tous les autres membres du projet Mascotte/Coati et apparentés: de
Patricia, l’âme de cette équipe, à mon co-bureau Nicolas – alias Jésus – en passant
par Nicolas (le grand), Christelle l’excellente (non, elle ne m’a pas mis le couteau
sous la gorge. . .), Minus le bon, Majus la brute et Michel le truand, l’énigmatique
Stéphane, Julien, Joanna, Steven, William “Hochet”, et les anciens (et revenus) dont
Fatima, Julio, Dorian et Magali, Nadège, Aurélien, Nathann, Alvinice et Khoa. Ces
remerciements s’étendent, outre-Atlantique, à Augustin, Roxana, Mathias, Juba,
Chris, Avner, Arthi et Max.

Des remerciements très spéciaux à mes deux soeurs, Anaïs et Mélanie, qui me
soutiennent depuis toujours dans mes choix de vie et de carrière. J’ai une pensée
particulière pour Mélanie qui, malheureusement, n’a pas pu se libérer pour la sou-
tenance. À vous deux, j’espère vous rendre ne serait-ce que le dixième de ce que
vous m’avez donné. Merci, bien sûr, à mes deux parents, à qui ira toujours toute
mon affection. J’ai une petite pensée pour Lolita, trop tôt disparue, et pour Pelote,
Mistoufle et Catarina. Enfin, je fais un merci général à ma grand-mère ainsi qu’à
tout le reste de ma nombreuse petite famille!

J’offre mon dernier remerciement, du fond de mon coeur et de mon âme, à ma
chérie Adriana. Il y a eu un avant et un après t’avoir rencontré. Je te dois ma bonne
humeur, mon inspiration, et l’éternité ne me suffira pas à te rembourser ma dette
(même si je compte bien m’y employer). Eu te iubesc la nebunie, jumatatea mea!

Abstract

Large scale communication networks are everywhere, ranging from data centers with
millions of servers to social networks with billions of users. This thesis is devoted to
the fine-grained complexity analysis of combinatorial problems on these networks.

In the first part, we focus on the embeddability of communication networks to
tree topologies. This property has been shown to be crucial in the understanding
of some aspects of network traffic (such as congestion). More precisely, we study
the computational complexity of Gromov hyperbolicity and of tree decomposition
parameters in graphs – including treelength and treebreadth. On the way, we give
new bounds on these parameters in several graph classes of interest, some of them
being used in the design of data center interconnection networks. The main result
in this part is a relationship between treelength and treewidth: another well-studied
graph parameter, that gives a unifying view of treelikeness in graphs and has algo-
rithmic applications. This part borrows from graph theory and recent techniques in
complexity theory.

The second part of the thesis is on the modeling of two privacy concerns with
social networking services. We aim at analysing information flows in these networks,
represented as dynamical processes on graphs. First, a coloring game on graphs is
studied as a solution concept for the dynamic of online communities. We give a
fine-grained complexity analysis for computing Nash and strong Nash equilibria in
this game, thereby answering open questions from the literature. On the way, we
propose new directions in algorithmic game theory and parallel complexity, using
coloring games as a case example. Finally, we introduce a new learning problem
that is motivated by the need for users to uncover any misuse of their personal data
online. We give positive and negative results on the tractability of this problem.

Keywords: Graph; Algorithms; Complexity in P; Gromov Hyperbolicity;
Treelength; Treebreadth; Treewidth; Coloring games; Nash equilibrium;
Boolean function learning.

Résumé

Les grands réseaux de communication sont partout, des centres de données avec des
millions de serveurs jusqu’aux réseaux sociaux avec plusieurs milliards d’utilisateurs.
Cette thèse est dédiée à l’étude fine de la complexité de différents problèmes com-
binatoires sur ces réseaux.

Dans la première partie, nous nous intéressons aux propriétés des plongements
des réseaux de communication dans les arbres. Ces propriétés aident à mieux com-
prendre divers aspects du trafic dans les réseaux (tels que la congestion). Plus
précisément, nous étudions la complexité du calcul de l’hyperbolicité au sens de
Gromov et de paramètres des décompositions arborescentes dans les graphes. Ces
paramètres incluent la longueur arborescente (treelength) et l’épaisseur arborescente
(treebreadth). Au passage, nous démontrons de nouvelles bornes sur ces paramètres
dans de nombreuses classes de graphes, certaines d’entre elles ayant été utilisées
dans la conception de réseaux d’interconnexion des centres de données. Le résultat
principal dans cette partie est une relation entre longueur et largeur arborescentes
(treewidth), qui est un autre paramètre très étudié des graphes. De ce résultat, nous
obtenons une vision unifiée de la ressemblance des graphes avec un arbre, ainsi que
différentes applications algorithmiques. Nous utilisons dans cette partie divers outils
de la théorie des graphes et des techniques récentes de la théorie de la complexité.

La seconde partie de cette thèse est consacrée à la modélisation de deux prob-
lèmes motivés par le respect de la vie privée sur les réseaux sociaux. Notre objectif
est d’analyser les flux d’information dans ces réseaux, représentés par des processus
dynamiques sur des graphes. Tout d’abord, nous étudions un jeu de coloration sur
les graphes, en tant que concept de solution pour la dynamique des communautés en
ligne. Nous donnons une analyse fine de la complexité du calcul d’équilibres de Nash
dans ce jeu, ce qui nous permet de répondre à des questions ouvertes de la littéra-
ture. De plus, nous proposons de nouvelles directions en théorie algorithmique des
jeux et en théorie de la complexité parallèle, que nous illustrons à l’aide des jeux de
coloration. Finalement, nous proposons un tout nouveau problème d’apprentissage,
motivé par le besoin des utilisateurs en ligne d’identifier les mauvais usages de leurs
données personnelles. Nous donnons des résultats, positifs comme négatifs, sur la
faisabilité de ce problème.

Mots clés: Graphe; Algorithmes; Complexité dans P; Hyperbolicité; Tree-
length; Treebreadth; Treewidth; Jeux de coloration; Équilibre de Nash; Ap-
prentissage de fonction Booléenne.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Contributions . 2

1.2.1 Part I: Metric tree-likeness in graphs 3
1.2.2 Part II: Privacy at large scale in social graphs 4

1.3 Preliminaries and notations . 5
1.4 List of publications . 6

I Metric tree-likeness in graphs 9

2 A survey on graph hyperbolicity 13
2.1 Introduction . 14

2.1.1 First objective: characterizing “hyperbolic” and “non hyper-
bolic” graph classes . 16

2.1.2 Second objective: computing the hyperbolicity of large graphs 17
2.1.3 Outline of the chapter . 18

2.2 Motivation . 19
2.2.1 Implications/applications of hyperbolicity 22

2.3 Definitions of hyperbolicity . 24
2.3.1 δ-hyperbolic graphs . 25
2.3.2 Reformulation of hyperbolicity 29
2.3.3 What is a “hyperbolic” graph ? 35

2.4 Hyperbolic graph classes . 36
2.4.1 Tree-likeness in graphs and hyperbolicity 36
2.4.2 Classical upper-bounds on hyperbolicity 40
2.4.3 Contribution: Graph operations and hyperbolicity 42
2.4.4 Conclusion and open perspectives 44

2.5 Obstructions to hyperbolicity . 44
2.5.1 Related work: random graphs are non hyperbolic 45
2.5.2 Lower-bounds on the hyperbolicity 46
2.5.3 Open problems . 53

2.6 On computing the hyperbolicity of graphs 55
2.6.1 Related work . 55
2.6.2 Contribution of this thesis: Preprocessing 57
2.6.3 Hardness results . 64

2.7 Algorithmic applications . 67
2.7.1 Distance approximations . 68
2.7.2 p-centers . 70
2.7.3 Traveling Salesman Problem 71

iv Contents

2.7.4 Cut problems . 72
2.8 Conclusion . 73

3 Tree decompositions with metric constraints on the bags 75
3.1 Introduction . 76

3.1.1 Context . 76
3.1.2 General objective: efficient computation of tree decompositions 77

3.2 Some basics on tree decompositions 79
3.2.1 Tree-likeness parameters . 80
3.2.2 Relationship with triangulations 83
3.2.3 Tree decompositions with constrained adhesion sets 84

3.3 Computational aspects of clique-decomposition 86
3.3.1 State of the art . 86
3.3.2 Contributions . 87
3.3.3 Summarizing the proofs . 88

3.4 On the complexity of computing treebreadth and its relatives 91
3.4.1 Summarize of our contributions 92
3.4.2 Approach and the techniques used in the proofs 93
3.4.3 Open problems and future work 102

3.5 Treewidth versus treelength! . 103
3.5.1 State of the art . 103
3.5.2 Contributions: upper and lower bounds for treewidth by using

treelength . 104
3.5.3 Proving the bounds . 105

3.6 Conclusion . 111

II Privacy at large scale in social graphs 113

4 The computation of equilibria in coloring games 117
4.1 Introduction . 118

4.1.1 Presentation of coloring games 119
4.1.2 Contributions . 121

4.2 Definitions . 123
4.2.1 Stable partitions and better-response dynamics 124
4.2.2 Friendship and conflict graphs 125

4.3 Unweighted games: the time of convergence for better-response dy-
namics . 125
4.3.1 A finer-grained complexity for the problem of computing k-

stable partitions . 126
4.3.2 Closed formula for the worst-case time of convergence of

better-response dynamics (k ≤ 2) 127
4.3.3 Lower-bounds for the worst-case time of convergence of better-

response dynamics (k ≥ 4) . 131

Contents v

4.4 The parallel complexity of coloring games 137
4.4.1 Overall approach and main result 137
4.4.2 The reduction . 138
4.4.3 Proof of the main result . 142

4.5 Weighted games: existence of equilibria 146
4.5.1 Positive results . 147
4.5.2 The hardness of recognizing games with k-stable partitions . 148

4.6 Extensions of coloring games . 153
4.6.1 Gossiping . 153
4.6.2 Asymmetry . 154
4.6.3 List coloring games . 155
4.6.4 Coloring games on hypergraphs 156

4.7 Concluding remarks . 156

5 Learning formulas in a noisy model 159
5.1 Introduction . 160

5.1.1 Our results . 161
5.1.2 Outline of the chapter . 162

5.2 Learning model . 162
5.2.1 PAC learning . 163
5.2.2 Juntas . 164
5.2.3 The oracle . 165
5.2.4 Distribution for the sampler 168

5.3 Single-input targeting . 169
5.3.1 Our results . 169
5.3.2 Reduction to Set Cover . 170
5.3.3 Concentration inequalities . 171
5.3.4 Proof overview . 173

5.4 Complex targeting: the case of monotonic functions 175
5.4.1 Beyond single-input: the influence of the targeting lift 177
5.4.2 Faster algorithms and tradeoffs 180
5.4.3 Conclusion and open perspectives 183

5.5 General case . 184
5.5.1 Identification of the relevant inputs 184
5.5.2 Filtering technique . 186
5.5.3 Impossibility results . 187

5.6 Conclusion . 188

6 Conclusion 191
6.1 Open perspectives . 191

Bibliography 193

vi Contents

A Résumé de la thèse 219
A.1 Contexte . 219
A.2 Contributions . 220

A.2.1 Partie I: Sur les graphes dont la métrique est proche de celle
d’un arbre . 220

A.2.2 Partie II: Le respect de la vie privée à grande échelle dans les
réseaux sociaux . 222

B Applying clique-decomposition for computing graph hyperbolicity227

C On the recognition of C4-free and 1/2-hyperbolic graphs 267

D On the hyperbolicity of bipartite and intersection graphs 285

E Data center interconnection networks are not hyperbolic 305

F Clique-decomposition revisited 337

G On the complexity of computing tree decompositions with metric
constraints on the bags 347

H To approximate treewidth, use treelength! 413

I The Complexity of Hedonic coalitions under bounded cooperation429

J The parallel complexity of coloring games 461

K Xray: enhancing the Web’s transparency with differential correla-
tion 477

L Web Transparency for Complex Targeting: Algorithms, Limits and
Tradeoffs 495

M Can Web Transparency Tools Cope with Complex Targeting? 499

N A theory for ad targeting identification 519

Chapter 1

Introduction

Contents
1.1 Context . 1
1.2 Contributions . 2

1.2.1 Part I: Metric tree-likeness in graphs 3
1.2.2 Part II: Privacy at large scale in social graphs 4

1.3 Preliminaries and notations 5
1.4 List of publications . 6

1.1 Context

Information sharing online has been gaining momentum over the last decades. As
examples, as of 2015 there have been 205 billion emails sent on a daily basis [Ema];
Twitter reports on 500 million messages exchanged a day on its social platform [Twi];
more generally, the global Internet traffic has been observed to grow from 100 GB per
day in 1992 to 20,235 GBps in 2015 [Cisa]. Accordingly, the volume of data stored
also has increased, and it is now expected to exceed 40 zettabytes by 2020 [IDC].

As we now enter into this “zettabyte era” [Cisb], information technologists are
confronted to several issues that are regularly covered by the media. Two of them
are addressed in this thesis.

• Scalability – is defined in [Ten16] as the requirement for the algorithms to run
in quasi-linear time in the size of the network. Put in less restrictive terms, there
is a need for efficient algorithms in order to process the communication networks.
Higher demands for such algorithms emerge from numerous domains, includ-
ing telecommunications, social networks, bio informatics, computer vision, and
economics. However, the rapid expansion of information sharing and data col-
lection has lead these networks to scale up, with now millions of servers in some
data centers [DCM], billions of users in social networks [FBN], etc. Textbook
methods do not scale well with networks of these sizes, thereby increasing the
gap between what we aim at computing and what can be achieved in practice.
Hence, there is a need for revisiting what efficient/scalable computation means
in this context.

We will propose advances in this direction based on tools from (algorithmic)
graph theory and complexity theory.

2 Chapter 1. Introduction

• Privacy – is defined in [EDP] as “a right which prevents public authorities [or
any other organization or individual] from measures which are [invasive for the
respect of private life], unless certain conditions have been met.” In particular,
the agressive collection of data by online companies has started raising alarms
as now reports on potential abuses are surfacing on a regular basis [Gou14,
Mat12, VDSVS12, The14]. Therefore, there is a need for predictive models in
order to detect, on an individual level, when these violations occur, or even
better to identify them.

Our main tools in this task will be computational learning theory and algorith-
mic game theory.
Before summarizing our contributions in Section 1.2, let us sketch our approach

for the thesis. Roughly, this work concentrates on a collection of combinatorial prob-
lems on graphs, whose study is motivated by these above two issues in information
technology. Since the proposed solutions are aimed at scaling up with large net-
works, we are particularly interested in obtaining a fine-grained complexity analysis
for these problems.

In particular, our study in Part I puts the focus on some graph invariants which
have been shown in previous works [NS11] to be related with these above two is-
sues in information technology. Studying properties of the “complex networks” and
their applications is not new, and this area has been proved successful in finding
relevant parameters and properties to study, such as: clustering [LLDM09], power-
law degree distribution [BAJ00], navigability [BKC09], (ultra) small world phe-
nomenon [WS98], structural decomposition into a core and peripheries [DGM06],
etc. In this work, we emphasize on the metric tree-likeness in graphs: a topic that
has been receiving growing attention over the last decades and that summarizes at
measuring how close the distance distribution of a graph is to a tree metric [Gro87].

We argue that studying the properties of the distance distribution is a natural
choice when considering information propagation in the graph. Furthermore, we
will detail more in Part I how the advantages and disadvantages of trees (with nice
algorithmic applications on the one hand, but vulnerabilities on the other hand) can
be translated to the graphs that are (metrically) “tree-like”.

This main line of study will be completed with the complexity analysis of two
dynamical processes on graphs in Part II, that both cover some aspects of privacy
in communication networks. Simply put, the aim of this side line of the thesis is to
design scalable tools in order to enforce privacy in these networks.

1.2 Contributions

Our work is presented in two separate parts which can be read independently. We
present their content in Sections 1.2.1 and 1.2.2, respectively.

Full papers can be found in the appendix. Indeed, we made the choice not to
include all proofs in the body of the chapters, partly for ease of readability as some
of them are very long (dozens of pages). We will only give the proofs that, in our

1.2. Contributions 3

opinion, are the best illustrations of our techniques. Sketches of the longest proofs
will be also provided.

1.2.1 Part I: Metric tree-likeness in graphs

A main objective of Part I is to obtain a finer-grained analysis for the complexity
of computing (metric) tree-likeness parameters and decompositions of graphs. Es-
pecially, can these properties be computed on large-scale graphs, with sometimes
millions of nodes and billions of edges ? On the way, our analysis will conduce
to study the relationships between metric tree-likeness in graphs and other graph
properties (structural, topological, algebraic, etc.).

1.2.1.1 Chapter 2: A survey on graph hyperbolicity

This chapter introduces the notion of graph hyperbolicity, that gives lower and
upper bounds on the best possible distortion of the distances in a graph when it is
embedded into a tree.

First, we show positive and negative results on the complexity of computing
this parameter. In particular, on the positive side we propose a preprocessing
method for decreasing the size of the input graph by using the well-known clique-
decomposition [BPS10], of which we give a fine-grained analysis. However, on a
more negative side, we prove that the recognition of graphs with small hyperbolicity
(at most 1/2) is computationally equivalent to the detection of induced squares in a
graph. The latter result implies a conditional cubic lower-bound on the complexity
of computing graph hyperbolicity. This is joint work with Nathann Cohen, David
Coudert and Aurélien Lancin [CD14, CCDL17].

Then, we establish new bounds on this parameter in some graph classes that
are used in the design of data center interconnection networks. In practice, these
bounds can be used in order to sharply estimate the hyperbolicity in these classes of
graphs. We complement these results with a fine-grained analysis of the variations
of hyperbolicity that may be caused by various graph operations such as line graph,
clique graph, etc. This analysis is particularly interesting in some cases where the
operation can be efficiently reversed (e.g., the root of a line graph can be computed
in linear time [Whi92]), as then it leads to new preprocessing methods for the
computation of graph hyperbolicity. This is joint work with David Coudert [CD16a,
CD16b].

1.2.1.2 Chapter 3: Tree decompositions with metric constraints on the
bags

New results are presented on the complexity of computing tree decompositions (de-
compositions of a graph in a tree-like manner) with metric constraints on their bags
(a.k.a., subgraphs resulting from the decomposition).

A finer-grained analysis of the complexity of computing the clique-decomposition
is first presented. This problem is proved to be computationally equivalent, under

4 Chapter 1. Introduction

standard complexity assumptions, to the detection of triangles in graphs and the
multiplication of two square matrices. On a more positive side, we show that it can
be solved in quasi-linear time on some classes of graph where the maximum size of
a clique is bounded. This is joint work with David Coudert [DC17].

Second, we answer open questions in the literature on the complexity of com-
puting treebreadth, pathbreadth and pathlength: that are tree-likeness parameters
all related to the notion of graph hyperbolicity. Namely, computing any of these
parameters is an NP-hard problem. In particular, recognizing the graphs with tree-
breadth at most one is NP-complete. However, we prove that the latter problem
can be solved in polynomial-time for bipartite graphs and planar graphs. This is
joint work with Sylvain Legay and Nicolas Nisse [DLN16a].

Finally, we investigate the relationships between another metric tree-likeness
parameter, called treelength, and a well-known structural tree-likeness parameter
that is called treewidth. Roughly, we establish upper and lower bounds on the
treewidth with linear dependency on the treelength in the classes of graph with
bounded-length isometric cycle (i.e., with no shortcut) and bounded genus (i.e.,
that can be drawn with no edge-crossing in a surface of bounded Euler genus). On
the scalability point of view, algorithmic applications of these results will be further
discussed. This is joint work with David Coudert and Nicolas Nisse [CDN16].

1.2.2 Part II: Privacy at large scale in social graphs

Two problems on privacy are discussed and studied in this part. Our objective is to
obtain a finer-grained analysis for the complexity of these two problems.

1.2.2.1 Chapter 4: The computation of equilibria in coloring games

We consider a coloring game played on a graph. This game has been proposed
in [KL13] as a solution concept for the dynamics of communities’ formation in social
networks. Earlier applications of the game have been suggested in [CKPS10] for
securing group communications.

We present some new results on the complexity for computing equilibria in this
game. More precisely, better-response dynamics can be used in order to compute a
stronger notion of Nash equilibrium: that is robust to every coalition of agents of
size at most a fixed k. On the positive side, we establish the exact convergence time
of the dynamic for coalitions of size at most two. However, on the negative side,
we prove that this convergence time is superpolynomial for coalitions of size at least
four, thereby answering negatively to open questions from [EGM12, KL13]. This is
joint work with Dorian Mazauric and Augustin Chaintreau [DMC13a, DMC17].

The latter results are complemented with a refined analysis for the complexity
of computing a Nash equilibrium in this game (robust to coalitions of size one).
This problem will be shown to be PTIME-hard under parallel reductions (and in
particular, to logspace reductions), which is strong evidence that it is inherently
sequential [Duc16].

1.3. Preliminaries and notations 5

Then, the remaining of the chapter is devoted to a natural generalization of
coloring games on edge-weighted graphs. We give sufficient conditions for the ex-
istence of equilibria in these games depending on the structure of the underlying
graph. We also propose surprising constructions of games that do not admit such
equilibria. Last, we prove that the recognition of generalized coloring games that
admit such equilibria is NP-complete. Extensions of all these results to broader
classes of games will be discussed. This is joint work with Dorian Mazauric and
Augustin Chaintreau [DMC12, DMC13a, DMC17].

1.2.2.2 Chapter 5: Learning formulas in a noisy model

We next focus on a learning problem whose context can be roughly described as
follows. Suppose we are given a fixed ground-set D (representing keywords) and a
graph where each node is labeled with a subset of D (i.e., a collection of keywords).
The nodes are assigned a Boolean under some (black-box) random process, that is
correlated with an unknown Boolean function over the labels. Then, the objective
is to learn this function. We aim at modeling with this problem the detection of
any (mis)use of individual data by online advertisers.

First, we propose an algorithm for learning the function in the simpler case
where it depends on at most one input. The latter algorithm will be the cornerstone
of more sophisticated methods in order to learn any function – but under more
restrictive hypotheses. Additional constraints are proved to be necessary in the
general case, as otherwise the function cannot be learnt already if it depends on
two inputs. This is joint work with Mathias Lécuyer, Francis Lan, Max Tucker,
Riley Sphan, Andrei Papancea, Theofilos Petsios, Augustin Chaintreau and Roxana
Geambasu [LDL+14, DLCG15, DTC17, CD17].

1.3 Preliminaries and notations

We borrow from the graph terminology of [BM08, Die10]. All graphs considered
will be finite, undirected, unweighted, simple (hence, with neither loops nor multiple
edges) and connected. In this situation, for every graph G = (V,E) we can define
the distance between every two vertices u, v ∈ V as the minimum number of edges
onto a uv-path of G. This distance is denoted by dG(u, v) in what follows, or simply
d(u, v) when there is no ambiguity on the graph G. Our proofs will make use of
the notions of subgraphs, induced subgraphs and isometric subgraphs, the latter
denoting a subgraph H of a graph G such that the distance between every two
vertices in H is the same in H as in G.

Let us introduce additional distance notations. The eccentricity of a vertex
v ∈ V , denoted by ecc(v) = maxu∈V dG(u, v) is the maximum distance in G between
v and another vertex. The diameter of G, denoted by diam(G) = maxv∈V ecc(v), is
the maximum eccentricity of a vertex of G. Furthermore, let BG(v, r) = {u ∈ V |
d(u, v) ≤ r} be the ball of radius r centered on vertex v. The radius of G, denoted
by rad(G) = minv∈V ecc(v), is the least r such that BG(v, r) = V for some vertex

6 International conference papers

v. Finally, let NG[v] = BG(v, 1) be the closed neighbourhood of a vertex. The open
neighbourhood of v is defined as NG(v) = NG[v] \ v. By extension, let us define
for every subset S ⊆ V its open neighbourhood NG(S) =

(⋃
v∈S NG(v)

)
\ S and its

closed neighbourhood NG[S] = NG(S) ∪ S. We will remove the subscript when no
ambiguity occurs.

1.4 List of publications

Journal papers

[ABD14] J. Araujo, J-C. Bermond, and G. Ducoffe. Eulerian and hamiltonian di-
cyles in directed hypergraphs. Discrete Mathematics, Algorithms and Ap-
plications, 6(1):1450012–1–1450012–29, 2014. (Uncited.)

[CD14] D. Coudert and G. Ducoffe. Recognition of c4-free and 1/2-hyperbolic
graphs. SIAM Journal of Discrete Mathematics, 28(3):1601–1617, 2014.
(Cited in pages 3, 13, 18, 57, 65 and 221.)

[CD16a] D. Coudert and G. Ducoffe. Data center interconnection networks are not
hyperbolic. Journal of Theoretical Computer Science, 639(1):72–90, 2016.
(Cited in pages 3, 13, 17, 48, 50, 51, 53, 54, 60 and 221.)

[CD16b] D. Coudert and G. Ducoffe. On the hyperbolicity of bipartite graphs and
intersection graphs. Discrete Applied Mathematics, 214:187–195, 2016.
(Cited in pages 3, 13, 17, 42, 43 and 221.)

[CDN16] D. Coudert, G. Ducoffe, and N. Nisse. To approximate treewidth, use
treelength! SIAM Journal of Discrete Mathematics, 30(3):1424–1436,
2016. (Cited in pages 4, 40, 75, 79, 104, 105, 107, 108, 109 and 222.)

[Duc13] G. Ducoffe. Hamiltonicity of large generalized de bruijn cycles. Discrete
Applied Mathematics, 161:2200–2204, 2013. (Uncited.)

International conference papers

[DLCG15] G. Ducoffe, M. Lécuyer, A. Chaintreau, and R. Geambasu. Web’s trans-
parency for complex targeting: Algorithms, limits and tradeoffs. In SIG-
METRICS’15 Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pages
465–466, 2015. (Cited in pages 5, 159, 165, 168, 177 and 223.)

[DLN16] G. Ducoffe, N. Legay, and N. Nisse. On the complexity of computing
treebreadth. In IWOCA 2016 – 27th International Workshop on Combi-
natorial Algorithms, pages 3–15, 2016. (Cited in pages 4, 75, 78, 91, 92,
93, 94, 98, 111 and 222.)

[DMC13] G. Ducoffe, D. Mazauric, and A. Chaintreau. Can selfish groups be
self-enforcing? In Workshop on Social Computing and User Generated

National conference papers 7

Content at EC’13, pages 1–47, 2013. (Cited in pages 4, 5, 117, 123, 222
and 223.)

[Duc16] G. Ducoffe. The parallel complexity of coloring games. In SAGT 2016 –
9th International Symposium on Algorithmic Game Theory, pages 27–39,
2016. (Cited in pages 4, 117, 123, 143 and 223.)

[LDL+14] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn,
A. Chaintreau, and R. Geambasu. Xray: Enhancing the web’s trans-
parency with differential correlation. In USENIX Security Symposium,
pages 49–64, 2014. (Cited in pages 5, 159, 160, 161, 162, 163, 165, 166,
168, 169, 170, 176, 188, 189 and 223.)

National conference papers

[CD16] D. Coudert and G. Ducoffe. Liens entre symétries et étirements de
routages dans les réseaux d’interconnexion de centres de données. In
ALGOTEL 2016 – 18èmes Rencontres Francophones sur les Aspects Al-
gorithmiques des Télécommunications, pages 1–4, 2016. (Uncited.)

[CDGL15] A. Chaintreau, G. Ducoffe, R. Geambasu, and M. Lécuyer. Vers une plus
grande transparence du web. In ALGOTEL 2015 – 17èmes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications,
pages 1–4, 2015. (Uncited.)

[CDN15] D. Coudert, G. Ducoffe, and N. Nisse. Structure vs. métrique dans les
graphes. In ALGOTEL 2015 – 17èmes Rencontres Francophones sur
les Aspects Algorithmiques des Télécommunications, pages 1–4, 2015.
(Uncited.)

[DMC13] G. Ducoffe, D. Mazauric, and A. Chaintreau. De la difficulté de garder ses
amis (quand on a des ennemis)! In ALGOTEL 2013 – 15èmes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications,
pages 1–4, 2013. (Cited in page 123.)

Unpublished papers

[CCDL17] N. Cohen, D. Coudert, G. Ducoffe, and A. Lancin. Applying clique-
decomposition for computing gromov hyperbolicity. Submitted (Research
Report on HAL, hal-00989024), 2017. (Cited in pages 3, 13, 18, 61, 62,
63 and 221.)

[CD17] A. Chaintreau and G. Ducoffe. A theory for ad targeting identification.
In preparation, 2017. (Cited in pages 5, 159, 163, 169, 184 and 223.)

[DC17] G. Ducoffe and D. Coudert. Clique-decomposition revisited. In revision
(Research Report on HAL, hal-01266147), 2017. (Cited in pages 4, 75,
78, 86, 87, 88, 90, 111 and 222.)

8 Theses

[DMC17] G. Ducoffe, D. Mazauric, and A. Chaintreau. The complexity of hedonic
coalitions under bounded cooperation. Submitted (Research Report on
ArXiv, arXiv:1212.3782), 2017. (Cited in pages 4, 5, 117, 123, 131, 132,
133, 135, 137, 150, 222 and 223.)

[DTC17] G. Ducoffe, M. Tucker, and A. Chaintreau. Can web’s transparency tools
cope with complex targeting? In preparation, 2017. (Cited in pages 5,
159, 165, 168, 171, 175 and 223.)

Theses

[Duc13] G. Ducoffe. Outils théoriques pour le calcul pratique de l’hyperbolicité dans
les grands graphes. Master’s thesis, MPRI – ENS Cachan, 2013. (Uncited.)

Part I

Metric tree-likeness in graphs

11

The purpose of the next two chapters is to study geometric and topological prop-
erties of graphs. They have been shown to be directly related to some important
aspects of communications in large-scale data networks, such as e.g., their perfor-
mances, reliability and security [NS11]. Hence the need for better understanding
and computing these graph properties, in order to better analyse and improve upon
these aspects of network communications.

• Chapter 2 is a survey on graph hyperbolicity: a parameter that somewhat
represents the “curvature” of the network. We are particularly interested in
characterizing the graph classes where this parameter is either bounded or un-
bounded (respectively called hyperbolic and non hyperbolic graph classes), and
to improve upon its computation in large-scale graphs.
• Chapter 3 presents new results on tree decompositions in graphs. Namely,

positive and negative results are obtained on the complexity for computing tree
decompositions that are defined via metric constraints on their bags. On the
way, a finer-grained study of the relationships between structural and metric
graph properties is proposed, that culminates with new relationships between
the two graph parameters called treewidth and treelength.

Chapter 2

A survey on graph hyperbolicity

Summary

This chapter summarizes my work on graph hyperbolicity. It will be presented as a
survey. The initial motivation for this work was to improve the practical computa-
tion of hyperbolicity on large graphs. In particular, I focused on the following general
question: among the graph transformations that can be efficiently computed, which
ones do not affect the value of hyperbolicity by more than a moderate term (multi-
plicative or, preferably, additive) ? I proved it was the case for clique-decomposition
(Section 2.6.2.2) and the line graph operation (Section 2.4.3). Furthermore, my work
on clique-decomposition has been successfully applied on large co-authorship graphs
in order to compute their hyperbolicity [CCDL17].

I also proved new lower-bounds on graph hyperbolicity (using graph endomor-
phisms) that may further help reducing the complexity for computing the hyper-
bolicity in some graph classes (Section 2.5.2.4). By doing so, I answered an open
question from researchers at the University of Girona (private communication) who
aimed at sharply estimating the hyperbolicity of very large underlying topologies
that are used for data center interconnection networks. Indeed, these graphs have
more than one million nodes each, that overrule the current limitations of the exist-
ing algorithms for computing this parameter. By using my lower-bound techniques, I
was able to give the exact value of the hyperbolicity for most topologies, and to prove
close lower and upper bounds for the hyperbolicity of many other ones [CD16a].

I complemented these results with a conditional lower-bound on the complexity
of recognizing graphs with hyperbolicity at most 1/2 (Section 2.6.3). It suggests
that there does not exist any truly subcubic combinatorial algorithm for computing
hyperbolicity on general graphs.

All my papers on graph hyperbolicity [CCDL17, CD16a, CD16b, CD14] are
collected in the appendix.

14 Chapter 2. A survey on graph hyperbolicity

Contents
2.1 Introduction . 14

2.1.1 First objective: characterizing “hyperbolic” and “non hyper-
bolic” graph classes . 16

2.1.2 Second objective: computing the hyperbolicity of large graphs 17
2.1.3 Outline of the chapter . 18

2.2 Motivation . 19
2.2.1 Implications/applications of hyperbolicity 22

2.3 Definitions of hyperbolicity 24
2.3.1 δ-hyperbolic graphs . 25
2.3.2 Reformulation of hyperbolicity 29
2.3.3 What is a “hyperbolic” graph ? 35

2.4 Hyperbolic graph classes . 36
2.4.1 Tree-likeness in graphs and hyperbolicity 36
2.4.2 Classical upper-bounds on hyperbolicity 40
2.4.3 Contribution: Graph operations and hyperbolicity 42
2.4.4 Conclusion and open perspectives 44

2.5 Obstructions to hyperbolicity 44
2.5.1 Related work: random graphs are non hyperbolic 45
2.5.2 Lower-bounds on the hyperbolicity 46
2.5.3 Open problems . 53

2.6 On computing the hyperbolicity of graphs 55
2.6.1 Related work . 55
2.6.2 Contribution of this thesis: Preprocessing 57
2.6.3 Hardness results . 64

2.7 Algorithmic applications . 67
2.7.1 Distance approximations . 68
2.7.2 p-centers . 70
2.7.3 Traveling Salesman Problem 71
2.7.4 Cut problems . 72

2.8 Conclusion . 73

2.1 Introduction

In this chapter we survey the study on Gromov hyperbolicity in graphs [Gro87,
Ben13]. Roughly, it is a parameter which measures how close a given metric space is
to a metric tree [Ban90, Bun74] (formal definitions are postponed to Section 2.3). In
particular, it gives sharp bounds on the least distortion of the distances in a (finite)
metric space when its elements are mapped to the nodes of an edge-weighted tree.
Trees and bounded diameter graphs (embeddable into any shortest-path tree with
constant distortion of their distances) will be shown to be trivially hyperbolic.

Gromov hyperbolicity is a broad concept that can be defined for any metric
space. In fact, it has been first investigated for word metric spaces on groups [Gro87].
This notion of hyperbolicity in groups is now regarded as a powerful tool that can be

2.1. Introduction 15

used in order to capture broad classes of groups with precise and important struc-
tural properties [GdLH90]. In particular, it has applications in the study of auto-
matic groups [Gro87, EPC+92], where informally speaking, elements of the groups
are the vertices of some (Cayley) graph and it can be checked with finite-state au-
tomata whether two words represent either a same vertex or two adjacent vertices.
Automatic groups have nice algorithmic applications. For instance the word prob-
lem can be solved in quadratic time for these groups [EPC+92]. These applications
transpose to groups with finite hyperbolicity, that are a particular case of automatic
groups.

There is now a rich literature on the hyperbolicity of groups as metric
spaces [ABC+91, BH11, GdLH90]. In this chapter, built as a survey, we emphasize
on some results that are more specific, and relevant, to graph theory.

I will present my contributions on this topic in this chapter. They will be
highlighted at various places in what follows. I hope that the organization of this
chapter will help the reader to have a good overview of the positioning of my work
in the growing literature on graph hyperbolicity.

Foreword

Let us start motivating the study of graph hyperbolicity in computer science. These
aspects will be further developed in Sections 2.2 and 2.7.

In what follows, hyperbolicity should be understood as a graph parameter which
gives bounds on the least distortion of the distances in a graph when its vertices
are mapped to points in some “tree-like” metric space. Namely, such spaces com-
prise (weighted) trees, Hyperbolic spaces, and more generally speaking spaces with
negative curvature. In general, embedding a graph into one of those spaces with
minimum distortion is NP-hard [ABF+98]. As we shall see in this chapter, one inter-
est of hyperbolicity is that it provides sharp bounds on this distortion in polynomial
time (we will come back to this aspect in Section 2.7.1).

A rough description of hyperbolicity in graphs can be found at the beginning
of Section 2.2. It should be noted, however, that there exists a bewildering zoo of
“equivalent” definitions for this concept, whose formal presentation is postponed to
Section 2.3.

Why studying hyperbolicity ? Depending on its order of magnitude, the value
of hyperbolicity has some implications on network properties which, to my mind, mo-
tivate the study of this parameter in graphs. Indeed, studies on it have found appli-
cations in the analysis of congestion [CDV16], routing schemes [AGCFV, CDE+12,
GL05], network security [JL04], bioinformatics [DMT96, MS99] and even in adver-
tising allocation in social networks [MGHB15] — to name a few. I shall detail more
about the above in Section 2.2. Most of these applications follow from, and can
be better explained by, the close relationship between hyperbolicity and the best
possible stretch (or distortion) of the distances in a graph when it is embedded into
a Hyperbolic space (see [BS11, VS14]).

16 Chapter 2. A survey on graph hyperbolicity

Hyperbolicity in graphs has strong geometric interpretations. It allows to ex-
tend the mathematical concept of curvature to discrete combinatorial structures
such as graphs. Further, it can be used to characterize the so-called “underlying
hidden geometry” of complex networks [KPK+10]. In this aspect, graph hyperbol-
icity adds up to other classification critera for networks such as (ultra) small world
phenomenon [WS98], power law degree distribution [BAJ00], navigability [BKC09],
high clustering coefficients [LLDM09], existence of a core [DGM06], etc. Relation-
ships between hyperbolicity and these more classical features have been investigated,
e.g., in [CFHM13, JLB08, DX09, ASM13].

On the algorithmic side, another interest of hyperbolicity is that it helps analyz-
ing, and designing, some graph heuristics on large-scale networks. For instance, the
2-sweep heuristic for computing the diameter is well-known to provide very good
results in practice [MLH08], and such good results can be explained assuming a
bounded hyperbolicity [CDE+08]. I shall come back to the algorithmic applications
of hyperbolicity in Section 2.7.

We next introduce two general objectives in the study of graph hyperbolicity,
that will be the backbone of the main technical sections of this chapter. On the
way, the personal contributions in this chapter are summarized and classified with
respect to these two general objectives.

Namely, what we aim at obtaining through this study on hyperbolicity is: a bet-
ter characterization of hyperbolic and non hyperbolic graph classes (Section 2.1.1),
and a finer-grained analysis of the complexity of computing this parameter (Sec-
tion 2.1.2). The outline of the chapter will be detailed in Section 2.1.3.

2.1.1 First objective: characterizing “hyperbolic” and “non hyper-
bolic” graph classes

The first objective is to derive lower and upper bound techniques for graph hyper-
bolicity. Indeed, it has become a growing line of research to characterize the classes
of “hyperbolic” graphs, a.k.a. graphs with “small” hyperbolicity. – We shall make
more precise what a hyperbolic graph is in Section 2.3.3 –. Partial results on that
topic have been obtained in [BRSV13, HPR14] and the papers cited therein. They
often derive from upper and lower bounds on the hyperbolicity of a given graph
w.r.t. some other graph parameters and properties.

In Sections 2.4 and 2.5, I shall revisit the known bounds on the hyperbolicity of
a given graph. Equipped with these bounds, I shall detail their application to some
graph classes.

My main contributions in this area, found in collaboration with David Coudert,
are twofold.

2.1.1.1 New lower bounds on the hyperbolicity of graphs

First, based on a game-theoretic definition of hyperbolicity, we provide some new
lower-bound techniques on the hyperbolicity of graphs. Altogether combined with

2.1. Introduction 17

the existence of certain type of symmetries (graph endomorphisms), these techniques
are used in order to estimate the correct order of magnitude for the hyperbolicity
in various graph classes. In particular, it follows directly from this work that many
classical topologies that are used for the design of the data center interconnection
networks [AK89] have their hyperbolicity that is proportional to their diameter.

This part of the contributions has been published in [CD16a]. I will describe
these lower-bound techniques in Section 2.5.2, with some new results that are yet
to be published.

2.1.1.2 A framework to bound the variations of hyperbolicity

Second, I present a simple framework in order to lower and upper bound the vari-
ations of hyperbolicity that may be caused by various graph operations. This
framework applies to the line graph [Whi92], clique graph [Ham68] and biclique
graph [GS10] operations, among some others, and the bounds so obtained are either
new or improving upon the existing ones. Furthermore, the framework is mainly
based on a new property of the hyperbolicity of bipartite graphs, that is of indepen-
dent interest.

This part of the results has been published in [CD16b]. I will expand on it in
Section 2.4.

2.1.2 Second objective: computing the hyperbolicity of large
graphs

Then, as the second main technical part of this chapter, we will consider the com-
plexity of computing the hyperbolicity of a given graph. That is, we will review
the best-known algorithms for computing this parameter (exact and approximate),
heuristics, and conditional lower-bounds on the best possible complexity for doing
so. We note that an efficient computation of hyperbolicity can help characteriz-
ing which graph classes are hyperbolic. Furthermore, computing the hyperbolicity
is a prerequesite for some of the above-mentioned applications to network prob-
lems [KL06, VS14] (see also Section 2.7).

There is a trivial algorithm to compute the hyperbolicity of a given n-vertex
graph in O(n4)-time and O(n2)-space. Therefore, the problem is polynomial-
time solvable (complexity class P). The latter is often regarded as a synonym for
“tractable” [Reu16]. However, with the growing size of real-life networks, ranging
from thousands to millions of nodes and billions of edges, we need to revisit the
time and space complexity of polynomial problems. This finer-grained complexity
of polynomial problems has become a boiling topic of research [Wil16]. In this as-
pect, we note that it is also of independent interest to study on the complexity of
computing the hyperbolicity so as to obtain a better understanding of the hardness
in P.

I will present in Section 2.6 the state-of-the-art algorithms for computing the
hyperbolicity. I will also present some conditional lower-bounds on the time com-

18 Chapter 2. A survey on graph hyperbolicity

plexity for this problem.

My main contributions in the area can be summarized as follows:

2.1.2.1 A preprocessing method for the computation of hyperbolicity

On the positive side, relationships between hyperbolicity and clique-minimal decom-
position [BPS10] are proved and exploited for algorithmic purposes. This is joint
work with Nathann Cohen, David Coudert and Aurélien Lancin. See also the PHD
thesis of Aurélien Lancin [Lan14] for complementary information on this work.

Precisely, we prove that the hyperbolicity of a graph is at most one unit off from
the maximum hyperbolicity from its atoms – a.k.a. the subgraphs resulting from
its decomposition by clique minimal separators. Then, we base on this result in
order to design a preprocessing algorithm for the computation of hyperbolicity. It
substitutes to a given graph a collection of supergraphs of its atoms.

As a byproduct, we obtain a linear-time algorithm for computing the hyperbol-
icity of a given outerplanar graph.

These results [CCDL17] are to be submitted for publication in a journal. They
will be detailed in Section 2.6.2.

2.1.2.2 Conditional lower-bound on the recognition of graphs with small
hyperbolicity

Finally, a computational equivalence is proven between the recognition of graphs
with hyperbolicity at most 1/2 and the detection of induced cycles of length at most
four in graphs. It can be derived from this result a conditional lower-bound on the
complexity of computing hyperbolicity, as well as a theoretically better algorithm
for the recognition of 1/2-hyperbolic graphs.

These results, found in collaboration with David Coudert, have been published
in [CD14]. I shall come back to them in Section 2.6.3.

2.1.3 Outline of the chapter

We start providing concrete applications of hyperbolicity in different fields of com-
puter science (Section 2.2). In our opinion, these applications should better motivate
the study of this parameter in graphs, and especially in network analysis. A rough
definition of hyperbolicity is also given in Section 2.2, whose only role is to make
the applications of this parameter more intuitive.

Then, formal definitions and preliminary results will be given in Section 2.3
(restating properly the informal definition of Section 2.2 with details). This section
is the most technical one of the chapter, as it goes deeper in the relationships between
hyperbolicity and many other “equivalent” graph properties.

Sections 2.4 and 2.5 are devoted to our first main objective: to find upper and
lower bounds on graph hyperbolicity, with the two sections being devoted respec-
tively to upper and lower bound techniques.

2.2. Motivation 19

u v

w

Puv

Puw Pvw

δ

Figure 2.1: a geodesic triangle ∆(u, v, w).

Finally, the two last technical Sections 2.6 and 2.7 cover the algorithmic aspects
of this parameter. In particular, the computational aspects of hyperbolicity are
covered in Section 2.6, that is the second main objective in our study.

In Section 2.7 we detail algorithmic applications of hyperbolicity to various graph
problems, that can be seen as a technical prolongation of Section 2.2. This section
is placed on purpose after all the other sections, so as to give the reader a better
overview of the (“hyperbolic”) graph classes to which these algorithmic results can
be applied. On the way, we mention several interesting open problems that are left
for future work.

We finally conclude the chapter in Section 2.8.

2.2 Motivation

In this section, we will outline fields in computer science where the study of graph
hyperbolicity plays a role. Our goal in doing so is to motivate the study of this
parameter for computer scientists. Before introducing these applications of hyper-
bolicity, though, we will need to sketch a few graph properties that are related to
this notion. They will be used in what follows in order to better intuit the role
played by graph hyperbolicity in some applications.

Let us start giving an intuitive definition of hyperbolicity, that is sometimes
named Rips condition in the literature [Gro87].

Consider any three vertices u, v, w in a given connected graphG = (V,E). By the
triangular inequality, we have dG(u, v) ≤ dG(u,w) + dG(w, v), with dG(u, v) being
the distance (minimum number of edges onto a uv-path) between u and v in G. We
can represent this situation with a geodesic triangle ∆(u, v, w) = Puv ∪ Puw ∪ Pvw
with its three respective sides being a fixed shortest uv-path Puv, a fixed shortest
uw-path Puw and a fixed shortest vw-path Pvw (cf. Figure 2.1).

Then, one may wonder how far a detour by vertex w can make us go from the

20 Chapter 2. A survey on graph hyperbolicity

shortest uv-path. The graph G is said to have δ-slim triangles if for every geodesic
triangle ∆(u, v, w), any vertex onto the shortest uv-path Puv is at distance at most
δ from Puw∪Pvw. The hyperbolicity of G is – up to a constant-factor – the smallest
δ such that it has δ-slim triangles.

As an example, if G is a tree then since there exists a unique uv-path, any vertex
of ∆(u, v, w) must lie on two sides of the triangle, and so, the triangles in G are
0-slim. We shall come back to formal definitions of hyperbolicity in Section 2.3. For
now, let us describe informally a few properties of graphs with δ-slim triangles.

Property 1: Almost shortest-paths stay close from each other. We first
sketch a relationship between the value of hyperbolicity and the distance between
(almost) shortest-paths in a graph. Let λ ≥ 1 and ε ∈ R be fixed constants. An
(λ, ε)-almost shortest-path between u and v is any uv-path with length at most
λ · dG(u, v) + ε. The length of this path thus differs by at most a fixed constant
(multiplicatively or additively) from the length of a shortest uv-path. In particular,
a shortest-path is an (1, 0)-almost shortest-path. In Figure 2.2, the path drawn with
thicker edges is an (2, 1)-almost shortest-path.

u v

Figure 2.2: a (2, 1)-almost shortest uv-path.

Graph hyperbolicity measures the closeness of almost shortest-paths, in the fol-
lowing sense. Two paths P,Q are at Haussdorf distance [RW09] at most d if every
x ∈ P is at distance dG(x,Q) ≤ d from the pathQ, and in the same way every vertex
y ∈ Q is at distance dG(y,P) ≤ d from the path P. A key property of graphs with
bounded hyperbolicity is that any two almost shortest-paths with same endpoints
stay close from each other. That is, their Haussdorf distance is upper-bounded by
a linear function of the hyperbolicity of G [Shc13a]

As an instructive example, consider the particular case of two shortest uv-paths.
They can be seen as a “flat triangle” ∆(u, v, u). In particular, in a graph with δ-
slim triangles, any two vertices on these shortest-paths that are at same distance
from u (or equivalently, to v) in the graph are at distance at most 2δ (e.g., see
Figure 2.3). This property is sometimes called the k-fellow traveler property (here,
for k = 2δ) [NS95]. The more general Property 1 that almost shortest-paths stay
close to each other is sometimes called geodesic stability [Fin15].

Property 2: Existence of a core. The second property that I want to point out
can be summarized as a property of concentration for the almost shortest-paths in
a graph. Let us fix two arbitrary constants λ and ε. We call a subset S of vertices
an α-core if for some fraction α of all possible pairs of vertices in the graph, every

2.2. Motivation 21

u v≤ 2δ

Figure 2.3: Shortest paths stay close in a δ-hyperbolic graph.

(λ, ε)-almost shortest-path with its two ends among these pairs is intersected by S.
As an example, the whole vertex-set is trivially a 1-core, and the neighbourhood
of a single vertex is an n−1

(n2)
= 2/n-core (it intersects all paths between this vertex

and the other n − 1 vertices). As shown with Figure 2.4, the root of a complete
binary rooted tree is an 1/2-core. More generally, every tree has a vertex being an
1/2-core, that is sometimes called a centroid [Gol71].

Recall that the hyperbolicity measures the closeness of a graph from a metric
tree. The second key property of graphs with bounded hyperbolicity that we focus
on in this section is that there exists a ball of small radius that is an 1

2 -core. Precisely,
the radius of the ball is upper-bounded by a linear function of the hyperbolicity of
the graph G [CDV16].

r

Figure 2.4: all shortest-paths between a vertex in the left subtree and a vertex in
the right subtree go through the root.

Altogether, in any graph with bounded hyperbolicity, almost shortest-paths be-
tween any pair of vertices stay close to each other and there exists a ball with small
radius intersecting almost all of these paths.

Equipped with these two intuitive properties, we will motivate the study of graph
hyperbolicity next.

22 Chapter 2. A survey on graph hyperbolicity

2.2.1 Implications/applications of hyperbolicity

We now list applications and implications of graph hyperbolicity in different fields of
computer science. They encompass most of the work on the hyperbolicity in real-life
graphs over the last decades. In what follows, these applications are more or less
presented from the earliest ones to the newest ones.

Biology

One of the earliest applications of graph hyperbolicity that we are aware of is in
biology, where there is a need to obtain some trees reflecting the similarity between
a collection of species, a.k.a. phylogenetic trees [DMT96, MS99]. Known similarities
between the species can be encoded as a graph, whose vertices are the species and
whose edge-set corresponds to the pairs of species that are closely similar. Then,
the problem summarizes as embedding the species into the leaves of some rooted
tree so that the distance between any two species in the tree corresponds to their
similarity. However, the available data is biased, and so, such a tree may not always
exist. Since, hyperbolicity is a measure of the closeness of a graph to a metric tree,
it has been proposed as a natural estimate for the bias of the data. Thus, standard
results on graphs with small hyperbolicity (summarized in the later sections) can be
applied on the data in order to find an approximate distance-preserving phylogenetic
tree [DHH+05].

Geometric routings

Hyperbolicity comes into play in the study of certain geometric routing schemes.
More precisely, we recall that the hyperbolicity is a measure of the closeness of a
graph to a tree. As we shall explain, graph hyperbolicity was shown to provide
(lower and upper) bounds on the stretch of the paths obtained with geometric
routing schemes in some “tree-like” spaces [AGCFV, VS14].

Roughly, a routing scheme is a mapping of each pair of vertices u, v to a uv-path,
that is to be followed in order to transit a message between u and v. Usually, we
evaluate the quality of a routing scheme on the amount of information that needs
to be stored locally at each node in order to retrieve the paths, and on the length
of the paths that are used for the transit. That is, on the distributed computing
point of view, the aim of compact routing schemes is to achieve a good compromise
between minimizing the local information to be stored and keeping close to optimal
the length of the paths that are used for the mapping.

A geometric routing scheme is one that embeds a given graph into a “simpler”
metric space. Then, the paths of the routings are constructed greedily, starting
from the source, with each vertex choosing as its successor on the path any of its
neighbours that is strictly closer – w.r.t. their coordinates in the metric space – to
the destination. In general, routing this way may not allow to reach all possible
destinations. For instance, it may lead to infinite loops, and so, additional features
are required in order to prevent loss of packet [PR05].

2.2. Motivation 23

However, in his seminal paper [Kle07], Kleinberg has proved that for every graph,
there exist embeddings into the Hyperbolic space (i.e., canonical space with nega-
tive curvature, where the classical Euclidean geometry is replaced by hyperbolic
geometry) such that greedy routing is always successful ! This paves the way to
an in-depth study of greedy routings in the Hyperbolic space [BPK10, ST08], as
well as in other “tree-like” metric spaces such as the word metric space of the free
group [CPFV14]. In particular, in some classes of graphs with bounded hyper-
bolicity, we obtain compact routings with this greedy approach. We also refer
to [DDGY07, GL05, KLNS15] for more examples of compact routing schemes in
some classes of graphs with bounded hyperbolicity.

Furthermore, it is worth pointing out that embeddings with coordinates of poly-
logarithmic size in the number of vertices can be computed for those above spaces.
In contrast to this positive result, there are graphs for which greedy routing is al-
ways successful in a given space but that cannot be embedded into the space with
coordinates of sublinear size [BL05].

Network congestion

Of importance is also the implications of hyperbolicity on congestion in networks
for all-to-all communications. Precisely, consider a unit traffic between each pair of
vertices in a network, with the unit flow between any two vertices u, v being equally
split among the shortest uv-paths. The load of a given vertex is the amount of
flow which transits by this vertex. In more graph-theoretic terms, it corresponds
to the betweenness centrality of the vertex [Bra01]. It is well-known and easy to
observe that in trees, there is a a vertex with quadratic load Θ(n2). What has been
observed experimentally in [NS11] is that, more generally, for every graph with small
hyperbolicity there is a ball of small radius such that the sum of the loads of the
vertices in the ball is also quadratic.

Basing on the above observations, the authors in [JLBB11] have conjectured the
existence in hyperbolic graphs of a ball of small radius through which it transits a
constant proportion of traffic paths. The existence of a 1/2-core with small radius
in graphs with bounded hyperbolicity (i.e., Property 2) was shown in order to prove
the above conjecture [CDV16]. See also [BT12, LT15, Yan15] for more implications
of hyperbolicity on network congestion that take into account different traffic rates
on the communications.

Network security

In their survey [JL04] and the papers cited therein, Jonckheere and Lohsoonthorn
also have demonstrated the implication of “geometric” graph properties on some
aspects of network security. On the way, they classified these geometric properties
according to three levels of granularity (small, medium and large scale). At large
scale, when considering graphs with a growing diameter, going to infinity (topologies
in expansion such as the Internet Service Provider graph), the authors claim the

24 Chapter 2. A survey on graph hyperbolicity

hyperbolicity to be the relevant parameter to study for a better understanding of
the geometric aspects of network security.

They support their claim through a case-study of various security attacks. For
instance, consider an attempt of “eavesdropping” or “packet sniffing” on the network
— unauthorized packet interception along a given link. Due to the limited abilities
to reorder the packets with TCP, they are often sent along near-optimal routes, i.e.,
almost shortest-paths. Hence, since almost shortest-paths stay close to each other
in hyperbolic graphs (Property 1), a small hyperbolicity might be detrimental in
Information Warfare, causing the routes of the packets to be too close by security
standards.

Other attacks and defense strategies where the value of hyperbolicity plays a
role are Distributed Denial of Service (DDoS) attacks, and Worm Propagation, to
name a few [JL04].

Democracy in complex networks

More recently, a new implication of hyperbolicity was suggested in [BCC15], as
a measure of democracy in complex networks, on which we now emphasize. The
latter is usually measured through assortativity, i.e., the likeliness of vertices that
are “similar” in some ways to be adjacent [New02] (see also [ALPT16, Lot15] for
other recent approaches). In contrast with this more classical approach, the authors
in [BCC15] (see also [ADM14]) consider a set of vertices to be “influencial” if it
intersects the (almost shortest) paths between a large number of vertices. With
respect to their interpretation, the graph is all the more democratic that it has no
influential set of small size.

From this classification, it follows that graphs with small hyperbolicity are “aris-
tocratic” (non democratic). Indeed, we recall that a small hyperbolicity implies the
existence of a core with small radius (Property 2), which combined with some prop-
erties of real-life graphs (sparse, power-law, etc.) can be shown to be an influential
set of small size. Let us point out that it has been experimentally shown that social
networks have small hyperbolicity [AAD16]. Therefore, I think that this new notion
of “influential set” and its relationships with hyperbolicity could and should be used
in the study of elites in these networks — i.e., relatively small subsets of vertices that
are well-connected and highly connected to the other vertices [ALNP15, ALP11].

The above listing, which of course may be not exhaustive, shows the implica-
tions and applications of graph hyperbolicity in various areas. We expect more
applications of hyperbolicity to be found.

2.3 Definitions of hyperbolicity

The purpose of this section is to present the formal definitions of graph hyperbolicity
and related concepts. The standard definitions for this parameter will be introduced
in Section 2.3.1. Then, the focus of Section 2.3.2 will be on “reformulations” of

2.3. Definitions of hyperbolicity 25

hyperbolicity , i.e., other geometric graph parameters than can be lower and upper
bounded by functions of the hyperbolicity. We will end discussing on what should be
understood as a “hyperbolic” graph in the remaining of this chapter (Section 2.3.3).

2.3.1 δ-hyperbolic graphs

Let us start introducing the standard definition for graph hyperbolicity. It can be
written in two equivalent ways, that will be presented and explained next.

2.3.1.1 Four-point Condition

In what follows, the classical definition of hyperbolicity and its interpretation in
relation to tree embeddings are given. In the line of many papers [BKM01, BC03,
KM02], we define hyperbolicity via the following, rather abstract, four-point condi-
tion.

Definition 1 (4-points Condition, [AJ13, Gro87]). Let G = (V,E) be a con-
nected graph.

For every 4-tuple u, v, x, y of V , let δ(u, v, x, y) be defined as half of the difference
between the two largest sums amongst:

S1 = dG(u, v) + dG(x, y), S2 = dG(u, x) + dG(v, y), and S3 = dG(u, y) + dG(v, x).

The graph hyperbolicity, denoted by δ(G), is equal to maxu,v,x,y∈V δ(u, v, x, y).
Moreover, we say that G is δ-hyperbolic for every δ ≥ δ(G).

u

x

y

v

(a) Every vertex on the central path is a
centroid of the 4-tuple.

u

x

y

v

(b) The central vertex is the unique centroid
of the 4-tuple.

Figure 2.5: Possible 4-tuples in a tree. Each edge represents a path in the tree.

Definition 1 generalizes a well-known four-point characterization of metric trees.
Indeed, a discrete metric space (and in particular, a graph), can be isometri-
cally embedded into the nodes of an edge-weighted tree if and only if it is 0-
hyperbolic [Bun74]. We show one part of this equivalence with Figure 2.5. Indeed,
for every 4-tuple u, v, x, y in a tree, it can always be found a centroid such that there
is no more than two nodes among u, v, x, y in each branch. Then, it can be checked
by the calculation that any such 4-tuple has null hyperbolicity.

Furthermore, for general graphs G (not necessarily metric trees), hyperbolicity
can also be interpreted in terms of tree embedding. In order to show that, let us fix

26 Chapter 2. A survey on graph hyperbolicity

any four vertices u, v, x, y of G. Suppose we aim at embedding u, v, x, y in a tree T
such that dG(s, t) ≤ dT (s, t) for every s, t ∈ {u, v, x, y} (non contractive embedding)
and the additive distortion α(u, v, x, y) = minT maxs,t∈{u,v,x,y} dT (s, t) − dG(s, t)

is minimized. We claim that α(u, v, x, y) = δ(u, v, x, y), i.e., the least possible
distortion is given by the hyperbolicity of the 4-tuple.

On the one direction, let us fix T minimizing the distortion, and let us write:

S′1 = dT (u, v) + dT (x, y), S′2 = dT (u, x) + dT (v, y), and S′3 = dT (u, y) + dT (v, x).

In this situation, for every i we have Si ≤ S′i ≤ Si + 2α(u, v, x, y), since by the
hypothesis dG(s, t) ≤ dT (s, t) ≤ dG(s, t) + α(u, v, x, y) for every s, t ∈ {u, v, x, y}.
Two cases need to be distinguished. If S′1 < max{S′2, S′3} then we have S1 ≤ S′1 <

max{S′2, S′3} ≤ S2 +2α(u, v, x, y). In this situation, since S1 = S2 +2δ(u, v, x, y), we
get δ(u, v, x, y) < α(u, v, x, y). Otherwise, S′1 ≥ max{S′2, S′3}. In particular, the two
largest sums amongst S′1, S′2, S′3 must differ by at least 2(δ(u, v, x, y)−α(u, v, x, y)).
Since T is a tree, and so, it is 0-hyperbolic, it follows that α(u, v, x, y) ≥ δ(u, v, x, y)

also in this case.

u

x

y

v

γ

γ

δ δ

(a) Canonical realization of the 4-tuple. Dis-
tances in the realization are exactly the dis-
tances in the graph.

u

x

y

v

γ
δ δ

(b) Non contractive tree embedding with
distortion δ that is obtained from the re-
alization.

Figure 2.6: A 4-tuple so that S1 = d(u, v) + d(x, y) ≥ S2 = d(u, y) + d(v, x) ≥ S3 =

d(u, x) + d(v, y). We denote by δ = (S1 − S2)/2 and γ = (S1 − S3)/2.

On the other direction, consider in Figure 2.6a the so-called “canonical realiza-
tion” of the metric space ({u, v, x, y}, dG) with four elements. Using this represen-
tation, it is not difficult to see that u, v, x, y can be mapped to the four leaves of an
edge-weighted tree with 6 nodes so that the embedding is non contractive and with
distortion δ(u, v, x, y). Altogether combined, α(u, v, x, y) = δ(u, v, x, y), and so, the
hyperbolicity δ(G) is the least value δ such that for every 4-tuple of G, there exists
a non contractive embedding into a tree with distortion at most δ.

In particular, we point out that since distances in an unweighted graph are
integer-valued, the hyperbolicity is always a half-integer. This observation is some-
times useful in order to refine the bounds on the hyperbolicity, and in order to
simplify some arguments in the proofs.

2.3.1.2 Toy examples

In order to give a better intuition of what this parameter represents, let us give the
hyperbolicity of a few simple graphs.

2.3. Definitions of hyperbolicity 27

Trees. In a tree, it is trivial that every 4-tuple can be embedded into a tree with
null distortion. Therefore, every tree is 0-hyperbolic.

Intuitively, similar arguments should apply to the graphs that are “metrically”
tree-like, i.e., embeddable into a tree with constant distortion of their distances. This
will be further discussed in Section 2.4.1 (upper-bounds on graph hyperbolicity).

Complete graphs. Perhaps more surprisingly, complete graphs are another ex-
ample of 0-hyperbolic graphs. Indeed, as shown with Figure 2.7, a complete graph
Kn with n vertices can be isometrically embedded into a star with n+ 1 nodes and
all its edges weighted 1/2.

(a) A complete graph K5 with five vertices.

1/2

1/2
1/2

1/2

1/2

(b) An isometric embedding of K5 to the
leaves of an edge-weighted star.

Figure 2.7: Complete graphs are 0-hyperbolic.

Cycles. In spite of their simple structure, the cycles are the classical examples
of graphs with large hyperbolicity. For instance, let C4n = (v0, v1, . . . , v4n−1, v0)

be a cycle with 4n vertices. Then, it follows from the four-point condition that
δ(v0, vn, v2n, v3n) = n (see also Figure 2.8). Therefore, the hyperbolicity of a cycle
grows linearly with its length. More generally, for every n ≥ 1 and ε ∈ {0, 1, 2, 3},
we have δ(C4n+ε) = n− 1/2 if ε = 1 and δ(C4n+ε) = n otherwise [WZ11].

Grids. Last, consider a rectangular grid with n columns and m rows. By taking
the four corners of the grid, it comes from the 4-point Condition that the hyperbolic-
ity of the grid is at least min{n,m}−1, that turns out to be its exact value [WZ11].
We refer to Figure 2.9 for an illustration.

It might help to observe that for grids and cycles, the shortest paths between the
two vertices of any diametral pair do not stay close from each other. In contrast, we
mentioned in previous Section 2.2 that in every graph with constant hyperbolicity,
almost shortest paths stay close from each other (Property 2).

Furthermore, let us call a subgraph H of a graph G isometric if for every two
vertices in H, their distance in this subgraph is exactly their distance in G. Since
cycles and grids have unbounded hyperbolicity, any graph that contains a large cycle
or a large grid as an isometric subgraph also has a large hyperbolicity, that directly
follows from Definition 1. This point will be further discussed in Section 2.5.2.1
(lower-bounds on graph hyperbolicity).

28 Chapter 2. A survey on graph hyperbolicity

v0

v2 v6

v4

Figure 2.8: A cycle with eight vertices.

Figure 2.9: A square grid with side length four.

2.3.1.3 Gromov product, Farris transform and ultrametrics

In his seminal paper [Gro87], Gromov defines hyperbolicity via a different (but
equivalent) formulation than Definition 1. In what follows, this formulation and its
interpretation in terms of ultrametric embedding are stated. Before this, we need
to introduce additional notions and terminology that are of independent interest.

Definition 2. Let G = (V,E) be a graph. For every u, v, w ∈ V the Gromov
product of u and v with base vertex w is defined as 〈u, v〉w = (dG(u,w) +dG(w, v)−
dG(u, v))/2.

This notion of Gromov product naturally arises in the above canonical realization
of 4-tuples (Figure 2.6a). Indeed, by the calculation we have that the length of the
edge between vertex u and the central rectangle in the realization is exactly 〈x, y〉u.

Note that 〈u, v〉w ≥ 0 by the triangular inequality. In particular, 〈u, v〉w = 0 if
and only if w lies onto a shortest uv-path. Thus, the Gromov product 〈u, v〉w can
be seen as a measure of how close w is from a shortest uv-path.

In order to have a better insight of what this product represents, let us consider
the particular case where G is a tree rooted at w. Let r be the lowest common

2.3. Definitions of hyperbolicity 29

ancestor of u and v. In this situation, 〈u, v〉w = (d(u,w) + d(v, w) − d(u, v))/2 =

((d(u, r) + d(r, w)) + (d(v, r) + d(r, w))− (d(u, r) + d(r, v)))/2 = d(r, w). Therefore,
in a tree rooted at w, the Gromov product 〈u, v〉w is equal to the depth of the lowest
common ancestor of u and v.

Let us also point out that 〈u,w〉v + 〈w, v〉u = dG(u, v). In order to exemplify
this equality, let us again consider the particular case where G is a tree. Then,
〈u,w〉v = d(r, v) and 〈v, w〉u = d(r, u), with r being the lowest common ancestor of u
and v when the tree is rooted at w. As a result, 〈u,w〉v+〈w, v〉u = d(r, v)+d(r, u) =

d(u, v), as desired.

Finally, let D ≥ diam(G) be any upper-bound on the distances in G. We fix
any base vertex x and define:

d(x)(u, v) =

{
2D − 〈u, v〉x if u 6= v

0 otherwise.

Then, it can be checked that d(x) is a distance function, that is sometimes called a
Farris transform [Far72]. Furthermore, an interesting property of the Farris trans-
form is that for a 0-hyperbolic G, the distance function d(x) is an ultrametric. That
is, d(x)(u, v) ≤ max{d(x)(u, y), d(x)(y, v)} for every three vertices u, v, y [Ban90].
Put in simpler terms, the above property just says that in a tree rooted at x, if we
denote by rs,t the lowest common ancestor between s and t, then for every u, v, y
we have that d(x, ruv) ≥ min{d(x, ruy), d(x, rvy)}.

Hyperbolicity of a graph can be seen as a measure of the closeness of its Farris
transform to an ultrametric. We can formalize it as follows.

Definition 3 ([Gro87]). A connected graph G = (V,E) is δ-hyperbolic if and only
if for every 4-tuple u, v, x, y ∈ V , we have 〈u, v〉x ≥ min{〈u, y〉x, 〈v, y〉x} − δ.

A proof of the equivalence between Definitions 1 and 3 can be found, e.g.,
in [AJ13]. The two of them use a characterization of metric trees, and they de-
fine δ-hyperbolic graphs by relaxing these characterizations. The same can be done
with other characterizations of metric trees, but then the corresponding values so
obtained may not equal the hyperbolicity of the graph. Nonetheless, as seen in the
following Section 2.3.2, they can only differ from the hyperbolicity by a constant-
factor.

2.3.2 Reformulation of hyperbolicity

In what follows, we will complete the picture by presenting some of the alternative
definitions for graph hyperbolicity. They are useful in order to prove some properties
of δ-hyperbolic graphs. On the way, we will report on known relationships between
these definitions (Table 2.1). We deem it as an important task. Indeed, the use of
multiple definitions quickly lead to large constant-factors in the proofs, with negative
consequences on the analysis of some graph algorithms [CCPP14].

30 Chapter 2. A survey on graph hyperbolicity

Note that except for Section 2.3.2.2, we will not use these alternative definitions
in what follows. Therefore, this part can be read independently from the remaining
of the chapter. In what follows, some of the reformulations of hyperbolicity will be
grouped together when they can be defined in a similar fashion.

2.3.2.1 Definitions with triangles

Let us start from the definition given in previous Section 2.2. First, we recall that a
geodesic triangle ∆(u, v, w) is the union of three shortest-paths Puv,Pvw,Pwu with
respective ends u and v, v and w, w and u. The above shortest-paths are called the
sides of the triangle.

Definition 4 (Rips condition, [Gro87, BH11]). A connected graph G = (V,E) has
δ0-slim triangles if and only if for every geodesic triangle ∆(u, v, w), for every vertex
x ∈ Puv, we have that dG(x,Pvw ∪ Pwu) ≤ δ0.

In order to see the relationship between Definitions 1 and 4, the following con-
struction was proposed in [SG11].

u

y

x

v

w

Figure 2.10: Split of a 4-tuple in two triangles. The vertex w is chosen so that
d(x,w) = d(v, x)− b〈x, y〉vc, and so, d(y, w) = d(v, y)− d〈x, y〉ve.

Let u, v, x, y be any 4-tuple satisfying d(u, v) + d(x, y) ≥ d(u, x) + d(v, y) ≥
d(u, y) + d(v, x). We fix a shortest path between every two pairs of vertices in
the 4-tuple, and then we use these paths in order to construct the two geodesic
triangles ∆(u, x, y) and ∆(v, x, y). The gist of the construction is to show that the
hyperbolicity of the 4-tuple depends linearly on the slimness of these two triangles.
To show that, we choose a vertex w ∈ Pxy such that δ(u, v, x, y) ≤ δ(u,w, x, y) +

δ(w, v, x, y) + 1/2 (see Figure 2.10 for an illustration). Finally, a clever analysis
from [SG11] shows that when the triangles ∆(u, x, y) and ∆(v, x, y) are δ-slim, it
implies δ(u,w, x, y) ≤ δ, and in the same way δ(w, v, x, y) ≤ δ. Therefore, if G has
δ-slim triangles then it is (2δ + 1/2)-hyperbolic and the bound is sharp, as shown
in [SG11].

We refer to [BH11] for a proof that conversely, every δ-hyperbolic graph has
3δ-slim triangles.

Other definitions of hyperbolicity than Definition 4 can be stated in terms of
geodesic triangles. We summarize some of them below.

In order to get a better intuition of the following definitions, we recall that
hyperbolicity measures the closeness of a graph to a metric tree. Let us fix any

2.3. Definitions of hyperbolicity 31

geodesic triangle ∆(u, v, w). The three vertices u, v, w can be isometrically embed-
ded into a tree as follows. We map them to the three leaves u′, v′, w′ of a star with
center node s /∈ V so that the edges {s, u′}, {s, v′}, {s, w′} have respective length
〈v, w〉u, 〈u,w〉v, 〈u, v〉w. We refer to Figure 2.11 for an illustration.

u′

v′ w′

s

〈v, w〉u

〈u, v〉w
〈u,w〉v

Figure 2.11: Isometric embedding of a 3-tuple to the leaves of a star (a.k.a., tripod).
We recall that 〈v, w〉u + 〈u,w〉v = d(u, v).

Then, by an appropriate subdivision of the three edges of the star, it can be
obtained a tree T so that the shortest path Puv (resp., Pvw, resp., Pwu) can be
isometrically embedded to the unique u′v′-path in T (resp., v′w′-path, resp., w′u′-
path). However, by doing so, some vertices in different sides of the triangle are
mapped to the same node of T , and so, we aim at keeping small the distance in G
between any two such vertices.

Definition 5 ([ABC+91, BH11, Gro87, GdLH90]). For every graph G = (V,E)

(with hyperbolicity δ(G)), the following properties hold true:

• There exists δ1(G) = Θ(δ(G)) such that G has δ1(G)-thin triangles: for every
triangle ∆(u, v, w) and for every x ∈ Puv, y ∈ Puw such that d(u, x) = d(u, y) ≤
〈v, w〉u, we have that d(x, y) ≤ δ1(G).
• There exists δ2(G) = Θ(δ(G)) such that G has triangles with insize at most
δ2(G): for every triangle ∆(u, v, w) and for every x ∈ Puv, y ∈ Puw such that
d(u, x) = d(u, y) = b〈v, w〉uc1, we have that d(x, y) ≤ δ2(G).
• There exists δ3(G) = Θ(δ(G)) such that G has triangles with girth at most
δ3(G): for every triangle ∆(u, v, w), there exist x ∈ Puv, y ∈ Puw, z ∈ Pvw such
that max{d(x, y), d(x, z), d(y, z)} ≤ δ3(G).
• There exists δ4(G) = Θ(δ(G)) such that: for every triangle ∆(u, v, w), there is

some vertex m ∈ V such that max{d(m,Puv), d(m,Puw), d(m,Pvw)} ≤ δ4(G).

Further geometric interpretation of the above definitions of hyperbolicity can be
found, e.g., in [BH11]. Interestingly, not all geodesic triangles need to be considered.
In fact, we can constrain ourselves to “flat” triangles, a.k.a. bigons, and define
hyperbolicity as follows:

1The ceiling ensures the distances to be integer values.

32 Chapter 2. A survey on graph hyperbolicity

Definition 6. A graph G = (V,E) has ε-thin bigons if for every u, v, x, y ∈ V such
that all of the following hold:

d(u, v) = d(u, x) + d(x, v) = d(u, y) + d(y, v) and d(u, x) = d(u, y)

we have d(x, y) ≤ ε.

u v

x

y

≤ ε

Figure 2.12: An ε-thin bigon.

We refer to Figure 2.12 for an illustration. Notice that when we take u, v, x, y as
in the above Definition 6 then we obtain by the calculation δ(u, v, x, y) = d(x, y)/2 ≤
ε/2. Therefore, a δ-hyperbolic graph has 2δ-thin bigons (see also Figure 2.3 and
Property 1 in Section 2.2). Surprisingly, a converse relationship holds: if we subdi-
vide once every edge in a graph G and the subdivided graph has ε-thin bigons, then
G is f(ε)-hyperbolic for some (doubly exponential) function f [Pap95]. It is open
whether f can be chosen as a linear function.

2.3.2.2 Cop and Robber games with different speeds

More recently, a game-theoretic characterization of hyperbolicity was proved.
A Cop and Robber game is a well-known two-player game that is played on a

graph G = (V,E). Classically, the two players are named the Cop and the Robber.
At first, the Cop chooses any vertex v0 ∈ V as her position in the graph, then
the Robber also chooses her initial position u0 ∈ V . Then, the two players move
sequentially, with the Cop playing first. At each turn t ≥ 1, a player can either stay
on her current position or move on an adjacent vertex.

The graph G is called Cop-win if whatever the Robber does, the Cop can end up
on the same position as the Robber within a finite number of moves. Cop-win graphs
have been characterized early in [NW83, Qui83]. Since then, several extensions of
Cop and Robber games have been studied [Nis14]. One of them has a relationship
with hyperbolicity.

Precisely, in this variant the Cop and the Robber move at different speeds s′

(for the Cop) and s (for the Robber), with s′ ≤ s, where the speed of a player
denotes the maximum distance in the graph between any two of its consecutive
positions [CCNV11]. The graph G is called (s, s′)-Cop-win if it is Cop-win in this
variant. In particular, Cop-win graphs in the classical Cop and Robber game are
exactly the (1, 1)-Cop-win graphs. Perhaps surprisingly, the values of s and s′ for
which a given graph G is (s, s′)-Cop-win are related with its hyperbolicity. We first
need to introduce the following dismantling orderings. We recall that throughout

2.3. Definitions of hyperbolicity 33

this thesis, we will denote by BG(v, r) the ball of radius r centered on the vertex v
in a given graph G.

Definition 7. An (s, s′)∗-dismantling ordering of G = (V,E) is a total ordering
(v1, v2, . . . , vn) of V such that for every i < n, we have BG(vi, s)∩{vi, vi+1, . . . , vn} ⊆
BG(vj , s

′) for some j > i.

It can be shown that every graph with an (s, s′)∗-dismantling ordering is (s, s′)-
Cop-win. Conversely, if a graph is (s, s′)-Cop-win, for some s′ < s, then it has an
(s, s− 1)∗-dismantling ordering [CCPP14].

Lemma 8 ([CCPP14]). Let G = (V,E) be a graph.
If G is δ-hyperbolic then it has a (2r, r + 2δ)∗-dismantling ordering for every

positive integer r ≥ 2δ.
Conversely, if G has a (s, s′)∗-dismantling ordering, for some s′ < s, then it has

hyperbolicity at most 16(s+ s′)
⌈
s+s′

s−s′
⌉

+ 1/2.

One important byproduct of Lemma 8 is that every δ-hyperbolic graph G admits
a (4δ, 4δ)∗-dismantling ordering, that is a classical dismantling ordering for its graph
power G4δ — obtained from G by adding an edge between every two distinct vertices
that are at distance no more than 4δ in G. Simply put, if G is δ-hyperbolic then
G4δ is Cop-win. As we will show in Section 2.5.2, this original characterization of
hyperbolicity is helpful in order to obtain new lower-bounds on this parameter.

2.3.2.3 Other definitions

In an attempt to make this part as exhaustive as possible, some other reformulations
for graph hyperbolicity are now mentioned. These alternative definitions are not
detailed, as it would require to introduce new technical notions that I feel to be
unnecessary for the understanding of what follows. Below, the interested reader will
be referred to some papers that are related with these alternative definitions.

Definition 9. The hyperbolicity of a graph G can be defined via the smallest
parameters defining:

• its asymptotic upper curvature, denoted by κ (curvature) and c (an adjustment
variable) [BF06];
• or a divergence function on its shortest-paths that is superlinear, denoted by
e(0) (initial value) and α (rate of divergence) [BH11] ;
• or a linear isoperimetric inequality, denoted by N (filling) and K [CCPP14].

Reformulations of hyperbolicity and their relationships with the standard defi-
nition are summarized in Table 2.1. In what follows, we name δ the hyperbolicity
of the graph (w.r.t. Definition 1). The symbols that are used for each reformulation
correspond to the ones that are given in the above definitions.

34 Chapter 2. A survey on graph hyperbolicity

δ 0
-s
lim

tr
ia
ng

le
s

δ 0
≤

3δ
[A

J1
3]

δ
≤

2
δ 0

+
1
/2

[S
G
11

]

δ 1
-t
hi
n
tr
ia
ng

le
s

δ 1
≤

4δ
[A

B
C

+
91

]
δ
≤
δ 1

[B
H
11

]

in
si
ze
δ 2

δ 2
≤

12
δ

[B
H
11

]
δ
≤
δ 2

[B
H
11

]

δ 3
δ 3
≤

12
δ

[B
H
11

]
δ
≤

3
δ 3

[B
H
11

]

δ 4
δ 4
≤

12
δ

+
1

[B
H
11

]
δ
≤

6
δ 4

[B
H
11

]

ε-
th
in

bi
go

ns
ε
≤

2δ
[G

ro
87

]
δ

=
22
O

(ε
)

[C
N
04

]

(s
,s
′)
∗ -
di
sm

an
tl
ab

le
s
≤

2s
′ −

4
δ

[C
C
N
V
11

]
δ
≤

16
(s

+
s′

)
⌈ s+s

′

s−
s′

⌉ +
1
/
2

[C
C
P
P
14

]

as
ym

pt
ot
ic

up
pe

r
cu
rv
at
ur
e
“κ
,c
”

κ
≤
−

1
/(

4δ
2
)

[B
F
06

]
δ
≤

lo
g

2/
√
−
κ

+
c

[B
F
06

]

di
ve
rg
en
ce

fu
nc
ti
on

e
e(

0
)
≤

4
δ,
e(
r)
≥

2
r
−
4
δ
−
1

1
2
δ

[B
H
11

]
δ
≤

6
e(

0)
+

9
α

[B
H
11

]

(N
,K

)-
fil
lin

g
N
≤

16
δ

[A
B
C

+
91

]
δ
≤

32
K
N

2
+

1
/2

[C
C
P
P
14

]

Table 2.1: Comparison between the definitions of hyperbolicity. The first column is
for the upper-bounds that are implied by δ for each reformulation. Conversely, the
second column is for the upper-bounds on δ that are implied by each reformulation.

2.3. Definitions of hyperbolicity 35

2.3.3 What is a “hyperbolic” graph ?

In the seminal work of Gromov [Gro87], hyperbolic graphs simply refer to the graphs
with finite hyperbolicity. This definition makes sense since he studies on the hyper-
bolicity of Cayley graphs of finitely generated groups, that may and will be infinite.
However according to the above definition, finite graphs are trivially hyperbolic in
the sense that for every graph G, there exists a finite δ such that G is δ-hyperbolic.
Thus, we shoud call the cycle Cn “hyperbolic” whereas it has hyperbolicity Ω(n) !

In order to override this limitation, we can transpose the notion of hyperbolicity
to graph classes. As a first attempt, let us define the hyperbolicity of a given graph
class G as δ(G) = supG∈G δ(G). Then, we call G hyperbolic if δ(G) < +∞. As
expected, we have that the class of trees is hyperbolic, but the class of cycles is non
hyperbolic. By abuse of notation, we refer by “hyperbolic graphs” for the graphs in
a hyperbolic graph class.

In the literature [Ben98], a broader concept of hyperbolic graph class is pre-
ferred. It is based on the property that the hyperbolicity of a given graph is
upper-bounded by its diameter (we shall come back to this relationship later on
in Section 2.4) [WZ11]. The latter means that any graph G with diameter DG

is trivially DG-hyperbolic, that does not really look satisfying. Indeed, we would
prefer to call it hyperbolic only if δ(G)� DG.

Formally, let G be any class of graphs and let Gn = {Gn ∈ G | diam(Gn) = n}.
Since graphs in Gn are trivially n-hyperbolic, the hyperbolicity δ(Gn) is finite (by
convention, δ(∅) = 0). Then, the graph class G is called hyperbolic if and only if

lim
n→+∞

δ(Gn)
n = 0.

Further refinements of the concept have been suggested, e.g., in [CFHM13].
They are listed in what follows.

Definition 10 ([CFHM13]). A given graph class G is called:
• constantly hyperbolic if δ(Gn) = O(1) (that corresponds to the case where δ(G)

is finite);
• (poly)logarithmically hyperbolic if δ(Gn) = O(log n) or δ(Gn) = logO(1) n;
• weakly hyperbolic if δ(Gn) = o(n);
• and non hyperbolic otherwise.

A shorter classification is adopted in [AD15]. Namely, a graph class is called hy-
perbolic in [AD15] only if it is logarithmically hyperbolic (w.r.t. Definition 10), and
non hyperbolic otherwise. Furthermore, a graph class is called strongly hyperbolic
in [AD15] if δ(Gn) = O(log log n).

Finally, we note that in [DKMY15], the authors consider a graph class to be
hyperbolic only if it has the additional requirement that the graphs in the class
have their maximum degree ∆ that is constantly upper-bounded. By doing so, since
the diameter of an n-vertex graph must be Ω(log n/ log ∆), there can be no constant
upper-bound on the diameter in an infinite graph class, and so, we can dismiss all

36 Chapter 2. A survey on graph hyperbolicity

the classes of bounded diameter graphs (that are trivially hyperbolic). As we will
discuss next in Section 2.7, this choice presents algorithmic advantages.

2.4 Hyperbolic graph classes

The next two sections are devoted to the first objective in this study of hyperbol-
icity, i.e., the characterization of hyperbolic and non hyperbolic graph classes. In
particular, this section covers known upper-bound techniques on graph hyperbol-
icity. We list sufficient conditions for a graph class to be constantly hyperbolic.
Examples of (hyperbolic) graph classes for which these conditions hold are given.
We also provide examples of hyperbolic graphs that do not satisfy these conditions.
The latter will show the limitations of these upper-bound techniques.

Outline of the section. In Section 2.4.1, we present upper-bounds depending on
the best distortion of the distances in a graph when it is embedded in a tree. We also
discuss about relationships between hyperbolicity and tree decompositions. Then in
Section 2.4.2, we present two more upper-bounds on the hyperbolicity depending on
the diameter and the chordality properties of the graph. We end up in Section 2.4.3
on personal contributions, showing upper and lower bounds on the variations of
hyperbolicity that may be caused by various graph operations. The latter result is
joint work with David Coudert.

2.4.1 Tree-likeness in graphs and hyperbolicity

We start presenting upper-bounds on the hyperbolicity that depend on the best
possible distortion of the distances in a graph when it is embedded into a tree.

Indeed, we recall that hyperbolicity measures how close a given graph is to a met-
ric tree. Unsurprisingly, there exists a strong relationship between this parameter
and the (NP-hard) problem of embedding a given graph into a tree with minimum
distortion (additive or multiplicative). In particular, as we showed in Section 2.3
the hyperbolicity δ(G) of a given graph G is the minimum possible δ such that
every 4-tuple of vertices in G can be (non contractively) embedded into a tree with
additive distortion at most δ. Therefore, δ(G) is a lower bound on the parameters:

• tree-distortion (minimum multiplicative distortion in a tree embedding);

• and tree-stretch (minimum t such thatG admits a tree t-spanner, i.e., a spanning
tree with multiplicative distortion at most t).

These above relationships are described in the survey [AAD16] and the papers cited
therein. Summarizing, we get the following upper-bounds on hyperbolicity:

Theorem 11 ([AAD16]). Every graph with tree-distortion at most d is d-hyperbolic.
Similarly, for every t ≥ 1, every graph with a tree t-spanner is t-hyperbolic.

2.4. Hyperbolic graph classes 37

2.4.1.1 Application: hyperbolic graph classes

Below, we give examples of graph classes that are (metrically) “tree-like”, and so,
hyperbolic.

Graphs with a tree t-spanner. By Theorem 11, for any fixed t ≥ 1, the class of
graphs with a tree t-spanner is constantly hyperbolic. The latter includes well-known
classes such as: trees (trivially), interval graphs [LB62], split graphs [FH76], convex
bipartite graphs [Glo67] and chordal bipartite graphs (a.k.a., bipartite graphs with
no induced cycle of length at least six) [GG78], etc.

Graphs with bounded tree distortion. Similarly, by Theorem 11 any class
of graphs with bounded tree distortion is constantly hyperbolic. In particular, the
classes of chordal graphs (graphs with no induced cycles of length at least four)
and dually chordal graphs (a.k.a., (2, 1)-Cop win graphs, see Section 2.3.2.2) are
constantly hyperbolic [Dir61, BDCV98]. It can be intuited (and, with slightly more
work, formally proved) from the existence of their respective tree-representations,
sometimes called the clique-tree (for chordal graphs) [Gav74] and the compatible
tree (for dually chordal graphs) [DCG14].

2.4.1.2 Examples of hyperbolic graphs that are not “tree-like”

However, a converse of Theorem 11 does not hold : not all hyperbolic graphs have a
constant tree-distortion or tree-stretch. In fact, these two parameters can differ from
δ(G) by at most a logarithmic or polylogarithmic factor [AAD16], and this is sharp.
We illustrate this fact with the following construction in Figure 2.13, sometimes
called a ringed tree [CFHM13].

The ringed tree RT (k) is obtained from a rooted complete binary tree with k

levels by connecting the vertices at the same level with a circle, that is constructed
under rules that we now detail. Formally, we start from a complete binary tree,
then we label the vertices as follows. The root is labeled 0, and the two children of
a vertex labeled i are labeled 2i + 1 and 2i + 2. Finally, at each level l ≥ 0, nodes
are labeled from 2l − 1 to 2l+1 − 2, and we add edges in order to obtain the cycle
(2l − 1, 2l + 1, . . . , 2l + i, . . . , 2l+1 − 2).

As a side contribution of this thesis (not published elsewhere), we improve upon
the best-known upper-bound on the hyperbolicity of ringed trees:

Lemma 12. δ(RT (k)) ≤ 3.

Proof. For every vertex v, let `(v) be its level in the underlying rooted tree (its
distance to the root). Suppose for the sake of contradiction that δ(RT (k)) > 3. Let
u, v, x, y be such that δ(u, v, x, y) > 3 and `(u) + `(v) + `(x) + `(y) is minimized.
W.l.o.g., vertex u is on the lowest level, i.e., `(u) ≥ max{`(v), `(x), `(y)}. As proved
in [CFHM13], it implies that for every vertex w in a upper level `(w) ≤ `(u), there
exists a shortest uw-path which first goes up for some time, then stays on the same

38 Chapter 2. A survey on graph hyperbolicity

0

1 2

3 4 65

7 8 9 10 14131211

Figure 2.13: a ringed tree RT (3).

level for at most three hops, and finally goes down. Indeed, this construction can
be intuited by noticing that the two ends s and t of a “horizontal” st-path of length
p ≥ 4, staying on the same level `(s) = `(t), can be connected via a path of length
≤ 2+dp/2e ≤ p which first goes up for one hop, then stays at the same level `(s)−1

and finally goes down for one hop. We call it a canonical shortest path.
Let us use the above property in order to prove the existence of some vertex of

v, x, y that is at distance at most three from u. Indeed, let u′ be the parent node of
u in the underlying rooted tree. Since `(u′) = `(u)− 1, we have by the minimality
of `(u) + `(v) + `(x) + `(y) that δ(u′, v, x, y) ≤ 3. In this situation, we note that if it
were the case that for any of v, x, y, there is a shortest path between this vertex and
u passing by u′, then it would follow from the 4-point Condition (Definition 1) that
δ(u, v, x, y) = δ(u′, v, x, y) ≤ 3, that is a contradiction. So, let us assume w.l.o.g.
that u′ does not lie on any shortest uv-path. In particular, the canonical shortest
uv-path does not go up, and so, `(v) = `(u). Furthermore, since this path stays at
most three hops on the same level, we get d(u, v) ≤ 3.

However, in this situation δ(u, v, x, y) ≤ d(u, v) ≤ 3 [SG11], that is a contra-
diction. Indeed, the upper-bound δ(u, v, x, y) ≤ d(u, v) can be seen as follows. As
we observed earlier (Figure 2.11), the three vertices u, x, y can be embedded to the
three leaves u′, x′, y′ of an edge-weighted star S with null distortion. If we add a
new leaf node v′ that we make adjacent to u′ in S, then by weighting d(u, v) the
edge {u′, v′}, one obtains a tree embedding of the 4-tuple with distortion at most
d(u, v), and so, δ(u, v, x, y) ≤ d(u, v).

Altogether, δ(RT (k)) ≤ 3.

Lemma 12 improves on [CFHM13], where they proved that δ(RT (k)) ≤ 40. It
proves that we have a constant upper-bound on the hyperbolicity of any ringed tree.

2.4. Hyperbolic graph classes 39

In contrast, the following lemma shows that the tree distortion of a ringed tree can
be arbitrarily large.

Lemma 13 ([Yan15]). Any tree embedding of RT (k) has distortion Ω(k).

To have a better intuition of Lemma 13, we first observe that the underlying
rooted tree of RT (k) is a shortest-path tree. In a rooted tree T , the path between
two vertices at same distance from the root r must pass by their lowest common
ancestor, that is strictly closer from r. In contrast, all vertices at the same layer ` in
RT (k) can be connected via a circle, with only vertices at same distance ` from the
root. Intuitively, it implies that in a (non expansive) tree embedding of RT (k), the
circles in each layer should be contracted to a single node 2. Hence, the distortion
of any tree embedding of RT (k) should be at least the maximum distance between
any two vertices at the same level, that is Ω(k) for the lowest level.

2.4.1.3 Relationship with tree decompositions

We complement Section 2.4.1 with relationships between hyperbolicity and tree
decompositions [RS86], that are a more common way to measure tree-likeness in
graphs. Formally, a tree decomposition (T,X) of G is a pair consisting of a tree
T and of a family X = (Xt)t∈V (T) of subsets of V indexed by the nodes of T and
satisfying:
•
⋃
t∈V (T)Xt = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T) such that u, v ∈ Xt;
• for any v ∈ V , {t ∈ V (T) | v ∈ Xt} induces a subtree, denoted by Tv, of T .

The sets Xt are called the bags of the decomposition. As an example, we give a tree
decomposition of a cycle in Figure 2.14b.

A graph has treewidth at most k if it has a tree decompositions with bags of size
at most k + 1. As an example, trees are exactly the graphs with treewidth 1.

Treewidth is a well-studied parameter [Bod06], and is generally accepted as a
good measure of the structural tree-likeness in graph. In contrast, hyperbolicity is
a measure of the metric tree-likeness in graphs, and as such it is uncomparable with
treewidth. Indeed, as shown with Figure 2.14b, cycles have treewidth at most 2,
whereas we proved in Section 2.3.1.2 that the hyperbolicity of cycles grows linearly
with their size. Conversely, it is well-known that the complete graph Kn with n

vertices has treewidth n − 1, whereas we proved in Section 2.3.1.2 that it has null
hyperbolicity.

On the other hand, we can compare graph hyperbolicity with treelength [DG07]
and treebreadth [DK14], that can also be defined in terms of tree decompositions. A
graph has treelength at most l if it has a tree decomposition where the distance in
the graph between any two vertices in a same bag is at most l. It has treebreadth

2This intuition can be formalized through the notion of layering tree [CD00], that will be further
discussed in the next Section 2.7.

40 Chapter 2. A survey on graph hyperbolicity

v0

v1 v11

v2 v10

v3 v9

v4 v8

v5 v7

v6

(a) Cycle C12 with twelve vertices.

v0

v4 v8

v0

v4 v1

v3

v4 v1

v3

v2 v1

v5

v4 v8

v5

v7 v8

v5

v7 v8

v0

v9 v8

v0

v9 v11

v5

v9 v11

(b) Tree-decomposition of C12 of width two and
length four.

Figure 2.14: Cycles have treewidth two and treelength dn/3e.

at most r if it has a tree decomposition whose every bag is contained in a ball of
radius at most r (the center of the ball may not be in the bag). Treelength and
treebreadth differ from tree distortion by at most a constant-factor, and so, they
can be compared with hyperbolicity the same way [AAD16].

I will expand more on treelength and treebreadth in the next chapter on tree
decompositions. In particular, I will show that in some cases where there is no large
clique-minor and no long isometric cycle in the graph, treewidth can be compared
with treelength (and so, with hyperbolicity) [CDN16].

2.4.2 Classical upper-bounds on hyperbolicity

In this subsection, we now survey two classical techniques in order to upper-bound
graph hyperbolicity. Section 2.4.2.1 is devoted to the relationship between diam-
eter and hyperbolicity. In Section 2.4.2.2, relationships between hyperbolicity and
chordality properties of the graph are presented.

2.4.2.1 Diameter

As stated earlier, there is a standard upper-bound of graph hyperbolicity using the
diameter of the graph.

Lemma 14 ([KM02, MP14, WZ11]). For every graph G = (V,E), we have δ(G) ≤
bdiam(G)/2c.

A simple proof of Lemma 14 can be easily derived from the 4-point condition
(Definition 1). Furthermore, we point out that since any graph G can be embedded

2.4. Hyperbolic graph classes 41

in a shortest-path tree with distortionO(diam(G)), Lemma 14 is not that surprising.
Of course, the converse of the lemma holds false, as easily seen with any path.

It follows that any class of graphs with constant upper-bound on the diame-
ter is (trivially) constantly hyperbolic. Since the domination number and other
domination-like parameters are themselves upper-bounds on the diameter, the au-
thors in [HPR14] notice that the class of graphs with bounded domination number
is also constantly hyperbolic.

We note that in [BCCM15, CCL15], it can be found variations of Lemma 14
(some of them using the eccentricity of the vertices, i.e., the maximum distance in
the graph between a given vertex and any other vertex).

2.4.2.2 Chordality

Much stronger upper-bounds on the hyperbolicity can be derived from the chordality
of the graph. Namely, a k-chordal graph is a graph with no induced cycle of length
at least k+ 1 [Ueh99]. In particular, 3-chordal graphs are exactly the usual chordal
graphs. We recall that the class of chordal graphs is constantly hyperbolic [BKM01].
The result extends to the class of k-chordal graphs:

Theorem 15 ([CD00, WZ11]). For every k ≥ 4, every k-chordal graph G is
bk/2c /2-hyperbolic, and the bound is sharp.

The converse of Theorem 15 holds false. As an example, consider a wheel Wn

(obtained from the cycle Cn with n vertices by adding a universal vertex). On the
one hand, it has diameter at most two and so, it has hyperbolicity at most 1 by
Lemma 14. On the other hand, it is n-chordal.

Application: even more hyperbolic graph classes. By Theorem 15, the class
of k-chordal graphs is constantly hyperbolic for every fixed k ≥ 4. The latter encom-
pass well-studied graph classes such as: chordal graphs (trivially), with well-known
subclasses such as strongly chordal graphs [Far83]; weakly chordal graphs [Hay85];
AT-free graphs [COS97], and so, cocomparability graphs [GMT84] and permutation
graphs [EPL72]; distance-hereditary graphs [BM86] and cographs [Sei74].

More recently, a result of the same flavour as Theorem 15 was proved in [MP15]
with a different (and more technical) notion of chordality. Given G = (V,E) and
a cycle C in G, a bridge (or shortcut) of C is any shortest uv-path between two
vertices u, v ∈ C such that dC(u, v) > dG(u, v). The bridge is called strict when it
intersects the cycle C only in its two endvertices. Let Dm(C) ⊆ V (C) contain the
ends of all strict bridges of C of length at most m.

Then, a graph G is called ε-densely (k,m)-path chordal if for every cycle C with
length at least k, every vertex in C is at distance at most ε from a vertex in Dm(C)

(see Figure 2.15 for an example). In particular, k-chordal graphs are bk/2c-densely
(k, bk/2c)-path chordal [MP15].

Theorem 16 ([MP15]). Every ε-densely (k,m)-path chordal graph has
(max{k/4, ε+m})-slim triangles.

42 Chapter 2. A survey on graph hyperbolicity

Figure 2.15: The uniform subdivision of the wheel is 3-densely (9, 3)-path chordal.

I confess that the impact of this result, compared to Theorem 15, is unclear to
me.

2.4.3 Contribution: Graph operations and hyperbolicity

Finally, a generic framework is presented in order to prove that some graph oper-
ations preserve the hyperbolicity up to an additive term. In particular, this can
be used in order to construct new hyperbolic graph classes from existing ones. Al-
though we concentrate more on how to use this framework in order to prove that
some graph classes are hyperbolic, it gives precise information on the variations of
hyperbolicity that can be useful in a broader context (e.g., in preprocessing and
approximation algorithms for computing this parameter).

More precisely, new classes of hyperbolic graphs can be obtained from classes
already known to be hyperbolic, by applying some graph operations such as line
graphs [Whi92], clique graphs [Ham68], etc. In [CD16b], we designed a unifying
framework in order to prove that these graph operations preserve hyperbolicity up
to an additive term. The purpose of this work was to make simpler the computation
of the sharp distortion of the hyperbolicity constant under these operations. It is
based on two ingredients. The first is that the hyperbolicity of a given bipartite
graph can be closely approximated (up to an additive term) by considering only one
side of its bipartition.

Lemma 17. Let B = (V0 ∪ V1, E) be a bipartite graph. For every i ∈ {0, 1}, let
Gi = (Vi, {{u, v} | dB(u, v) = 2}).

Then, 2δ(Gi) ≤ δ(B) ≤ 2δ(Gi) + 2 and the bounds are sharp.

It can be observed that since Vi is a dominating set of the bipartite graph G,
we can relate every 4-tuple in G with a 4-tuple in Gi by substituting every vertex
in V1−i of the 4-tuple with any one of its neighbours. By doing so, we can use

2.4. Hyperbolic graph classes 43

the 4-point Condition directly (Definition 1) in order to prove a weaker version of
Lemma 17. This weaker relationship between dominating set and hyperbolicity was
already known and used in some algorithms for computing this parameter [CCL15].
In the case of bipartite graphs, the main technical difficulty was to obtain the sharp
upper-bound on the distortion of hyperbolicity, which has required us a finer-grained
analysis of the 4-tuples with maximum hyperbolicity in G.

The second property used in the framework is that for every G = (V,E), since
the distances in its jth graph power are roughly divided by j, the hyperbolicity of
this power is roughly δ(G)/j.

Lemma 18. For every graph G = (V,E) and j ≥ 1, we have δ(G)+1
j − 1 ≤ δ(Gj) ≤

δ(G)−1
j + 1 and the bounds are sharp.

Finally, we recall that an intersection graph over a ground-set S has for vertices a
family of subsets in S together with an edge between every two intersecting subsets.
It can be naturally represented as a bipartite graph, with vertices of the graph on
one side and the elements of S on the other side. Combining the two above lemmas,
we obtain our main result in [CD16b]:

Theorem 19. For every graph G = (V,E) and j ≥ 1, let S = {S1, S2, . . . , Sk} be
a clique edge cover of Gj (a collection of cliques of Gj covering all its edges). Then
the intersection graph IS , constructed from the subsets in S satisfies:

δ(G) + 1

j
− 2 ≤ δ(IS) ≤ δ(G)− 1

j
+ 2.

Proof. We recall that every Si ∈ S is a subset of V . Let BS be the bipartite graph
with sides V and S, and with edge-set {{v, Si} | v ∈ Si}. By construction, two
subsets Si, Sj ∈ S are at distance two in BS if and only if they intersect, that is if
and only if {Si, Sj} is an edge of IS . Furthermore, since by the hypothesis S is a
clique edge cover of Gj , two vertices u, v ∈ V are at distance two in BS if and only
if {u, v} is an edge of Gj . It follows by applying twice Lemma 17:

2δ(IS) ≤ δ(BS) ≤ 2δ(IS) + 2,

2δ(Gj) ≤ δ(BS) ≤ 2δ(Gj) + 2.

By mixing up the two chains of inequalities, one obtains δ(Gj) − 1 ≤ δ(IS) ≤
δ(Gj) + 1. Then, by Lemma 18, it implies δ(G)+1

j − 2 ≤ δ(IS) ≤ δ(G)−1
j + 2, as

desired.

The line graph and the clique graph of G = (V,E), respectively denoted by L(G)

and K(G), are respectively the intersection graph of its edges and of its maximal
cliques. Therefore, Theorem 19 applies to these two typical graph operations by
taking j = 1, which gives δ(G)−1 ≤ δ(L(G)) ≤ δ(G)+1 and δ(G)−1 ≤ δ(K(G)) ≤
δ(G) + 1 for every graph G. These bounds are proved to be sharp in [CD16b]. In
fact, we show in [CD16b] that for every possible i ∈ {−1,−1/2, 0, 1/2, 1}, there are
graphsGi andHi such that δ(L(Gi))−δ(Gi) = i and similarly, δ(K(Hi))−δ(Hi) = i.

44 Chapter 2. A survey on graph hyperbolicity

Other graph operations to which the theorem applies are: the k-edge graph
(intersection graph of the cliques of size k and the maximal cliques of size at most
k−1 [Pri94]) with j = 1, the middle graph (intersection graph of the cliques of size at
most two [Pri95]) with j = 1, the biclique graph (intersection graph of the maximal
induced complete bipartite subgraphs [GS10]) with j = 2, etc. Furthermore, for all
these above operations (except for line graph) these are the first bounds proved on
the variations for hyperbolicity.

2.4.3.1 New classes of hyperbolic graphs

Finally, some new graph classes are proved to be constantly hyperbolic by using The-
orem 19. A clique-chordal graph is a graph whose clique graph is chordal [BDCV98].
Since chordal graphs are 1-hyperbolic [BKM01], by Theorem 19 clique-chordal
graphs are 2-hyperbolic.

Another example is the class of n-convergent graphs: G = (V,E) is n-convergent
if its nth iterated clique-graph is a complete graph [LdMS98]. By iterating Theo-
rem 19, we obtain that if G is n-convergent then δ(G) ≤ δ(K|V |)+n = n. Therefore,
every n-convergent graph is n-hyperbolic.

2.4.4 Conclusion and open perspectives

Some classical graph parameters are shown to give upper-bounds on hyperbolicity
in Sections 2.4.1 and 2.4.2. It would be very interesting to enrich this list. Similarly,
it is now a growing topic to provide bounds on the variations for hyperbolicity that
may be caused by various graph operations [MRSV10, CRS15]. In this aspect, it
would be interesting to prove some new results in the spirit of Theorem 19.

2.5 Obstructions to hyperbolicity

In the continuity of Section 2.4, we now cover some known lower-bound techniques
on graph hyperbolicity. The latter results will complete our first objective in the
study of this parameter by giving characterizations for non hyperbolic graph classes,
or equivalently necessary conditions for a graph to be hyperbolic. Like we did in
Section 2.4, we will also provide examples of non hyperbolic graph classes that do not
satisfy these characterizations, thereby showing the limitations of the lower-bound
techniques.

Outline of the section. The rest of the section is divided as follows. First, I sur-
vey some results on the hyperbolicity of random graphs in Section 2.5.1. They show
that, in some sense, most graphs are non hyperbolic. Then I present in Section 2.5.2
the typical obstructions that are used to show that a given graph class is non hy-
perbolic. These tools comprise: forbidden isometric subgraphs (Section 2.5.2.1),
quasi-cycles (Section 2.5.2.2) and graph powers with some given properties (Sec-
tion 2.5.2.4). Finally, some open problems are mentioned in Section 2.5.3.

2.5. Obstructions to hyperbolicity 45

My personal contributions: two new techniques using graph powers in order to
lower-bound hyperbolicity, are presented in Section 2.5.2.4. This is joint work with
David Coudert. Furthermore, as a side contribution of this thesis, I answer an open
question from [VS14] on the relationship between hyperbolicity and quasi-cycles
(Section 2.5.2.2).

2.5.1 Related work: random graphs are non hyperbolic

It is natural to ask for hyperbolicity, as for any graph parameter, what its typical
value is on graphs. Put in other terms, the question is whether classes of random
graphs are hyperbolic. The tendency is that, for a large spectrum of random graph
models [CFHM13, NST15, Sha11, Sha12, Sha13, FGL+15, Tuc13, MP14, BHO+11],
the graphs so obtained are non hyperbolic. The following results could be used in
probabilistic methods in order to give lower-bounds on graph hyperbolicity.

In Sections 2.5.1.1 and 2.5.1.2, we emphasize on the results obtained on the
hyperbolicity of the (classical) Erdös-Rény random graphs and the random regular
graphs. We briefly mention the techniques used in the proofs of these results, that
will be further detailed in Section 2.5.2. Then, Section 2.5.1.3 covers the known
results on the hyperbolicity for other types of random graphs, and some open ques-
tions.

2.5.1.1 Erdös-Rényi random graphs

In particular, the most common model of random graphs is the Erdös-Rényi model
Gn,p, sometimes called the binomial random graph model. In a binomial random
graph Gn ∈ Gn,p, each possible edge exists with probability p. Note that p may, and
usually does, depend on the number n of vertices in the graph.

It turns out that, for most regimes of p, the binomial random graphs are non
hyperbolic with high probability. Precisely, the authors in [NST15] proved that in
the sparse case p = O(1/n), binomial random graphs are non constantly hyperbolic.
The latter result follows from the existence of arbitrarily long isometric cycles with
positive probability (see Section 2.5.2.1). In a denser case where p = 1 − ω(1/n2),
Mitsche and Hell proved in [MP14] that binomial random graphs are non hyperbolic
in the strong sense, i.e., diameter-hyperbolic.

2.5.1.2 Random d-regular graphs

Similar results are obtained in [BHO+11, Tuc13] for the class Gn,d of random d-
regular graphs with the uniform probability distribution, that are proved to be non
hyperbolic in the strong sense (diameter-hyperbolic). In order to prove that these
random graphs are non hyperbolic, the authors in [BHO+11] show the existence
with high probability of large quasi-cycles. I shall come back in details on the notion
of quasi-cycles when I present the known lower-bounds on graph hyperbolicity in
Section 2.5.2.2.

46 Chapter 2. A survey on graph hyperbolicity

2.5.1.3 Other random models of complex networks

Finally, since the above-mentioned models do not reflect well the structure of real-life
graphs [BAJ00], it is interesting to ask whether random models of complex networks
exhibit the same behaviour. Unfortunately, that seems to be the case.

In particular, it is proved in [CFHM13] that in most regimes, the random graphs
that are obtained with the small-world model of Kleinberg are either non hyper-
bolic or non polylogarithmically hyperbolic. Some range of random graphs that
are obtained with the Chung-Lu model are proved to be non constantly hyperbolic
in [Sha13].

Perspectives. Surprisingly, we are not aware of any lower-bound on the hyperbol-
icity of Barabási-Albert random graphs (this problem has been studied only through
experimentations [JLB08]). Furthermore, to find a pertinent class of random graphs
that is hyperbolic – reflecting the properties of real-life networks such as the graph of
the Autonomous of the Internet, that has a small hyperbolicity [CCL15, dMSV11] –
is to my mind an important open question. In particular, the HOT model [FKP02]
may be worth studying since it has been first defined to generate random trees.

2.5.2 Lower-bounds on the hyperbolicity

The remaining of the section will be devoted to a detailed presentation of the known
lower-bound techniques on graph hyperbolicity, some of them have been briefly
mentioned in our survey on the hyperbolicity of random graphs in Section 2.5.1. In
Section 2.5.2.1, we present a basic technique in order to lower-bound hyperbolicity
using isometric subgraphs. Next, we introduce quasi-cyclicity in Section 2.5.2.2, and
as a side contribution of this thesis, we answer an open question from [VS14] on its
relationship with graph hyperbolicity. Other personal lower-bound techniques, that
are based on a game-theoretic characterization of hyperbolicity in [CCNV11], are
finally presented in Section 2.5.2.4. The results in this last section are joint work
with David Coudert.

2.5.2.1 Forbidden isometric subgraphs

We say that a graph parameter Π is closed under taking subgraphs if for every graph
G and for every subgraph H of G, Π(H) ≤ Π(G). We now discuss on the stability
of hyperbolicity under taking subgraphs.

Unlike many graph properties, hyperbolicity is not closed under taking sub-
graphs. That can be easily seen with the complete graph Kn, that is 0-hyperbolic
and contains all possible n-vertex graphs as a subgraph. It is not closed under tak-
ing induced subgraphs either. Indeed, every graph G is the induced subgraph of a
1-hyperbolic graph G′ with diameter two, obtained from G by adding a universal
vertex u (the shortest-path tree of G′ rooted at u is a star with additive distor-
tion of the distances in G′ at most one). However, we recall that a subgraph H

2.5. Obstructions to hyperbolicity 47

of G = (V,E) is called isometric if it is distance-preserving, i.e., the distance be-
tween every two vertices in H is the same in H as in G. By the 4-point Condition
(Definition 1), it implies that δ(H) ≤ δ(G) for any isometric subgraph H of G.
Hence, a classical technique in order to lower-bound the hyperbolicity is to exhibit
an isometric subgraph from a well-known non hyperbolic graph class, such as e.g.,
cycles and grids.

As an example, recall that the girth of a given graph G, denoted by g(G) in
what follows, is a well-known parameter that is the minimum length of a cycle in
G. By minimality of its length, any cycle with length g(G) is isometric, and so, the
hyperbolicity can be lower-bounded using the girth:

Lemma 20 ([WZ11]). For every G = (V,E), we have δ(G) ≥ bg(G)/4c − 1/2 if
g(G) ≡ 1 mod 4, and δ(G) ≥ bg(G)/4c otherwise.

It follows that in order for a graph class to be constantly hyperbolic, the graphs
must have a girth that is constantly upper-bounded. Actually, the length of any
isometric cycle in the graphs must be constantly upper-bounded. This is a strictly
stronger condition since there are graphs with bounded girth and arbitrarily large
isometric cycles. I illustrate this fact with the construction of Figure 2.16, that is a
side contribution of this thesis. Namely, the construction shows examples of planar
graphs G` that are (1, 1)-dismantlable (see Section 2.3.2.2), and so, with girth tree,
but with an isometric cycle of length `.

(a) G3. (b) G4. (c) G5.

(d) G6. (e) G7.

Figure 2.16: Examples of plane cop-win graphs G` such that their outerface is an
isometric cycle of length `. The graph G` is obtained from two copies of G2b`/2c−1 by
identifying a path on their respective outerface (drawn in thick blue), then adding a
new dominated vertex on its outerface and additional edges (drawn in dashed red).

The graph G` of the construction satisfies a stronger property, that is, it admits

48 Chapter 2. A survey on graph hyperbolicity

a planar embedding where the outerface is an isometric cycle of length `. For every
i ≥ 2, G2i and G2i+1 are obtained from two copies of G2i−1 as follows. We start
identifying a path Pi on their outerface with length i− 1 (for the even case ` = 2i)
or i − 2 (for the odd case ` = 2i + 1). Then, let us fix one end vi of Pi. In each
of the two copies of G2i−1, vi has one neighbour on the outerface that is not part
of Pi. We add a new vertex of degree three that is made adjacent to vi and to
its two neighbours ui, u′i /∈ Pi on the outerface in each copy. Note that the closed
neighbourhood of this new vertex is dominated by vi by construction. Furthermore,
in doing so, we obtain in the even case ` = 2i an outerface which is an isometric
cycle of length 2(2i − 1) − 2|Pi| + 1 = 2i = `. Finally, in order to complete the
construction in the odd case ` = 2i + 1, we consider the second end of Pi and we
make adjacent its two neighbours xi, x′i /∈ Pi on the outerface in each copy.

Note that on the other hand, not every graph with bounded-length isometric
cycle has small hyperbolicity. For instance, the hexagonal grid with n columns and
m rows (cf. Figure 2.17) is a bridged graph – i.e., with no isometric cycle of length
at least four – yet it is (min{n,m} − 1)/2-hyperbolic [CD16a].

Figure 2.17: Hexagonal grid.

2.5.2.2 Quasi-cycles

We now describe quasi-cyclicity and its relationship with hyperbolicity. A lower
bound technique is derived from the relationship, that is successful in some cases
where we fail exhibiting an isometric cycle (e.g., grid-like graphs). Namely, in [VS14],
Verbeek and Suri relax the notion of isometric cycles to the one of (weak) quasi-
cycles. Given G = (V,E), a cycle C of length n is an (α, β)-quasi-cycle if for every
u, v ∈ C such that dC(u, v) ≥ βn we have that dG(u, v) ≥ α dC(u, v). Verbeek and
Suri have proved in [VS14] that every graph G has an (α, 1/3)-quasi-cycle of length
Ω(δ(G)), for some constant α independent from δ(G). Therefore, the existence of
large quasi-cycles is a necessary condition for a graph to have a large hyperbolicity.

They proved the condition to be sufficient when α > 1/2. Indeed, an easy
application of the 4-point Condition (Definition 1) shows that in this situation, the
graph has hyperbolicity at least Ω((α− 1/2)n) [VS14].

2.5. Obstructions to hyperbolicity 49

Answering an open question from [VS14], we now prove more cases where the
existence of large quasi-cycles implies a large hyperbolicity. The latter result is a
side contribution of this thesis that has not been published elsewhere.

Lemma 21. For every α ≤ 1, β ≤ 1/3, if G = (V,E) has an (α, β)-quasi-cycle of
length n then δ(G) = Ω

(
α2n

)
.

Proof. We give an illustration of the proof with Figure 2.18. For simplicity, we will
ignore the ceilings in the proof.

u

v P

Q m

Figure 2.18: Proof of Lemma 21.

Let C be an (α, β)-quasi-cycle of length n, which exists by the hypothesis. Let
us pick u, v ∈ C such that dC(u, v) = n/3. We can partition the cycle C into two uv-
paths P,Q of respective length n/3 and 2n/3. In this situation, since C is assumed to
be an (α, β)-quasi-cycle and β ≤ 1/3, we have dG(u, v) ≥ αn/3, and so, P and Q are
(2
α , 0)-almost shortest uv-paths. Then, let m ∈ Q be a middle-vertex, i.e., chosen

such that dC(m,u) = |Q|/2. By the choice of m, dC(m,P) = dC(m,u) = n/3.
Furthermore, since β ≤ 1/3, it implies dG(m,P) ≥ αn/3. However, recall that
in a hyperbolic graph, almost shortest-paths stay close to each other. Precisely,
the Hausdorff distance between P and Q is an O (δ(G)/α) [Shc13b, GdLH90]. In
particular, we have αn/3 ≤ dC(m,P) = O (δ(G)/α). Altogether, δ(G) = Ω

(
α2n

)
.

2.5.2.3 Graph expansion

Other lower-bounds can be deduced from the existence of a core in graphs with small
hyperbolicity3. Namely, we now present lower-bound techniques for hyperbolicity
that are based on graph expansion (defined below). Lower-bounds are more complex
to derive with this technique than with isometric subgraphs and quasi-cycles.

3The following result can also be intuited with another property of hyperbolic graphs, that is
called the exponential divergence of shortest-paths [BH11].

50 Chapter 2. A survey on graph hyperbolicity

The expansion of G = (V,E), sometimes called the Cheeger constant, is the
largest h such that for every subset S with at most |V |/2 vertices, there are at least
h|S| edges of G with one end in S and the other end in V \S. The graphs in a class
G are expander if there exist constants h,∆ such that every G ∈ G has maximum
degree at most ∆ and expansion at least h [HLW06]. The authors in [Ben98, Mal15]
proved that expander graphs are non hyperbolic.

Theorem 22 ([Mal15]). For every h,∆, there exists a constant C∆,h such that
every G = (V,E) with maximum degree at most ∆ and expansion at least h has
hyperbolicity at least C∆,h · log(|V |).

Intuitively, Theorem 22 can be explained as follows. In an expander graph with
diameter D, since the number of vertices is exponential in D, removing a ball of
radius Θ(D) will only remove a sublinear number of vertices, that does not affect
too much the expansion. In particular, the order of magnitude of the diameter stays
Θ(D), and so, the removal of the ball can only increase the distances by at most a
constant-factor. In contrast, in a δ-hyperbolic graph there must be a core, i.e., a
ball of radius O(δ) intersecting the (almost) shortest-paths between half of the pairs
of vertices [CDV16]. By removing a core, one could increase the distances by more
than any fixed constant-factor. This forces the core to have radius Ω(D), and so,
the hyperbolicity of a given expander graph must scale with its diameter.

2.5.2.4 Contribution: Using dismantlable graph powers

Finally, we show how to use the game-theoretic characterization for hyperbolicity
that has been proved in [CCPP14] in order to obtain new non-trivial lower-bounds on
this parameter. New examples of non hyperbolic graph classes will be derived from
these techniques. The results in what follows are joint work with David Coudert.

We refer to Section 2.3.2.2 for the game-theoretic characterization of hyperbol-
icity. Recall that for every j ≥ 1, the jth power of G = (V,E) is the graph Gj that
is obtained from G by adding an edge between every two distinct vertices u, v such
that dG(u, v) ≤ j. If G is δ-hyperbolic for some δ > 0, then by Lemma 8 G has a
(4δ, 4δ)-dismantlable ordering [CCNV11]. The latter is a (classical) dismantling or-
dering for its power G4δ, hence G4δ is a Cop-win graph. Conversely, disproving that
Gj is Cop-win, for some range of j, will give lower-bounds on δ(G). This approach
is used in [CD16a] in order to prove that most underlying graphs of the data center
interconnection networks are non hyperbolic.

We start this section with additional properties of Cop-win graphs. They will
be used in what follows.

Required background. Let us recall that an endomorphism of G = (V,E) is an
edge-preserving mapping σ : V → V .

Lemma 23 ([AF84]). If G = (V,E) is a connected dismantlable graph that is
regular then G is a complete graph.

2.5. Obstructions to hyperbolicity 51

Lemma 24 ([BCF94]). If G = (V,E) is a connected dismantlable graph then it has
the clique invariant property: for every endomorphism σ of G, there is a nonempty
clique C of G such that σ(C) = C.

Next, we present our lower-bound techniques.

New lower-bound techniques. Our contributions are summarized in Proposi-
tions 26 and 25. Given an endomorphism σ of G = (V,E), let the mobility of σ
be defined as minv dG(v, σ(v)). Then, generalizing the terminology of [DRB99], the
weak mobility of G is the largest l such that G has an endomorphism with mobility
l. Note that by Lemma 24, any tree (and more generally, any Cop-win graph) sat-
isfies the clique-invariant property. Since a clique has diameter one, it follows that
any tree (and more generally, any Cop-win graph) has weak mobility at most one.
Based on this observation, we prove in [CD16a] that a large weak mobility implies
a large hyperbolicity. Indeed, a weak mobility at least l can be shown to imply that
no graph power Gl′ , for l′ = O(l), can satisfy the clique-invariant property. As a
result, no such power can be a Cop-win graph by Lemma 24, and so, since G4δ(G)

must be Cop-win by Lemma 8, the latter implies that G must have hyperbolicity
δ(G) = Ω(l). Below, we formalize this intuition.

Proposition 25. If G = (V,E) has weak mobility l ≥ 2 then δ(G) ≥ dl/2e /2.

Proof. We prove that Gl′ is not dismantlable for every 1 ≤ l′ ≤ l − 1. It implies
by Lemma 8 that G is not δ-hyperbolic for any δ < l/4, and so, since δ(G) is
a half-integer, δ(G) ≥ dl/2e /2. Indeed, since G has weak mobility l and every
endomorphism of G is also an endomorphism of Gl′ , the graph power Gl′ has weak
mobility at least dl/l′e ≥ 2. Therefore, Gl′ falsifies the clique invariant property,
hence it is not dismantlable by Lemma 24.

Then, we recall that in a tree, there exists a leaf `, i.e., a vertex of degree one. In
this situation, let p be its unique neighbour. Clearly, every node at distance d > 1

from ` is at distance d − 1 from p. The latter means that for every tree T with
diameter D > 1, its powers T j are not regular for every j < D (because for any ` on
a diametral path, its parent p has at least one more neighbour than `). Following
this intuition, if a given graph G with diameter D has small hyperbolicity δ then
there should exist a small constant j0 = O(δ) such that: for every j0 ≤ j ≤ D−1, its
graph power Gj is not regular. We formalize this intuition below, using Lemma 23.

Proposition 26. Let G = (V,E) and 2 ≤ r ≤ diam(G) be such that Gr−1 is a
regular graph. Then, δ(G) ≥ dr/2e /2.

Proof. Suppose for the sake of contradiction that 4δ(G) < r. In particular, G
is b(r − 1)/2c /2-hyperbolic, and so, by Lemma 8, it has a (2 d(r − 1)/2e , r − 1)∗-
dismantling ordering. The latter ordering is also a (r−1, r−1)∗-dismantling ordering,
hence Gr−1 is Cop-win. However, since Gr−1 is assumed to be regular, it must be a
complete graph by Lemma 23. The latter contradicts that r − 1 < diam(G). As a
result, 4δ(G) ≥ r, as desired.

52 Chapter 2. A survey on graph hyperbolicity

strongly regular

Moore

distance-regulardistance-transitive

symmetric /
arc-transitive

t-transitive

vertex-transitive edge-transitive bitransitive

regular biregular

Cayley zero-symmetric

(if not vertex-transitive)

Figure 2.19: Relationships of inclusion between some graph classes. The rectangles
for non hyperbolic graph classes (in red) are drawn thicker.

Application: non hyperbolic graph classes. We finally present some graph
classes that can be proved to be non hyperbolic by using Propositions 26 and 25.
To the best of our knowledge, these results are new, except for vertex-transitive
graphs (defined below), of which we give a simpler proof they are non hyperbolic
than in [BS12]. Furthermore, relationships of inclusion between the following graph
classes are presented in Figure 2.19.

• We recall that an automorphism is a one-to-one endomorphism, and G = (V,E)

is vertex-transitive if for every u, v ∈ V , there is an automorphism mapping u
to v.

Note that most underlying graphs of data center interconnection networks that
are proposed in the literature are vertex-transitive [AK89].
• A graph G is said to be distance-regular if it is a regular graph such that for

every i, j, k ≥ 0, there is some constant ci,j,k with the property that for every
two vertices u and v at distance i in G, the number of vertices that are simulta-
neously at distance j from u and distance k from v in G is exactly ci,j,k [BH12].
• Moore graphs [Dam73] are a particular case of distance-regular graphs: namely,

2.5. Obstructions to hyperbolicity 53

an n-vertex d-regular graph is a Moore graph if n = 1 + d ·
∑D−1

k=0 (d− 1)k, with
D being the diameter of the graph.

Theorem 27. If a graph is vertex-transitive, distance-regular or Moore then it is
non hyperbolic.

Proof. Let G be a vertex-transitive graph. Since an endomorphism of G is also an
endomorphism for every of its powers, it implies that if G is vertex-transitive then
so are all its powers. Hence all the powers of G are regular graphs. Altogether, by
Proposition 26 the hyperbolicity of G is constantly proportional to its diameter.

Similar arguments apply to distance-regular graphs and Moore graphs. Indeed,
if a graph belongs to these classes then all its powers are regular [BH12]. Therefore,
its hyperbolicity is constantly proportional to its diameter.

A bitransitive graph is a bipartite graph such that for every two vertices u, v that
are in the same side of the bipartition, there exists an automorphism mapping u to v.
In the spirit of what is done for the framework presented in Section 2.4.3 (Lemma 17),
let us pick one side of the bipartition and add an edge between every two vertices in
this side that are at distance two. Then, the graph so obtained is vertex-transitive.
This observation allows to prove that the class of bitransitive graphs, and so, the
related classes of edge-transitive and nonedge-transitive graphs [GR13] are also non
hyperbolic.

Refinements of Proposition 26 can lead to sharper lower-bounds on the hyper-
bolicity (but under stronger assomptions). In Table 2.2, we report on some results
obtained with our lower-bound techniques (detailed in [CD16a]). For every graph
in the table, the values of the diameter and the hyperbolicity are compared, with
the two values only differing by at most a constant-factor in most cases. All these
results are mainly obtained with Propositions 25 and 26, or some of their variations
that are proved in [CD16a]. However, we also report on the hyperbolicity of grid-like
graphs, on which these lower-bound techniques do not apply. We managed to obtain
the exact value for the hyperbolicity of these graphs through a deeper analysis of
their shortest-path distribution.

2.5.3 Open problems

So far, there are few reported lower-bounds on graph hyperbolicity. Finding new
lower-bounds is an important open problem, that would improve our understanding
of this parameter and could also help improving its computation. A related open
problem is to prove some new lower-bounds on the hyperbolicity of random graph
classes, such as Barabási-Albert random graphs and random geometric graphs in
the Hyperbolic plane [KPK+10]4.

4Note that there exist duality results between these two random models [FCM14].

54 Chapter 2. A survey on graph hyperbolicity

N
am

e
D
eg
re
e
m
ax

.
D
ia
m
et
er

O
rd
er

δ

de
B
ru
ijn

gr
ap

h,
U
B

(d
,D

)
2
d

D
d
D

1 2

⌊ D 2

⌋ ≤δ
≤
⌊ D 2

⌋
K
au

tz
gr
ap

h,
U
K

(d
,D

)
2
d

D
d
D

(d
+

1
)

⌊ D 4

⌋ +
ε
≤
δ
≤
⌊ D 2

⌋ ,ε
∈
{0
,1
}

Sh
uffl

e
ex
ch
an

ge
,S
E

(n
)

3
2n
−

1
2
n

1 2

⌊ n 2

⌋ ≤δ
≤
n
−

1

(n
,m

)-
gr
id

4
n

+
m
−

2
n
m

m
in
{n
,m
}
−

1

d
-d
im

en
si
on

al
gr
id

of
si
ze
s

2
d

d
(s
−

1)
sd

(s
−

1)
⌊ d 2

⌋
T
ri
an

gu
la
r

(n
,m

)-
gr
id

6
n

+
m
−

2
n
m

m
in
{n
,m
}−

1
2

H
ex
ag

on
al

(n
,m

)-
gr
id

6

{ n−
1

+
⌈ m−

1
2

⌉ w
he

n
m
≤

2n
−

1

m
−

1
ot
he

rw
is
e

n
m

m
in
{n
,m
}−

1
2

T
or
us

(n
,m

)-
gr
id

4
⌊ n 2

⌋ +
⌊ m 2

⌋
n
m

⌊ 1 2

(⌊ n 2

⌋ +
⌊ m 2

⌋)⌋ −
1
≤
δ
≤
⌊ 1 2

(⌊ n 2

⌋ +
⌊ m 2

⌋)⌋
G
en

.
hy

pe
rc
ub

e,
G

(m
1
,.
..
,m

r
)

∑ r i=
1
m
i
−
r

r
∏ r i=1

m
i

⌊ r 2

⌋
C
ub

e
C
on

ne
ct
ed

C
yc
le
,C

C
C

(n
)

3
2
n
−

2
+

m
ax
{ 2,
⌊ n 2

⌋}
n

2
n

n
≤
δ
≤
n
−

1
+

⌊ m
a
x
{2
, b
n 2
c}

2

⌋
B

C
u
b

e k
(n

)
m

ax
{n
,k

+
1
}

2(
k

+
1)

n
k
(n

+
k

+
1)

k
+

1

F
at

-T
re

e k
k

6
k
2 4
(k

+
5)

2

B
ut
te
rfl
y
gr
ap

h,
B
F

(n
)

4
2n

2n
(n

+
1)

n

k
-a
ry
n
-fl
y

2
k

2n
k
n
(n

+
1
)

n

k
-a
ry
n
-t
re
e

3
k

2n
k
n
−

1
(n

+
k
)

n
−

1

B
ub

bl
e-
so
rt

gr
ap

h,
B
S

(n
)

n
−

1
(n 2

)
n

!
⌊ n(n

−
1
)

4

⌋
T
ra
ns
po

si
ti
on

gr
ap

h,
T

(n
)

(n 2

)
n
−

1
n

!
1 2

⌊ n−1 2

⌋ ≤δ
≤
⌊ n−1 2

⌋
St
ar

gr
ap

h,
S

(n
)

n
−

1
⌊ 3

(n
−

1
)

2

⌋
n

!
⌊ 1 2

⌊ 3
(n
−

1
)

2

⌋ −1 2

⌋ ≤δ
≤
⌊ 1 2

⌊ 3
(n
−

1
)

2

⌋⌋

Table 2.2: Bounds and exact value of the hyperbolicity of some graph
classes [CD16a].

2.6. On computing the hyperbolicity of graphs 55

2.6 On computing the hyperbolicity of graphs

The remaining of this chapter is devoted to algorithmic and complexity problems.
In particular, computational aspects of hyperbolicity will be covered in this section,
thereby fulfilling our second main objective in the study of this parameter.

Motivations for an efficient computation of hyperbolicity are: to help charac-
terizing the hyperbolic graph classes, or to measure the quality of approximations
obtained with some graph heuristics (the latter will be further dicussed in Sec-
tion 2.7) [VS14, CDE+08, CE07, EKS16, KL06, DKMY15].

By using the 4-point Condition (Definition 1), it is easy to see that the hyper-
bolicity of a given n-vertex graph can be computed in Θ(n4)-time. However, this
too simple approach is prohibitive on large graphs, even when we use massively
parallelization [ASHM13]. In what follows, improved algorithms for computing or
approximating graph hyperbolicity will be sketched, with an emphasis on my per-
sonal contribution in this topic.

Note that we will only consider finite graphs in this section. Computing the
hyperbolicity of infinite graphs is highly nontrivial. However, surprisingly, there
exists a simple (approximation) partial algorithm for computing the hyperbolicity
of the graph representations of finitely generated groups [Pap96].

Outline of the section. The best known algorithms for computing graph hyper-
bolicity are collected in Section 2.6.1. We sketch their basic principles and their
limitations. Then, the next two Sections 2.6.2 and 2.6.3 are mostly centered on the
contributions of this thesis.

In particular, the design and the analysis of some preprocessing methods for the
computation of hyperbolicity are presented in Section 2.6.2. This part is largely
devoted to personal contributions on the study of the relationships between the
hyperbolicity of a graph and the maximum hyperbolicity from its atoms— a.k.a., the
subgraphs resulting from its decomposition by clique-minimal separators [BPS10]
(Section 2.6.2.2). As a side contribution, I will also present a short analysis of
the heuristic from [KNS13] (Section 2.6.2.1). Finally, conditional lower-bounds on
the time complexity for computing graph hyperbolicity will be also mentioned in
Section 2.6.3, including one of my own invention.

This is joint work with Nathann Cohen, David Coudert and Aurélien Lancin.

2.6.1 Related work

In this subsection, a state of the art on exact and approximate algorithms for com-
puting the hyperbolicity of a graph is presented. We also comment on the limitations
of these algorithms. In what follows, exact algorithms will be presented first (Sec-
tion 2.6.1.1), then the approximation algorithms will be introduced by increasing
approximation factor (Section 2.6.1.2).

56 Chapter 2. A survey on graph hyperbolicity

2.6.1.1 Exact algorithms

Best known algorithm. The best known algorithm for computing the hyperbol-
icity runs inO(n3.69)-time [FIV15]. It relates the computation of graph hyperbolicity
with a variation of matrix multiplication.

Indeed, recall (Definition 3) that G = (V,E) is δ-hyperbolic if and only if we
have for every u, v, x, y that 〈u, v〉x ≥ min{〈u, y〉x, 〈y, v〉x}− δ, where 〈·, ·〉x denotes
the Gromov product with base vertex x. In particular, let Mx be the n× n matrix
such thatMx[u, v] = 〈u, v〉x for every u, v ∈ V . The (max,min)-product ofMx with
itself is an n× n matrix denoted by Mx ⊗Mx such that for every u, v ∈ V ,

(Mx ⊗Mx)[u, v] = max
y∈V

min{Mx[u, y],Mx[y, v]} = max
y∈V

min{〈u, y〉x, 〈y, v〉x}.

By Definition 3, G is δ-hyperbolic if and only if for every x ∈ V , all entries in
Mx⊗Mx−Mx are lower than or equal to δ. Therefore, δ(G) can be computed with
n computations of (max,min)-products.

Combinatorial algorithms. One drawback of the above algorithm is that it uses
as a subroutine the best known algorithm for computing the (classical) matrix mul-
tiplication [DP09]. This algorithm requires quadratic-space and its time complexity
O(n2.3729) hides a large constant-factor [LG14]. So, in order to compute hyperbol-
icity in practice on real-life graphs, combinatorial algorithms should be preferred.

In [CCL15], Cohen et al. base on the following simple, but elegant observation.

Lemma 28 ([CCL15]). Let G = (V,E) and u, v, x, y ∈ V be such that
d(u, v) + d(x, y) ≥ max{d(u, x) + d(v, y), d(u, y) + d(v, x)}. Then, δ(u, v, x, y) ≤
min{d(u, v), d(x, y)}/2.

The latter lemma gives a simple “cut-rule” in order to avoid considering all
possible 4-tuples. Indeed, let us consider the 4-tuples u, v, x, y of G = (V,E) by non
increasing value of d(u, v) + d(x, y). A lower-bound δ∗ on the hyperbolicity δ(G) is
maintained. By Lemma 28, every time the lower-bound improves, all 4-tuples such
that min{d(u, v), d(x, y)} ≤ 2δ∗ can be discarded. While this algorithm still runs in
O(n4)-time, experiments have shown that it is much faster in practice.

Since then, additional cut-rules have been introduced in [BCCM15], which fur-
ther speed-up the practical computation of hyperbolicity. So far, the hyperbolicity
of graphs with tens of thousands of nodes can be computed within a reasonable
amount of time. The true limitation of the algorithm comes from the storage in
quadratic space of the distance matrix.

2.6.1.2 Approximation algorithms

Then, we report on the few existing approximation algorithms for computing hyper-
bolicity. The main message here is that these algorithms either have a large approx-
imation factor (sometimes non constant) or they require the challenging best-known
algorithm for computing matrix multiplication as a subroutine.

2.6. On computing the hyperbolicity of graphs 57

Using (max,min)-product. The simplest of these approximation algorithms re-
duces to the problem Hyperbolicity with fixed Base vertex: given G =

(V,E) and x ∈ V , compute δx(G) = maxu,v,y∈V (min{〈u, y〉x, 〈y, v〉x} − 〈u, v〉x).
Note that δ(G) = maxx∈V δx(G). Furthermore, it can be proved using the trian-
gular inequality that for every fixed x ∈ V , we have δx(G) ≥ δ(G)/2 [Gro87]. As
a result, solving the problem Hyperbolicity with fixed Base vertex gives a
2-approximation for computing hyperbolicity, and it can be done in O(n2.69)-time
by using the above-mentioned relationship with (max,min)-product [FIV15].

More recently, Duan has proved that the (max,min)-product can be computed
faster when all entries in the matrices are bounded. Based on this result, he has
described (1 + ε)-approximation algorithms for computing graph hyperbolicity, for
every ε ≥ 0 [Dua14].

Using Cop and Robber games. Another constant-factor approximation algo-
rithm for computing this parameter was proposed in [CCPP14]. Roughly, given the
distance-matrix of the graph (it can be precomputed in O(min{nm, n2.3729})-time)
this algorithm computes in O(n2)-time the smallest r such that the input graph
has a (4r, 3r)∗-dismantling ordering. Altogether combined with the game-theoretic
definition of hyperbolicity (Definition 7), the value gotten for r differs from the
hyperbolicity by at most an (unfortunately large) constant-factor.

Using Tree embeddings. Finally, another approach for approximating the hy-
perbolicity is based on the relationships between this parameter and tree embed-
dings. Precisely, every δ-hyperbolic graph can be embedded into a tree with additive
distortion of the distances at most 2δ log n [Gro87] (that will be further discussed
in Section 2.7). In [FIV15], Fournier et al. notice that computing this tree embed-
ding does not require the knowledge of the hyperbolicity. Therefore, an O(log n)-
approximation algorithm for computing the hyperbolicity of a graph can be obtained
in Õ(n2)-time by computing this tree embedding, and then the resulting distortion
of the distances in the tree5.

2.6.2 Contribution of this thesis: Preprocessing

In order to overcome the current limitations for computing graph hyperbolicity
(sketched above), it looks natural to seek for preprocessing methods, that aim at
decreasing the size of the input and, possibly, at simplifying its structure. My main
contribution in the field is the design and the analysis of some of these methods. I
will first sketch a short analysis of the heuristic from [KNS13], before presenting my
work on graph decompositions.

5The time complexity of this algorithm was proved in [FIV15]. However, the authors in [FIV15]
assume that the distance matrix is given as input. We explain in [CD14] how to obtain the same
time complexity for graphs encoded as adjacency lists.

58 Chapter 2. A survey on graph hyperbolicity

2.6.2.1 Reducing the size of the graph by contracting matchings

In order to make tractable the approximate computation of hyperbolicity on large
graphs, the authors in [KNS13] present a simple renormalization process. Put in
more graph-theoretic terms, their process pick a maximal matching of the graph
and then contract its edges. By doing so, the number of vertices is decreased by
half. They repeat the process until the size of the graph is judged small enough in
order to compute its hyperbolicity.

In what follows, we analyze the quality of this above heuristic for computing
hyperbolicity. In order to do so, the hyperbolicity of a given graph G is compared
with the hyperbolicity of its contraction minors (graphs obtained by contracting
some edges of G), that is a study of independent interest.

Contraction minors and hyperbolicity. Although the distances in a graph
cannot increase when we contract an edge, it turns out that, surprisingly, the hy-
perbolicity can do so. For instance, a cycle C5 of length five is 1/2-hyperbolic,
but contracting any one of its edges results in a cycle C4 of length four, that is an
1-hyperbolic graph.

More generally, the following result is a side contribution of this thesis.

Lemma 29. For every δ-hyperbolic n-vertex graph G, every contraction minor of
G is O(δ log n)-hyperbolic and this upper-bound is sharp.

Proof. The upper-bound can be established by using the relationships between hy-
perbolicity and another tree-likeness parameter called treelength (see Section 2.4.1).
Indeed, if G is a δ-hyperbolic n-vertex graph then it has treelength at least δ and
at most 2δ log n + 1 [AAD16]. The treelength is a contraction closed parameter.
Therefore, every contraction minor of G must have hyperbolicity O(δ log n). The
main difficulty is to prove the sharpness of the upper-bound.

In Figure 2.20, we illustrate this worst-case scenario with a ringed tree RT (k)

(previously introduced in Section 2.4.1). Note that this graph has n = 2O(k) vertices,
and in addition we have δ(RT (k)) ≤ 3 by Lemma 126. So, every contraction minor of
this ringed tree is O(k)-hyperbolic. We aim at proving the existence of a contraction
minor of RT (k) with hyperbolicity Ω(k). the gist of the construction is to show
that RT (k) has a contraction minor H with a large induced (cylindrical) grid of
dimensions Ω(k) × Ω(k). It can be constructed by fixing some level ` = Θ(k) and
then contracting on the cycles in each lower level the consecutive nodes with a
common ancestor at level ` (i.e., see Figure 2.20). Furthermore, since the graph
is planar, it can be obtained an isometric (square) grid of comparable dimensions
Ω(k) × Ω(k) by removing one third of the rows and one third of the columns on
the borders. We recall that a grid of dimensions Ω(k) × Ω(k) has hyperbolicity
Ω(k) [WZ11]. Altogether combined, this contraction minor H has hyperbolicity
Ω(k), as desired.

6This value of the hyperbolicity can be increased to some constant Θ(δ) for every δ > 0 by
taking a uniform subdivision of RT (k).

2.6. On computing the hyperbolicity of graphs 59

Figure 2.20: Construction of a cylindrical grid in RT (k). We fix some level ` = Θ(k)

and then we contract on each lower level the nodes with a common ancestor at level
`. Paths contracted to a single node are delimited with thicker nodes.

Variations of hyperbolicity under one renormalization. The edge contrac-
tions in the renormalization process of [KNS13] are more controlled. Indeed, they
must induce a matching. In this situation, let ϕ : V (G)→ V (Ĝ) map every vertex
of G to the corresponding vertex to which it has been contracted in the renor-
malized graph Ĝ. We have that bdG(u, v)/2c ≤ dĜ(ϕ(u), ϕ(v)) ≤ dG(u, v) for
every u, v ∈ V (G). So, it follows from the preservation of hyperbolicity under
quasi-isometry [Shc13b, GdLH90] that δ(Ĝ) = Θ(δ(G)). The above Θ notation
hides a large constant-factor that may be improved with a more in-depth analysis.
Nonetheless, what can be shown is that there exist infinitely many graphs G such
that δ(G) ≥ 4δ(Ĝ). We illustrate this fact with Figure 2.21.

To summarize, it is my opinion that the confidence interval that is provided by
the renormalization process is too large to give good estimates of graph hyperbolicity.

2.6.2.2 Relationship between clique-decomposition and hyperbolicity

Contrary to Section 2.6.2.1, the approach in this part rather consists in bounding
the hyperbolicity of a given graph from the computation of the hyperbolicity of
some of its subgraphs. Equivalently, given a decomposition of G = (V,E) into some
of its subgraphs, it is studied whether we can upper and lower bound δ(G) by using

60 Chapter 2. A survey on graph hyperbolicity

(a) The square grid with side length n is
(n− 1)-hyperbolic.

(b) The renormalized square grid is (n −
1)/4-hyperbolic.

Figure 2.21: Renormalization process on a Square grid. The edges contracted are
drawn in thick red. Roughly, it gives a Hexagonal grid with twice less columns. Since
the hyperbolicity of a Rectangular grid is twice larger than the hyperbolicity of a
Hexagonal grid with same dimensions [CD16a], it shows that the renormalization
process divides the hyperbolicity of a square grid by four.

the maximum hyperbolicity from the subgraphs. Let us motivate this approach and
present existing results.

On the one hand, when G is “prime” (undecomposable w.r.t. the decomposition
process), the input cannot be split, and so, we don’t decrease the size of the input
either. On the other hand, it happens that many interesting classes of real-life graphs
are not prime. Furthermore, in all cases we gain more insights on the structure of
the input.

Let us outline interesting byproducts of this decomposition approach:
• when every graph in a given class can be decomposed in “trivial” subgraphs, the

class is proved to be constantly hyperbolic;
• for some other graph classes, the decomposition is a first step toward an efficient

computation of the hyperbolicity in this class of graphs.

Related work. Of course, we need some structure on the graph decomposition
in order to be able to prove something. Soto [SG11] has proved that two well-
known graph decompositions can be used as a preprocessing step for computing
graph hyperbolicity. Namely, these are the modular decomposition [Gal67] and its
generalization the split-decomposition [Cun82] where informally, the graph is dis-
connected by using some edge-cutsets inducing a complete bipartite subgraph. More
precisely, the hyperbolicity of a given graph is equal to the maximum hyperbolicity
taken from the subgraphs output by these decompositions.

2.6. On computing the hyperbolicity of graphs 61

Figure 2.22: Clique-decomposition of a graph in five atoms. A 4-tuple with hyper-
bolicity 1 is drawn in bold.

Our main result. In a joint work with Nathann Cohen, David Coudert
and Aurélien Lancin [CCDL17], we have proved similar results for the clique-
decomposition [BPS10]. Given G = (V,E), an atom of G is any subset A ⊆ V

such that there is no clique-separator in G[A] and A is inclusion wise maximal w.r.t.
this property. The clique-decomposition of G is the collection of its atoms. See
Figure 2.22 for an example. It can be computed in O(|V ||E|)-time.

Theorem 30. Given G = (V,E), let A1, . . . , Ak be its atoms. Then,
maxi δ(G[Ai]) ≤ δ(G) ≤ maxi δ(G[Ai]) + 1 and the bounds are sharp.

Below, we detail further the proof of Theorem 30. It is based on two ingredients.
The first is that disconnecting the graph with a separator of small diameter D can
change the value of the hyperbolicity by at most an additive term D/2. This part
requires a tedious analysis of the different types of 4-tuples in the graph in order to
be proved.

Lemma 31 ([SG11]). Given G = (V,E), let X ⊆ V be such that G[X] is isometric
and has diameter at most D. Then, let C1, . . . , Ck be the connected components of
G \X, we have:

max
1≤i≤k

δ(G[Ci ∪X]) ≤ δ(G) ≤ max{D/2, max
1≤i≤k

δ(G[Ci ∪X])}+D/2.

In [CCDL17], we give a proof of this result in the case of clique-separator (D ≤ 1).
Note that G[X] must be isometric in order to ensure that the resulting subgraphs
G[Ci ∪X] are also isometric. Indeed, we recall that the hyperbolicity is not stable
under taking induced subgraphs. However, we observe that when X is a clique-
separator, the requirement for G[X] to be isometric is always satisfied.

By Lemma 31, if we disconnect the graph with a small diameter separator then
we can approximate the hyperbolicity up to an additive term. Unfortunately, these
additive errors can add up when we further decompose the graph. We prove it is the
case even for separators of diameter at most two [CCDL17]. However, in the special
case of clique-separators, we can bound the final additive error with the following
lemma.

62 Chapter 2. A survey on graph hyperbolicity

Lemma 32. Given G = (V,E), let u, v, x, y ∈ V satisfy δ(u, v, x, y) ≥ 3/2. There
exists an atom A0 intersecting all the paths between any two vertices of the 4-tuple.

Proof. Let (T,X) be a tree decomposition of G whose bags are the atoms of G.
Such a tree decomposition was proved to exist in [BPS14]. In order to prove the
lemma, it suffices to find an atom A0 such that there is no more than one vertex of
the 4-tuple u, v, x, y in each component of G \ A0. We shall find an atom A0 with
the weaker property that no more than two vertices among {u, v, x, y} \ A0 are in
the same connected component of G \ A0. Then, we will prove that in fact, there
is no more than one vertex of the 4-tuple in each component, by elaborating on the
property that δ(u, v, x, y) ≥ 3/2. First, in order to find the desired atom, we will
weight the bags of X (we will then choose the atom A0 in the weighted centroid of
T).

Precisely, for every of u, v, x, y we pick an atom which contains it and we define
the weight of an atom as the number of times it has been picked. In particular, an
atom has weight between 0 and 4, and the sum of weight of the atoms is equal to
W = 4. It is well-known that for any node-weighted tree with sum of weights W,
there is a node whose removal splits the tree into connected components where the
sum of weight of the nodes is at most W/2 [Gol71]. So, let A0 be an atom of G
such that no component of T \ {A0} has the sum of weight of its bags greater than
2. We claim that ∀s ∈ {u, v, x, y}\A0, there is a clique-separator Xs ⊆ A0 which
separates s from {u, v, x, y} \ {s}, that will prove the lemma.

Indeed, let s ∈ {u, v, x, y}\A0 be arbitrary. By the properties of a tree decom-
position, Ts (induced by the atoms containing s) is the subtree of a component Cs
of T \ {A0}. Let Vs ⊆ V be the subset of vertices that are contained in an atom
in Cs, and let As ∈ Cs be the atom that is adjacent to A0 in T . Since As and A0

are atoms of G, their intersection, denoted by Xs = As ∩ A0, is a clique [BPS10].
Furthermore, by the properties of a tree decomposition, Xs is a is a separator of
G that disconnects Vs from V \ Vs. Therefore, we are left to prove that no vertex
of {u, v, x, y} \ {s} is in Vs, for the latter will prove that Xs is a clique-separator
which separates s from {u, v, x, y} \ {s}. Assume for the sake of contradiction the
existence of a vertex t ∈ {u, v, x, y} \ {s} that is contained in Vs. We distinguish
between two cases.
• Suppose that t /∈ Xs. In this situation, Ts, Tt are subtrees of Cs. It implies that

the sum of weight of the atoms in Cs is at least 2, and so, by the choice of atom
A0, it is equal to 2. In particular, s and t are the only two vertices of the 4-tuple
that are in Vs \Xs (else, the sum of weight of the atoms in Cs should be at least
3). However, we prove in [CCDL17] that in this situation, δ(u, v, x, y) ≤ 1, that
contradicts the hypothesis that δ(u, v, x, y) ≥ 3/2. This part of the analysis
makes use of our proof of Lemma 31 for the case of clique-separators.
• Else, t ∈ Xs and we can assume w.l.o.g. that no vertex of {u, v, x, y} \ {s} is in
Vs \Xs (else, we go back to the previous case). However, we prove in [CCDL17],
as before, that in this situation, δ(u, v, x, y) ≤ 1, that again contradicts the
hypothesis that δ(u, v, x, y) ≥ 3/2.

2.6. On computing the hyperbolicity of graphs 63

As a result, no vertex of {u, v, x, y} \ {s} is in Vs, and so, Xs is a clique-separator
which separates s from {u, v, x, y} \ {s}. Since Xs ⊆ A0, the latter proves the claim
on A0, hence the lemma.

The gist of Lemma 32 is that the atoms of G = (V,E) are the bags of a tree
decomposition of G (this will be further discussed in the next chapter on tree de-
compositions). We use it in [CCDL17] in order to prove that the hyperbolicity of
any 4-tuple with large hyperbolicity is at most one unit off from the hyperbolicity
of a given atom, and so, Theorem 30 holds.

Further applications of clique-decompositions. On the way to prove Theo-
rem 30, we were able to (partly) characterize the cases where the hyperbolicity of a
graph cannot be deduced from its clique-decomposition directly. We leverage from
this characterization the following result:

Theorem 33. Given G = (V,E), let A1, A2, . . . Ak be its atoms. In O(|V ||E|)-time,
we can compute G∗1, . . . , G

∗
k such that:

• each G∗i is obtained from G[Ai] by adding simplicial vertices;

• and if δ(G) ≥ 1 then δ(G) = max{1} ∪ {δ(G∗i) | 1 ≤ i ≤ k}.

The above preprocessing method has been successfully applied on large co-
authorship graph in order to compute their hyperbolicity. On a more theoretical
side, we have used it in order to improve the computation of hyperbolicity for out-
erplanar graphs, a.k.a. the graphs whose atoms are cycles [Sys79]:

Theorem 34. If G = (V,E) is outerplanar then δ(G) can be computed in O(|V |)-
time.

In order to prove Theorem 34, we have established a simple characterization of
outerplanar graphs with hyperbolicity strictly less than one. More precisely, this
characterization is based on the property that every induced cycle in an outerplanar
graph is isometric [Sys79]. In particular, since every cycle of length at least six
has hyperbolicity at least one [WZ11], every outerplanar 1/2-hyperbolic graph is
5-chordal. So, we obtain our characterization of outerplanar 1/2-hyperbolic graphs
as a particular case of the characterization in [WZ11] of 1/2-hyperbolic 5-chordal
graphs.

Then, for outerplanar graphs with hyperbolicity at least one, we have refined
the results of Theorem 33. In particular, since the atoms of outerplanar graphs
are cycles, the graphs G∗1, . . . , G∗k output by the preprocessing method have a very
simple structure (they are obtained from a cycle by adding, for every edge e in the
cycle, at most one simplicial vertex that is adjacent to the two ends of e). So, their
hyperbolicity can be derived from the hyperbolicity of cycles and additional parity
conditions. Details can be found in our report [CCDL17].

64 Chapter 2. A survey on graph hyperbolicity

Final remark: combining many decompositions. It may be the case that
the atoms can be further split or reduced, using another graph decomposition. For
instance, a graph is EPT if it is the edge intersection graph of paths in a tree [GJ85].
The atoms of an EPT graph are line graphs [Tar85]. So, we can replace each atom
with its root (the graph of which it is the line graph), and we have by Theorem 19
that it does not affect their hyperbolicity by more than an additive term. Further-
more, computing the root of each atom can be done in linear time [Leh74].

Then, the roots of the atoms may be further decomposable using modular, split
or clique decomposition, etc. If the root is prime under all these decompositions
but it is a bipartite graph, we may still decrease its size by half as follows. We take
the smaller side of its bipartition and we add an edge between every two vertices
at distance two in the root. By Lemma 17, the hyperbolicity of the gotten graph is
roughly half of the hyperbolicity of the root.

2.6.3 Hardness results

In the previous Section 2.6.2, we show that the computation of hyperbolicity (exact
or approximate) can be sped up on certain graph classes by using graph decompo-
sitions. This approach does not extend to general graphs. So, a complementary
approach is to prove, or show strong evidence of, lower-bounds on the complex-
ity of computing this parameter. In this section, conditional lower-bounds on this
complexity are presented, with an emphasis on a reduction from the Quadrangle
Detection problem, that is part of my contributions.

2.6.3.1 Related work

As a warm-up, we recall that the problem Hyperbolicity with fixed Base ver-
tex can be reduced in quadratic-time to the computation of a (max,min)-product
between two matrices. In [FIV15], the authors prove that a converse reduction
also holds true: if Hyperbolicity with fixed Base vertex can be solved in
O(nυ)-time on n-vertex graphs then the (max,min)-product of two n × n matri-
ces can be computed in O(n2+υ/3 log n)-time. In particular, any O(n2.05)-time
algorithm for solving Hyperbolicity with fixed Base vertex would imme-
diately improve the best-known algorithms for (max,min)-product. These relation-
ships suggest a strong equivalence between the computation of hyperbolicity and
the (max,min)-product, that resembles the existing ones between all-pairs-shortest-
paths and (min,+)-product [FM71].

SETH-hardness. More recently, several authors have proved conditional lower-
bounds on the complexity of polynomial-time problems on graphs under the Strong
Exponential Time Hypothesis (SETH) [Wil16]. Roughly, the hypothesis says that
SAT cannot be solved in 2(1−ε)n-time for any ε > 0 [IPZ98]. Under SETH it has been
proved that computing the diameter of a graph cannot be done in truly subquadratic-
time, even on sparse graphs; that is, it cannot be computed in O(n2−ε)-time for any

2.6. On computing the hyperbolicity of graphs 65

ε > 0 [BCH16]. The authors in [BCH16] have used this result in order to prove
conditional lower-bounds on the complexity of computing the hyperbolicity of a
graph:

Theorem 35 ([BCH16]). Under SETH, none of the following problems can be
solved in truly subquadratic time, even on sparse graphs:
• computing the hyperbolicity of a given graph;
• deciding whether a given graph has hyperbolicity at most one.

A similar but weaker result was proved by Fang in [Fan11].

2.6.3.2 Contribution of this thesis: Truly subcubic reduction to Quad-
rangle Detection

The concept of q-reduction was introduced by Williams and Vassilevska Williams
in [VWW10]. Informally, if there is a q-reduction from a problem A to a problem
B, and B can be solved in Õ(nq−η)-time7 for some η > 0, then problem A can be
solved in Õ(nq−ε)-time for some other ε > 0. More formally, a Turing reduction
from a problem A to a problem B is an algorithm to solve A using an oracle to solve
B as a soubroutine. It is called a q-reduction if for every η > 0 there exists ε such
that the following holds for every input of size n:
• the reduction runs in Õ(nq−ε)-time;
• and if the oracle to solve problem B is called on instances with respective sizes
n1, n2, . . . , nk then

∑k
i=1 Õ(nq−ηi) = Õ(nq−ε).

This concept formalizes prior work from, e.g., [GO95, KS06a].
Two problems are called subcubic equivalent if every of the two problems can

be 3-reduced to the other. In this situation, either both problems are solvable in
truly subcubic time, or none of them is. My main contribution in [CD14], found
with David Coudert, can be stated as follows.

Theorem 36. The two following problems are subcubic equivalent:
• deciding whether a graph has hyperbolicity equal to 1/2;
• deciding whether a graph contains an induced cycle of length four.

Furthermore, both problems can be solved in deterministic O(n3.26)-time and in ran-
domized Õ(n2.3729)-time.

Theorem 36 shows a surprising gap in the complexity of recognizing graphs with
small hyperbolicity. Indeed, it has been proved in [How79] that the 0-hyperbolic
graphs can be recognized in linear time. In contrast, recognizing 1/2-hyperbolic
graphs in (deterministic) truly subcubic time seems to be a much harder task.

A reduction from Quadrangle detection to the recognition of 1/2-hyperbolic
graphs has been sketched in earlier papers [KM02, WZ11]. So, the main diffi-
culty was to show the converse reduction. Our proof for Theorem 36 makes use

7The Õ notation suppresses the polylog factors.

66 Chapter 2. A survey on graph hyperbolicity

of a (non algorithmic) characterization of 1/2-hyperbolic graphs from Bandelt and
Chepoi [BC03]. On the way to prove our result, we have established the following
simpler characterization for these graphs. We recall that for every G = (V,E) and
j ≥ 1, the graph power Gj is obtained from G by adding an edge between every two
distinct vertices that are at distance at most j in G.

Definition 37. For every G = (V,E), the graph G[2] = (V [2], E[2]) is defined as
follows:

• V [2] ' V × {0, 1};
• G[V × {0}] ' G;

• G[V × {1}] ' G3;

• and for every u, v ∈ V , the vertices (u, 0) and (v, 1) are adjacent in G[2] if and
only if dG(u, v) ≤ 2. In particular, for every u ∈ V , there is an edge between
(u, 0) and (u, 1) in G[2].

G G3

Edges of G2 + pseudo-
loops {(u, 0), (u, 1)}

Figure 2.23: The graph G[2].

We refer to Figure 2.23 for an illustration. Intuitively, the graph G[2] can be
seen as an intermediate power between the square and the cube of G. Our charac-
terization of 1/2-hyperbolic graphs can now be stated as follows.

Theorem 38. G = (V,E) is 1/2-hyperbolic if and only if none of the graphs Gj , j ≥
1 and G[2] contain an induced cycle of length four.

By Theorem 38, it can be decided whether G = (V,E) is 1/2-hyperbolic with
diam(G) calls to an oracle solving Quadrangle detection – given as inputs
G[2] and G,G2, G3, . . . , Gdiam(G)−1. If we precompute, in truly subcubic time, a
polylogarithmic-factor approximation for hyperbolicity then this number of calls
can be reduced to logO(1)(|V |+ |E|) (because some powers of G can be discarded),
and we so obtain a subcubic reduction from the recognition of 1/2-hyperbolic graphs
to Quadrangle detection.

2.7. Algorithmic applications 67

Discussion. As said earlier in this subsection, the authors in [BCH16] show that
under SETH, graph hyperbolicity cannot be computed in truly subquadratic time.
In contrast, it is proved with Theorem 36 that the weaker task of recognizing 1/2-
hyperbolic graphs is equivalent to the Quadrangle Detection problem. The
latter problem can be solved in O(m2)-time on m-edge graphs, and so, in quadratic
time on sparse graphs. However, no truly subquadratic deterministic algorithm is
known to exist, even for sparse graphs. In [VWWWY15], Vassilevska Williams et
al. describe an O(m1.41)-time randomized algorithm for Quadrangle Detection,
but it is not combinatorial (i.e., it calls matrix multiplication as a subroutine). In
order to reinforce this view, we note that there is a linear time reduction from
Triangle Detection to Quadrangle Detection [FKLL15], and so, to the
problem of computing graph hyperbolicity. It is conjectured that there does not
exist any truly subcubic combinatorial algorithm for Triangle Detection on
general graphs [Wil16].

2.7 Algorithmic applications

Finally, this section covers more technical applications of hyperbolicity, in the field of
graph algorithms. The previous sections can help the reader to have better insights
on the (hyperbolic) graph classes on which these algorithmic results apply, and the
(non hyperbolic) graph classes on which they do not apply. Note that this section
is not part of the contributions of this thesis. However, I will highlight on the way
some open questions on which I am interested to work.

The hyperbolicity has been used recently for the analysis of graph algorithms.
Indeed, it is the idea that when the hyperbolicity is small, there are some hard prob-
lems on graphs that can be efficiently approximated. In what follows, we outline
some interesting algorithmic properties that are enjoyed by constantly hyperbolic
graphs. Note that in some cases, the algorithms that are presented in this section
keep some interest even for more general hyperbolic graph classes (say, polyloga-
rithmically hyperbolic).

Outline of the section. The first parts of this section (Sections 2.7.1 and 2.7.2)
cover distance-related problems in graphs. In Section 2.7.1, we survey applications
of hyperbolicity in the analysis of approximate distance oracles. These results are
mainly based on the relationships between hyperbolicity and the best possible distor-
tion of the distances in a graph when it is embedded into a “tree-like” metric space.
Perspectives for improving upon these relationships, and for refining the proposed
constructions, will be discussed. Then, in the continuity of Section 2.7.1, we will
cover in Section 2.7.2 some applications of hyperbolicity to graph clustering prob-
lems. The techniques presented leave space for promising extensions to a broader
family of graph problems, that will be further examined. Finally, we will end the
section with algorithmic applications of hyperbolicity to some problems in structural
graph theory (Sections 2.7.3 and 2.7.4). Section 2.7.3 is devoted to a PTAS for the

68 Chapter 2. A survey on graph hyperbolicity

Traveling Salesman Problem in hyperbolic graphs with bounded degree. This
algorithm is based on new separability results in hyperbolic graphs, that I think
could be useful in other graph problems. Last, constructive relationships between
hyperbolicity and vertex expansion are presented in Section 2.7.4. I think that these
relationships can be helpful in the design of approximation algorithms for computing
the treewidth in hyperbolic graphs with bounded degree.

2.7.1 Distance approximations

This section surveys the known results on the relationship between hyperbolicity
and the best-possible stretch for the distances in a graph when it is embedded in
a “tree-like" space. Indeed, the basic use of hyperbolicity is for the analysis of
approximate distance oracles. Computing the all-pairs-shortest-paths in a graph
can be done in polynomial time and space, but in practice this is often too costly
on large graphs and there is a need for subquadratic approximations. Some of
them consist in embedding the graph into a “simpler” combinatorial or geometrical
structure. When the structure is a “tree-like” metric space, the hyperbolicity of the
graph comes into play in the distortion.

Note that these results have useful applications in compact routing [GL05].

2.7.1.1 Hyperbolic embedding

As an example, Verbeek and Suri proved in [VS14] that for any embedding of
G = (V,E) into a hyperbolic space the multiplicative distortion of the distances
is Ω(δ(G)/ log δ(G)), and if G has bounded degree then there exists a linear-time
computable embedding of G in a Hyperbolic space with additive distortion O(δ(G)).

As noted in [ACHK16], every G = (V,E) with maximum degree ∆ can be
embedded into a graph G′ with maximum degree three, up to a multiplicative dis-
tortion of the distances O(log ∆). In this situation, δ(G′) = O(δ(G) log ∆) (we refer
to [Shc13b, GdLH90] for a proof of the preservation of hyperbolicity under quasi-
isometry). Therefore, every G = (V,E) can be embedded into a Hyperbolic space
in linear-time with multiplicative distortion O(δ(G) log ∆).

2.7.1.2 Tree embedding

In what follows, we survey the relationships between hyperbolicity and the distor-
tions of the distances in a graph that are obtained with different algorithms for
embedding a graph into a tree. Some interesting open questions will be also men-
tioned. Most notably, Gromov has proved the following result on tree embeddings:

Theorem 39 ([Gro87]). Every G = (V,E) can be embedded into a tree in quadratic-
time, up to an additive distortion of the distances at most 2δ(G) log |V |.

In order to prove Theorem 39, the main contribution of Gromov was to exhibit
a pseudo-distance on graphs, and then to upper-bound the additive distortion re-
sulting from the pseudo-distance by 2δ(G) log(|V |). By construction, every graph

2.7. Algorithmic applications 69

equipped with the Gromov pseudo-distance is 0-hyperbolic, and there exist efficient
constructions in order to embed 0-hyperbolic spaces into a tree with null distortion.
One of them is due to Buneman, and it can be implemented to run in quadratic-
time [Bun74, Gro87].

u

(a) Graph G (b) Layering tree LC(u).

Figure 2.24: Example of a layering tree.

Relationship with other constructions. Recently, Yancey [Yan15] has proved
a close relationship between the construction of Gromov and the so-called layering
trees [CD00]. Given G = (V,E) and u ∈ V , the layering tree LCG(u) is obtained
from the shortest-path tree rooted at u as follows: we merge into one node all
vertices v, w such that d(u, v) = d(u,w) and there exists a vw-path P such that
d(u, x) ≥ d(u, v) for every x ∈ P (see Figure 2.24 for an illustration).

It was already proved that embedding G into one of its layering trees causes
a distortion of the distances O(δ(G) log(|V |)) [CDE+08]. However, what Yancey
proves is that the Gromov distance approximating tree is essentially a layering tree
with Steiner points (additional nodes in the tree such that all the edges incident to
that node have weight zero). On the algorithmic side, since a layering tree can be
computed in linear time [CD00], it gives a simpler and more efficient construction
for Theorem 39.

The Gromov distance approximating tree is also equivalent to another construc-
tion in the litterature, that is called an Anchored Buneman tree [BFÖ+03].

Perspectives. There exists a “refined Buneman tree” [BFÖ+03], that has been
observed to give a lower distortion of the distances in a graph than an Anchored
Buneman tree. It can be computed in cubic time. I think that it would be interesting
to analyse the distortion caused by an embedding into this tree (w.r.t. graph hy-
perbolicity), and to improve on its computation (possibly, by using the relationship
between Anchored Buneman trees and layering trees).

Another interesting question on tree embeddings was asked by the authors
in [ASM16]. Indeed, they notice that for real-life graphs with diameter O(log(|V |)),
a shortest-path tree is enough in order to approximate the distances up to an ad-
ditive term O(log(|V |)). Therefore, the tree embedding of Theorem 39 does not
look that appealing in that case. Under which conditions can a δ-hyperbolic graph

70 Chapter 2. A survey on graph hyperbolicity

with diameter D be embedded into a tree with distortion O(δ logD) ? Let us point
out that by Lemma 13 the ringed tree RT (k) (defined in Section 2.4.1) has diam-
eter Θ(k) and hyperbolicity 3 but cannot be embedded into a tree width additive
distortion o(k).

2.7.1.3 Approximate extremal distances.

Finally, before concluding this subsection, we point out that if we relax our goal
and we only want to approximate the extremal distances in G = (V,E) (i.e., the
eccentricities, where the eccentricity of a vertex is defined as its largest distance to
another vertex in G), then it can be done up to a better additive term O(δ(G)). In
particular, there is a simple algorithm in order to approximate the diameter, that is
named Two-Sweep in the literature [MLH08]. Suppose that we compute a breadth-
first search from any vertex of the graph G = (V,E), and that it ends on some vertex
v. Then, we compute a second breadth-first search from v, and it can be proved
that v has eccentricity at least diam(G)−2δ. The latter generalizes an algorithm of
Jordan in order to compute the diameter of trees in linear time [Jor69]. The radius
of the graph can be approximated in a similar fashion. We refer to [CDE+08] for
details.

2.7.2 p-centers

Next, we present a more refined algorithmic application of hyperbolic graphs to
graph clustering problems, that was proposed in [CE07]. This application requires
prior results on the relationships between hyperbolicity and tree embeddings (The-
orem 39). Precisely, the p-radius of G = (V,E) is the smallest radius rp(G) such
that V =

⋃
v∈S BG(v, rp(G)) for some subset S ⊆ V with |S| ≤ p vertices. In par-

ticular, the 1-radius of G is simply its radius, a.k.a., the minimum eccentricity of a
vertex in G. A dual invariant is the p-diameter of G = (V,E), that is the largest
dp(G) so that there are at least p vertices of G that are pairwise at distance at least
dp(G). In particular, the 2-diameter of G is simply its diameter, a.k.a., the largest
distance between two vertices in G. Furthermore, any subset minimizing rp(G),
resp. maximizing dp(G), is called a p-center, resp. a p-packing.

Shier has proved that for any tree T , we have dp+1(T)/2 ≤ rp(T) ≤ dp+1(T)/2+

1 [Shi77]. In [CE07], Chepoi and Estellon propose the following generalization to
δ-hyperbolic graphs:

Lemma 40 ([CE07]). For every G = (V,E), it holds dp+1(G)/2 ≤ rp(G) ≤
dp+1(G)/2 + 4δ(G) + 1.

From Lemma 40, they obtain an O(n3)-algorithm for computing an approximate
p-center of graphs [CE07]. It gives an approximation algorithm for computing the p-
radius of a given δ-hyperbolic graph up to an additive term O(δ). This was recently
improved in [EKS16], where Edwards et al. detail an algorithm with the same
performances as above, running in O(pδ(n+m) log n)-time on δ-hyperbolic graphs.

2.7. Algorithmic applications 71

The gist of these algorithms is to compute an approximate (p+ 1)-packing and then
to elaborate on it. It can be done by embedding the graph into a tree with additive
distortion of the distances O(δ log n), then to compute an optimal packing for this
tree.

Perspectives. Proper generalizations of Lemma 40 to the transversal and the
packing numbers of given set families in δ-hyperbolic graphs can be found
in [CDV16]. These results are obtained from a primal-dual approach using a lin-
ear programming formulation of these parameters. Can it be derived from the
relationships in [CDV16] efficient (quasi-linear time) approximation algorithms for
computing transversals of these set families ? In particular, can the techniques
applied in [EKS16] be useful in the design of such algorithms ?

2.7.3 Traveling Salesman Problem

So far, the problems mentioned in Sections 2.7.1 and 2.7.2 were purely metric.
The two last applications (Sections 2.7.3 and 2.7.4) combine some metric aspects
of graphs (distances) with structural properties. In particular, we present in this
part results on “balanced” separators in hyperbolic graphs, with applications to the
Traveling Salesman Problem.

In [KL06], Krauthgamer and Lee initiated a more general study of approximate
algorithms on negatively curved spaces. Their algorithms apply to constantly hy-
perbolic graphs with bounded maximum degree. Their main technical tools are
separability properties of hyperbolic graphs, that extend those of trees. As an ex-
ample, in a rooted tree T with maximum degree ∆, there exists a node z whose
subtree comprises between |T |/(2∆) − 1 and |T |/2 nodes. It can be extended to
hyperbolic graphs as follows:

Lemma 41 ([KL06]). Let G = (V,E) be a δ-hyperbolic graph with maximum degree
∆ and let w ∈ V . For every v ∈ V and t ≥ 0, let us define Xt

v = {u ∈ V | 〈u, v〉w ≥
dG(u,w) − t}. Then, for every S ⊆ V such that the vertices in S are pairwise at
distance at least 20δ, there exists c ∈ V such that:

|S|/∆O(δ2) ≤ |S ∩Xδ
c | ≤ |S ∩X3δ

c | ≤ |S|/2.

Using Lemma 41, Krauthgamer and Lee are able to design a hierarchical data
structure for approximate nearest neighbour search [KL06] [KL06].

Their second contribution is a randomized polynomial-time approximation
scheme (PTAS) for the well-known Traveling Salesman Problem (TSP). It
is based on the existence, for bounded degree hyperbolic graphs, of some padded
probabilistic decompositions. Roughly, the graph can be decomposed into small di-
ameter subsets in a way that every ball with small radius is contained in one of the
subsets with high probability. Assuming the graph has bounded maximum degree,
it is the idea that hard problems such as TSP can be solved by brute-force on the
subsets (or at least sharply approximated). Then, a global solution for the graph
can be computed from the partial solutions by using dynamic programming.

72 Chapter 2. A survey on graph hyperbolicity

Open questions. Lemma 41 extends a separability property of trees to hyperbolic
graphs. What other separability properties of trees can be generalized to hyperbolic
graphs in a similar fashion ? Can we use such properties in order to design ap-
proximation algorithms on hyperbolic graphs with bounded maximum degree, using
dynamic programming, for other problems such as Maximum Clique or Maximum
Independent Set ?

2.7.4 Cut problems

We end the section with some algorithmic consequences on the relationships between
hyperbolicity and graph expansion (Section 2.5.2.3). Unlike the other problems
mentioned in the section, the following algorithms also apply to non constantly
hyperbolic graph classes. More precisely, although the above algorithmic work on
hyperbolicity can sometimes apply to non constantly hyperbolic graph, the authors
in [DKMY15] have been the first, to the best of my knowledge, to design algorithms
for more general hyperbolic graphs (with non constant hyperbolicity).

We recall the results in [Ben98, Mal15] where they prove that expander graphs
are non hyperbolic. In [DKMY15], the authors give constructive proofs on the re-
lationship between graph expansion, maximum degree and hyperbolicity. Precisely,
they obtain improved algorithms for the following graph problems. Given an n-
vertex graph with maximum degree ∆ and hyperbolicity at most δ, the following
can be computed in polynomial-time:
• Upper-bounds on the vertex-expansion depending on δ and ∆. The algorithm

also outputs a large family of subsets satisfying these bounds, with limited
overlap;
• Large st-cuts with ∆O(δ) edges.
The authors also propose an improved algorithm for minimizing the number of

bottleneck edges that arises in network design applications. It works in the case
where δ = o(log n/ log ∆);

Finally, the authors in [DKMY15] have considered the small-set expansion
problem on hyperbolic graphs, that is a promise problem defined as follows: given
a graph G = (V,E) and two constants c and η, distinguish whether (i) there
exists a subset of V with size c · |V | and vertex-expansion at most η, or (ii) every
such a subset has vertex-expansion at least 1 − η [RS10]. It is conjectured that
for every fixed η, there exists some constant c such that the corresponding small-
set expansion problem is NP-complete for general graphs [RS10]. In contrast,
the authors in [DKMY15] proved that for every constants η and c the small-set
expansion problem can be solved in polynomial time for n-vertex graphs with
bounded maximum degree and hyperbolicity δ = o(log n).

Conclusion and open perspectives. The small-set expansion problem im-
plies the Unique Game conjecture, that is related to the complexity of a label
assignment problem on graphs and that has been shown to imply tight inapproxima-
bility results for many classic graph problems [Kho02]. Furthermore, the small-set

2.8. Conclusion 73

expansion problem also implies the nonexistence of constant-factor approximations
for treewidth [APW12].

Therefore, the result of [DKMY15] raises the following open problem: can the
treewidth of hyperbolic graphs with bounded degree be approximated up to a
constant-factor ? Note that computing the treewidth is NP-hard on bounded-degree
graphs and on hyperbolic graphs [BT97].

2.8 Conclusion

In Sections 2.4 and 2.5, we presented bounds on graph hyperbolicity. Enriching
these results with new lower and upper bound techniques is an important open
problem, with potential implications for a faster computation of this parameter in
practice. In particular, I believe that new results in the spirit of Section 2.4.3:
on the preservation of hyperbolicity under some graph operations, would give a
better insight on the structure of hyperbolic graphs. Similarly, new lower-bounds
could help the computer scientists in better distinguishing complex networks that
are hyperbolic or strongly hyperbolic (e.g., biological and social networks) from
those that are non hyperbolic (such as road networks). We refer to [AAD16, AD15,
BCCM15, CCL15, ASM13, KNS13] for experiments on the hyperbolicity in complex
networks.

On the complexity point of view, it is proved in Section 2.6.3 that the recognition
of 1/2-hyperbolic graphs is subcubic equivalent to the detection of induced cycles
of length four in graphs, and so, that no truly subcubic combinatorial algorithm
for computing the hyperbolicity is likely to exist. It is worth pointing out that in
practice, hard instances for the above problem are indeed graphs with small hyper-
bolicity. I thus conjecture that graphs with large hyperbolicity (say, proportional
to their size) can be recognized more efficiently. Results of this fashion have been
proved recently for the related problem of computing graph diameter [Dam16].

Open perspectives

As pointed out in Section 2.2, it can be inferred interesting network properties when
the graph is δ-hyperbolic. Before we finish this chapter, it is worth mentioning that
some other geometric graph parameters have been explored with the same goal in
mind as above. Most of them are close in spirit from hyperbolicity, and they can
often be defined via a suitable variation of the 4-point Condition (Definition 1)
or another reformulation of hyperbolicity. We refer, e.g., to [ABK+07, ADM14,
JLB08, LT15, Yan15] for partial relationship between these properties and graph
hyperbolicity.

Let us put a focus on two of these competitors to graph hyperbolicity. The first
one is the average hyperbolicity, defined as 1

(n4)

∑
u,v,x,y∈V δ(u, v, x, y) [ADM14]. The

second one is the notion of (p, δ)-hyperbolic graphs, that are graphs with at least
a fraction p of their geodesic triangles that are δ-slim [LT15]. I think that both
concepts should deserve more attention in the future, given that the maximum

74 Chapter 2. A survey on graph hyperbolicity

value for the hyperbolicity is reached by an extremely small fraction of 4-tuples in
real-life graphs (e.g., less than 3% in social graphs [AAD16]).

Finally, let us point out that in some cases, complex networks have a meaningful
orientation on the edges, i.e., they are directed graph. So far, graph hyperbol-
icity has been defined and studied only in the undirected case. Thus, it would
be very interesting to extend the notion of hyperbolicity (and of Gromov prod-
uct, see Definition 2) to digraphs. Partial attempts in this direction can be found
in [GK14, PRST13]. I let this topic as a future work.

Chapter 3

Tree decompositions with metric
constraints on the bags

Summary

We make a complexity study for computing tree decompositions in graphs. The
tree decompositions considered are defined via metric constraints on their bags. We
aim at obtaining a finer-grained complexity for computing these decompositions in
general graphs and in some graph classes with structural properties. To do so, we
will prove conditional lower-bounds through reductions.

In Section 3.3, we prove that Triangle Detection reduces in quadratic time
to the computation of clique-decomposition. This is a hint that there does not exist
any truly subcubic combinatorial algorithm for this problem. Furthermore, we prove
that computing the clique-decomposition can be reduced to Matrix Multiplica-
tion, which combined with the relationships between Matrix Multiplication
and Triangle Detection, suggests a computational equivalence between these
two problems and computing the clique-decomposition. On the parameterized point
of view, we conjecture that clique-decomposition can be computed in quasi-linear
time on graphs with bounded clique-number, that is formally proved for triangle-free
graphs and other special graph classes.

Then, in Section 3.4 we answer open questions of Dragan et al. on the complexity
of computing treebreadth, pathlength and pathbreadth in graphs. Namely, we prove
that all these problems are NP-hard. More precisely, we prove that the recognition
of graphs with treebreadth one is already NP-complete, and the same holds true for
the recognition of graphs with pathbreadth one and the recognition of graphs with
pathlength at most two. On a more positive side, we prove that deciding whether
a bipartite or planar graph has treebreadth one is polynomial-time solvable. The
algorithm for planar graphs and its analysis are surprisingly intricate.

Finally, we prove in Section 3.5 new relationships between treelength and
treewidth. Precisely, we prove a nontrivial upper-bound on the diameter of minimal
separators in a graph by using an algebraic tool called the cycle basis. We deduce
from this result that the treelength is linearly upper-bounded by the treewidth in
the class of graphs with bounded-length isometric cycles. Conversely, we prove
that the treewidth is linearly upper-bounded by the treelength in the class of apex-
minor free graphs, thereby generalizing a result from Dieng and Gavoille on planar
graphs [DG09].

All my papers on tree decompositions [CDN16, DLN16a, DC17] are collected in
the appendix.

76 Chapter 3. Tree decompositions with metric constraints on the bags

Contents
3.1 Introduction . 76

3.1.1 Context . 76
3.1.2 General objective: efficient computation of tree decompositions 77

3.2 Some basics on tree decompositions 79
3.2.1 Tree-likeness parameters . 80
3.2.2 Relationship with triangulations 83
3.2.3 Tree decompositions with constrained adhesion sets 84

3.3 Computational aspects of clique-decomposition 86
3.3.1 State of the art . 86
3.3.2 Contributions . 87
3.3.3 Summarizing the proofs . 88

3.4 On the complexity of computing treebreadth and its relatives 91
3.4.1 Summarize of our contributions 92
3.4.2 Approach and the techniques used in the proofs 93
3.4.3 Open problems and future work 102

3.5 Treewidth versus treelength! 103
3.5.1 State of the art . 103
3.5.2 Contributions: upper and lower bounds for treewidth by using

treelength . 104
3.5.3 Proving the bounds . 105

3.6 Conclusion . 111

3.1 Introduction

In the previous chapter, we studied on graph hyperbolicity and its algorithmic ap-
plications. Hyperbolicity is a measure of the closeness of a graph metric to a tree
metric. Yet, it is not related to a structural decomposition of a graph directly1.
On the algorithmic point of view, graph decompositions can be useful in order to
design divide-and-conquer algorithms on large graphs. In particular, tree decom-
positions [RS86] aim at decomposing graphs into pieces, called bags, organized in a
tree-like manner (formal definitions are postponed to Section 3.2). They have been
proved to be useful in order to extend some efficient algorithms on trees to larger
classes of graphs.

The purpose of this chapter is to describe my work on these decompositions.

3.1.1 Context

The general idea is that when the bags have a “simple enough” structure, there
are hard problems on general graphs which can be solved efficiently by using dy-
namic programming on the tree decomposition. There is now a rich literature on

1There does exist a relationship between graph hyperbolicity and some decompositions of graphs
with dismantling orderings (Definition 7).

3.1. Introduction 77

tree decompositions with algorithmic applications, such as e.g., algorithmic meta-
theorems (for solving hard problems on graphs with a specified tree decomposi-
tion) [Cou90, DH08, FG01], and the well-known biconnected decomposition [Tar72],
triconnected decomposition [HT73], clique-decomposition [BPS10], etc.

Furthermore, with the growing size of real-life graphs, tree decompositions have
been found useful in order to identify the key aspects of the structure of complex
networks, such as e.g., core and periphery [ASM16].

Treewidth is a classical measure for studying tree decompositions. Roughly, the
width of a tree-decomposition is the maximum size of its bags. The treewidth of
a graph is the minimum width among all its tree-decompositions. A lot of work
has been dedicated to compute tree-decompositions with small width since such
decompositions can be efficiently exploited for algorithmic purposes [Bod06]. How-
ever, computing the treewidth of a graph is NP-hard [ACP87] and no constant-
approximation algorithm is likely to exist [WAPL14]. Furthermore, real-life net-
works generally have a large treewidth [dMSV11]. These drawbacks motivated the
study of other optimization criteria for tree-decompositions [DG07, KLNS15, Sey16].

Metric tree-likeness in graphs. In this chapter, we mainly focus on optimizing
the metric properties of the bags. One first example is an atom tree [BPS10], where
the bags are maximal subgraphs with no clique-separators. The bags in an atom tree
are isometric subgraphs. An atom tree has already nice algorithmic applications,
however it may be sometimes more interesting to further decompose the graph.
Roughly, the length and the breadth of a tree-decomposition are the maximum di-
ameter and radius of its bags respectively. The corresponding graph parameters are
the treelength [DG07] and the treebreadth [DK14] respectively. As I mentioned it in
Section 2.4.1 (p. 36), these two parameters are closely related to hyperbolicity, and
to the best possible distortion of the distances in a graph when it is embedded into a
tree. Algorithmic applications of hyperbolic graphs (Section 2.7, p. 67) thus trans-
pose to bounded treelength graphs. See also [DDGY07] for some other applications
of treelength in graph algorithms. We point out that recent studies suggest that
some classes of real-life networks – including biological networks and social networks
– have bounded treelength and treebreadth [AAD16].

3.1.2 General objective: efficient computation of tree decomposi-
tions

In the continuity of my work on computing graph hyperbolicity (Section 2.6), I
have been interested in computing efficiently tree decompositions with bags of small
diameter or radius. To a lesser extent, my results also apply to the computation of
other tree-likeness parameters such as, e.g., treewidth.

In what follows, I shall introduce my main contributions to the field.

78 Chapter 3. Tree decompositions with metric constraints on the bags

3.1.2.1 Finer-grained complexity of clique-decomposition

The decomposition of a graph by its clique-separators is sometimes called “clique-
decomposition” in the litterature [BPS10]. Its output is an atom tree (mentioned
above), that is a tree decomposition whose bags induce subgraphs with no clique-
separators, a.k.a. atoms. One interest of clique-decomposition is that it can be used
for preprocessing the graph in the computation of many other parameters (exact or
approximate). In particular, the treewidth of a graph is the maximum treewidth of
its atoms, and the same holds true for treelength and treebreadth. In Section 2.6.2,
I also detailed a novel application of clique-decomposition for computing the hyper-
bolicity of large graphs.

My purpose in Section 3.3 is to improve our understanding of the complex-
ity of computing this decomposition. Clique-decomposition can be computed in
polynomial-time [Tar85]. However, the best-known algorithms for the problem run
in O(nm)-time on n-vertex m-edge graphs, that is prohibitive for large graphs.

In [DC17], we show how to reduce the triangle detection problem to clique-
decomposition, that is strong evidence that the state-of-the-art algorithm for clique-
decomposition is essentially optimal. Furthermore, we describe an improved algo-
rithm for computing the clique-separators of a graph, that suggests an interesting
relationship between the complexity of computing clique-decomposition and the
clique-number of a graph (size of a maximum clique).

These results are in revision for SIAM Journal of Discrete Mathematics. They
are joint work with my supervisor David Coudert. I will detail them in Section 3.3.

3.1.2.2 The (NP-)hardness of computing treebreadth

The remaining of this chapter (Sections 3.4 and 3.5) is devoted to the length and
the breadth of tree decompositions. On the complexity point of view, it has been
proved by Lokshtanov in [Lok10] that deciding whether a graph has treelength at
most k is NP-complete for every fixed k ≥ 2. However, this was left open for
treebreadth [DK14].

We answer to this open problem in [DLN16a]. Precisely, it is proved in the paper
that deciding whether a graph has treebreadth at most k is NP-complete for every
fixed k ≥ 1. Similar results are obtained for the “path counterparts” of treelength
and treebreadth, that are named pathlength and pathbreadth [DKL14].

On a more positive side, we initiate the study of the complexity of computing
treebreadth on certain graph classes. This approach has been well explored for
treewidth [BKK95, KK95, Klo96, BKKM98, BM93]. However it has been so far
underexplored for treelength and treebreadth. Precisely, it is proved in [DLN16a]
that bipartite graphs and planar graphs of treebreadth one can be recognized in
polynomial time.

I will expand on this joint work with Nicolas Nisse and Sylvain Legay in Sec-
tion 3.4.

3.2. Some basics on tree decompositions 79

3.1.2.3 Relationships between treewidth and treelength

Finally, the last Section 3.5 is devoted to new relationships between treelength and
treewidth. We obtain this way a unifying view of tree-likeness in graphs. Further
motivations to find such relationships are to derive improved algorithms for solving
hard problems on certain classes of bounded-treelength graphs, improved approxi-
mation algorithms for computing the treewidth on certain graph classes, etc.

In order to better depict the results in this section, found in collaboration with
David Coudert and Nicolas Nisse, let it be said that complete graphs are the classical
example of graphs with large treewidth but bounded treelength, whereas on the other
hand the cycles have bounded treewidth but unbounded treelength [DG07]. These
two graph families thus can be used in order to show that treewidth and treelength
cannot be compared on general graphs. We prove in [CDN16] that removing these
obstructions allows one to upper and lower bound treewidth with functions of the
treelength. More formally, what we prove in [CDN16] is that on apex-minor free
graphs with bounded-length isometric cycles, treelength and treewidth can only
differ by at most a constant-factor (full definition for this class of graphs is postponed
to Section 3.5).

Definitions and preliminary results are presented in Section 3.2. The technical
sections are structured as follows. We start with a short summary of the topic, then,
we list our main contributions and we discuss about their implications. We end the
sections with sketch proofs of the main results.

3.2 Some basics on tree decompositions

The notion of tree decomposition was briefly introduced in the previous chapter
(Section 2.4.1). We restate the definition here for convenience of the reader. A tree
decomposition (T,X) of G = (V,E) is a pair consisting of a tree T and of a family
X = (Xt)t∈V (T) of subsets of V indexed by the nodes of T and satisfying:

•
⋃
t∈V (T)Xt = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T) such that u, v ∈ Xt;

• for any v ∈ V , the set of nodes {t ∈ V (T) | v ∈ Xt} induces a subtree, denoted
by Tv, of T .

The sets Xt are called the bags of the decomposition. Its adhesion sets are the
intersections Xt ∩Xt′ for every edge {t, t′} ∈ E(T). As an example, we show a tree
decomposition of the wheel in Figure 3.1. In this case, the tree T is a path, so, we
call it a path decomposition.

We point out that any graph admits a tree decomposition, resp. a path de-
composition. Indeed, the single node tree with bag V satisfies the three above
conditions. However, this trivial tree decomposition is not that interesting, so, we
aim at imposing additional constraints on the bags or on the adhesion sets.

80 Chapter 3. Tree decompositions with metric constraints on the bags

0

1

2

3

4

5

6

0

1

2 6

0
2

3

6

0

3

5

6

0
3 5

4

Figure 3.1: A path decomposition of the wheel W6.

3.2.1 Tree-likeness parameters

Treewidth

The width of a tree decomposition is the size of a largest bag minus one. The
treewidth, resp. the pathwidth of a graph G is the least possible width over its tree
decompositions, resp. over its path decompositions. In what follows, we denote
these two parameters by tw(G) and pw(G), respectively.

Example: graphs with small treewidth. Graphs with treewidth one are ex-
actly the trees (hence, the minus one in the definition).

Furthermore, cycles have treewidth two. It can be shown as follows. When we
remove any vertex from a cycle, that will leave a path. This path is a tree, so, it
has a tree decomposition of unit width. Then, by adding in every bag the removed
vertex, we obtain a tree decomposition of the cycle of width two.

Examples of graphs with large treewidth are the complete graphs and the
grids.

Precisely, a complete graph Kn with n vertices has treewidth n− 1. This well-
known result derives from the Helly property: every collection of pairwise intersect-
ing subtrees in a tree have a nonempty intersection. We detail this a bit more below
as it is a useful technique in the study of tree decompositions.

Let us fix (T,X) a tree decomposition of Kn. We have for every u, v ∈ V (Kn)

3.2. Some basics on tree decompositions 81

that since u and v are adjacent they must be contained in a common bag. As a
result, the subtrees Tv, v ∈ V (Kn) are pairwise intersecting. By the Helly property,
it implies that there must be a bag of (T,X) with all the n vertices in Kn, hence
tw(Kn) ≥ n − 1. The bound is reached by the trivial tree decomposition with one
node.

Observe that more generally, we have with the same proof as above that for
every G, and every tree decomposition (T,X) of G, every clique of G must be fully
contained in one bag of (T,X) [Bod06]. Therefore, the treewidth is lower-bounded
by the clique-number (size of a largest clique).

. . .

Figure 3.2: Bags in a path decomposition of the grid with side length four (partial
view).

Last, given a grid with dimensions m and n, with n ≤ m, it is not difficult to
construct a tree decomposition of width n (see Figure 3.2). This construction is
optimal [Die10] but it is technically challenging to prove it.

I will study treewidth in Section 3.5.

3.2.1.1 Treelength and treebreadth

The length of a tree decomposition is the maximum distance in the graph between
every two vertices in a same bag. The treelength, resp. the pathlength of a graph
G is the least possible length over its tree decompositions, resp. over its path
decompositions. In what follows, we denote these two parameters by tl(G) and
pl(G), respectively. Note that they are trivially upper-bounded by the diameter
diam(G) (that is the length of the trivial tree decomposition with one node).

Close to its length, the breadth of a tree decomposition is the minimum r such
that every bag is contained in a ball of radius r in the graph (the center of the
ball may not be in the bag). The treebreadth, resp. the pathbreadth of a graph
G is the least possible breadth over its tree decompositions, resp. over its path
decompositions. In what follows, we denote these two parameters by tb(G) and
pb(G), respectively. As an example, the wheel in Figure 3.1 has treebreadth one
and treelength two.

Treelength and treebreadth can be seen as a particular case of acyclic (R,D)-
clustering, a.k.a. tree decompositions with breadth at most R and length at most
D [DL07]. The two parameters are closely related. Precisely, tb(G) ≤ tl(G) ≤

82 Chapter 3. Tree decompositions with metric constraints on the bags

2·tb(G) and the bounds are sharp [DK14]. The same relationship holds true between
pathlength and pathbreadth.

Examples of graphs with small treelength. It turns out that many interesting
graph classes with unbounded treewidth have small treelength. As an example,
the chordal graphs are a strict generalization of complete graphs. They can be
characterized as those graphs admitting a clique-tree, that is a tree decompositions
whose bags are cliques [Gav74]. Thus, chordal graphs are exactly the graphs with
unit treelength. More generally, every k-chordal graph (graph with no induced cycle
of length at least k + 1) has treelength at most bk/2c [DG07].

Related to chordal graphs, the dually chordal graphs are the clique-graphs (i.e.,
intersection graphs of the maximal cliques) of chordal graphs [BDCV98]. We claim
that dually chordal graphs have treebreadth one, and so, treelength at most two.
Indeed, for every dually chordal graph G, there exists a one-to-one mapping ϕ from
the maximal cliques of some chordal graph H to the vertices of G. Let (T,X) be a
clique-tree of H. Since bags of this tree decomposition are maximal cliques of H, we
can define, for every node t ∈ V (T), Yt = NG[ϕ(Xt)]. Then, it can be checked that
(T ′,Y) = (T, (Yt)t∈V (T)) is a tree decomposition of G of breadth one. In particular,
for every vertex v ∈ V (G) we have that T ′v =

⋃
u∈ϕ−1(v)

Tu. It follows, as claimed,

that dually chordal graphs have treebreadth one, but this inclusion is proper. To see
that, it suffices to notice that every chordal graph also has treebreadth one, while
not all chordal graphs are dually chordal [BDCV98].

Another interesting fact is that every graph with diameter at most D also has
treelength at most D (trivially). In particular, adding a universal vertex to any
graph G with treewidth k will result in a graph G′ with tw(G′) = k+1 and tl(G′) ≤
diam(G′) ≤ 2. This simple observation will be useful in order to better intuit our
results in Section 3.5.

On the other way around, examples of graphs with large treelength include
cycles and grids [DG07]. Intuitively, this can be explained by the Balanced separa-
tion property in tree decompositions: in any tree decomposition (T,X) of G, there
must exist a bag B ∈ X so that every component of G \ B contains no more than
|V |/2 vertices (it generalizes the existence of a centroid in a tree [Gol71]). It is not
hard to see that on a cycle Cn with n vertices, any balanced separator has diameter
Ω(n) (see also Fig. 2.14b). Similar arguments apply to the case of grids.

Finally, it should be noticed that complete graphs have unbounded treewidth
and unit treelength, whereas n-vertex cycles have treewidth two and unbounded
treelength dn/3e [DG07]. Altogether combined, it shows that treewidth and tree-
length are uncomparable on general graphs. We shall discuss when they can be
compared in Section 3.5.

3.2. Some basics on tree decompositions 83

3.2.2 Relationship with triangulations

Tree decompositions can be defined equivalently in terms of graph triangulations.
As we will show throughout this chapter, this reformulation is very convenient to
use in the proofs.

A triangulation of G = (V,E), sometimes called a fill-in of G, is any chordal
supergraphH = (V,E∪F) of G. Recall that chordal graphs are exactly those graphs
with a clique tree, a.k.a. tree decomposition whose bags are cliques [Gav74]. If H is
a triangulation of G, then any of its clique tree is clearly a tree decomposition for G.
Conversely, given a tree decomposition (T,X) of G, we can define a triangulation
of G by adding an edge between every two vertices that are in a same bag of the
decomposition (e.g., see Figure 3.3 for an illustration).

0

1

2 6

0
2

3

6

0

3

5

6

0
3 5

4

(a) A tree decomposition of W6

0

1

2

3

4

5

6

(b) The corresponding triangulation.

Figure 3.3: Triangulation of the wheel W6.

Altogether combined, the tree decompositions of G can be defined as the clique
trees of its triangulations H. In particular:
• tw(G) ≤ k if and only if there exists a triangulation H of G with no clique of

size greater than k + 1 (sometimes called a k-tree) [Bod06];
• tl(G) ≤ l if and only if there exists a triangulation H of G so that E(H) ⊆
E(Gl), where Gl = (V, {{u, v} | 0 < dG(u, v) ≤ l}) is the lth power of
G [Lok10]2.

2I am not aware of any “natural” reformulation of treebreadth in terms of triangulation. It is
my opinion that the hypergraph terminology from [BDCV98] would be best suited to reach the

84 Chapter 3. Tree decompositions with metric constraints on the bags

Minimal triangulation and minimal separators. Let G = (V,E) be a graph.
A triangulation H = (V,E∪F) of G is minimal if for every strict subset F ′ ⊂ F , we
have that H ′ = (V,E ∪ F ′) is not chordal. Similarly, a minimal tree decomposition
of G is a clique tree of some minimal triangulation of G.

Every triangulation H = (V,E ∪ F) of G can be transformed into a minimal
one by removing a subset of edges F ′ ⊆ F . Note that it does not make increase
the width, length and breadth of the corresponding tree decompositions of G. As
a result, it can always be found a minimal tree decomposition of minimum width,
resp. of minimum length or of minimum breadth. This observation has motivated
an in-depth study of minimal triangulations and their characterizations [Heg06].

In particular, the following characterization is due to Parra and Scheffler [PS97].
Before we can state it properly, we need to introduce standard notions on graph
separators.

A separator of G = (V,E) is any subset S ⊆ V satisfying that G \ S is discon-
nected. If a, b are two vertices in different components of G \ S then we call S an
ab-separator. A minimal separator is an inclusion wise minimal ab-separator S for
some pair of vertices a, b ∈ V \ S. Equivalently, a separator S is called minimal if
there exist two components A,B of G \ S such that N(A) = N(B) = S. We note
that inclusion wise minimal separators are also minimal separators, but the converse
holds false.

Two minimal separators S1, S2 of G cross if S1 intersects two connected compo-
nents of G \ S2 (this is an equivalence relation on minimal separators [PS97]). If
S1, S2 do not cross then they are called parallel.

Theorem 42 ([PS97]). H is a minimal triangulation of a graph G if and only if
it is obtained by transforming into cliques all sets in a maximal family of pairwise
parallel minimal separators of G.

3.2.3 Tree decompositions with constrained adhesion sets

The dominant approach in the study of tree decompositions is to try to optimize
some properties on the bags. This is the approach presented in Section 3.2.1. An-
other approach is to impose more structures on the adhesion sets (intersections of
adjacent bags). Many graph decompositions can be defined this way. We present
some of them below, with an emphasis on clique-decomposition.

First examples. The biconnected decomposition of G = (V,E) is the collection
of its maximal sets of vertices with no separator of size one (also called cut-vertex).
These sets are called biconnected components. It is well-known that the biconnected
components are the bags of a tree decomposition of G, sometimes called a block-cut

goal. Namely, define for every graph G the hypergraphs C(G) and N (G) whose hyperedges are,
respectively, the maximal cliques and the closed neighbourhoods in G. Furthermore, given two
hypergraphs H1 and H2 with same vertex-set, let us write H1 ⊆ H2 if every hyperedge of H1 is a
subhyperedge of H2. Then, tb(G) ≤ j if and only if there exists a chordal supergraph H of G such
that C(G) ⊆ C(H) ⊆ N (Gj)

3.2. Some basics on tree decompositions 85

tree [Tar72]. In particular, we observe that the adhesion sets of a block-cut-tree are
exactly the cut-vertices of G.

Similarly, the so-called triconnected components [HT73] are the bags of a tree
decomposition of G, sometimes called a SPQR-tree [GM00]. The adhesion sets of a
SPQR-tree are pairwise parallel minimal separators of size two. Generalizations to
tree decompositions with adhesion sets of size at most k are discussed in [CDHH16,
Gro16].

3.2.3.1 Clique-decomposition

Instead of bounding the size of the adhesion sets, we can bound their diameter. A
clique-minimal separator of G = (V,E) is a minimal separator inducing a clique
of G. The atoms of G are the maximal sets of vertices with no clique separator.
Finally, the clique-decomposition of G is the collection of its atoms (see Figure 3.4
for an illustration).

87
1 4

2

6

3

5

(a) A graph G.

1

2

6

2

6

7 8

2

6

3

5

8
4

(b) The clique-decomposition of G.

Figure 3.4: Example of clique-decomposition.

In the same way as above, the atoms of G are the bags of a tree decomposition,
sometimes called an atom tree [BPS14]. The atom trees of G are exactly the clique-
trees of some triangulation H+ of G [BPS10]. In general, H+ is not a minimal
triangulation of G. However, we have that H+ is a supergraph of any minimal
triangulation of G. More precisely:

Proposition 43 ([BPS10]). For every minimal triangulation H of G = (V,E), the
clique-minimal separators of G are exactly the minimal separators of H that induce
a clique of G.

What Proposition 43 implies is that in order to compute a minimal triangulation
of G, it suffices to do so for each atom separately [Tar85]. In particular, it follows
that treewidth, treelength and treebreadth can be computed on each atom sepa-
rately (we obtain their value for G by taking the maximum value over the atoms).
This motivates us to study the complexity of computing clique-decomposition in
Section 3.3.

86 Chapter 3. Tree decompositions with metric constraints on the bags

3.3 Computational aspects of clique-decomposition

This section is devoted to my work on the time complexity for computing clique-
decomposition. We refer the reader to [DC17] for the full version.

3.3.1 State of the art

The clique-decomposition is well-known to be computable in polynomial O(nm)-
time on n-vertex m-edge graphs [Lei93, Tar85]. For dense graphs, it can be im-
proved to O(n2.69) [KS06b], but the algorithm is non combinatorial (i.e., it uses
matrix multiplication as a routine). Faster combinatorial algorithms have been
proposed on certain graph classes such as subclasses of hole-free graphs and claw-
free graphs [BBGM15, BW12]. Still, the best-known combinatorial algorithms have
O(nm)-time complexity, that is cubic for dense graphs and quadratic for sparse
graphs.

As shown with Proposition 43, clique-decomposition is strongly related with min-
imal triangulations. However, Kratsch and Spinrad proved in [KS06a] that finding
a clique-separator is at least as hard as finding a simplicial vertex, even if a minimal
triangulation is given as part of the input. The latter result implies that computing a
minimal triangulation is not the only complexity bottleneck of clique-decomposition
algorithms.

Kω−1

v1

v2

v3

. . .

vn−ω

vn−ω+1

Figure 3.5: An n-vertex split graph with clique-number ω. The vertices are biparti-
tioned in a clique Kω−1 with ω − 1 vertices and an independent set with n− ω + 1

vertices. Furthermore, each vertex in the independent set is adjacent to all ver-
tices in the clique. The atoms of the graph are exactly the closed neighbourhoods
N [vi], 1 ≤ i ≤ n− ω+ 1. Therefore, there are ω(ω− 1)(n− ω+ 1)/2 edges in total
in the subgraphs induced by the atoms.

Overview. Our results – presented below – suggest that another difficulty comes
from the clique-number of the graph (size of a largest clique). In order to support
our claim, we illustrate with Figure 3.5 that there are n-vertex graphs with clique-
number ω such that the total number of edges cumulated on the subgraphs that
are induced by their atoms is Ω(ω2n). It implies that when a clique-decomposition
algorithm not only computes the atoms, but also the subgraphs that are induced by
them, its time complexity must be Ω(ω2n).

3.3. Computational aspects of clique-decomposition 87

3.3.2 Contributions

The following is joint work with my supervisor David Coudert.

3.3.2.1 Time complexity lower bound

In the spirit of what has been presented for graph hyperbolicity (Section 2.6.3,
p. 64), it is proved in this section a conditional lower-bound on the time complexity
for computing clique-decomposition. Precisely, computing the clique-decomposition
is at least as hard as detecting a triangle in a graph.

We prove the following result in our paper [DC17].

Theorem 44. The problem of detecting a triangle in an n-vertex graph reduces in
quadratic time to the problem of computing the clique-decomposition of a graph with
3n+ 2 vertices.

It is conjectured that no combinatorial truly subcubic algorithm for triangle
detection exists [Wil16]. So, altogether combined, this is hint that the O(nm)-
time state-of-the-art algorithm for computing clique-decomposition is essentially
optimal.

3.3.2.2 Matching upper bound

In order to better understand the hardness of computing clique-decomposition, we
next turn our attention on the non combinatorial algorithms. On a more theoretical
side, it is proved in our paper [DC17] that clique-decomposition can be computed
in O(nα log n) = O(n2.3729 log n)-time by using fast matrix multiplication.

Theorem 45. For every n-vertex graph G = (V,E), its clique-decomposition can
be computed in O(n2.3729 log n)-time.

Under well-established complexity hypotheses, the latter result matches the
lower-bound obtained with triangle detection for the non combinatorial al-
gorithms. Indeed, we refer to [VWW10] for computational equivalences between
triangle detection and matrix multiplication3. Hence, these results are
hint that (up to logarithmic factors), the time complexity for computing clique
decomposition is in Õ(n2.3729).

3.3.2.3 The role of clique-number

Finally, we consider the seemingly simpler problem of computing the clique-
decomposition when a minimal triangulation is given as part of the input. Let
us call it the clique-decomposition with minimal triangulation problem.

3More explicitly, if Matrix Multiplication can be solved in O(M(n))-time then Triangle
Detection can be solved in O(M(n))-time, and conversely if Triangle Detection can be solved
in O(T (n))-time then Matrix Multiplication can be solved in Õ(n2 · T (n1/3))-time.

88 Chapter 3. Tree decompositions with metric constraints on the bags

We shall seek for efficient parameterized algorithms for the problem, where the pa-
rameter is the clique-number of the graph.

A new paradigm has emerged in Fixed-Parameter Tractability, sometimes called
P-FPT (polynomial FPT), where the dependency in the fixed parameter k is re-
quired to be polynomial. There have been recent revisitings of polynomial-time
graph problems in this polynomial parameterized setting [AVWW16, FLP+15,
GMN15]. Our result, that can be found in our paper [DC17], is that clique-
decomposition with minimal triangulation can be solved in linear time when
the clique-number of the graph is assumed to be a constant.

Theorem 46. For every G = (V,E) with clique-number ω, and H = (V,E ∪ F)

any minimal triangulation of G with f = |F | fill edges, the clique-decomposition
with minimal triangulation problem can be solved in time O(m+ f + ω2n).

It is open whether more generally, the clique-decomposition can be computed
in quasi-linear time on graphs with bounded clique-number. I conjecture that it is
the case and this is left as an interesting open question. Furthermore, in order to
support my conjecture, I will prove at the end of this section that it holds true for
triangle-free graphs (ω = 2).

3.3.3 Summarizing the proofs

3.3.3.1 Reduction from a counting problem

The proof for the lower bound is based on the following result on counting the
number of simplicial vertices in a graph.

Lemma 47 ([KS06a]). Counting the number of simplicial vertices in a graph with
3n+ 2 vertices is at least as hard as detecting a triangle in an n-vertex graph.

I prove that a vertex is simplicial if and only if it is contained in a unique atom
and this atom is a clique [DC17]. Based on this characterization, it can be shown
that counting the number of simplicial vertices can be done in linear time if the
clique-decomposition is given. Theorem 44 follows from this result directly.

Proof of Theorem 44. Let G = (V,E) be any graph with 3n+2 vertices. In order to
prove the theorem, by Lemma 47 it is sufficient to prove that counting the number
of simplicial vertices in G can be done in O(n+m)-time if the clique-decomposition
of G is given.

We claim that for every simplicial vertex v ∈ V , its closed neighbourhood N [v]

is an atom, and in particular it is the unique atom containing v. Indeed, suppose for
the sake of contradiction that there exists u /∈ N [v] such that u and v lie on a same
atom A. Then, N(v)∩A is an uv-separator in the subgraph G[A]. Since N(v)∩A is
a clique, the latter contradicts that G[A] has no clique-separator. Therefore, every
atom containing v is a subset of N [v]. Finally, since G[N [v]] is complete, we have
that G[N [v]] has no clique-separator, and so, by inclusion wise maximality of the
atoms, N [v] is the unique atom containing v, that proves the claim.

3.3. Computational aspects of clique-decomposition 89

In particular, it follows from this above claim that a vertex is simplicial if and
only if it is contained in a unique atom and this atom is a clique. Indeed, if a vertex
is simplicial then by the above claim it satisfies the desired property. Conversely, if
a vertex v is uniquely contained in an atom A and A is a clique then v is trivially
simplicial with its neighbourhood being equal to N [v] = A.

Let us take advantage of this above characterization of simplicial vertices in
order to count them in G. Let A1, A2, . . . , Ak be the atoms of G. We will use in the
following analysis that

∑k
i=1 |Ai| = O(n+m) [BPS10].

We first compute an atom tree of G. In order to do so, we recall that a dual
hypertree is a hypergraph whose hyperegdes are the maximal cliques of some chordal
graph (obtained by adding an edge between every two vertices that are contained
in a same hyperedge). Tarjan et al. prove in [TY84] that dual hypertrees can
be recognized in linear-time, and that for every dual hypertree, a clique-tree of
its underlying chordal graph can be computed within the same amount of time.
Therefore, we can use this algorithm from [TY84] in order to compute an atom tree
in O(

∑k
i=1 |Ai|) = O(n+m)-time.

Then, let Ai be any leaf-bag in the atom tree (a bag whose corresponding
node in the tree has degree at most one). Since the intersection of two atoms is
a clique [BPS10], we have that Ai is a clique if and only if every vertex that is
uniquely contained in Ai has degree |Ai| − 1. Furthermore, by removing the set
Ci of vertices that are uniquely contained in Ai then discarding Ai from the atom
tree, one obtains an atom tree of G \ Ci. Therefore, we can repeat the above pro-
cess in order to list all the atoms of G that are cliques. Overall, it takes time
O(
∑

v∈V |N(v)|+
∑k

i=1 |Ai|) = O(n+m).
Finally, let Ai1 , . . . , Ail be the atoms of G that are cliques. We can count all the

vertices that are only contained in Aij , for some 1 ≤ j ≤ l, simply by scanning all
the atoms in O(

∑k
i=1 |Ai|) = O(n+m)-time. Since we proved that these are exactly

the simplicial vertices of G, the latter achieves proving that counting the number of
simplicial vertices can be done in O(n+m)-time if the atoms are given.

3.3.3.2 Computing the clique-minimal separators

Berry et al. have proved the following result in [BPS14]. Given an n-vertex m-edge
graph G = (V,E), suppose we are given H = (V,E ∪ F) a minimal triangulation of
G with f = |F | fill edges, and the collection of the clique-minimal separators of G.
Then, the clique-decomposition of G can be computed in time O(m + f). So, we
focused on the problem of computing the clique-minimal separators, given G and H
as inputs.

Outline of the method. The gist of the approach for doing so is to use Propo-
sition 43. Indeed, since H is chordal, its minimal separators can be computed in
linear O(m + f)-time [Gav72]. In order to extract from these the clique-minimal
separators of G, by Proposition 43 it suffices to decide which are cliques of G.

90 Chapter 3. Tree decompositions with metric constraints on the bags

• We prove in [DC17] that it can be done by using the incidence matrix of G
and fast matrix multiplication. More precisely, we compute the clique-matrix
of the triangulation H, where the minimal separators of H are listed, and then
we multiply this matrix with the incidence matrix of G in order to determine
which of those are cliques of G. Since in addition, a minimal triangulation H
of G can be computed in O(nα log n)-time [HTV05], Theorem 45 follows.
• In order to do the same in a combinatorial way, we propose the following algo-

rithm. Let us consider the vertices in G sequentially. At each step i, and for
every minimal separator S of H which contains the current vertex vi, we check
whether vi is adjacent to all the previous vertices vj ∈ S with j < i. When that
is not the case, S cannot be a clique of G and so, we can discard it from the
collection of (potential) clique-minimal separators of G. The central idea of the
analysis is that since G has clique-number ω, we shall detect whether a minimal
separator S of H is not a clique of G by considering no more than ω+1 vertices
in S. — Note that we needn’t compute ω for the algorithm. — Theorem 46
now follows.

Discussion. The reason why we don’t have an algorithm in time ωO(1)(n + m)

for computing the clique-decomposition is that we don’t know how to compute a
minimal triangulation within these time bounds. However, there exist quasi-linear
time algorithms for computing a minimal triangulation in some classes such as,
e.g., planar graphs [Dah98], bounded degree graphs [Dah02] and bounded-treewidth
graphs [FLP+15]. Furthermore, we prove that in the special case of triangle-free
graphs (ω = 2), a minimal triangulation is not needed in order to compute the
clique-decomposition. The latter result generalizes a remark from [BPS11], where
Berry et al. notice without giving too much details that computing the clique-
decomposition of a given bipartite graph can be done in linear time.

Lemma 48. If G = (V,E) is triangle-free then an atom tree of G can be computed
in O(|V |+ |E|)-time.

Proof. First, we compute a block-cut-tree of G (a.k.a. a tree decomposition whose
bags are exactly the biconnected components of G, see Section 3.2). It can be done
in linear time [Tar72]. We observe that since a cut-vertex is a clique-separator, the
atoms of G are exactly the atoms of its biconnected components. In particular, an
atom tree of G can be obtained by substituting each biconnected component Gi,
in the block-cut-tree, by an atom tree of Gi. So, we can process the biconnected
components separately and we now assume that G is biconnected for the remaining
of the proof.

Then, we compute the SPQR-tree of G, that can also be done in linear
time [GM00]. In [GM00] Gutwenger and Mutzel prove the following result using
a different terminology than Parra and Scheffler. We have that up to further split-
ting the cycles among the triconnected components (using nonedge separators), the
collection F2 of the adhesion sets in the SPQR-tree is a maximal family of pairwise

3.4. On the complexity of computing treebreadth and its relatives 91

parallel minimal 2-separators of G. In this situation, we observe that since the two
ends of an edge cannot be disconnected by any separator of G, an edge-separator
is trivially parallel with any other minimal 2-separator of G, and so, it must be
contained in F2. In particular, we can compute all the edge-separators of G by
computing F2 ∩ E, that can be done in O(|E|+ |F2|) = O(|V |+ |E|)-time.

Finally, since G is assumed to be biconnected and triangle-free, its edge-
separators are exactly its clique-minimal separators. Therefore, we can compute
the atoms of G as follows. We compute the maximal subtrees Ti of T so that for
every {t, t′} ∈ E(Ti), the minimal 2-separator Xt ∩ Xt′ is not an edge. It can be
done in O(

∑
t∈V (T) |Xt|) = O(|V | + |E|)-time. Then, the atoms of G are exactly

the unions of bags in the subtrees, i.e.,
⋃
t∈V (Ti)

Xt for every i.

Finally, it would be interesting to determine whether more generally, a graph can
be decomposed by its clique-minimal separators of size at most k in kO(1)(n+m)-
time. By Lemma 48, it is the case if k ≤ 2. Furthermore, a positive answer for
every k would directly imply that computing the clique-decomposition can be done
in ωO(1)(n+m)-time — given the clique-number ω as part of the input.

3.4 On the complexity of computing treebreadth and its
relatives

Computing an atom tree is a first step toward computing more interesting tree
decompositions, e.g. with optimal width, length or breadth. In this section, we now
answer open questions from [DK14] and [DKL14] on the complexity of computing
treebreadth, pathlength and pathbreadth. Full results are presented in [DLN16a,
DLN16b].

3.4.0.3 Motivations and related work

Treelength and treebreadth. The complexity of computing treelength on gen-
eral graphs is now well understood. Graphs with unit treelength are exactly the
chordal graphs [DG07], and they can be recognized in linear time. In contrast, recog-
nizing graphs with treelength at most k is NP-complete for every fixed k ≥ 2 [Lok10].
However on a more positive side, there exist 3-approximation algorithms for com-
puting this parameter [DG07].

In [Lok10], the reduction used for treelength goes through edge-weighted graphs,
and then goes back to unweighted graphs using rather elegant gadgets. It is not clear
how to adapt this proof for treebreadth. Since the value for this parameter is a 2-
approximation for treelength [DK14], any polynomial-time algorithm for computing
treebreadth, or even an α-approximation algorithm for some α < 3/2, would improve
the best-known approximation algorithms for treelength. Our results (presented
below) suggest that no such algorithm is likely to exist.

92 Chapter 3. Tree decompositions with metric constraints on the bags

Pathlength and pathbreadth. As for pathlength (resp., pathbreadth), a 2-
approximation (resp., a 3-approximation) algorithm is given for computing this pa-
rameter but the computational complexity of both problems is left open in [DKL14].
In the same paper, pathlength and pathbreadth have been shown to be useful in the
design of approximation algorithms for bandwidth and line-distortion.

We note that recently, the minimum eccentricity shortest-path problem
has been proved NP-hard [DL15]. The latter is a minimization problem where given
a graph G = (V,E), it is aimed at computing a shortest-path P with minimum
eccentricity maxv∈V dG(v,P). Furthermore, it has been proved in [DKL14] that
the minimum eccentricity of a shortest-path in G is an Θ(pl(G)) with pl(G) being
the pathlength of G. Let us point out that for every fixed k, it can be decided
in polynomial time whether a graph admits a shortest-path with eccentricity at
most k [DL15]. The following results will show that the situation is different for
pathlength and pathbreadth.

3.4.1 Summarize of our contributions

The main contributions in this section are to answer the open questions from [DK14,
DKL14] on the complexity of computing treebreadth, pathlength and pathbreadth.
Namely, the main results in our paper [DLN16a] can be stated as follows.

Theorem 49. Recognizing the graphs with pathbreadth at most one is NP-complete.

Theorem 50. Recognizing the graphs with pathlength at most two is NP-complete.

Theorem 51. Recognizing the graphs with treebreadth at most k is NP-complete for
every fixed k ≥ 1.

It is likely that recognizing graphs with pathbreadth at most k, resp. pathlength
at most k + 1, is NP-complete for every fixed k ≥ 1. This is left open in [DLN16a].

3.4.1.1 Graphs with treebreadth one

We now concentrate on the recognition of graphs with treebreadth at most one.
This class of graphs already encompasses well-studied subclasses such as chordal
graphs and dually chordal graphs. As it is stated in Theorem 51, recognizing graphs
with treebreadth one is NP-complete. However, we prove in [DLN16a] that it can
be done in polynomial time for bipartite graphs and planar graphs.

Case of bipartite graphs. Precisely, we obtain in our paper [DLN16a] a simple
characterization of bipartite graphs with treebreadth one. Let us call a bipartite
graph tree-convex if it admits a tree decomposition whose bags are exactly the closed
neighbourhoods of the vertices in one side of its bipartition [WLJX12]. We refer to
Figure 3.6 for an illustration.

Theorem 52. A bipartite graph has treebreadth at most one if and only if every of
its atoms is tree-convex. It can be verified in linear time.

3.4. On the complexity of computing treebreadth and its relatives 93

a

b

c

d

e

f

g

h

i

0

1

2

3

(a) A tree-convex graph G.

a

0 1

b

0
1

2

c

0 3

d

0 1

e

1

f

1 2 g

0 3

h

3
i

2

(b) A star-decomposition of G.

Figure 3.6: Tree-convex graphs have treebreadth one.

In contrast, recognizing bipartite graphs with treebreadth at most two is NP-
complete. We observe that bipartite graphs with treebreadth one already encom-
pass well-known graph classes such as convex bipartite graphs and chordal bipartite
graphs (a.k.a., bipartite graphs with no induced cycle of length at least six).

Case of planar graphs. We don’t have a full characterization of planar graphs
with treebreadth one. As proved in [DLN16a], a planar graph has treebreadth one
only if it has treewidth at most four (more general relationships between treebreadth
and treewidth will be discussed in the next Section 3.5). However, this condition
is not sufficient, since any cycle of length at most five has treewidth two but tree-
breadth greater than one. Nonetheless, we have designed an algorithm in order to
recognize planar graphs with treebreadth one in polynomial time.

Theorem 53. Recognizing planar graphs with treebreadth one can be done in
quadratic time. Furthermore, given a planar graph with treebreadth one, a tree de-
composition with breadth one can be computed in cubic time.

The algorithm for planar graphs is rather involved and it will be only sketched
in what follows. We refer to our research report [DLN16b] for full details.

This part of my contributions is joint work with Nicolas Nisse and Sylvain Legay.

3.4.2 Approach and the techniques used in the proofs

3.4.2.1 A central lemma for graphs of treebreadth one

We start with a structural lemma that is used throughout all the proofs. We name
star-decomposition a tree decomposition such that for every node t ∈ V (T), there

94 Chapter 3. Tree decompositions with metric constraints on the bags

exists a vertex u ∈ Xt such that Xt ⊆ N [u]. That is, star-decompositions are similar
to decompositions of breadth one, but the dominator of each bag has to belong to
the bag itself. We prove with the following Lemma 54 that a graph has treebreadth
one if and only if it has a star-decomposition.

In what follows, a tree decomposition is called reduced if no bag is included in
another one. Starting from any tree decomposition, a reduced tree decomposition
can be obtained in polynomial time by contracting any two adjacent bags with
one contained in the other until it is no more possible to do that. Note that such a
process does not modify the width, the length nor the breadth of the decomposition.

Lemma 54. For any graph G with tb(G) ≤ 1, every reduced tree decomposition of
G of breadth one is a star-decomposition.

The proof of Lemma 54 is an application of the Helly property: if B is a bag of
a tree decomposition (T,X) of G and there exists a vertex u dominating this bag,
then by the properties of a tree decomposition, the subtrees Tu and Tv, v ∈ B,
are pairwise intersecting, and so, by the Helly property there must be a bag with
B ∪ {u}. If the tree decomposition is reduced then it implies that u ∈ B.

3.4.2.2 Hardness of treebreadth, pathlength and pathbreadth

On the complexity point of view, the main result in [DLN16a] is the NP-completeness
of deciding whether tb(G) ≤ k, for every fixed k ≥ 1. We first prove that the problem
is NP-complete for k = 1, that will be our focus in this section. Then, we show that
the problem of computing the treebreadth of a graph is polynomially equivalent to
the problem of recognizing graphs with treebreadth one. Using similar techniques,
we can prove that computing pathlength, resp., pathbreadth, is NP-hard [DLN16b].

Theorem 51 is proved by reducing a variation of the Chordal Sandwich prob-
lem to the recognition of graphs with treebreadth one. The Chordal Sandwich
problem takes as input two graphs G1 = (V,E1), G2 = (V,E2) with E1 ⊆ E2, and it
asks whether there exists a chordal graph H = (V,E) such that E1 ⊆ E ⊆ E2. This
problem is NP-complete [GKS95]. In [Lok10], the author also proposed a reduction
from Chordal Sandwich in order to prove that computing treelength is NP-hard.
However, we need different gadgets than in [Lok10], and the arguments to prove
correctness of the reduction are completely different.

Let us give a flavour of our reduction with Figure 3.7. Suppose we are given
an instance 〈G1, G2〉 of Chordal Sandwich. We aim at computing a supergraph
G of G1 such that in any tree decomposition of G of breadth one, there can be
no two nonadjacent vertices in G2 that are in the same bag. This way, any tree
decomposition of G of breadth one can be transformed into a clique-tree for a chordal
sandwich between G1 and G2. In order to reach this goal, for every nonedge {u, v} /∈
E(G2) we add a copy of the gadget in Figure 3.7 and we make both u and v adjacent
to both suv, tuv. By construction, the four vertices (u, suv, v, tuv) induce a cycle of
length four. If we were studying treelength, then this would not give us that much
information; indeed, in a tree decomposition of length at least two, all four vertices

3.4. On the complexity of computing treebreadth and its relatives 95

cuv
suv tuv

wuv

xuv

yuv zuv

Figure 3.7: Gadget graph Fuv. The two vertices xuv, wuv are on disjoint suvtuv-
paths. Since they have no common neighbour, it ensures that suv, tuv must be
contained in a same bag in any star-decomposition of Fuv.

could be placed in a same bag without violating any constraint. However, this
is no more the case for a tree decomposition with unit breadth. Indeed, since no
vertex dominates the four vertices of the cycle, they cannot be part of a common
bag. Hence, the gist of the construction is to ensure that suv, tuv must be in a
common bag in any tree decomposition of G of breadth one. Then, one can prove
by elaborating on the Helly property that it implies that u and v cannot be in a
same bag in any tree decomposition of G of breadth one.

On the technical point of view, the most difficult part of the reduction is to
ensure that conversely, if 〈G1, G2〉 is a yes-instance of Chordal Sandwich then
the resulting graph G has treebreadth one. Ideally, we would like to transform
some tree decomposition of G1, with all vertices in a same bag being adjacent in
G2, to a star-decomposition of G. We tried to do so by adapting a technique
from Lokshtanov [Lok10] that consists in adding a dominating clique in the graph.
However, vertices from the gadgets in Figure 3.7 need to be inserted in the bags as
well, thereby complicating the picture. In order to overcome the difficulties that are
posed by these gadgets, we aim at better controlling in which bags their vertices
need to be inserted, but then we need to impose additional constraints on the tree
decomposition of G1. In general, we are not able to prove that a tree decomposition
with the desired constraints always exists. That is why we need to consider a
variation of Chordal Sandwich where we impose more structure on the input.

Theorem 55. The problem of deciding whether a graph has treebreadth one is NP-
complete.

Proof. The problem is in NP. To prove the NP-hardness, we will reduce from a vari-
ation of Chordal Sandwich that we name Chordal Sandwich with nK2. In
this variation, we constrain ourselves to the instances 〈G1, G2〉 so that the comple-
mentary Ḡ2 of G2 induces a perfect matching. The problem Chordal Sandwich
with nK2 is NP-complete [BFW92, GKS95]. Furthermore, perhaps surprisingly,
the restriction on the structure of Ḡ2 will be shown to be a key element in our
reduction.

Let 〈G1, G2〉 be any instance of Chordal Sandwich with nK2. Let G′ be
the graph constructed from G1 as follows. First, a clique V ′ of 2n = |V | vertices is
added to G1. Vertices v ∈ V are in one-to-one correspondance with vertices v′ ∈ V ′.

96 Chapter 3. Tree decompositions with metric constraints on the bags

Then, for every {u, v} /∈ E2, u and v are respectively made adjacent to all vertices in
V ′ \v′ and V ′ \u′. Finally, we add a copy of the gadget Fuv, depicted in Figure 3.8a,
and the vertices suv and tuv are made adjacent to the four vertices u, v, u′, v′.

We will prove that tb(G′) = 1 if and only if 〈G1, G2〉 is a yes-instance of
Chordal Sandwich with nK2.

In one direction, assume tb(G′) = 1, let (T,X) be a star-decomposition of G′

(which exists by Lemma 54). We prove that the triangulation of G1 obtained from
this star-decomposition is the desired chordal sandwich. Let H = (V, {{u, v} | Tu ∩
Tv 6= ∅}). H is a chordal graph such that E1 ⊆ E(H). To prove that 〈G1, G2〉 is a
yes-instance of Chordal Sandwich with nK2, it suffices to prove that Tu∩Tv = ∅
for every {u, v} /∈ E2. We claim that it is implied by Tsuv ∩Ttuv 6= ∅. Indeed, assume
Tsuv ∩ Ttuv 6= ∅ and Tu ∩ Tv 6= ∅. Since suv, tuv ∈ N(u) ∩ N(v), Tu, Tv, Tsuv , Ttuv
pairwise intersect, there is a bag with u, v, suv, tuv by the Helly property. The latter
contradicts that (T,X) is a star-decomposition because no vertex dominates the
four vertices. Hence the claim is proved. So, let us prove that Tsuv ∩ Ttuv 6= ∅. By
contradiction, if Tsuv ∩ Ttuv = ∅ then every bag B onto the path between Tsuv and
Ttuv must contain cuv, xuv. Since N [cuv] ∩N [xuv] = {suv, tuv} and (T,X) is a star-
decomposition, it implies either suv ∈ B and B ⊆ N [suv] or tuv ∈ B and B ⊆ N [tuv].
So, there are two adjacent bags Bs ∈ Tsuv , Bt ∈ Ttuv such that Bs ⊆ N [suv] and
Bt ⊆ N [tuv]. In particular, Bs ∩ Bt must intersect the path (yuv, wuv, zuv) because
yuv ∈ N(suv) and zuv ∈ N(tuv). However, N [suv] ∩ N [tuv] ∩ {yuv, wuv, zuv} = ∅,
that is a contradiction. As a result, Tsuv ∩ Ttuv 6= ∅ and so, Tu ∩ Tv = ∅ for any
{u, v} /∈ E2.

Conversely, assume that 〈G1, G2〉 is a yes-instance of Chordal Sandwich
with nK2. Let H be any chordal supergraph of G1 such that E(H) ⊆ E(G2)

and H is edge-maximal w.r.t. this property. We prove in [DLN16b] that every
clique-tree of H is a tree decomposition (T,X) of G1 with |X | = |V |/2+1 bags such
that for every {u, v} /∈ E2, Tu ∩ Tv = ∅ and there are two adjacent bags Bu ∈ Tu
and Bv ∈ Tv such that Bu \ u = Bv \ v. The latter is proved by elaborating on the
hypothesis that Ḡ2 is a perfect matching.

In what follows, we will modify (T,X) in order to obtain a star-decomposition
of G′. To do so, we will use the fact that there are |V |/2 = n edges in E(T) and
that for every {u, v} /∈ E2, there are two adjacent bags Bu ∈ Tu and Bv ∈ Tv
such that Bu \ u = Bv \ v. Indeed, this implies that there is a one-to-one mapping
α : E(T) → E(Ḡ2) between the edges of T and the non-edges of G2. Precisely, for
any edge e = {t, s} ∈ E(T), let α(e) = {u, v} ∈ E(Ḡ2) be the non-edge of G2 such
that u ∈ Xt, v ∈ Xs and Xt \ u = Xs \ v.

Intuitively, the star-decomposition (T ′,X ′) of G′ is obtained as follows. For any
t ∈ V (T) with incident edges e1, · · · , ed, we first replace Xt by a path decomposition
(Yt,e1 , · · · , Yt,ed). Then, for any edge e = {t, s} ∈ E(T), an edge is added between
Yt,e and Ys,e. Finally, the center-bag of some star-decomposition of the gadget Fα(e)

is made adjacent to Yt,e (see Figure 3.8b for an illustration).
More formally, let t ∈ V (T) and e ∈ E(T) incident to t, and let {u, v} = α(e).

3.4. On the complexity of computing treebreadth and its relatives 97

s t

x

y zw

c
uv uv

uv

uv uvuv

uv

cuv

suv wuv
tuv

zuvyuvxuv

suv tuv suv wuv wuvtuv

(a) Gadget Fuv (top) with a star-
decomposition of Fuv (bottom).

1
2

3
4

tu1 u
u u

2

3 4

v1 u
u u

2

3 4

u1 v
u u

2

3 4

u1 u
u v

2

3 4

u1 u
v u

2

3 4

u1 u2 u3
u4

V'

s1 t1

Yt, e1
u1 u2 u3

u4
V'

s2 t2

Yt, e2
u1 u2 u3

u4
V'

s3 t3

Yt, e3
u1 u2 u3

u4
V'

s4 t4

Yt, e4

t t

tt

1 2

34

Yt , e11
Yt , e22

Yt , e33
Yt , e44

T

C

1

1

T

C

2

2

T

C

3

3

T

C

4

4

(b) A subtree of the star-decomposition of G′

(bottom) obtained from an internal bag with
degree four of (T,X) (top). Subtrees Ti are
star-decompositions of the gadgets Fuivi .

Figure 3.8

Let Yt,e = V ′∪Xt∪{suv, tuv} (note that Yt,e is dominated by u′ ∈ V ′). Let e1, · · · , ed
be the edges incident to t in T , in any order. For 1 ≤ i < d, add an edge between
Yt,ei and Yt,ei+1 . For any edge e = {t, s} ∈ E(T), add an edge between Yt,e and
Ys,e. Finally, add the star-decomposition (T e,X e) for the gadget Fα(e) as depicted
in Figure 3.8a and add an edge between its center and Yt,e.

The resulting (T ′,X ′) is a star-decomposition of G′, so, tb(G′) = 1.

3.4.2.3 Polynomial cases

Our polynomial-time algorithms are based on a divide and conquer approach. We
recall that a separator S of G is minimal if there exist two connected components
A,B of G \ S such that N(A) = N(B) = S. Furthermore, A and B are called full
components for S, and a block is the union of a minimal separator with one of its full
components. A remarkable property of graphs with treebreadth one, whose proof
is deferred to our research report [DLN16b], is that they are stable under taking
blocks.

Lemma 56. Let G = (V,E), S be a separator andW be the union of some connected
components of G \ S. If tb(G) = 1 and W contains a full component for S, then
tb(G[W ∪ S]) = 1.

Proof. Let (T,X) be a star-decomposition of G. We remove vertices in V \ (W ∪S)

from bags in X , that yields a tree decomposition (T,X ′) of G[W ∪S]. We will prove

98 Chapter 3. Tree decompositions with metric constraints on the bags

u v

u v

u v

Figure 3.9: The 2-separator {u, v} disconnects the graph G (left) in two blocks with
treebreadth one (right). However, tb(G) = 2.

that (T,X ′) has breadth one (but is not necessarily a star-decomposition). Indeed,
letX ′t ∈ X ′. By construction, X ′t ⊆ Xt withXt ∈ X . Let v ∈ Xt satisfyXt ⊆ NG[v].
If v ∈ X ′t, then we are done. Else, since for all x /∈ S ∪W,N(x) ∩ (S ∪W) ⊆ S

(because S is a separator by the hypothesis), we must have that Xt ⊆ S. Let A ⊆W
be a full component for S, that exists by the hypothesis, let TA be induced by the
bags intersecting A. Since TA and the subtrees Tx, x ∈ Xt pairwise intersect —
because for all x ∈ Xt, x ∈ S and so, x has a neighbour in A —, then by the Helly
property there is a bag in X containing Xt and intersecting A. Furthermore, any
u ∈ V dominating this bag must be either in S or in A, so, in particular there is
u ∈ A ∪ S such that Xt ⊆ N [u].

The converse of Lemma 56 does not hold in general (see Fig. 3.9), yet there
are interesting cases where it does. In fact, all our algorithms in what follows are
based on particular cases where the converse of Lemma 56 also holds true. One of
them is the case where S is a clique-minimal separator. In particular, a graph has
treebreadth one if and only if every of its atoms have treebreadth one [DLN16a],
and so, we may further constrain our studies to graphs without a clique-separator,
a.k.a. prime graphs.

Case of bipartite graphs. For prime bipartite graphs, it is almost immediate
that in any star-decomposition (tree decomposition with a dominator in each bag,
see Sec. 3.4.2.1), every two adjacent bags must be dominated by vertices that are on
the same side of the bipartition. Indeed, otherwise the adhesion set between these
two bags would be either a cut-vertex or an edge-separator. The latter implies that
a prime bipartite graph must be tree-convex and so, Theorem 52 follows.

Now, given a bipartite graph G, we can check whether it has treebreadth one
as follows. We compute its atoms, that can be done in linear time by Lemma 48.
Then, we check whether each of its atoms is tree-convex, that can also be done in
linear time4 [WLJX12]. Finally, by Theorem 52 we output tb(G) = 1 if and only if

4This problem can be reduced to dual hypertree recognition. See the proof of Theorem 44 for
similar techniques.

3.4. On the complexity of computing treebreadth and its relatives 99

all its atoms are tree-convex.

Case of planar graphs. Much more work was needed for the recognition of planar
graphs with treebreadth one. Perhaps surprisingly, this part was arguably the most
difficult one in our work on treebreadth.

The algorithm for planar graphs is recursive. Given G = (V,E), we search for
a specific vertex, called a leaf-vertex, whose closed neighborhood must be a leaf-bag
of a star-decomposition if tb(G) = 1 (bag whose corresponding node in the tree has
degree at most one). Basing on Lemma 56 and a delicate case-by-case analysis of
the structure of star-decompositions, we define three types of leaf-vertices (e.g., see
Figure 3.10). A vertex v is a leaf-vertex if one of the following conditions hold.
Type 1. N(v) induces an avbv-path for some av, bv ∈ V \ {v}, denoted by Πv, of

length at least 3 and there is dv ∈ V \ {v} such that N(v) ⊆ N(dv).
Type 2. N(v) induces a path, denoted by Πv = (av, bv, cv), of length 2.
Type 3. N(v) consists of two non adjacent vertices av and cv, and there is bv ∈

(N(av) ∩N(cv)) \ {v}.

avav bvbv
dvdv

vv

avav cvcv
bvbv

vv

avav cvcv
bvbv

vv

Type1Type1 Type2Type2 Type3Type3

Figure 3.10: The three types of leaf vertices.

Ideally, we would like to remove v from G and apply recursively our algorithm
on G \ v. However, in some case tb(G \ v) = 1 while tb(G) > 1 (see Fig. 3.9).
So, we must also add edges between vertices that must be in a common bag of a
star-decomposition of G if tb(G) = 15. The choice of the edges to add is made more
difficult by the need for the resulting graph G′ to stay prime and planar in order to
apply our algorithm recursively on G′. To show that tb(G) = 1 if and only if the
resulting graph has treebreadth one also requires tedious lemmas.

Sketch Proof of Theorem 53. Let G = (V,E) be a prime planar graph. We can
assume |V | ≥ 8 and G has no star-decomposition with two bags (both cases are
treated separately by exhaustive search). In such case, tb(G) = 1 implies there
exists a leaf-vertex v, that can be found in linear time.

We first consider the case where G \ v is prime. In this situation, we aim at
removing v and applying the algorithm recursively on G \ v (e.g., see Figures 3.11a

5We aim at turning the separator N(v) into a clique. However, we cannot do that directly since
it would break the distances in G, and the graph needs to stay planar.

100Chapter 3. Tree decompositions with metric constraints on the bags

av bv

dv

v

(a) v is of Type 1

av cv

dv

(b) G′

av cv

bv

v

(c) |(N(av) ∩N(cv)) \ v| ≥ 3

av cv

bv

(d) G \ v

av cv

bv

v

uv

(e) (N(av) ∩N(cv)) \ v = {uv, bv}

av cv

bv

v

uv

(f) G′

Figure 3.11: Cases where G \ v is prime. In every subcase, we apply the algorithm
recursively on the graph to the right, that is either smaller or denser than G.

and 3.11b). However, we can do that only if it can be ensured that when tb(G\v) = 1,
there is a star-decomposition of the subgraph that can be transformed into a star-
decomposition of G. Precisely, if v is of Type 1 then we seek for a star-decomposition
(T ′,X ′) of G \ v such that all the vertices in N(v) are contained into a bag. If v
is of Type 2 or 3 then we seek for a star-decomposition (T ′,X ′) of G \ v such that
either T ′av ∩ T

′
cv 6= ∅, or there are two adjacent bags B′av ∈ Tav , B

′
cv ∈ T

′
cv that are

respectively dominated by av and cv. What we prove is that if tb(G \ v) = 1 and
G \ v is prime, then a star-decomposition as above always exists, unless we fall in
the special case where v is of Type 2 or 3 and |(N(av) ∩N(cv)) \ v| ≤ 2. We do so
by proving that it were not the case, there would exist a K5-minor or a K3,3-minor
of G. By Kuratowski theorem, it would contradict our assumption that G is planar.

Furthermore, we prove for the latter subcase that av, cv must have two common
neighbours uv, bv in G\v (else, tb(G) > 1). In this situation, the graph G′, obtained
from G by adding the edges {v, uv}, {v, bv}, is planar and prime, and it satisfies
tb(G) = 1 if and only if tb(G′) = 1. See Figures 3.11e and 3.11f for an illustration.

3.4. On the complexity of computing treebreadth and its relatives 101

So, we call the algorithm either on G′ or on G \ v6. We refer to Figure 3.11 for an
illustration.

We note that it is conceivable this first part of the analysis could apply to larger
classes of H-minor free graphs. This is less clear for what follows.

Indeed, the most difficult situation is when G \ v contains a clique-separator.
Roughly, in this case we need to test the leaf-vertex v for certain properties. If it
satisfies some of them then we can either remove vertices or add new edges in the
graph and we call the algorithm recursively on the resulting graph G′. However, in
some situations the leaf-vertex v does not satisfy any of the desired properties, and
then we need to find a better leaf-vertex in its neighbourhood.

First, based on a fine-grained analysis of clique-separators in the subgraph G\v,
this case is reduced to the one where:
• v is of Type 2;
• there is an edge-separator (bv, uv) of G \ v;
• and {av, uv} /∈ E.

In this situation, our first idea was to add an edge between av and cv in order to
force these two vertices to be contained in a common bag in any star-decomposition
of G′, obtained from G \ v by adding the edge {av, cv}. Then, we aim at applying
the algorithm recursively on G′. However, tb(G′) = 1 does not imply tb(G) = 1 in
general. We prove it is the case if uv, cv are nonadjacent or N(uv)∩N(av) does not
disconnect av from uv in G \ (cv, v).

Else, we compute a plane embedding of G, and a vertex x ∈ N(av) ∩ N(uv)

such that: v, cv and all other common neighbours of av, uv are in a same region
R, bounded by (av, x, uv, bv). As illustrated with Figure 3.12, we wish to create an
avuv-path in V \R by adding edges in N(bv)∩N(x). In doing so, we go back to the
previous subcase as now N(av) ∩N(uv) is no more a avuv-separator of G \ (cv, v).
However, we have to ensure that it is possible to add such a path in V \R, and that
its addition does not affect the value of treebreadth for the graph. We prove it is the
case unless V ⊆ R (in which case we apply the algorithm recursively on G′, obtained
from G by identifying bv with x), or if there is a leaf-vertex ` ∈ N(bv) ∩ N(x).
Furthermore, in the latter case we replace v with ` in the above analysis, i.e., `
becomes the actual leaf-vertex to be considered. It can be shown that G\` is prime,
so, we can prove that the algorithm always terminates.

Finally, we observe that in the above algorithm, we delete a vertex or add an
edge before each recursive call. Moreover, the number of edges removed at each
step can be linearly upper-bounded by the number of deleted vertices. Since planar
graphs are sparse, we can elaborate on this property in order to upper-bound the
number of recursive calls on n-vertex m-edge planar graphs by a linear function
Θ(n) − m = Θ(n). Each step of the algorithm can be done in linear time, so,
altogether combined, it shows that the algorithm runs in quadratic time.

6When v is of Type 1 we call the algorithm on G′, obtained from G \ v by contracting the
internal nodes of Πv to an edge, in order to obtain a quadratic complexity. We refer to Figures 3.11c
and 3.11f for an illustration of that case.

102Chapter 3. Tree decompositions with metric constraints on the bags

av uv

bv

x

v cv

Figure 3.12: Addition of an avuv-path in V \R. Each ball is a connected component
of G[V \ R]. The edges that are added in order to obtain the avuv-path are drawn
in dashed red.

3.4.3 Open problems and future work

We conclude this complexity study by some questions that remain open. First, it
would be interesting to know the complexity of computing the treebreadth and the
treelength of planar graphs. We did a first step in this direction with Theorem 53.
Note that the complexity of computing the treewidth of planar graphs is still open.
Second, all the reductions presented in this paper rely on constructions contain-
ing large clique or clique-minor. We left open the problem of recognizing graphs
with treebreadth one in the class of graphs with bounded treewidth or bounded
clique-number. More generally, is the problem of computing the treebreadth Fixed-
Parameter Tractable when it is parameterized by the treewidth or by the size of a
largest clique-minor? It is part of my ongoing work to answer these questions.

Last, I point out that in this work on star-decompositions, one important tool
has been “breadth-maximal” triangulations. Precisely, for any G with tb(G) = 1, we
call a triangulation H of G breadth-maximal if it has a clique-tree that is a star-
decomposition of G and H is edge-maximal w.r.t. this property. Breadth-maximal
triangulations have many nice properties which greatly simplify the analysis for the
hardness reduction and the polynomial-time algorithms. So, I think this notion of
“maximal” triangulation is worth being more investigated in the future, as well as
for treebreadth as for treelength, treewidth, etc. The reader may refer to [BK06,
BHV06] for related work, where they give sufficient conditions for edges to be always
present in a triangulation of minimum width.

3.5. Treewidth versus treelength! 103

3.5 Treewidth versus treelength!

Finally, I present in this section new relationships between treewidth and treelength,
that were obtained in collaboration with David Coudert and Nicolas Nisse. On the
algorithmic side, we aim at finding such relationships in order to combine the best
of both worlds (structural and metric tree-likeness in graphs).

That is, on the one hand treelength and treewidth are both NP-hard to com-
pute [ACP87, Lok10], however treelength is much easier to approximate than
treewidth. In particular, there exists a 3-approximation algorithm for computing
treelength that only relies on a few breadth-first search [DG07]. In contrast, under
the Small Set Expansion Hypothesis (that implies the Unique Games Con-
jecture) there does not exist a constant-factor polynomial-time approximation
algorithm for treewidth [APW12]. On the other hand, there are more algorithmic
applications for treewidth than for treelength [Cou90], which comes from the fact
that several hard problems on graphs remain so even on bounded diameter graphs,
thereby preventing the design of dynamic programming algorithms on tree decompo-
sitions with bounded length. Thus, by using relationships between treelength and
treewidth, we wish to extend the algorithmic applications for bounded treewidth
graphs to a large class of bounded treelength graphs. Furthermore, we also wish
to compute efficiently (and practically) tree decompositions with bounded width on
certain graph classes.

3.5.1 State of the art

As said earlier (e.g., Sec. 3.2.1) the two parameters treewidth and treelength are un-
comparable on general graphs. This fact prevents us from expecting simple relations
between them.

On the one direction, the cycles have bounded treewidth but unbounded tree-
length. This suggests that having a large treelength relies on the existence of long
cycles in the graph. The authors in [DG07] supported this intuition, proving that
the treelength of a graph G is upper-bounded by half of the maximum length of a
chordless cycle in G (the latter generalizes a similar Theorem 15 on the relationship
between chordality and hyperbolicity). However, not all bounded treelength graphs
have bounded chordality, as seen with the case of the wheel Wn which contains an
induced Cn while it has treelength ≤ 2. Therefore, it is natural to constrain our-
selves to the subcase of isometric cycles in graphs. We remind that a subgraph H
of G is isometric if for any two vertices of H, the distance between them is the same
in H as in G. Unfortunately, there are graphs such as grids with bounded-length
isometric cycles and arbitrarily large treelength. As shown below, our results imply
that in such a case, we always have that tl(G) =O(tw(G)).

On the other direction, the complete graphs have unbounded treewidth but
bounded treelength. Another interesting example is the graphH obtained by adding
a universal vertex to a square-grid with n2 vertices, for which it holds tw(H) = n+1

and tl(H) = 2. We observed in Section 3.2.1 that more generally, adding a universal

104Chapter 3. Tree decompositions with metric constraints on the bags

vertex to a graph G with arbitrarily large treewidth k will result in a graph G′ with
large treewidth k+1 and treelength at most two. One common trait of these graphs
is that they have a large genus (they cannot be drawn with no edge-crossings onto a
surface with small oriented Euler genus). That is, they are in a sense arbitrarily far
from planar graphs. In contrast, it has been proved in [DG09] that tw(G) < 12·tl(G)

for planar graphs. Consequently, it is quite natural to ask whether a treewidth
arbitrarily larger than treelength requires a large genus. In what follows, we will
prove it is the case, i.e., tw(G) =O(tl(G)) for bounded-genus graphs.

Finally, and independently from this work, Belmonte et al. [BFGR15] proved that
tw(G) = O(∆tl(G)) for any graph G with maximum degree ∆. On the algorithmic
point of view, the authors in [BFGR15] built upon their relation in order to design
a fixed-parameter-tractable algorithm to compute the metric dimension on bounded
treelength graphs.

This upper-bound shows that in a way, our pathological construction which
adds a universal vertex in the graph is the only one that prevents from compar-
ing treewidth with treelength. However, it has to be noted that on the converse
direction, treelength cannot be upper-bounded by any function f(tw(G),∆) of the
treewidth and the maximum degree, as it can be observed with cycles.

In this section, I will use different techniques in order to upper-bound the
treewidth with linear dependency on the treelength.

3.5.2 Contributions: upper and lower bounds for treewidth by us-
ing treelength

3.5.2.1 Lower bound

The first result in this section is that treewidth can be lower-bounded by treelength
on certain graph classes.

In what follows, a distance-preserving elimination ordering of G = (V,E) is a
total ordering of its vertex-set V such that every suffix induces an isometric subgraph
of G. In particular, it is a dismantlable ordering if for every suffix, the closed
neighbourhood of the starting vertex is dominated in the subgraph that is induced
by this suffix. The latter type of ordering has been introduced in the previous
chapter (Definition 7, p. 33). We also refer to the previous chapter for a definition
of hyperbolicity, and especially Definition 1 (p. 25).

Theorem 57 ([CDN16]). For every G = (V,E) we have tl(G) ≤ c · tw(G) where:
• c ≤ b`(G)/2c if G has no isometric cycle of length greater than `(G);
• c ≤ 2δ(G) + 1 with δ(G) being the hyperbolicity of G;
• c ≤ 2 if G admits a distance-preserving elimination ordering.
• c ≤ 1 if G admits a dismantlable ordering.

Sharper estimates of the constant c will be discussed in what follows. One
interesting consequence of this result is that every bounded-treewidth graph G can
be embedded into a tree with additive distortion Θ(δ(G)). Furthermore, it tells

3.5. Treewidth versus treelength! 105

us that the hyperbolicity is upper-bounded by the treewidth on graph classes with
a dismantlable ordering. These remarks complement Section 2.4.1 in the previous
chapter on graph hyperbolicity.

3.5.2.2 Upper bound

On the other hand, treewidth can be upper-bounded by treelength on certain topo-
logical graph classes.

Let us introduce the terminology for those classes. We refer to [MT01] for details.
We recall that a planar graph is a graph that can be drawn in the Euclidean plane
so that edges may only intersect at their endpoints. More generally, a graph has
genus at most g if it can be drawn in an oriented surface with Euler genus g so
that edges may only intersect at their endpoints. Planar graphs are exactly the
null-genus graphs. An apex graph is obtained from a planar graph by adding a new
vertex with arbitrary neighbourhood. Finally, a class of graphs is apex-minor free if
there is no graph in the class with a H-minor for some fixed apex graph H. Planar
graphs and bounded-genus graphs are apex-minor free.

Theorem 58 ([CDN16]). Let H be an apex graph. There exists a constant cH
that only depends on H and such that for every H-minor free graph G, we have
tw(G) ≤ cH · tl(G).

In particular if G has genus at most g then tw(G) ≤ 72
√

2(g+1)3/2·tl(G)+O(g2).

One unexpected consequence of this above result is that on some cases where
the treewidth can be efficiently approximated, nontrivial bounds on the genus of the
graph can be computed. The exact and approximate computation of graph genus
are notoriously hard problems [Tho89, CKK97, KS15].

Our study paves the way to a better understanding on the relationship between
structural and metric tree-likeness in graphs, and on its algorithmic consequences.
Unfortunately, similar relationships for path-likeness in graphs look more challenging
to obtain, even for trees. In particular, there are n-node trees with pathlength
Ω(n) [DG07] whereas the pathwidth of an n-node tree is O(log n) [Sch92].

So far, the main drawback of Theorem 58 is that it is non constructive. That
is, when we compute a tree decomposition with bounded length O(tl(G)), we ob-
tain a bound on the treewidth tw(G) = O(tl(G)), but we do not obtain a tree
decomposition with bounded width O(tl(G)). It is part of my ongoing work to make
Theorem 58 constructive, possibly by using the graph minor decomposition from
Robertson and Seymour [GKR13, DH04].

3.5.3 Proving the bounds

3.5.3.1 A detour through the diameter of minimal separators in graphs

We recall that there always exists a minimal tree decomposition (clique-tree of some
minimal triangulation) with optimal width. See Section 3.2.2. Our results in what

106Chapter 3. Tree decompositions with metric constraints on the bags

follows provide a relationship between the width and the length in any minimal tree
decomposition.

More precisely, by Theorem 42, a corresponding minimal triangulation results
from the completion of all sets in a maximal family of pairwise parallel minimal
separators of the graph G. In this situation, we observe that for every edge in the
triangulation, either it is an edge of G or its two ends are in a same separator in
the family. Note that in the latter case, the distance in G between the two ends
is at most the maximum diameter in the graph over the separators in the family.
Therefore, we observe that the length of the tree decomposition (≥ tl(G)) is exactly
the maximum diameter in the graph over the separators in the family. Furthermore,
since each minimal separator of the family induces a clique in the triangulation, it
has size upper-bounded by the width of the tree decomposition — that is tw(G) for
a minimal tree decomposition with optimal width.

As a result, we are left to upper-bound the diameter of minimal separators in
graphs as a function of their size.

Connectivity properties of the minimal separators. Before going into the
details of the proof, let us describe the main intuition behind it and the difficulties
we had to face on. Let us consider a minimal separator S for G. If it is connected,
then it has diameter O(|S|), and so, we are done. Hence, we may assume that S
consists of several connected components. The idea is to find a set of isometric
cycles, each of length at most `(G) (by definition of `(G)), such that any of these
cycles intersects two components and the subgraph induced by S and these cycles
is connected.

For this purpose, let us consider a minimum-length cycle crossing two compo-
nents of S (such a cycle surely exists because there are at least two full components
in G \ S). If this cycle is isometric, then we are done. Otherwise, it means that
there is a shortcut between two nodes of the cycle. However, this shortcut could
intersect S more than once which does not help our purpose.

The key point is that, using the shortcut, the initial cycle can be viewed as the
sum (symmetric difference) of two smaller cycles. This kind of local view can be
generalized to a global one using our main tool, namely the cycle basis (defined
below). Indeed, the initial cycle is actually the symmetric difference of a set of
isometric cycles [Hor87]. Using this set, we can then prove our upper bound on the
diameter of minimal separators in graphs.

The set C(G) of Eulerian subgraphs of G is called the cycle space of G. It is well-
known that every Eulerian subgraph can be obtained from the symmetric difference
(on the edges) of cycles in G. In fact, the set C(G) with the symmetric difference
is a vector space of dimension m− n+ 1 if G is connected [Die10, Theorem 1.9.6].
We will call the symmetric difference of two subgraphs H1, H2, denoted H1 ⊕ H2,
the sum of H1 with H2. A cycle basis is an inclusion wise minimal set of cycles
generating the whole cycle space

3.5. Treewidth versus treelength! 107

. . .s1 s2 s3 s4 sk−3 sk−2 sk−1 sk

Figure 3.13: A minimal k-separator S for G ∈ G` with diameter b`/2c · (k − 1).
Vertices in S are ordered so that any two consecutive vertices si and si+1 are dia-
metrically opposed in an isometric cycle of length `. Furthermore, the removal of S
disconnects G in two parts, respectively containing the upper and lower sections of
these cycles.

The use of the cycle space. For every ` ≥ 3, a graph G belongs to the class G`
if any of its cycles can be obtained from the symmetric difference on the edges of
cycles of length at most `. More formally, its cycle space admits a cycle basis with
only cycles of length at most `. As an example, by Mac Lane’s Theorem the inner
faces of a plane graph generate its cycle space, and so, a planar graph with inner
faces of length at most ` is in G`. Furthermore, trees are a trivial example of graphs
in G3 (they have no cycle). Chordal graphs are also in G3. More generally, every
`-chordal graph is in the class G`. Indeed, every chord in a cycle C can be used in
order to write C as the sum of two smaller cycles, thereby proving that the induced
cycles in a graph can generate its cycle space.

In [CDN16], we prove that G` is stable under edge-contraction and addition of
an edge between two vertices that are at distance at most b`/2c. The dimension of
the cycle space plays an important role in these proofs, as it often provides elegant
shortenings of our technical reasonings. In order to illustrate the techniques we
used, we prove below the stability of G` under edge-contractions.

Lemma 59. Let ` ≥ 3, the class G` is stable under edge-contraction.

Proof. Let G ∈ G` with n vertices and m edges. W.l.o.g., G is connected. The
dimension dim(C(G)) of the cycle space C(G) is s = m−n+1 [Die10, Theorem 1.9.6].
Let e ∈ E(G) such that e lies on k ≥ 0 triangles in G. By contracting e, we loose
one vertex and k+1 edges, the edge e and for each triangle which contains e we have
to remove one of the resulting multi-edges. Hence, dim(C(G/e)) = dim(C(G))− k.
Let {C1 · · · , Cs} be a basis of C(G) such that each Ci has length at most `. Let
{C ′1, · · · , C ′t} be the set of cycles in G/e which are obtained by contracting e on each
Ci and by removing triangles that contain e from the list. Then, t ≥ dim(C(G/e)) =

s− k (since at most k triangles have been removed) and each C ′i has length at most
`. We show that C ′1, · · · , C ′t are linearly independent in C(G/e), which proves that
they form a basis of C(G/e). For purpose of contradiction, let us assume that
C ′i1 ⊕ · · · ⊕ C

′
ir

= 0G/e for 1 ≤ i1 < · · · < ir ≤ s and r > 0, with 0G/e being the
trivial Eulerian subgraph of G/e with no edges (a.k.a., the neutral element of the
cycle space). Then Ci1⊕· · ·⊕Cir is either 0G or e, with 0G being the trivial Eulerian
subgraph of G with no edges. Therefore, the sum equals e since the Cij ’s are linearly
independent in C(G). This is a contradiction as (V (G), {e}) is not Eulerian. Hence,

108Chapter 3. Tree decompositions with metric constraints on the bags

since all cycles in the basis {C ′1, · · · , C ′t} have length at most `, it implies that
G/e ∈ G`.

Furthermore, by combining these two above properties (stability under contrac-
tion or addition of some edges), we obtain in our paper [CDN16] the following
lemma:

Lemma 60. For every G ∈ G`, any minimal separator S for G induces a connected
subset in its power Gb`/2c. In particular, the diameter of S in G is at most b`/2c ·
(|S| − 1).

Proof. By contradiction, let G ∈ G`, and let S be a minimal separator in G that
does not satisfy the property. We first make adjacent every two vertices in S that
are at distance at most b`/2c in G. We claim that the resulting graph still belongs
to G`. Indeed, we proved in [CDN16] that G` is stable under addition of an edge
between two vertices that are at distance at most b`/2c. Furthermore, adding an
edge cannot make the distances increase in the graph, so, we can use this stability
result for every edge added by the construction. Consequently, the resulting graph is
still in G`. Finally, we contract each connected component of the subgraph induced
by S in a single node, thus contracting S to obtain a stable set S′, and since G` is
proved to be stable under edge-contractions in Lemma 59, the resulting graph G′

still belongs to the class. Furthermore, the stable set S′ is a minimal separator in
G′ by construction. Since S does not satisfy the property of the theorem, we have
that all nodes in S′ are pairwise at distance at least bl/2c + 1 in G′. However, we
proved in [CDN16, Lemma 3.3] that for every graph in G`, minimal separators are
either cut-vertices or they contain two distinct vertices at distance at most b`/2c.
In particular, since the vertices in S′ are pairwise at distance at least bl/2c + 1 in
G′ by construction, it contradicts that G′ ∈ G`.

The above result improves upon [ASM16] and [DM15]. It is sharp, in the sense
that for every size k and for every ` ≥ 3, there exists a graph G ∈ G` with a minimal
separator of size k and diameter b`/2c · (k − 1) (e.g., see Figure 3.13).

Finally, Theorem 57 follows from our additional proofs in [CDN16] that all
graphs with isometric cycles of length at most ` belong to the class G`, and in
the same way all δ-hyperbolic graphs belong to G4δ+3, all graphs with a distance-
preserving ordering (resp., with a dismantling ordering) belong to G4 (resp., to G3).

Discussion. The main idea in this section is that for every G, tl(G) ≤ j · tw(G),
with j being the minimum index such that all minimal separators for G induce
connected subsets in its power Gj . This index satisfies j ≤ b`/2c for the graphs
in G`. In particular, the minimal separators for a graph G ∈ G3 induce connected
subsets of G, but not all graphs with this property belong to G3 [DLVM86]. The
latter result raises the following open question: does there exist a universal constant
` such that the class G` contains all graphs with connected minimal separators ?

3.5. Treewidth versus treelength! 109

3.5.3.2 Using the bidimensionality theory

For the upper bound, we sketch our approach and its limitations. First we observe
that treelength and treewidth are stable under edge-contractions. The bidimension-
ality theory [DH08] offers meta-theorems which, for maximization problems whose
solutions cannot increase under edge-contractions7, are the cornerstone of FPT algo-
rithms with subexponential dependency on the treewidth. On the theoretical point
of view, these meta-theorems are based on the property that a graph with large
treewidth can be edge-contracted to either a large complete graph or a large grid-
like minor. The latter result is a refinement of the well-known Excluded Grid Minor
Theorem from Robertson and Seymour [RST94].

We will use the same tools for proving our result on the relationship between
treelength and treewidth on bounded genus graphs. Precisely, we seek for a subclass
of graphs where this large obstruction to treewidth can also be shown to have a large
treelength, that will imply the desired upper-bound.

Discarding complete graphs. Complete graphs are the classical examples of
graphs with unbounded treewidth but bounded treelength. So, in order to get rid
of this first obstruction, it is natural to constrain ourselves to H-minor free graphs,
for some fixed graph H. Unfortunately, this is still not enough. Indeed, Fomin et
al. proved in [FGT11] that for every fixed H, an H-minor free graph with large
treewidth can be contracted either to some canonical partial triangulation of a large
square grid8, or to the same graph augmented with a universal vertex. We illustrate
these two cases with Figure 3.14. In the latter case, the obstruction has unbounded
treewidth and bounded treelength, which does not help our purposes.

Discarding grid-like obstructions with a universal vertex. The key observa-
tion is that this augmented partial triangulation of the grid (Figure 3.14b) is an apex
graph. We recall that every planar graph is the minor of a grid with large enough
dimensions [RS84]. Therefore, in the special case where H is a fixed apex-graph,
Fomin et al. were able to refine their results. Precisely, they proved in [FGT11] that
every apex-minor free graph with large treewidth can be contracted to the partial
planar triangulation of a large grid, that is depicted in Figure 3.14a.

Our contributions in [CDN16] is to prove that any such a partial triangulation
must have a large treelength. We do so by adapting some of the lower-bound
techniques for the treelength of grids in [DG07].

Lemma 61 ([CDN16]). Let G be a partially triangulated (r× r)-grid, then tl(G) ≥
br/3c − 1.

Proof. The result holds if r ≤ 3 because in such a case tl(G) ≥ 1 ≥ br/3c − 1.
Else, let G′ be the (r × r)-grid from which G is obtained by planar triangulation.

7Some results also have been obtained under different stability assumptions.
8A triangulation of a planar graph is a planar supergraph where all the faces are triangles.

Despite they share the same terminology, planar triangulations should not be confused with the
triangulations from Section 3.2.2 (chordal supergraphs).

110Chapter 3. Tree decompositions with metric constraints on the bags

(a) Canonical partial triangulation of a grid.
(b) Triangulation augmented with one uni-
versal vertex.

Figure 3.14: Contraction obstructions to bounded treewidth.

Let V ′ be the set of vertices that are at distance at least
⌊
r−1

3

⌋
from the external

face of G′. The vertices of V ′ induce a partially triangulated (r′ × r′)-grid F in G,
r = 2

⌊
r−1

3

⌋
+ r′, such that the external face has not been triangulated. Moreover,

F is isometric in G. Hence, tl(G) ≥ tl(F). We show that tl(F) ≥ br/3c − 1.
Our proof adapts from the lower-bound techniques in [DG07, Sec. 2.3]. Let

(T,X) be any tree-decomposition of F . Consider the two subsets of vertices A,B
that contain the first and the last row of F respectively. Since A induces a connected
subgraph of F , by the properties of tree decompositions the bags in X that intersect
A form a subtree TA of T . Similarly, the bags in X that intersect B form a subtree TB
of T . Furthermore, either TA ∩ TB 6= ∅ (in which case, the diameter of every bag in
TA∩TB is at least r′−1), or by [DG07, Lemma 5] there exists a bag which intersects
all paths between A and B in F . In the latter case, such bag must intersect the first
and last column of F , and so, it has diameter at least r′ − 1. Therefore, (T,X) has
length at least r′− 1 in both cases, that proves that tl(F) ≥ r′− 1 ≥ br/3c− 1.

Theorem 58 now follows.

We note that in [Epp00], Eppstein has proved that the apex-minor free graphs
are exactly the minor-closed families of graphs with treewidth upper-bounded by a
function of their diameter. Since treelength is upper-bounded by the diameter, our
result can be seen as a strict generalization of his.

3.6. Conclusion 111

3.6 Conclusion

I have been mainly interested in characterizing the complexity of computing tree
decompositions with metric constraints on their bags. On the parameterized point
of view, my results suggest that the hard instances for this family of problems are
graphs with a large clique-number or a large Hadwiger number (size of a largest
clique-minor). I insisted on this aspect when I discussed on the complexity of com-
puting the clique-decomposition in Section 3.3. Other examples from metric graph
properties studied in the literature support this observation. As an example, under
the Strong Exponential Time Hypothesis the diameter of a graph cannot be
computed in truly subquadratic time (see also Section 2.6.3). Hard instances for the
diameter computation problem are split graphs, a.k.a. graphs who vertex-set can be
bipartitioned into a clique and an independent set [BCH16].

Intuitively, the existence of a large clique makes the diameter lower in the graph,
with a shortest-path between most pairs of vertices passing by the clique. In a way,
it thus forces the distance distribution in the graph to be very simple. But at the
same time, it gives a larger degree of freedom on the adjacency relations for the
vertices out of the clique, in the sense that the edges incident to these vertices
shall not affect too much the distances in the graph. Since tree decompositions
must span the edge-set of the graph, it may be the case that complicated adjacency
relationships for the peripheral vertices render their computation intractable.

This above intuition has guided the hardness reductions in [DLN16a, DC17].
Hence, all the graphs resulting from the hardness reductions for treebreadth, path-
length and pathbreadth have a large clique-number or Hadwiger number. The
graphs resulting from the hardness reduction for treelength also satisfy this prop-
erty [Lok10]. What remains to explore in more details is whether large cliques and
clique-minors represent the only obstructions for an efficient computation of these
above parameters. Throughout my work, partial results have been obtained in this
direction. In particular, planar graphs and bipartite graphs with treebreadth one
can be recognized in polynomial time. I conjecture that more generally, graphs of
treebreadth one with bounded clique-number can be recognized in polynomial time.

However, the above example of bipartite graphs shows that a similar conjecture
does not hold true for the more general problem of computing the treebreadth.
Indeed, we prove in [DLN16a] that the NP-complete problem of recognizing general
graphs with treebreadth one can be reduced to the problem of recognizing bipartite
graphs with treebreadth at most two. The latter result suggests that the existence
of a large clique-minor suffices to render the problem intractable.

Planar graphs are K5-minor free, and we are currently exploring whether com-
puting the treelength is fixed-parameter-tractable on this class of graphs. Precisely,
we are investigating whether we can adapt the algorithm from Bodlaender and
Kloks [BK96] to our needs. This work has been started recently during the intern-
ship of Simon Nivelle with Nicolas Nisse. I conjecture that computing the treelength
of a graph G is FPT when it is parameterized by tl(G) + tw(G). Moreover, it is
my opinion that we may be helped in proving this with the relationships between

112Chapter 3. Tree decompositions with metric constraints on the bags

treelength and treewidth in Section 3.5. Similar ideas can be found in [DFG11].
However, I conjecture that the problem of computing the treelength remains NP-
complete on planar graphs. This conjecture is motivated by a hardness result on
the problem of deciding on the existence of tree t-spanners in these graphs [FK01].
Proving or disproving this conjecture would make advance our understanding on the
structure of bounded treelength graphs.

Part II

Privacy at large scale in social
graphs

115

Unlike the previous part, the focus in the next two chapters is on dynamic
processes on networks. The rules of these dynamics cause certain paths between the
vertices to appear or to disappear, hence they impact on the information propagation
in the graph. Our general purpose is to predict the outcome of these dynamics.

• Chapter 4 presents new results on the computation of equilibria for a large
family of graphical games, that are exemplified by coloring games. Note that
equilibria for these games have been proposed in [KL13] as a solution concept
for the dynamics of communities in social graphs.
• Chapter 5 introduces a new model in order to detect the targeting of (poten-

tially sensitive) data by an online advertiser, and to learn which data causes
the reception of a given ad. Targeting can be regarded as a dynamic process
on an “adgraph” [AMM10]: built from the data inputs and the ad allocation
protocols.

Chapter 4

The computation of equilibria in
coloring games

Summary

We establish new complexity results for computing k-strong Nash equilibria in col-
oring games. These results are partly generalized to some other graphical games.

In Section 4.3, we prove that for every fixed k ≥ 1, it can be computed a k-
strong Nash equilibrium for every coloring game with a better-response dynamic.
We give the exact worst-case (polynomial) time of convergence for k ≤ 2, that we
prove through an original connection between the executions of the better-response
dynamics and the chains (directed paths) in a DAG called the Dominance lattice.
However, for every k ≥ 4, we prove that the better-response dynamic converges
in superpolynomial time in the worst-case. The latter result disproves a conjecture
from [KL13, EGM12] that for every k ≥ 1, this dynamic converges in polynomial
time.

Then, in Section 4.4, we establish new results on the parallel and space complex-
ity of computing a Nash equilibrium in coloring games. Precisely, we prove that this
problem (that is polynomial-time solvable) is PTIME-hard under NC-reductions.
This is hint that computing a Nash equilibrium in these games is a problem in-
herently sequential, that cannot be solved within limited (logarithmic) workspace,
neither with an “efficient” distributed algorithm: with low local computational time
and communication complexity.

In Section 4.5, we put the focus on a generalization of coloring games to edge-
weighted graphs, sometimes called the additively separable symmetric Hedonic
games. We give sufficient conditions for these games to admit a k-strong Nash
equilibrium. Then, we prove that for every k ≥ 2, and for every fixed set of edge-
weights W, the following dichotomy results holds true: either all the games played
on a graph with edge-weights in W admit a k-strong Nash equilibrium, or the cor-
responding decision problem is NP-complete.

Finally, a broader set of graphical games, generalizing coloring games in their
own way, is introduced in Section 4.6. For each of those, we discuss on the extent
to which our results for coloring games still apply.

My papers on coloring games and their generalizations [DMC12, DMC13a,
DMC17, Duc16] are collected in the appendix.

118 Chapter 4. The computation of equilibria in coloring games

Contents
4.1 Introduction . 118

4.1.1 Presentation of coloring games 119
4.1.2 Contributions . 121

4.2 Definitions . 123
4.2.1 Stable partitions and better-response dynamics 124
4.2.2 Friendship and conflict graphs 125

4.3 Unweighted games: the time of convergence for better-
response dynamics . 125

4.3.1 A finer-grained complexity for the problem of computing k-
stable partitions . 126

4.3.2 Closed formula for the worst-case time of convergence of
better-response dynamics (k ≤ 2) 127

4.3.3 Lower-bounds for the worst-case time of convergence of better-
response dynamics (k ≥ 4) . 131

4.4 The parallel complexity of coloring games 137
4.4.1 Overall approach and main result 137
4.4.2 The reduction . 138
4.4.3 Proof of the main result . 142

4.5 Weighted games: existence of equilibria 146
4.5.1 Positive results . 147
4.5.2 The hardness of recognizing games with k-stable partitions . 148

4.6 Extensions of coloring games 153
4.6.1 Gossiping . 153
4.6.2 Asymmetry . 154
4.6.3 List coloring games . 155
4.6.4 Coloring games on hypergraphs 156

4.7 Concluding remarks . 156

4.1 Introduction

In this chapter, we aim at better understanding how the rules of the dynamics affect
the privacy of the users’information in social graphs, that is defined in [EDP] as “a
right which prevents public authorities from measures which are [invasive for the
respect of private life], unless certain conditions have been met.” Formal definitions
of this notion of privacy, in game-theoretic terms, can be found, e.g., in [Dwo08].
Note that if we consider a communication network such as a social graph, private
information flows through the edges of the graphs. Hence, one important aspect in
the study of privacy in these networks can be informally summarized at detecting
where the information can be accessed to in the graph over time. As a partial answer
to this question, we will study coloring games on graphs in this chapter.

Precisely, our aim is to compute equilibria for those games, that have been pro-
posed in [KL13] as a solution concept for the outcome of the communities formation

4.1. Introduction 119

process in social networks. Coloring games and some basic definitions for this chap-
ter will be presented in Section 4.1.1. Then, the content of this chapter will be
described in Section 4.1.2. In particular, in what follows, full definitions are given
in Section 4.2, while the technical sections range from Sections 4.3 to 4.6.

4.1.1 Presentation of coloring games

A coloring game is played on an undirected graph with each vertex being an agent
(formal definitions will be restated with details in Section 4.2). Agents must choose
a color in order to construct a proper coloring of the graph, and the individual
goal of each agent is to maximize the number of agents with the same color as
hers. On a more theoretical side, coloring games have been introduced in [PS08] as
a game-theoretic setting for studying the chromatic number in graphs. Precisely,
the authors in [PS08] have shown that for every coloring game, there exists a Nash
equilibrium where the number of colors is exactly the chromatic number of the graph.
Since then, these games have been rediscovered many times, attracting attention on
the way in the study of information sharing and propagation in graphs [CKPS10,
EGM12, KL13].

4.1.1.1 Some applications of coloring games

Distributed coloring in graphs. In particular, the authors in [CKPS10] base on
coloring games in order to design distributed algorithms for coloring a graph, with
applications to the frequency assignment problem and the design of sleep/awake
protocols in Wireless Sensor Networks. The latter protocols are the cornerstone
of energy saving methods in these networks, and they also serve as a routine for
securing group communications.

Later on, in part motivated by the above applications, the authors in [MW13]
presented a unifying framework for the so-called “distributed” welfare games. The
goal with these games is to encode the solutions of a distributed resource allocation
problem as the Nash equilibria of a given graph game. They are specified by as-
signing each agent an admissible utility function to optimize. Coloring games have
been shown to fit in this generic framework.

Modeling of community formation in social networks. More recently, col-
oring games have been proposed in order to model community formation in social
networks [KL13]. Indeed, let us assume that each community results from a group
of users sharing about some information topic. Let us also assume for simplicity
that each user shares about a given topic in only one community1. Therefore, given
a fixed topic, communities partition the users. The dynamics of these communities
is modeled with a coloring game, that is played on a “conflict graph” where each
edge represents a conflicting opinion between two users.

1Note that by doing so, existing correlations between communities that are related to different
topics are neglected [KBSP16].

120 Chapter 4. The computation of equilibria in coloring games

This representation may be confusing because the communities are densely con-
nected subsets in the social graph, whereas here in the coloring game they correspond
to color classes, and so, to independent sets of the conflict graph. In this context,
it may be more natural to define the game on the complement of the conflict graph:
agents must construct a clique partition of this graph, and the individual goal of
each agent is to maximize the size of her clique (see Figure 4.1 for an illustration).

0

1 2

2 1

(a) A coloring game played on a graph
G. Agent are labeled with their colour.

0

1 2

2 1

(b) The corresponding clique partition
in the complement of G.

Figure 4.1: Dual representations for coloring games.

Generalizations of coloring games have been proposed in the literature [ABK+16,
BZ03, MW13]. In this chapter, we are particularly interested in a subclass of He-
donic games [Bal04], sometimes called the additively separable symmetric Hedonic
games [BZ03]. We will call them generalized coloring games because, as shown
below, they are a proper extension of the classical coloring games. A generalized
coloring game is played on an edge-weighted graph, with each vertex being an agent.
As before agents must choose a color, and the individual goal of each agent is now
to maximize the sum of the weights of the edges that are incident to herself and to
another agent with the same color as her.

Formally, let G = (V,E,w) be an edge-weighted graph with w : E → Q∪{−∞}
be its weight function. A coloring c : V → N of G is a partition of its vertex-set with
each class (or group) being assigned a distinct integer, and for every vertex v ∈ V
we denote by c(v) the integer corresponding to her group, also known as her color.
Then, in the generalized coloring game that is played on G, the vertices of G are
the agents of the game, and the strategy of an agent is her color. Every agent v ∈ V
aims at maximizing her utility function

∑
u∈NG(v)|c(u)=c(v)

wuv. We refer to Figure 4.2

for an illustration.
Note that every coloring game that is played on an unweighted graph G− can be

transformed into a generalized coloring game, by creating an edge-weighted complete
graph with vertex-set V (G−) where the edges of G− have weight −∞ and the
nonedges of G− have unit weight.

=⇒ From now on, we will assume the classical coloring games to be defined this

4.1. Introduction 121

way, and all the definitions will be directly given for generalized coloring games.

4.1.2 Contributions

Our main purpose is to characterize the complexity of computing stable partitions
for generalized coloring games. Those are configurations where no small subset of
agents have an incentive to change their current strategy for the same new color.
On a social network point of view, stable partitions ensure that no small coalition
of users have an incentive to leave their current community for another one, thus
preventing information leakage from a community to another.

More precisely, we carefully control the maximum size k of such a subset, and
we aim at computing k-stable partitions, a.k.a. configurations of the game where no
k-subset of agents have an incentive to deviate from their current strategy (e.g., see
Figure 4.3 for an illustration). Note that 1-stable partitions are exactly the Nash
equilibria of the game.

Formally, for any G = (V,E,w) and c : V → N, a k-deviation w.r.t. c is any
subset S ⊆ V with |S| ≤ k that satisfies the following property: there exists some
color i ∈ N so that, for every v ∈ S, we have c(v) 6= i and:∑

u∈NG(v)|c(u)=c(v)

wuv <
∑

u∈NG(v)|u∈S

wuv +
∑

u∈NG(v)|c(u)=i

wuv.

The coloring c represents a k-stable partition if there is no k-deviation w.r.t. c2.

We now describe our contributions in more details. Positive and negative results
are obtained on the complexity of computing k-stable partitions for the classical (non
generalized) coloring games with better-response dynamics (Section 4.1.2.1) and
parallel or space efficient algorithms (Section 4.1.2.2). Our results on the existence of
k-stable partitions in generalized coloring games are summarized in Section 4.1.2.3.
Extensions of all these results to broader classes of games are finally announced in
Section 4.1.2.4.

4.1.2.1 Convergence of better-response dynamics for coloring games

The first two technical sections (Sections 4.3 and 4.4) are devoted to (non gener-
alized) coloring games. In particular, Section 4.3 is devoted to the computation of
k-stable partitions for these games.

In [KL13], Kleinberg and Ligett prove that every coloring game with n agents
admits a partition that is k-stable for every k ≤ n, but that it is NP-hard to compute
one (this result was also proved independently by Escoffier et al. [EGM12]). Indeed,
a largest group in such a partition must be a maximum independent set of the
underlying graph. In contrast, it can be computed a k-stable partition in polynomial

2There is a more general notion of k-deviations where the agents deviating from their current
strategies are not imposed to choose the same color i. However, as shown in [EGM12] for any (non
generalized) coloring game, there exists such a k-deviation if and only there is one where the at
most k agents deviating choose the same color i.

122 Chapter 4. The computation of equilibria in coloring games

time for every fixed k ≤ 3, by using simple better-response dynamics [PS08, EGM12,
KL13] that we will describe next. The latter results question the role of the value
of k in the complexity of computing stable partitions.

Formally, a better-response dynamic proceeds as follows. We start from a trivial
coloring of the graph where all the vertices have a different color and then, as long
as there exists a k-deviation w.r.t. the current coloring, we pick any one of these
k-deviations S and we assign a same new color i to all the vertices in S so that they
strictly increase their respective utility function.

We prove in Section 4.3 that better-response dynamics can be used for comput-
ing a k-stable partition for every fixed k ≥ 1 (but not necessarily in polynomial
time). It shows already that for every fixed k ≥ 1, the problem of computing a
k-stable partition is in the complexity class PLS (Polynomial Local Search), that is
conjectured to lie strictly between P and NP [JPY88].

Then, we relate the time of convergence of better-response dynamics with a
combinatorial object that is called the Dominance lattice [Bry73], thereby obtain-
ing a closed formula for the worst-case time of convergence of the better-response
dynamics for k ≤ 2. Finally, we will show how lower-bounds on the time of conver-
gence for the better-response dynamics can be obtained for larger values of k. These
bounds are obtained with a new representation of the Dominance lattice, that I will
briefly sketch. In particular, the main result in this section is that for every fixed
k ≥ 4, better-response dynamics converge in superpolynomial time Ω(nΘ(logn)) in the
worst-case. The latter result disproves conjectures of Kleinberg and Ligett [KL13]
and Escoffier et al. [EGM12] that better-response dynamics always converge in poly-
nomial time for every fixed k.

This is joint work with Dorian Mazauric and Augustin Chaintreau.

4.1.2.2 The parallel complexity of coloring games

The negative results of Section 4.3 do not preclude the possibility that a k-stable
partition can be computed in polynomial time for every fixed k ≥ 4. For instance,
this could be achieved by using a different dynamic. In order to better understand
the complexity of this problem, I gave a closer look at the simpler (polynomial-time
solvable) problem of computing a Nash equilibrium in coloring games.

More precisely, I investigate in Section 4.4 on the parallel and space complexity
of computing a Nash equilibrium in these games. This aspect is also important
when considering the applications of coloring games: to serve as a basis for dis-
tributed algorithms or to model the social behaviour of users with limited memory
and computing power.

I prove in Section 4.4 that the problem of computing a Nash equilibrium in
coloring games is PTIME-hard under logspace reductions. The latter result sug-
gests that this problem is inherently sequential, and that it cannot be solved within
limited (logarithmic) workspace under the well-established complexity assumption
PTIME 6= LOGSPACE.

4.2. Definitions 123

4.1.2.3 Existence of stable partitions for generalized coloring games

We also study in Section 4.5 the existence of k-stable partitions in generalized color-
ing games, and on the complexity of the related decision problem. So far, it has been
proved in [BZ03] that every generalized coloring game admits a Nash equilibrium.
However, computing one is a PLS-complete problem. This complexity comes from
the fact that edge-weights may be arbitrary. In Section 4.5, we fix in advance a set
of admissible edge-weights W. We investigate on how the choice of W impacts on
the existence of stable partitions.

The main result in this section, found in collaboration with Dorian Mazauric
and Augustin Chaintreau, is that for every fixed W, there exists a sharp threshold
k(W) (possibly, k(W) = +∞) such that the following dichotomy result holds true:
• every coloring game that is played on a graph with edge-weights in W admits

a k-stable partition for every fixed k ≤ k(W);
• however, for every fixed k > k(W), deciding on the existence of a k-stable

partition for these games is an NP-complete problem.
This sharp threshold is explicitly given for most setsW. We complement this result
with preliminary relationships between the existence of stable partitions and the
structure of the underlying graph on which the game is played.

4.1.2.4 Generalization to other games

Finally, in Section 4.6 we discuss on more general games that also extend the coloring
games, some of them have been already defined and studied in the literature with
a slightly different terminology [KL13, DP94, BZ03]. We show that most of our
results from the two previous Sections 4.3 and 4.5 can be extended to those games.

The results that are presented in Sections 4.3, 4.5 and 4.6 are grouped in a
paper [DMC17] that has been submitted to SIAM Journal of Discrete Mathemat-
ics (see also [DMC13a, DMC13b]). Results summarized in Section 4.4 have been
published independently in [Duc16].

4.2 Definitions

We refer to [OR94, Mye13] for the basics of game theory. In what follows, we restate
the formal notions given in the introduction with more details.

Let G = (V,E,w) be an edge-weighted graph, with w : E → Q ∪ {−∞} be its
weight function. We may assume that G is a clique by replacing the nonedges with
null-weight edges, and so, we will write G = (V,w) in what follows. An arbitrary
partition of the vertices in G is named a coloring. Each group of the partition defines
a color.

Every graph G defines a generalized coloring game whose agents are its vertices.
Configurations of this game are the colorings of G. In particular, the strategy of
an agent is her color. Furthermore, given a configuration of the game, every agent

124 Chapter 4. The computation of equilibria in coloring games

3

2

1

5

7

2

5

3

4

12

9

7

Figure 4.2: A bicoloring of a graph G = (V,w). Agents that are represented by
a circle (resp., by a square) have the same color. Red dashed edges have negative
weight −∞, while green continuous edges are labeled with their (positive) weight.
Furthermore, each agent is labeled with her payoff.

v ∈ V (G) receives payoff
∑

u∈V \v|c(u)=c(v)

wuv, with c(u) being the color of u. We refer

to Figure 4.2 for an illustration.

Let us point out that classically, the non generalized coloring games are defined
on an unweighted graph that is obtained from G by removing all edges with positive
weight. We shall come back to this point later on in the section.

4.2.1 Stable partitions and better-response dynamics

Let us fix a configuration of the (generalized) coloring game that is played on G. A
subset S ⊆ V (G) with |S| ≤ k is a k-deviation if it can be assigned a same color
to all the agents in S (different from their current color) so that their respective
payoff is increased. Examples of 2-deviations are provided with Figure 4.3. When
no k-deviation exists, we call the configuration a k-stable partition. The k-stable
partitions correspond to the notion of k-strong Nash equilibria. In particular, 1-
stable partitions correspond to the classical notion of Nash equilibria. Note that a
k-stable partition might fail to exist, as shown with Figure 4.3.

The following better response dynamics are a classical approach in order to com-
pute stable partitions. They are used in [KL13] in order to model the social choices
of users in the community formation process.

Let k ≥ 1 be fixed. We start from a trivial configuration where each agent has a
different color. Then, as long as there exists a k-deviation, we pick any existing k-
deviation S and we assign a same color c to all the agents in S so that they increase
their respective payoff. Let us point out that c can be either a new colour (we make
of S a new color class) or a color already assigned to some other agents not in S

(we make the agents in S part of an existing color class). Furthermore, if this above
dynamic converges then it stops on a k-stable partition.

4.3. Unweighted games: the time of convergence for better-response
dynamics 125

> 0

Edges Weights
- ∞

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

(a) (b)

(c)

Figure 4.3: A graph G = (V,w) with set of edge-weights W = {−∞, 2, 3, 4}. The
coloring game played on G does not admit any 2-stable partition. Indeed, we here
represent its 1-stable partitions, none of which is a 2-stable partition.

4.2.2 Friendship and conflict graphs

Finally, given an edge-weighted graph G, we define two unweighted graphs whose
properties will be shown to be related to the properties of the generalized coloring
game that is played on G.
• The friendship graph G+ has for vertex-set V (G) and for edge-set the edges of
G with positive weight;
• Similarly, the conflict graph G− has for vertex-set V (G) and for edge-set the

edges of G with negative weight.
As an example, given G = (V,w) in Figure 4.2, the friendship graph G+ is a

disjoint union of two triangles, and the conflict graph G− is a complete bipartite
graph K3,3.

Let us consider the particular case where the edges of G have weight either 1 or
−∞. In this situation, stable partitions for the coloring game that is played on G
are proper colorings of the conflict graph G−, a.k.a. colorings where no two adjacent
vertices are assigned the same color. This justifies the terminology of coloring games.

4.3 Unweighted games: the time of convergence for
better-response dynamics

The next two sections are devoted to the particular case of (non generalized) coloring
games, i.e., when the edge-weights of the underlying graph belong to {−∞, 1}.

126 Chapter 4. The computation of equilibria in coloring games

Classically [PS08, CKPS10, KL13, EGM12], these games are assumed to be played
on the conflict graph G− that is induced by the edges weighted −∞. In particular,
the goal of each agent is to construct a proper coloring of G− while maximizing
the number of agents with the same color as herself. Since the conflict graph is
unweighted, we will sometimes call these games the unweighted coloring games in
what follows.

Our purpose in this section is to (partly) characterize the complexity of comput-
ing a k-stable partition for these games, for every fixed k. Indeed, Kleinberg and
Ligett [KL13] proved that for every k, every unweighted game admits a k-stable
partition. However, finding a coloring that is a k-stable partition for every k is an
NP-hard problem. In what follows, we will subdivide our contributions in three
parts. Each part is devoted to the proofs of upper and lower bounds on the time of
convergence for better-response dynamics.
• We first prove in Section 4.3.1 that for every fixed k ≥ 1, better-response dy-

namics always converge to a k-stable partition. We discuss on the consequences
of this result on the complexity of computing k-stable partitions.
• Then, we obtain in Section 4.3.2 the exact worst-case time of convergence for
k ≤ 2.
• Finally, we prove in Section 4.3.3 that better-response dynamics converge in
superpolynomial time as soon as k ≥ 4. The latter result answers negatively to
an open question from [KL13, EGM12].

4.3.1 A finer-grained complexity for the problem of computing k-
stable partitions

First, we prove that when applied to unweighted games, better-response dynamics
always converge. Then, we discuss about the implications of this result on the
complexity of computing a k-stable partition.

The following proof makes use of a partition vector, first introduced in [CKPS10].

Definition 62. Given a proper coloring of G−, let λi be the number of colors ci so
that exactly i agents are colored by ci. We denote by

−→
Λ = (λn, . . . , λ1) the partition

vector of the coloring.

As an example, suppose that G− is a complete bipartite graph with two sides
of respective size n1 and n2, and we color all vertices on a same side with the
same color. If n1 = n2 then λn1 = 2 and for every i 6= n1, λi = 0. Otherwise,
λn1 = λn2 = 1, and for every i /∈ {n1, n2}, λi = 0.

Lemma 63. For any (conflict) graph G−, let us consider the unweighted game that
is played on G−. Then, for every k ≥ 1, the better-response dynamic applied to this
game converges to a k-stable partition.

Proof. At each time we modify the current coloring of G−, we also modify the
corresponding partition vector

−→
Λ . So, in order to prove that the better-response

4.3. Unweighted games: the time of convergence for better-response
dynamics 127

dynamic converges, it suffices to prove that
−→
Λ′, obtained after the coloring has

changed, is lexicographically greater than
−→
Λ . Let us prove this by fixing a k-

deviation S (w.r.t. the current coloring). After the coloring has been changed
– with respect to S –, all vertices in S have strictly increased their payoff. For
unweighted games, this is equivalent to have all vertices in S increase the number of
agents with the same color as theirs. In particular, let c be the color assigned to all
the agents in S, and let j be the number of agents colored c before the coloring has
been changed. By the hypothesis, the change of coloring results in j + |S| vertices
colored c. So, we get

−→
Λ′−
−→
Λ = (0, . . . , 0, λ′j+|S|−λj+|S| = 1, . . .), and so,

−→
Λ <Lex

−→
Λ′.

Finally, as the number of possible vectors is finite, we obtain the convergence of the
better-response dynamic.

Next, we discuss on the consequences of Lemma 63 on the complexity of comput-
ing k-stable partitions for unweighted games. Informally, an optimization problem
is in PLS (Polynomial Local Search) if an optimal solution can be computed with
a local-search algorithm, i.e., an algorithm converging to an optimal solution by
repeatedly improving a current solution with a slight pertubation of it3. Lemma 63
proves that for every fixed k, the problem of computing a k-stable partition for
unweighted games is in PLS. This complexity class is strictly included in NP unless
NP=coNP [JPY88].

Hence, to summarize this subsection, we have improved the best-known results
on the complexity of computing a k-stable for unweighted games, for every fixed k.

4.3.2 Closed formula for the worst-case time of convergence of
better-response dynamics (k ≤ 2)

Polynomial-time solvable problems are conjectured to be strictly contained in
PLS [JPY88]. In this section, we are interested in characterizing for which val-
ues of k the problem of computing a k-stable partition is in P. As a partial answer
to this question, we aim at characterizing for which values of k the corresponding
better-response dynamic converges within a polynomial number of steps.

It was proved in various papers [PS08, KL13, EGM12] that better-response dy-
namics converge in polynomial-time for every fixed k ≤ 3. The proofs in these
papers rely on a potential function argument. We now give an alternative proof of
this result for the case k ≤ 2. It is based on a more combinatorial argument and it
allows us to obtain the exact worst-case time of convergence.

Theorem 64. Let G− be an n-vertex conflict graph. We consider the unweighted
game that is played on G−. Let m and r be the unique non negative integers such
that n = m(m+1)

2 + r, and 0 ≤ r ≤ m.
Then, for every k ≤ 2, the better-response dynamic applied to this above game

converges to a k-stable partition within no more than 2
(
m+1

3

)
+mr ∼ 2

√
2

3 n
√
n steps.

3Each step of the algorithm takes polynomial time, but the number of steps may be superpoly-
nomial.

128 Chapter 4. The computation of equilibria in coloring games

Moreover this worst-case upper-bound is reached if the conflict graph G− has no
edges.

The remaining of this subsection is devoted to the proof of Theorem 64.

At first glance, it might look counter intuitive that the worst-case convergence
time of the dynamic is reached for the edgeless conflict graph. Indeed, when the
conflict graph has no edges there is a unique stable partition, with all agents having
the same color. However, this can be better understood by noticing that every
proper coloring of a conflict graph G− is also a proper coloring of the edgeless
conflict graph G∅ with same vertices. In particular, if we color accordingly G− and
G∅ then a k-deviation for G− is also a k-deviation for G∅. It directly follows from
this observation that the worst-case convergence time for better-response dynamics
is always reached with G∅.

The proof of Theorem 64 also makes use of partition vectors. As for Lemma 63,
we show that every time the coloring is changed by using a 1-deviation (resp.,
a 2-deviation), the corresponding partition vector increases with respect to some
ordering. However, in order to prove a polynomial upper-bound for the time of
convergence, we cannot use anymore the lexicographical ordering, since it is a total
ordering and the number of partition vectors is superpolynomial [HW79]. Instead,
we will use a partial ordering that was introduced by Brylawski in [Bry73], in a
somewhat different context.

Integer partitions. We first observe that when the game is played on an n-vertex
conflict graph, each partition vector of its colorings defines a unique way to write n
as a sum of positive integers. The latter means that partition vectors are in bijective
correspondance with the nonincreasing sequences of n nonnegative integers whose
terms sum up to n. More precisely, every vector

−→
Λ is related to the nonincreasing

sequence Q(
−→
Λ), with its n −

∑n
i=1 λi lowest terms equal to zero, and exactly λi

terms equal to i for every 1 ≤ i ≤ n. These sequences are called integer partitions
in the literature [Bry73, HW79].

Dominance ordering. Brylawski has defined an ordering over the integer parti-
tions, sometimes called the dominance ordering [Bry73]. Namely, given two parti-
tions, one is greater than the other if and only if for every 1 ≤ i ≤ n, the sum of
its i largest terms is greater than or equal to the sum of the i largest terms of the
other. The latter ordering is a direct application of the theory of majorization to
integer partitions [OM16].

For instance, let us consider two trivial colorings of G∅: one with every agent
having a different color, and another with every agent having the same color. In
the first case, the partition vector is

−→
Λ = (0, . . . , 0, n) so that λ1 = n and λi = 0

for every i > 1; in the second case, the partition vector is
−→
Λ′ = (1, 0, . . . , 0) so

that λ′n = 1 and λ′i = 0 for every i < n. The corresponding integer partitions
are Q(

−→
Λ) = (1, 1, 1, . . . , 1) and Q(

−→
Λ′) = (n, 0, 0, . . . , 0). In particular, the i largest

4.3. Unweighted games: the time of convergence for better-response
dynamics 129

terms of Q(
−→
Λ′) always equal n, whereas the i largest terms of Q(

−→
Λ) equal i ≤ n.

Hence,
−→
Λ′ is greater than

−→
Λ w.r.t. the dominance ordering.

Relationship with 2-deviations. The dominance ordering gives rise to a lattice
on the integer partitions. Furthermore, it has been proved in [GK86] that a longest
chain in this lattice has length 2

(
m+1

3

)
+ mr, with m and r being the unique non

negative integers such that n = m(m+1)
2 + r, and 0 ≤ r ≤ m. Therefore, in order to

prove Theorem 64 we have been left to prove a correspondance between the valid
sequences of 2-deviations in G∅ and the chains of integer partitions in the Dominance
lattice. Note that this correspondance holds true only for the edgeless conflict graph
G∅. Below, we first prove this correspondance in the case of 1-deviations.

Lemma 65. Assuming G− = G∅ is edgeless, let Q,Q′ be two integer partitions of
n = |V |.

Then, Q′ dominates Q if and only if there exist two colorings c, c′ of G− with
respective partition vectors

−→
Λ and

−→
Λ′ such that: Q(

−→
Λ) = Q, Q(

−→
Λ′) = Q′, and there

is a valid sequence of 1-deviations from c to c′.

Proof. (⇒) Suppose that Q′ dominates Q. We may assume w.l.o.g. that there is no
intermediate integer partition Q′′ such that Q′ dominates Q′′ and Q′′ dominates Q.
Indeed, then we can prove the result in general by induction on the length of a longest
chain from Q to Q′. In this situation, we say that Q′ covers Q. Brylawski [Bry73]
has proposed a combinatorial characterization of the covering relation. Precisely, Q′

covers Q if and only if there exist indices j, k satisfying:
• k = j + 1 or qj = qk;
• q′j = qj + 1, q′k = qk − 1, and for all i such that i /∈ {j, k}, q′i = qi.

In particular, since k = j + 1 or qj = qk, we get qj ≥ qk.
Let c be any coloring with partition vector

−→
Λ , so that Q(

−→
Λ) = Q. We order

the color classes by nonincreasing size, naming Li the ith largest class, in a way so
that |Li| = qi. Then, we pick any v ∈ Lk, that exists since |Lk| = qk > 0. Since
by construction there are |Lj | = qj ≥ qk agents with color j, and there is no edge
incident to v and to another agent with color j by the hypothesis, therefore, we can
increase the payoff of v by changing her color for j. By doing so, we obtain a new
coloring c′ with partition vector

−→
Λ′ such that Q(

−→
Λ′) = Q′.

Conversely, (⇐) let c and c′ be two colorings with respective partition vectors
−→
Λ and

−→
Λ′ such that Q(

−→
Λ) = Q and Q(

−→
Λ′) = Q′. Assume that c′ can be obtained

from c after a 1-deviation. In particular, let v change her color. We can order the
color classes by nonincreasing size, naming Li the ith largest class, in a way so that:
• v changes her color c(v) = k for c′(v) = j, with j ≤ k;
• every color class Li, i < j, has size |Li| > |Lj |;
• every color class Li, i > k, has size |Li| < |Lk|.

Note that Q = (|L1|, |L2|, . . . , |Lj |, . . . , |Lk|, . . . , |Ln|) by construction. In particular,
Q′ is such that q′i = qi = |Li| if i /∈ {j, k}, and q′j = |Lj | + 1, q′k = |Lk| − 1. As a

130 Chapter 4. The computation of equilibria in coloring games

consequence, we have that Q′ dominates Q by the hypothesis. Note that this second
part of the proof holds for any conflict graph G−.

To complete the proof of Theorem 64, we need to show that 2-deviations cannot
make the time of convergence of the dynamic increase. We prove this below with a
finer-grained analysis of the partition vectors that are obtained after 2-deviations.

Lemma 66. Assuming G− = G∅ is edgeless, let Q,Q′ be two integer partitions of
n = |V |. Suppose that there exist two colorings c, c′ of G− with respective partition
vectors

−→
Λ and

−→
Λ′ such that: Q(

−→
Λ) = Q, Q(

−→
Λ′) = Q′, and c′ is obtained from c

after a 2-deviation. Then, Q′ dominates Q.

Proof. Let S = {u, v} be a 2-deviation w.r.t. c so that c′ is obtained from c by
assigning a same color j to u and v. Furthermore, let i = c(u) and let i′ = c(v).
In what follows, we denote by Li, Li′ , Lj the color classes of c that correspond,
respectively, to the colors i, i′ and j.

We note that if |Lj | ≥ |Li| then u can increase her payoff by changing her current
color i for j. In this situation, c′ can be obtained from c after a sequence of two
1-deviations, with u followed by v changing their respective colors for j sequentially.
Therefore, Q′ dominates Q by Lemma 65. Similarly, if |Lj | ≥ |Li′ | then c′ can be
obtained from c by changing the respective colors of v then u for color j sequentially.
Therefore, we also have in this case that Q′ dominates Q by Lemma 65. From now
on, let us assume that |Lj | = |Li| − 1 = |Li′ | − 1. There are two cases to be
considered:
• Suppose that i = i′. Then the numbers of agents colored by i and j in c′ are

respectively |Li \ {u, v}| = |Li| − 2 and |Lj ∪ {u, v}| = |Lj | + 2 = |Li| + 1.
In particular, another coloring c′′ can be obtained from c with a 1-deviation
as follows. We pick any agent uj ∈ Lj and we make her payoff increase from
|Lj | − 1 = |Li| − 2 to |Li| = |Lj | + 1 by changing her current color j for i.
By doing so, the coloring c′′ so obtained has the same partition vector as c′.
Therefore, since c′′ is obtained from c after a 1-deviation, Q′ dominates Q by
Lemma 65.
• Otherwise, i 6= i′. Then the numbers of agents colored by i, i′ and j in c′

are respectively |Li \ {u}| = |Li| − 1, |Li′ \ {v}| = |Li′ | − 1 = |Li| − 1 and
|Lj ∪ {u, v}| = |Lj | + 2 = |Li| + 1. Again, another coloring c′′ with the same
partition vector as c′ can be obtained from c after a 1-deviation, this time
by modifying the color of v from i′ to i. Since c′′ is obtained from c after a
1-deviation, Q′ dominates Q by Lemma 65.

By Lemma 66, the maximum number of consecutive 2-deviations in better-
response dynamics is upper-bounded by the length of a longest chain in the Dom-
inance lattice. Since Lemma 65 proves that it can be obtained a sequence of 1-
deviations with exactly this length, Theorem 64 follows.

4.3. Unweighted games: the time of convergence for better-response
dynamics 131

Perspectives. In [PS08], Panagopoulou and Spirakis proved that for every conflict
graph G− with independent number α(G−), the better-response dynamic converges
to a Nash equilibrium within O(n · α(G−)) steps. This improves upon the upper-
bound of Theorem 64 for the graphs with independent set α(G−) = o(

√
n). I con-

jecture that the worst-case time of convergence of the dynamic is an O(n ·
√
α(G−)),

that would be the best possible.

4.3.3 Lower-bounds for the worst-case time of convergence of
better-response dynamics (k ≥ 4)

Finally, on the negative side we lower-bound the worst-case running-time of better-
response dynamics for k = 4. It has been conjectured in [EGM12] that in the case
of unweighted games, better-response dynamics always converge in polynomial time
for every fixed k. Our results for k = 4 disprove this conjecture.

Theorem 67. Let G∅ be an edgeless conflict graph with n vertices. We consider the
unweighted game played on G∅.

Then, for every k ≥ 4, better-response dynamics applied to this above game
converge in Ω(nΘ(logn)) steps in the worst-case.

Due to its high level of technicality, the proof of Theorem 67 will be only sketched
in what follows. The full proof can be found in [DMC17].

4.3.3.1 Cascade sequences: overview

In order to give a flavor of the method, let us consider some coloring of G∅, with
partition vector

−→
Λ so that λp ≥ 4 and λp−3 ≥ 1 for some p. We take a subset S

of four agents, each with a distinct color and receiving payoff p− 1. Such a subset
surely exists since λp ≥ 4. Then, since λp−3 ≥ 1, there exists some color c that is
assigned to exactly p − 3 agents. Assigning color c to the four agents in S would
increase their respective payoff from p − 1 to p, so, S is a 4-deviation. This case
is interesting because after the 4-deviation, the length of a longest chain, in the
Dominance lattice, from the current coloring to the unique stable partition of G∅

(where all the agents have the same color) has been increased. Hence, we aim at
using this type of 4-deviations in order to maximize the number of steps for the
better-response dynamic.

With that goal in mind, we now define cascade sequences. Indeed, suppose now
that for some p, we have as before λp ≥ 4 and λp−3 ≥ 1, but also λi ≥ 1 for
every i ≤ p − 4. As it is described above, we modify the current coloring with a
4-deviation, thereby obtaining as the new partition vector

−→
Λ′ so that:

λ′p+1 = λp+1 + 1

λ′p = λp − 4

λ′p−1 = λp−1 + 4

λ′p−3 = λp−3 − 1

λ′i = λi otherwise.

132 Chapter 4. The computation of equilibria in coloring games

Then, since λ′p−1 ≥ 4 and λ′p−4 = λp−4 ≥ 1, we can modify the new coloring with
another 4-deviation, and so on. As an example, the following is a cascade sequence
of size four. Each configuration is represented with an integer partition:

Q0 = (7, 7, 7, 7, 4, 3, 2, 1),

Q1 = (8, 6, 6, 6, 6, 3, 2, 1),

Q2 = (8, 7, 5, 5, 5, 5, 2, 1),

Q3 = (8, 7, 6, 4, 4, 4, 4, 1),

Q4 = (8, 7, 6, 5, 3, 3, 3, 3).

In order to lower-bound the time of convergence in the worst-case, we aim at
maximizing the size and the number of cascade sequences during the steps of the dy-
namic. The latter is achieved through a complex recursive procedure, where we de-
fine larger and larger cascades (but in fewer and fewer number) by inserting complex
sequences of “adaptive” 1-deviations in-between. In the following Section 4.3.3.2, we
will introduce new technical notions that we use in [DMC17] in order to formally
define this procedure.

...

⇣1 ⇣3 ⇣4⇣2

⇣1
⇣3

⇣1

⇣2

⇣1

⇣1

⇣1

⇣1

⇣1

⇣1

⇣2

⇣2

⇣2

⇣3

Figure 4.4: A recursive procedure in order to increase the size of cascade sequences
(sketch).

4.3.3.2 Representing long sequences of 4-deviations with vectors

Our construction can be best defined by using a vectorial representation of 4-
deviations. More precisely, when we change a coloring with partition vector

−→
Λ

for another coloring with partition vector
−→
Λ′, the deviation corresponding to that

change can be represented with the difference vector
−→
Λ′−
−→
Λ . As an example, if after

a 1-deviation some agent increases her payoff from p− 1 to p+ 1 then she leaves a
group of size p for some other group of size p + 1. In particular, her former color
class has size p− 1 after her departure, and her new color class has size p+ 2 after

4.3. Unweighted games: the time of convergence for better-response
dynamics 133

her arrival. Therefore, the corresponding difference vector
−→
∆ =

−→
Λ′ −

−→
Λ satisfies:

δp+2 = 1

δp+1 = −1

δp = −1

δp−1 = 1

δi = 0 otherwise.

Symmetric property. Our recursive cascades are easier to represent this way,
i.e., as a vectorial sequence satisfying some “symmetric properties”, that we define
next.

Definition 68. The minimum-size sub-vector that contains all non-zero entries
of a vector is called the support of the vector. We say a vector has the symmetric
property if, and only if, the coordinates of its support are invariant under the reverse
permutation (in which case, it is said “symmetric”).

On the one hand, we show in [DMC17] that except for a few pathological cases,
every 1-deviation yields an elementary vector that has the symmetric property. But
the property does not hold in general for k-deviations whenever k ≥ 3. This might
give a hint of what changes in the nature of the problem when larger deviations are
allowed.

On the other hand, the use of this above vectorial representation might lead
to define vectorial sequences that do not truly represent sequences of 4-deviations.
Thus, we need to define additional constraints in order to prevent that case from
happening, which unfortunately level up the technicality of the proof. We give a
flavour of it by introducing the notion of balanced sequences.

Definition 69. Given any integer h > 0, let −→ϕ 1,−→ϕ 2, . . . ,−→ϕ t be vectors. We call
this sequence h-balanced if, for any 1 ≤ i ≤ t, the sum of the i first vectors, namely∑i

j=1
−→ϕ j , has all its entries greater than or equal to −h.

As an example, since agents in a k-deviation can be in no more than k distinct
color classes, the vector gotten after any k-deviation is always k-balanced.

Given a h-balanced sequence (−→ϕ 1,−→ϕ 2, . . . ,−→ϕ t) of k-deviations, let
−→
Φ =∑t

i=1
−→ϕ i be the sum of all deviations. In what follows, we will say that

−→
Φ represents

the sequence. Let pmax be the largest index j that satisfies
−→
Φ j 6= 0. Equivalently,

pmax is the largest size of a group modified (hence created) after some deviation in
the sequence happens (i.e., ∀l,∀p > pmax, ϕ

l
p = 0). Then, one can observe that a

sufficient condition so that the sequence is valid is that it starts from a coloring with
at least h color classes of each size j, for 1 ≤ j ≤ pmax.

The following claim will be used in our sketch proof for Theorem 67.

134 Chapter 4. The computation of equilibria in coloring games

Claim 70. Suppose that
−→
Φ1 and

−→
Φ2 respectively represent a h1-balanced sequence and

a h2-balanced sequence. Then,
−→
Φ =

−→
Φ1 +

−→
Φ2 represents a

(
max{h1, h2 −mini Φ1

i }
)
-

balanced sequence, that is the concatenation of the two sequences represented by
−→
Φ1

and
−→
Φ2.

Proof. Clearly,
−→
Φ represents the sequence obtained by the concatenation of the

two sequences that are respectively represented by
−→
Φ1 and

−→
Φ2. In particular, the

subsequence represented by
−→
Φ1 is h1-balanced by the hypothesis. The remaining

subsequence is represented by
−→
Φ2, that is h2-balanced by the hypothesis. Since it

follows the first subsequence, and all the entries of
−→
Φ1 are greater than or equal to

mini Φ1
i , therefore, this second subsequence is (h2 −mini Φ1

i)-balanced. �

Sketch of the construction. Our proof for Theorem 67 relies on a “shift” oper-
ator: given a vector −→ϕ whose support ranges between indices pmin, pmax, the vector
tr(i)−→ϕ , i < pmin, is a vector of the same size and the same support as −→ϕ , but
whose support ranges between indices pmax − i, pmin − i. For instance, we have
tr(1)(0, 1,−2, 1, 0, 0, 0) = (0, 0, 1,−2, 1, 0, 0). In particular, if −→ϕ represents a k-
deviation, then tr(i)−→ϕ represents the same k-deviation, up to a decrease by i of the
size of all color classes involved.

One can extend the operator and its meaning to sequences of k-deviations as
well. Formally, let −→ϕ 1, . . . ,−→ϕ t be a sequence of k-deviations, and let

−→
Φ =

∑t
l=1
−→ϕ l

represent this sequence. Then, if no group of size less than i + 1 is modified nor
created by the sequence (i.e., ∀l,∀p ≤ i, ϕlp = 0), we obtain by linearity of the
operator that tr(i)−→Φ =

∑t
l=1

tr(i)−→ϕ l.
Let us prove two important properties of the so-called “shift operator”:

Claim 71. Let
−→
φ be any vector that has a support of size s = pmax− pmin + 1, and

with the symmetric property. For any positive integers r and d such that 1+(r−1)d ≤
pmin, the vector

−→
φ ′ =

∑r−1
h=0

tr(hd)−→φ also has the symmetric property.

Proof. The support of vector
−→
φ ′ has size s′ = (r− 1)d+ s. In the following, we will

assume up to padding the vector
−→
φ with additional null entries that it is unbounded

i.e., it is indexed by Z. By the hypothesis the vector
−→
φ has the symmetric property

and so, ∀1 ≤ j ≤ pmax + pmin− 1, φj = φpmin+pmax−j . Let 0 ≤ j ≤ s′/2− 1. We have
that:

φ′pmax−j =

r−1∑
h=0

φpmax−j+hd =

r−1∑
h=0

φpmax+pmin−(pmax−j+hd)

=

r−1∑
h=0

φpmin+j−(r−1−h)d =

r−1∑
h=0

φpmin−(r−1)d+j+hd = φ′pmin−(r−1)d+j .

Thus,
−→
φ ′ also has the symmetric property. �

4.3. Unweighted games: the time of convergence for better-response
dynamics 135

Claim 72. For any positive integers r and d, if
−→
Φ represents a h-balanced se-

quence then
−→
Φ ′ =

∑r−1
j=0

tr(jd)−→Φ represents a (h + eΦ)-balanced sequence, with
eΦ = −mini1≤i2

∑i2
j=i1

Φj.

Proof. We prove the claim by induction on r. If r = 0 then
−→
Φ′ =

−→
Φ and

so the claim holds vacuously in this base case. Otherwise, let us write
−→
Φ′ =(∑r−2

j=0
tr(jd)−→Φ

)
+ tr((r−1)d)−→Φ =

−→
Φ′′+ tr((r−1)d)−→Φ . Note that tr((r−1)d)−→Φ represents

a h-balanced sequence, and by the induction hypothesis
−→
Φ′′ represents a (h + eΦ)-

balanced sequence. Since all entries of
−→
Φ′′ are greater than or equal to−eΦ, therefore,−→

Φ represents a (h+ eΦ)-balanced sequence by Claim 70. �

Finally, in order to prove Theorem 67, we construct vectors
−→
ζ i that represent

sequences of deviations. The construction is recursive. To construct the vector−→
ζ i+1 from

−→
ζ i, we follow a particular construction that we will show valid and

that is illustrated in Figure 4.4. The construction is composed of a repetition of
the sequence defined by

−→
ζ i a certain number of times (linear in some parameter

t = Θ(log n)) shifting the "starting point" of each sequence by the same value. The
construction then adds 1-deviations in order to get a technical generalization of the
symmetric property, called Good property (see [DMC17]).

Claim 73. There exists a sequence of vectors
−→
ζ i such that the following hold true

for every i:
• There exist two positive integers denoted by ai, ti1, and there exists a sequence
of 1-deviations represented by

−→
ξ i+1 so that:

−→
ζ i+1 =

ai∑
j=0

tr(jti1)−→ζ i +
−→
ξ i+1.

• If
−→
ζ i represents a hi-balanced sequence then

−→
ζ i+1 represents a (hi+1)-balanced

sequence.
• Furthermore, si ≤ si+1 < 3

2si where si and si+1 denote the respective sizes
of the support of

−→
ζ i and

−→
ζ i+1, and

−→
ζ i+1 represents a sequence of at least

(si
2i+2 − 5)-times more deviations than in the sequence represented by

−→
ζ i.

Sketch Proof of Claim 73. Our constructions will ensure that every
−→
ζ i satisfies a

so-called Good Property, namely:
•
−→
ζ i has the symmetric property, with its nonzero entries being equal to
1,−1,−1, 1 and (by symmetry) 1,−1,−1, 1;

• it has a support
−−−−−→
supp(ζi) of even size si with its two middle entries being equal

to 1;

• last, the two least entries of
−−−−−→
supp(ζi) that are valued −1 are indexed by ti1, ti2

with 1 < ti1 < ti2 < 2ti1, and ti2 ≤ 2i+1.

136 Chapter 4. The computation of equilibria in coloring games

Before entering in the details of the construction, let us sketch how we use this
Good property in what follows. Let hi be the least integer such that the vector

−→
ζ i

represents a hi-balanced sequence. Our main objective is to maximize the size of
this sequence while minimizing hi.

- In particular, if
−→
ζ i satisfies the Good property then its nonzero entries are

constrained to 1,−1,−1, 1, 1,−1,−1, 1, and so,
−→
ζ i is hi-balanced implies that∑ai

j=0
tr(jti1)−→ζ i is (hi + 2)-balanced by Claim 72. We will ensure in addition that

−→
ξ i+1 represents a 1-balanced sequence of 1-deviations, so, altogether combined this
will show that

−→
ζ i+1 =

∑ai
j=0

tr(jti1)−→ζ i +
−→
ξ i+1 is (hi + 2)-balanced by Claim 70 (a

little more work is needed in order to prove that
−→
ζ i+1 is (hi + 1)-balanced).

- Moreover, we note that since
−→
ζ i+1 =

∑ai
j=0

tr(jti1)−→ζ i +
−→
ξ i+1, it represents a

sequence of at least ai-times more deviations than
−→
ζ i. We will choose ai (used for

the shiftings) to be the largest even integer j such that jti1+ti2 < si/2+1. The latter
choice implies that ai ≤

si−4−2ti2
2ti1

. Then, since 1 < ti1 < ti2 < 2ti1, and ti2 ≤ 2i+1, we

obtain that si−4−2ti2
2ti1

> si
2i+2 − 1

2i
− 1, and so, ai ≥

⌊
si

2i+2 − 1
2i
− 1
⌋
− 2 ≥ si

2i+2 − 5, as
desired.

As a result, the Good property is a sufficient condition for the two requirements
of the claim. Let us now sketch the construction of the vectors

−→
ζ i.

Base case. Let L = Θ(
√
n) and t = Θ(log n). We initiate the sequence with

a cascade of 4-deviations. This cascade has size t2 and it starts with four agents
in different color classes of size L − 1 leaving for a new color class of size L − 4

(until four agents in different classes of size L− t2 leave for a new color class of size
L− 3− t2). Then, in order to satisfy some technical requirements we complete the
cascade with a small sequence of 1-deviations. Let

−→
Φ 1 represent this subsequence.

By the calculation, all its entries are equal to zero except for: Φ1
L = Φ1

L−5 =

Φ1
L−t2−1 = Φ1

L−t2−6 = 1, and Φ1
L−1 = Φ1

L−2 = Φ1
L−t2−4 = Φ1

L−t2−5 = −1. Note that
this intermediate sequence does not satisfy the Good property.

We finally construct
−→
ζ 1 by repeating

−→
Φ 1 many times, namely from∑t2−5

i=0
tr(i)−→Φ 1, and then ending with “adjusting” sequences of 1-deviations.

To better understand the role played by the latter sequences, let p, q, h be three
nonnegative integers such that p > q + 2h. Let us consider the sequence where an
agent leaves a group of size q+ 1 for a group of size p− 1, then another agent leaves
a group of size q + 2 for a group of size p − 2, and so on util a final agent leaves a
group of size q+h for a group of size p−h. This sequence is represented by a vector−→
φ such that: φp = φq = 1, and φp−h = φq+h = −1. We use this type of sequence
so as to position the nonzero entries of

−→
ζ 1 as desired in order to satisfy the Good

property.

Inductive step. It turns out that all the main ideas for the construction are
already present in the base case. Indeed, suppose the vector

−→
ζ i to be constructed

in order to satisfy the Good property. As already stated, we choose ai to be the

4.4. The parallel complexity of coloring games 137

largest even integer j such that jti1+ti2 < si/2+1. Then, let
−→
Φ i+1 =

∑ai
j=0

tr(jti1)−→ζ i,
that is a vector with the symmetric property by Claim 71. By construction, this
vector has a support of size si+1 = si + ait

1
i <

3
2si, that is even because si and ai

are even, and that will also be the size of the support of
−→
ζ i+1.

In fact,
−→
Φ i+1 “almost” satisfies the Good property, but is has more nonzero

entries than what is required. So, we set to zero this surplus of nonzero entries
using four sequences of 1-deviations, thereby obtaining

−→
ζ i+1.

It can be proved by induction on i that the above-defined sequence
−→
ζ i is O(i)-

balanced and with support of size o
((

3
2

)i). In particular, this sequence is valid if

we start from a coloring with O(i) color classes of size s for every 1 ≤ s ≤ o
((

3
2

)i)
— in which case, we must ensure n ≥ O

(
i ·
(

3
2

)i). Hence, we can construct the

sequence
−→
ζ i for some polynomial i = Ω(n1/6/ log n). Altogether combined with

the lower-bound on the size of the sequence that is represented by
−→
ζ i, the latter

achieves proving Theorem 67. We refer to [DMC17] for the full calculation.

Discussion and open questions. To sum up this section, we have by Theorem 64
that better-response dynamics cannot be used in order to compute 4-stable parti-
tions in polynomial time. As a byproduct of our vectorial approach, we also get an
Ω(n2) lower-bound on the convergence time of the dynamic for k = 3 (see [DMC17]).
We conjecture that the worst-case convergence time of the dynamic in this case is
indeed O(n2), that would improve upon the known O(n3) upper-bound.

Finally, it is open whether the problem of computing a 4-stable partition can be
solved in polynomial time. In particular, is this problem complete for the complexity
class PLS ?

4.4 The parallel complexity of coloring games

In the line of prior Section 4.3, we keep studying the complexity of computing
stable partitions for unweighted games. However, the present section is focused on
the complexity of computing Nash equilibria (1-stable partitions).

By Theorem 64, for every unweighted game, the better-response dynamic con-
verges to a Nash equilibrium in polynomial time. However, we know by Theorem 67
that the same does not hold for k-stable partitions, with k ≥ 4. Therefore, it might
be desirable to have a better understanding of the complexity of computing Nash
equilibria for these games.

4.4.1 Overall approach and main result

I shall investigate on the belonging of the problem – the computation of a Nash
equilibrium in coloring games – to some complexity classes that are related to par-
allel and space complexity. The goal in doing so is to bring more insights on the
complexity of the problem.

138 Chapter 4. The computation of equilibria in coloring games

Complexity classes. In what follows, computations are performed on a parallel
random-access machine (PRAM, see [GHR95]) with an unlimited amount of (num-
bered) processors. We will handle with read/write conflicts between processors with
the strategy CREW-PRAM (concurrent read, exclusive write).

Let PTIME contain the decision problems that can be solved in sequential
polynomial-time, that is with a single processor. Problem A reduces to problem
B if given an oracle to solve B, then A can be solved in polylogarithmic-time with
a polynomial number of processors. In particular, a problem B is PTIME-hard if
every problem in PTIME reduces to B (this is formally defined as quasi-PTIME-
hardness in [GHR95]). Such reductions are finer-grained than the more standard
logspace reductions.

On the applicative point of view, we recall that coloring games have been pro-
posed in order to design distributed algorithms on graphs, and to model the be-
haviour of social network users with limited memory and computing power. We
note that any distributed algorithm on graphs can be simulated on a parallel ma-
chine with one processor per edge and per vertex. Furthermore, there are strong and
well-known relationships between space and parallel complexity [Pap03]. Hence, the
following result also brings more insights on the feasability of the proposed applica-
tions for coloring games in the literature.

The main result in this section can be stated as follows.

Theorem 74. Computing a Nash equilibrium for coloring games is PTIME-hard.

This theorem paves the way to a deepening of the complexity of computing Nash
equilibria in graph games. I think that similar investigations should be pursued for
other games where it can be computed a Nash equilibrium in polynomial time.

The reduction for proving Theorem 74 is from the standard Monotone Cir-
cuit Value problem. However, the gadgets needed are technically challenging, and
we will need to leverage nontrivial properties of coloring games in order to prove its
correctness. I detail this reduction in what follows.

4.4.2 The reduction

4.4.2.1 The Monotone Circuit Value problem

In order to prove Theorem 74, we will reduce from a variation of the well-known
Monotone Circuit Value problem, defined as follows.

4.4. The parallel complexity of coloring games 139

Problem 1 (Monotone Circuit Value).

Input: A boolean circuit C with m gates and n entries, a word w ∈ {0, 1}n such
that:

• the gates are either AND-gates or OR-gates;

• every gate has exactly two entries (in-degree two);

• a topological ordering of the gates is given, with the mth gate being
the output gate.

Question: Does C output 1 when it takes w as input ?

This variation of Monotone Circuit Value is proved to be PTIME-complete
in [GHR95]. On the technical point of view, it requires a topological ordering of
the gates as part of the input. This non standard add up will be shown to be a key
element in the reduction to coloring games.

In what follows, let 〈C, w〉 be any instance of Monotone Circuit Value. We
will reduce it to a coloring game as follows. Let G := (g1, g2, . . . , gm) be the gates
of the circuit, that are topologically ordered.

4.4.2.2 Construction of the gate-gadgets

For every 1 ≤ j ≤ m, the jth gate will be simulated by a subgraph Gj = (Vj , Ej)

with 12(n+ j)− 9 vertices. We refer to Figure 4.5 for an illustration.
Let us give some intuition for the following construction of Gj . We aim at

simulating the computation of the (binary) output of all the gates in C when it
takes w as input. To do that, we will construct a supergraph G− of Gj (to be
defined later), then we will consider the unweighted game that is played on G−.
The goal of the construction will be to ensure that given a fixed Nash equilibrium
for this game, we can guess the output of the jth gate from the subcoloring of Gj .
More precisely, the subcoloring will encode a “local certificate” that indicates which
values on the two entries of gj cause the output.

Observe that to certify that an OR-gate outputs 1, it suffices to show that it
receives 1 on any of its two entries, whereas for an AND-gate it requires to show
that it receives 1 on its two entries. Since by de Morgan’s laws [DM47], the negation
of an AND-gate can be transformed into an OR-gate and vice-versa, therefore, we
need to distinguish between three cases in order to certify the output of the gate.
So, the vertices in Vj are partitioned in three subsets of equal size 4(n + j) − 3,
denoted by V 1

j , V
2
j , V

3
j . Furthermore, for every 1 ≤ t ≤ 3, every vertex in V t

j is
adjacent to every vertex in Vj \ V t

j .
Let us now describe the structure of the three (isomorphic) subgraphs Gj [V t

j] =

(V t
j , E

t
j) with 1 ≤ t ≤ 3. Informally, we will need this internal structure in order

to ensure that every of the three subsets V t
j will behave as a “truthful” certificate

to decide on the output of the gate; i.e., only a few vertices of Vj will be used to

140 Chapter 4. The computation of equilibria in coloring games

Figure 4.5: Gadget subgraph Gj representing the jth gate. An edge between two
subsets of vertices (delimited by an ellipse) denotes the existence of a complete
bipartite subgraph.

certify the output of the jth gate, while all others will be divided into artificial
aggregates that we name “private groups” whose role is to ensure “truthfulness” of
the certificate (this will be made clearer in the following). There are two nonadjacent
vertices atj , b

t
j ∈ V t

j playing a special role. The other vertices in V t
j \ {atj , btj} are

partitioned in two subsets Atj , B
t
j of respective size 2(n + j) − 3 and 2(n + j) − 2.

The sets Atj , B
t
j are called the private groups of atj , b

t
j . Furthermore, every vertex in

Atj is adjacent to every vertex in V t
j \ (Atj ∪ {atj}), similarly every vertex in Bt

j is
adjacent to every vertex in V t

j \ (Bt
j ∪ {btj}).

Computation. Since all edges are defined above independently the one from the
other, the graph Gj [V

1
j] = (V 1

j , E
1
j) (encoded by its adjacency lists) can be con-

structed with |V 1
j |+ |E1

j | = 4(n+ j)2 − 2(n+ j)− 2 processors simply by assigning
the construction of each vertex and each edge to a different processor. Note that
each processor can decide on the vertex, resp. the edge, it needs to compute from its
number. Overall, it takes O(log(n+j))-time in order to construct Gj [V 1

j] in parallel.
The latter can be easily generalized in order to construct Gj in O(log(n+ j))-time
with |Vj |+|Ej | processors. Therefore, the graphs G1, G2, . . . , Gm can be constructed
in parallel in O(log(n+m))-time with

∑m
j=1(|Vj |+ |Ej |) processors, that is (huge!)

polynomial in n+m.

4.4.2.3 Construction of the graph

Let X = {x1, x
′
1, . . . , xi, x

′
i, . . . , xn, x

′
n} contain 2n nonadjacent vertices, that are

two vertices per letter in the binary word w. The (conflict) graph G− = (V,E)

for the reduction has vertex-set V = X ∪
(⋃m

j=1 Vj

)
. In particular, it has 2n −

9m+ 6m(m+ 2n+ 1) vertices. Furthermore, G−[Vj] is isomorphic to Gj for every

4.4. The parallel complexity of coloring games 141

1 ≤ j ≤ m. In order to complete our reduction, let us now describe how our gadgets
are connected the one with the other.

For technical reasons, we will need to make adjacent every vertex in the private
group Atj (resp. Bt

j), with 1 ≤ j ≤ m and 1 ≤ t ≤ 3, to every vertex in V \ Vj .
By doing so, note that every vertex in V \ (Atj ∪ {atj}) is adjacent to every vertex
in Atj (resp., every vertex in V \ (Bt

j ∪ {btj}) is adjacent to every vertex in Bt
j).

Furthermore, each edge is defined independently the one from the other. Hence,
similarly as above,

∑m
j=1

∑3
t=1(|Atj |+ |Bt

j |)|V \ Vj | processors are sufficient in order
to construct these edges in O(log(n+m))-time, that is polynomial in n+m.

Finally, we recall that for every j, there are three cases to distinguish in order
to decide on the output of the jth gate, with each case being represented with some
subset V t

j . The union of subsets representing a positive certificate (output 1) is
named Yj , while the union of those representing a negative certificate (output 0)
is named Nj . In particular, if the jth gate is an OR-gate, let Yj := {a1

j , b
1
j , a

2
j , b

2
j}

and Nj := {a3
j , b

3
j} (it suffices to receive 1 on one input). Else, the jth gate is an

AND-gate, so, let Yj := {a1
j , b

1
j} and Nj := {a2

j , b
2
j , a

3
j , b

3
j}.

Figure 4.6: Edges in G− to simulate the two connections of an AND-gate in the
circuit.

Suppose the jth gate is an OR-gate (the case where it is an AND-gate follows
by symmetry, up to interverting Yj with Nj , see also Figure 4.6). Let us consider
the first entry of the gate. There are two cases.
• Suppose that it is the ith entry of the circuit, for some 1 ≤ i ≤ n.

If wi = 0 then we make both xi, x′i adjacent to both a1
j , b

1
j .

Else, wi = 1, we make both xi, x′i adjacent to both a3
j , b

3
j .

• Otherwise, the entry is some other gate of the circuit, and so, since gates are
topologically ordered, it is the kth gate for some k < j. We make every vertex
in Nk adjacent to both a1

j , b
1
j , and we make every vertex in Yk adjacent to both

a3
j , b

3
j .

The second entry of the gate is similarly considered, up to replacing above the two
vertices a1

j , b
1
j with a2

j , b
2
j . We refer to Figure 4.6 for an illustration.

142 Chapter 4. The computation of equilibria in coloring games

Let us point out that the graph G−, obtained with our reduction, is undirected,
whereas the original circuit C is a DAG (directed acyclic graph). However, since the
sizes of private groups are proportional to the positions of the gates in the topological
ordering of the circuit, this orientation of the edges can be easily retrieved, from the
certificates with smaller privates groups to those with larger ones. Therefore, we do
not lose any information.

Computation. Observe that there is only a constant number of edges that are
added at this step for each gate. Furthermore, the construction of these new edges
only requires to read the two in-neighbours of the gate in the circuit C. As a result,
the last step can be done in parallel in O(log(n+m))-time with m processors.

4.4.3 Proof of the main result

4.4.3.1 Structure of a Nash equilibrium

The (conflict) graph G− = (V,E) of the reduction defines an unweighted coloring
game. Let us fix any Nash equilibrium for this game (that exists by Theorem 64).
We will show that it is sufficient to know the color of every vertex in Ym ∪ Nm in
order to decide on the output of the circuit C (recall that the mth gate is the output
gate). To prove it, we will need the following technical claims in order to gain more
insights on the structure of the equilibrium.

More precisely, we will prove that there are exactly 6m+1 color classes, that are
one color class per private group Atj or B

t
j and one additional color for the vertices

in X. The intuition is that there are 2(n + m) vertices in one special color class
(including X) that simulates the computation of the output of C, whereas all other
vertices are “trapped” with the vertices in their respective private group. We refer
to Figure 4.7 for an illustration.

Figure 4.7: A boolean circuit (left) with a Nash equilibrium of the coloring game
from our reduction (right). For ease of reading, edges of the graph are not depicted.
Each color class is represented with an ellipse. Intuitively, vertices in the central
color class simulate the computation of the output. Other color classes contain a
private group and they are “inactive”.

4.4. The parallel complexity of coloring games 143

Full proofs of the claims are delayed to my publication [Duc16]. In what follows,
we will denote by Lc ⊆ V the subset of agents colored by c.

Claim 1. For every j, any color class does not contain more than two vertices in
every Yj ∪Nj. Furthermore, if it contains exactly two vertices in Yj ∪Nj then these
are atj , b

t
j for some 1 ≤ t ≤ 3.

Proof. A Nash equilibrium is a proper coloring of G−. Therefore, since any two
vertices in different subsets among V 1

j , V
2
j , V

3
j are adjacent by construction, they

cannot have the same color. Since Yj ∪ Nj = {a1
j , b

1
j , a

2
j , b

2
j , a

3
j , b

3
j} and atj , b

t
j ∈ V t

j

for every 1 ≤ t ≤ 3, the claim follows directly. �

Claim 2. Any two vertices that are in a same private group have the same color.
Similarly, xi and x′i have the same color for every 1 ≤ i ≤ n.

Proof. Let S be either a private group (S = Atj or S = Bt
j for some 1 ≤ j ≤ m

and 1 ≤ t ≤ 3), or a pair representing the same letter of word w (i.e., S = {xi, x′i}
for some 1 ≤ i ≤ n). Let v ∈ S maximize her payoff and let c be her color. Note
that v receives payoff |Lc| − 1 with Lc being the color class composed of all the
vertices with color c. Furthermore, every u ∈ S receives payoff lower than or equal
to |Lc| − 1 by the choice of v. In such case, every u ∈ S must be colored c, or else,
since the adjacency and the nonadjacency relations are the same for u and v (they
are twins), furthermore u, v are nonadjacent, the agent u would increase her payoff
to |Lc| by choosing c as her new color, thus contradicting the hypothesis that we
are in a Nash equilibrium. �

The argument we use in Claim 2 is that twin vertices, i.e., nonadjacent agents
with the same neighbourhood, must have the same color. In order to prove the
following Claim 3, we had to use the same argument under different disguises.

More precisely, consider a union U ⊆ V of color classes. Then, G− \ U defines
a coloring subgame, and the constriction of the coloring to the subgraph must be
a Nash equilibrium for this subgame. it follows that twin vertices in G− \ U must
have the same color, that was the key observation for proving Claim 3.

Claim 3. Let 1 ≤ j ≤ m and 1 ≤ t ≤ 3. Either Atj or Atj ∪ {atj} is a color class,
and in the same way either Bt

j or Bt
j ∪ {btj} is a color class. Furthermore, either

Bt
j ∪ {btj} is a color class, or atj and b

t
j have the same color.

We recall that we aim at simulating the computation of the output of all the
gates in C. To do that, we will prove the existence of a special color class containing
X and some pair of vertices in Yj ∪ Nj for every j (Claim 5). Intuitively, the two
vertices of Yj ∪ Nj are used to certify the output of the jth gate. However, this
certificate is “local” in the sense that it assumes the output of the j−1 smaller gates
to be already certified. Therefore, we need to prove that there can be no “missing
gate”, i.e., every gate is represented in the special color class. This is where the
topological ordering over the gates comes into play. In what follows, we recall that
Lc denotes the subset of agents colored by c.

144 Chapter 4. The computation of equilibria in coloring games

Claim 4. Let c be a color such that Lc 6⊆ X and Lc does not intersect any private
group (Atj or B

t
j for any 1 ≤ j ≤ m and 1 ≤ t ≤ 3).

Then, X ⊆ Lc and there exists an index j0 such that the following holds true:
|Lc ∩ (Yj ∪ Nj)| = 2 for every 1 ≤ j ≤ j0, and Lc ∩ (Yj ∪ Nj) = ∅ for every
j0 + 1 ≤ j ≤ m.

Proof. By the hypothesis Lc 6⊆ X and Lc does not intersect any private group, so,
there is at least one vertex of

⋃m
j=1(Yj ∪Nj) with color c. Let j0 be the largest index

j such that there is a vertex in Yj ∪ Nj with color c. Since by Claim 1, there can
be no more than two vertices of Yj ∪ Nj that are in Lc for every j, therefore, by
maximality of j0 we get |Lc| ≤ |X|+ 2j0 = 2(n+ j0). In particular, observe that if
|Lc| = 2(n+ j0) then X ⊆ Lc and for every 1 ≤ j ≤ j0 there are exactly two vertices
in Yj ∪ Nj with color c. So, let us prove that |Lc| = 2(n + j0), that will prove the
claim.

By the choice of j0, there is some 1 ≤ t ≤ 3 such that atj0 ∈ Lc or btj0 ∈ Lc.
In particular, |Lc| ≥ min{|Atj0 |, |B

t
j0
|} + 1 = 2(n + j0) − 2 or else, every vertex

vtj0 ∈ Lc∩{a
t
j0
, btj0} would increase her payoff by choosing the color of the vertices in

her private group (that is a color class by Claim 3), thus contradicting the hypothesis
that we are in a Nash equilibrium.

We prove as an intermediate subclaim that for any 1 ≤ j ≤ j0 − 1 such that
Lc ∩ (Yj ∪Nj) 6= ∅, there is some 1 ≤ t′ ≤ 3 such that at′j , b

t′
j ∈ Lc. Indeed, in this

situation, there is some t′ such that at′j ∈ Lc or bt
′
j ∈ Lc. If bt

′
j ∈ Lc then we are done

as by Claim 3, at′j ∈ Lc. Otherwise, bt′j /∈ Lc and we prove this case cannot happen.
First observe that at′j ∈ Lc in this case. Furthermore, since at′j and bt′j do not have
the same color we have by Claim 3 that Bt′

j ∪{bt
′
j } is a color class. In this situation,

bt
′
j receives payoff 2(n+ j)− 2 ≤ 2(n+ j0 − 1)− 2 < |Lc|. Since in addition at′j and
bt
′
j are twins in G \ (At

′
j ∪Bt′

j), vertex bt′j could increase her payoff by choosing color
c, thus contradicting that we are in a Nash equilibrium. This proves at′j , b

t′
j ∈ Lc,

and so, the subclaim.
By the subclaim, there is an even number 2k of vertices in

⋃j0−1
j=1 (Yj ∪Nj) with

color c, for some k ≤ j0 − 1. Similarly, since by Claim 2 the vertices xi, x′i have the
same color for every 1 ≤ i ≤ n, |X ∩ Lc| = 2n′ for some n′ ≤ n. Now there are two
cases to be considered.
• Suppose that btj0 ∈ Lc. Then, by Claim 3 atj0 ∈ Lc. Furthermore |Lc| ≥

2(n+ j0)− 1 or else, vertex btj0 would increase her payoff by choosing the color
of the vertices in Bt

j0
(that is a color class by Claim 3), thus contradicting the

hypothesis that we are in a Nash equilibrium. As a result, |Lc| = 2(n′+k+1) ≥
2(n + j0) − 1, that implies n′ + k ≥ n + j0 − 1, and so, |Lc| ≥ 2(n + j0), as
desired.
• Else, btj0 /∈ Lc and we prove this case cannot happen. First observe that atj0 ∈ Lc.

Furthermore, |Lc| = 2(n′+k)+1 ≥ 2(n+j0)−2, that implies n′+k ≥ n+j0−1,
and so, |Lc| ≥ 2(n + j0) − 1. However, since atj0 and btj0 do not have the same
color, Bt

j0
∪ {btj0} is a color class by Claim 3. In particular, btj0 receives payoff

4.4. The parallel complexity of coloring games 145

2(n+ j0)− 2 < |Lc|. Since atj0 , b
t
j0

are twins in G \ (Atj0 ∪B
t
j0

), vertex btj0 could
increase her payoff by choosing color c, thus contradicting that we are in a Nash
equilibrium.

Altogether, |Lc| ≥ 2(n+ j0), that proves the claim. �

We point out that by combining Claim 1 with Claim 4, one obtains that for
every 1 ≤ j ≤ m, there are either zero or two vertices in Yj ∪ Nj in each color
class not containing a private group, and in case there are two vertices then these
are atj , b

t
j for some 1 ≤ t ≤ 3. We elaborate on this property in order to prove the

following Claim 5.

Claim 5. Any two vertices in X have the same color. Furthermore, for every
1 ≤ j ≤ m, every vertex in Yj ∪Nj either has the same color as vertices in X or as
vertices in her private group.

Finally, we will need a “truthfulness” property to prove correctness of our reduc-
tion. Namely, the value of the output of any gate in the circuit must be correctly
guessed from the agents with the same color as vertices in X. We prove this, as for
Claim 1, by elaborating on the property that every Nash equilibrium is a proper
coloring of G−. In this situation, the edges added at the last step of the reduction
ensure that the agents of two “uncompatible certificates” cannot be assigned the
same color.

Claim 6. Let 1 ≤ j0 ≤ m such that for every 1 ≤ j ≤ j0, there is at least one vertex
in Yj ∪Nj with the same color c0 as all vertices in X. Then for every 1 ≤ j ≤ j0,
Lc0 ∩ Yj 6= ∅ if and only if the output of the jth gate is 1.

4.4.3.2 Proof of Theorem 74

Proof of Theorem 74. Let 〈C, w〉 be any instance of Monotone Circuit Value.
Let G− = (V,E) be the conflict graph obtained with our reduction. It can be
constructed in polylogarithmic-time with a polynomial number of processors. The
graph G− defines an unweighted coloring game. We fix any Nash equilibrium for
this game, that exists by Theorem 64. By Claim 5, any two vertices in X have the
same color c0. We will prove that there is at least one vertex in Ym with color c0

if and only if the circuit C outputs 1 when it takes w as input. Since Monotone
Circuit Value is PTIME-complete [GHR95], the latter will prove that computing
a Nash equilibrium for coloring games is PTIME-hard.

By Claim 6, we only need to prove that for every 1 ≤ j ≤ m, there is at least
one vertex in Yj ∪ Nj with color c0. To prove it by contradiction, let j0 be the
smallest index j such that no vertex in Yj ∪ Nj has color c0. By Claim 5, every
vertex in Yj0 ∪Nj0 has the same color as her private group. In particular, the three
of a1

j0
, a2
j0
, a3
j0

receive payoff 2(n + j0) − 3. We will prove that one of these three
agents could increase her payoff by choosing c0 as her new color, thus contradicting
that we are in a Nash equilibrium.

146 Chapter 4. The computation of equilibria in coloring games

Indeed, by the minimality of j0, it follows by Claim 4 that for any 1 ≤ j ≤ j0−1,
there are exactly two vertices of Yj ∪Nj with color c0, while for every j0 ≤ j ≤ m

there is no vertex in Yj ∪ Nj with color c0. As a result, |Lc0 | = 2(n + j0) − 2. In
particular, any agent among a1

j0
, a2
j0
, a3
j0

could increase her payoff by choosing c0 as
her new color — provided she is nonadjacent to every vertex in Lc0 . We will show
it is the case for at least one of the three vertices, that will conclude the proof of
the theorem. Assume w.l.o.g. that the jth0 gate is an OR-gate (indeed, since by de
Morgan’s laws, the negation of an AND-gate can be transformed into an OR-gate
and vice-versa, both cases are symmetrical). There are two cases.
• Suppose that the output of the jth0 gate is 1. In such case, there must be an

entry of the gate such that: it is the ith entry of the circuit, for some 1 ≤ i ≤ n,
and wi = 1; or it is the kth gate of the circuit for some k < j0 and the output
of that gate is 1. In the latter case, we have by Claim 6 that the two vertices
of Yk ∪Nk with color c0 are in the set Yk.
Assume w.l.o.g. that the above-mentioned entry is the first entry of the gate.
By construction, the two vertices a1

j0
, b1j0 are nonadjacent to every vertex in Lc0 .

• Else, the output of the jth0 gate is 0. Therefore, for every entry of the gate:
either it is the ith entry of the circuit, for some 1 ≤ i ≤ n, and wi = 0; or it is
the kth gate of the circuit for some k < j0 and the output of that gate is 0. In
the latter case, we have by Claim 6 that the two vertices of Yk ∪Nk with color
c0 are in the set Nk. By construction, the two vertices a3

j0
, b3j0 are nonadjacent

to every vertex in Lc0 .
In both cases, it contradicts our assumption that we are in a Nash equilibrium.

Conclusion. Theorem 74 proves that computing a Nash equilibrium for coloring
games is PTIME-hard. This may be hint that these games are a too powerful
computational mechanism design for “lightweight” distributed applications. In this
respect, an interesting open problem would be to determine the classes of conflict
graphs for which this hardness result holds.

Furthermore, we recall that computing a Nash equilibrium for generalized col-
oring games is PLS-complete [BZ03]. Hence, this result reinforces the view that for
many PLS-hard “weighted” games, the corresponding “unweighted” game is PTIME-
hard [Sch91].

4.5 Weighted games: existence of equilibria

Next, we go back to generalized (weighted) coloring games in this section. Every
generalized coloring game admits a Nash equilibrium [BZ03]. So, we are more
interested in the existence of k-stable partition, for k ≥ 2. However, as shown
with Figure 4.3, not all generalized coloring games admit a 2-stable partition. Since
in contrast, unweighted games admit a k-stable partition for every fixed k, it looks

4.5. Weighted games: existence of equilibria 147

natural to investigate on the impact of a fixed set of edge-weightsW on the existence
of stable partitions.

We are particularly interested in the special case where all edge-weights of the
underlying graph G are comprised in W = {−∞, 0, 1}. Roughly, in this modest
extension of the unweighted games, we now allow indifference relationships between
some agents. More formally, the goal of the agents is now to construct a proper
coloring of the conflict graph G− while maximizing their number of neighbours in
the friendship graph G+ with the same color as theirs. Perhaps surprisingly, we
shall prove that even in this slight extension, the existence of stable partitions is
much more constrained than it is for the unweighted games.

This is joint work with Dorian Mazauric and Augustin Chaintreau.

4.5.1 Positive results

On the one hand, we relate some structural properties of the underlying graph G

with the existence of stable partitions. In particular, we relate the existence of stable
partitions with the girth (size of a smallest cycle) in the friendship graph:

Theorem 75. Let G = (V,w) have all its edge-weights in {−∞, 0, 1} ∪ −N. If the
friendship graph G+ has girth at least k + 1 then the generalized coloring game that
is played on G admits a k-stable partition.

Furthermore, the better-response dynamic applied to this above game converges
to a k-stable partition within a quadratic number of steps.

Theorem 75 follows from a potential function argument. More precisely, let us
define the global utility of a given coloring as the sum of the individual payoff of
every agent. See Figure 4.8 for an example. We prove that it is a potential function
which increases after any k-deviation.

In order to see the difficulty, we emphasize that even for unweighted games, this
above potential function might decrease after a k-deviation (e.g., see the example of
4-deviation that is given in Section 4.3.3 and the related illustration of Figure 4.8).
In fact, if j denotes the color assigned to all the agents in the k-deviation then
the global utility increases only if all the agents deviating increase their respective
payoff in large part due to the agents already colored j. This may not be the case
if there are many agents of this k-subset that are pairwise connected by an edge
with positive weight. However, if we now assume that the friendship graph G+ has
a large girth then we can upper-bound the number of edges with positive weights
among any small subset of agents (because such small subsets must induce a forest
in G+), thereby preventing that case from happening.

In particular, since any friendship graph has girth at least three, we obtain the
following corollary:

Corollary 76. Let G = (V,w) have all its edge-weights in {−∞, 0, 1} ∪−N. Then,
the generalized coloring game that is played on G admits a 2-stable partition.

Furthermore, the better-response dynamic applied to this above game converges
to a 2-stable partition within a quadratic number of steps.

148 Chapter 4. The computation of equilibria in coloring games

4-deviation

Total Utility = 24 (socially optimal)
stable under 1,2, and 3-deviations

Total Utility = 20 (soc. sub-optimal)
stable under all deviations

2
2

2 2

2
2

2

2

2

2 3 3

1
11

1

1
11

1

33

2
2

(a) (b)

Figure 4.8: Change of configuration for an unweighted game after a 4-deviation. For
ease of readability, only the edges of the friendship graph are represented. Agents
are labeled with their payoff.

Perspectives. It is open whether similar results can be obtained for a larger family
of sets W. In particular, can it be obtained similar results for some W with two
distinct positive weights ?

4.5.2 The hardness of recognizing games with k-stable partitions

We finally present a more complex construction of weighted games with no k-stable
partition for some small value of k. Furthermore, we will explain how the mere
existence of a single counter example impacts on the complexity of the recognition
of games with k-stable partitions.

On the one hand, as shown with Figure 4.3, there are generalized coloring games
that do not admit a 2-stable partition. On the other hand, we proved with Corol-
lary 76 that by constraining the set W of admissible edge-weights, one obtains a
large class of weighted games that admit a 2-stable partition. Surprisingly, this
latter result cannot be improved already for W = {−∞, 0, 1}. Precisely, we give in
Figure 4.9 an example of a graph G with weights in W = {−∞, 0, 1} so that the
coloring game that is played on G does not admit a 3-stable partition!

The construction in Figure 4.9 borrows from the one of Figure 4.3 (i.e., the
nonexistence of 2-stable partitions in generalized coloring games). Roughly, we
impose the friendship graph and the conflict graph to be highly symmetric, that
ensures that 2-stable partitions for the game are isomorphic. Then, we show that
the isomorphism between two distinct 2-stable partitions translates to a 3-deviation
from one to the other.

4.5. Weighted games: existence of equilibria 149

Proposition 77. There is a graph G = (V,w) whose edge-weights are constrained
to W = {−∞, 0, 1} and such that there does not exist a 3-stable partition for the
coloring game defined on G.

A1

A2

A3

A0 a0

a1

a2

a3

b0

b1

b2

b3

c0c1

Figure 4.9: A graph G = (V,w) with edge-weights inW = {−∞, 0, 1}. The coloring
game played on G does not admit a 3-stable partition. To keep the graph readable,
we use conventions. (1) Some sets of nodes are grouped within a circle; an edge
from another node to that circle denotes an edge to all elements of this set. (2)
Edges of the conflict graph are not represented. In particular, all nodes that are not
connected by an edge on the figure are connected by an edge with negative weight
−∞. (3) Green solid edges represent edges with weight 1, whereas blue dashed edges
represent edges with weight 0.

Proof. The set of vertices consists of four sets Ai, 0 ≤ i ≤ 3, each of equal size
h ≥ 2 and with a special vertex ai, plus four vertices bi, 0 ≤ i ≤ 3, and two vertices
c0 and c1. In what follows, indices are taken modulo 2 for cj , j ∈ {0, 1}, and they
are taken modulo 4 everywhere else. Figure 4.9 represents the example with h = 3.
The friendship graph G+ here consists of all the edges with weight 1; it contains:
1. all the edges between nodes in Ai (0 ≤ i ≤ 3);
2. edges between bi and Ai (0 ≤ i ≤ 3);
3. edges between bi and Ai+1 \ {ai+1} (0 ≤ i ≤ 3);
4. edges between bi and bi−1 and bi+1 (0 ≤ i ≤ 3);
5. edges between c0 and all the bi, and edges between c1 and all the bi;
6. edges between c0 and A0 ∪A2, and edges between c1 and A1 ∪A3.

150 Chapter 4. The computation of equilibria in coloring games

Moreover, there are four edges with weight 0, namely the edges {bi, ai+1}. All the
other pairs of agents represent “enemies” (they are pairwise connected by an edge
with negative weight −∞). That is two nodes in different Ai, Ai′ are enemies; a user
bi is enemy of bi+2 and of the nodes in Ai+2 and Ai+3; c0 and c1 are enemies; c0 is
enemy of the nodes in A1 and A3, and c1 is enemy of the nodes in A0 and A2. We
now assume by contradiction there exists a 3-stable partition for the coloring game
defined on G = (V,w).

Full proofs for the following claims are postponed to our paper [DMC17].

Claim 78. Every agent in Ai picks the same color.

Our key instrument for proving this claim is a generalization of false twins to
weighted graphs. We recall that given an unweighted game that is played on the
conflict graph G−, for any Nash equilibrium for this game, false twins in G− must
have the same color (see Claim 2).

Now, given an edge-weighted graph G = (V,w), we say that u and u′ are quasi-
twins if wuu′ > 0 and for all nodes v ∈ V \ {u, u′}, wuv = wu′v except maybe for
one v0 for which |wuv0 − wu′v0 | = 1. We can observe that for unweighted games,
quasi-twins are exactly the false twins in the conflict graph. In [DMC17], we prove
that for any Nash equilibrium of the coloring game that is played on G, quasi-twins
must have the same color. Since in the above construction for Proposition 77, the
agents in Ai are pairwise quasi-twins, Claim 78 follows from this result directly.

Claim 79. bi picks the same color as the agents in Ai or the agents in Ai+1.

Claim 80. There is an i such that agents in Ai, bi and bi−1 pick the same color.

It follows by Claim 80 that there is an i such that the agents in Ai, bi, bi−1, ci all
pick the same color. Moreover, such a color class is unique in the 3-stable partition
due to the conflict graph in G (induced by the conflict edges). In what follows, let
Li0 be the color class of a0 in the 3-stable partition. By symmetry, we will assume
Li0 = {b0, b3, c0} ∪A0.

Case 1: the agents a2, b1, b2 all have the same color. In particular, by Claims 78
and 79 their color class is A2 ∪ {b1, b2}.

Then, there are two subcases. Suppose that a1 and c1 have the same color,
in which case their color class is A1 ∪ {c1}. In this situation, the agent b1 would
increase her payoff from 1 + (|A2| − 1) = |A2| = h to 1 + |A1| = h+ 1 by choosing
the same color as a1 and c1. So, there is a 1-deviation. Otherwise, a1 and c1 do
not have the same color, so, their respective color classes are A1 and either {c1} or
A3 ∪ {c1}. Then, the agents b1 and c1 would increase their respective payoff from
1 + (|A2| − 1) = |A2| = h and ≤ |A3| = h to 1 + |A1| = h+ 1 by choosing the same
color as a1. So, there is a 2-deviation.

Case 2: both agents a2 and b2 have the same color, but b1 has a different color.
In particular, by Claims 78 and 79 their respective color classes are A2 ∪ {b2} and
either A1 ∪ {b1} or A1 ∪ {b1, c1}.

4.5. Weighted games: existence of equilibria 151

Then, there are two subcases. Suppose that the agents a3 and c1 have the same
color, in which case their color class is A3 ∪ {c1}. Then, both b2 and b3 would
increase their respective payoff from |A2| = h and 2 + (|A0| − 1) = 1 + |A0| = h+ 1

to 2 + (|A3|− 1) = |A3|+ 1 = h+ 1 and 2 + |A3| = h+ 2 by choosing the color of a3.
Otherwise, a3 and c1 do not have the same color, in which case the color class of c1

is either {c1} or A1 ∪ {b1, c1}. But then the three of b2, b3, c1 would increase their
respective payoff from |A2| = h, 2+(|A0|−1) = 1+ |A0| = h+1, and ≤ 1+ |A1| =
h+ 1 to 2 + (|A3| − 1) = 1 + |A3| = h+ 1, 2 + |A3| = h+ 2, and 2 + |A3| = h+ 2

by choosing the same color as a3.
Case 3: both agents a2 and b1 have the same color, but b2 has a different

color, in which case their respective color classes are A2 ∪ {b1} and either A3 ∪ {b2}
or A3 ∪ {b2, c1} by Claim 79. In that case, b1 would increase her payoff from
|A2| − 1 = h− 1 to |A1| = h by choosing the color of a1, so, there is a 1-deviation.

Case 4: the agent a2 has a different color than b1 and b2. In this case, their
respective color classes are: A2, either A1 ∪ {b1} or A1 ∪ {b1, c1}, either A3 ∪ {b2}
or A3 ∪ {b2, c1}. In particular, b2 and a3 have the same color.

Then, there are two subcases. Suppose that c1 and a3 have the same color. In
this situation, their color class is A3 ∪ {b2, c1}. So, the agent b3 would increase her
payoff from 2+(|A0|−1) = h+1 to 2+ |A3| = h+2 by choosing this color, so, there
is a 1-deviation. Otherwise, c1 and a3 do not have the same color, in which situation
their respective color classes are: either {c1} or A1 ∪ {b1, c1}, and A3 ∪ {b2}. But
then both b3 and c1 would increase their respective payoff from ≤ h+ 1 to h+ 2 by
choosing the color of a3.

Finally, since in all cases there is a 3-deviation, there does not exist a 3-stable
partition for the coloring game defined on G.

Let us define, for every fixed set W, k(W) to be the largest k such that every
coloring game which is played on a graph with edge-weights in W admits a k-
stable partition. As an example, for the special case of unweighted games, we have
by [KL13] that k({−∞, 1}) = +∞. In contrast, we have by the combination of
Corollary 76 and Proposition 77 that k({−∞, 0, 1}) = 2. In Table 4.1, we report on
the value of k(W) for most sets W.

W k(W)

{−∞, a}, a > 0 ∞
{−∞, 0, a}, a > 0 2

{−∞, a, b}, b > a > 0 1

{−a, b}, a > 0, b > 0 ≤ 2 · da+1
b e+ 1

Table 4.1: Values of k(W) for different W.

Surprisingly, this above threshold k(W) fully characterizes the complexity of rec-
ognizing coloring games with a k-stable partition. More precisely, we have obtained
the following dichotomy result for generalized coloring games:

152 Chapter 4. The computation of equilibria in coloring games

Theorem 81. LetW contain −∞ and k ≥ 1 be fixed. Then, the problem of deciding
whether a given coloring game, played on a graph with edge-weights in W, admits a
k-stable partition is either:

• trivial if k ≤ k(W);
• or NP-complete if k > k(W).

In order to get a better intuition for the above Theorem 81, let us consider a
minimum-size counter-example G0 = (V0, w0) such that the coloring game played
on G0 does not admit a k-stable partition. Our reduction constructs, from any
unweighted graphG = (V,E), an edge-weighted supergraph ofG0 (that is illustrated
with Figure 4.10).

K3 K3

K3 K3

K3

G1

x0

G0
G0\x0

G2

Figure 4.10: Reduction from Maximum independent set. The graph G0 repre-
sents a minimum-size counter-example. Conflict edges with negative weight −∞ are
drawn in dashed red whereas all edges drawn in bold green have the same positive
weight.

For this graph to have a k-stable partition, one needs a way to force some special
agent x0 ∈ V0 to pick a different color than the other agents in V0 \ x0. Then, by
minimality of the counter-example, the coloring subgame that is played on G0 \ x0

admits a k-stable partition and we are able to extend this subcoloring to a k-stable
partition for the game played on the supergraph. Altogether combined, this game
played on the supergraph admits a k-stable partition if and only if some agent x0

4.6. Extensions of coloring games 153

can be forced to take a different colour than all other agents in V0 \ x0. Finally, we
prove that x0 indeed takes a different color than the agents of V0 \x0 if and only if it
is part of a large clique in the friendship graph. The latter is shown to correspond to
a large independent set in the unweighted graph G that we use for the reduction. As
a result, since the Maximum independent set problem is NP-complete [Dai80],
this achieves proving that the problem of recognizing coloring games with a k-stable
partition is NP-hard.

4.6 Extensions of coloring games

This section finally covers other games that encompass more aspects of coalition and
group formation. We discuss on the extent to which our results for coloring games
can be applied to this broader setting. In particular, we intend the following to be
a high level description, and so, we made the choice to postpone the proofs of all
the results to the research report [DMC12]. These results have not been published
elsewhere.

4.6.1 Gossiping

Coloring games with gossip have been introduced by Kleinberg and Ligett in [KL13]
for their study of community formation. Such game is still played on an edge-
weighted graph G = (V,E,w), with the vertices of G being the agents of the game.
However, two agents with distinct colors may now “gossip”, in which case both color
classes they are part of are merged. Obviously, and as before, this deviation will
only take place if it makes increase the utility of the two agents.

Formally, given G = (V,E,w) and c : V → N, a gossip-deviation w.r.t. c is a
2-subset {u, v} such that c(u) 6= c(v) and:∑

x|c(x)=c(u)

wvx > 0,
∑

y|c(y)=c(v)

wuy > 0.

The color c represents a k-stable partition for the coloring game with gossip if it is
a k-stable partition for the generalized coloring game played on G (without gossip)
and in addition there is no gossip deviation.

It actually turns out that unweighted coloring games with gossip are equivalent
to the classical unweighted coloring games. Indeed, consider an unweighted game
played on the conflict graph G−, c a proper coloring of G−, and suppose that there
are two agents u and v gossiping. In particular, u and v cannot be adjacent in G−

to any agent colored by c(v) or c(u) (or else, they would not benefit from merging
the two color classes Lc(u) and Lc(v)). Let us assume w.l.o.g. that |Lc(u)| ≥ |Lc(v)|.
Then, the agent v would also strictly increase her payoff by changing her current
color c(v) for c(u). As a result, if there exists a gossip deviation then there is a
1-deviation.

154 Chapter 4. The computation of equilibria in coloring games

However, in the more general case of weighted games, we prove that there may
not exist a 2-stable partition already when there is a unique and fixed positive weight
in W. This is in sharp contrast with Corollary 76.

4.6.2 Asymmetry

Another natural variation of coloring games is to make them play on a directed
graph. In this situation, colorings of the game and strategies and utility functions
of the agents can be defined similarly as before. However, it may now be the case
that wuv 6= wvu for some pairs u, v. These games are sometimes called additively
separable (asymmetric) Hedonic games [BZ03]. We refer to Figure 4.11 for an illus-
tration.

2

1

2

2

2

2

1

1 1

1

Figure 4.11: A coloring game played on a directed graph. Bidirectional arcs with
negative weight −∞ are drawn in dashed red. This game can be shown not to admit
a Nash equilibrium.

Even if modest generalization of coloring games, the addition of asymmetrical
weights leads to much stronger form of intractability. This can be seen with a simple
digraph D = ({u, v}, w) such that wuv > 0 whereas wvu < 0. Clearly, there does
not exist any Nash equilibrium for the game played on D.

On the complexity point of view, the problem of deciding whether an asymmetric
game admits a Nash equilibrium is NP-hard [SD10]. We prove that this result
holds already when there can be no more than two color classes at equilibrium (we
prove this by reducing from the well-known Partition problem). We recall that
in contrast, every generalized coloring games admits a Nash equilibrium, and that
such an equilibrium can be computed in quasi-polynomial time with better-response
dynamics.

4.6. Extensions of coloring games 155

4.6.3 List coloring games

In [DMC12], we introduced a third variation of coloring games, where the strategy
of an agent is no more her color, but rather a list of q colors with q ≥ 1 being a fixed
constant. On the social network analysis point of view, our aim in doing so was to
allow every user to be part of different communities in order to better represent the
community formation process.

In particular, given G = (V,E,w), a configuration of the q-list coloring game
played on this graph is a list coloring of G with each vertex having a list of at most
q colors, and we name by `(v) the list of any agent v ∈ V . Given a fixed q-list
coloring of G, the utility function of v now depends on the number of colors that v
shares with each peer, that can be written as:∑

u∈V
h (|`(u) ∩ `(v)| , wuv) (4.1)

where h(g, w) is a function measuring the utility of sharing g colors with an agent
when it is connected to v by an edge with weight w. Note that we assume, without
loss of generality, that:

h(0, .) = 0, h(., 0) = 0 and ∀w ∈ Q, h(1, w) = w

∀g ∈ N, w 7→ h(g, w) is a non-decreasing function,

∀w ∈ Q, g 7→ w · h(g, w) is a non-decreasing function.

The last property simply ensures that h(g, w) increases with g when w is positive,
and decreases with g when w is negative. In practice, most of our results are proved
in the simpler case where h : (g, w) 7→ (1 + εg)w, where ε is a small constant.

On the positive side, every q-list coloring game admits a Nash equilibrium. This
can be shown by noticing that a q-list coloring game is a potential game, with
its potential function being the global utility (sum of the utility functions of every
agent). However, for every q > 1, we prove that there exist unweighted q-list coloring
games that do not admit a 3-strong Nash equilibrium (robust to any coalition of
at most three agents). The latter result is in sharp contrast with [KL13, EGM12],
where the authors prove that every unweighted coloring game admits a k-stable
partition for every fixed k ≥ 1.

Last, we want to emphasize, perhaps counter-intuitively, that a decrease of the
parameter q does not preserve the existence of k-strong equilibria. Namely, for every
q, there exists Gq = (V,E,w) such that:

• the q-list coloring game played on Gq does not admit any 2-strong Nash equi-
librium;
• whereas for any other q′ 6= q, the q′-list coloring game that is played on this

same graph Gq does admit a 2-strong Nash equilibrium.

156 Chapter 4. The computation of equilibria in coloring games

4.6.4 Coloring games on hypergraphs

Finally, we briefly consider the case where we replace the underlying graph G =

(V,E,w) by a hypergraph H = (V,E,w), with w : E 7→ Q ∪ {−∞} being a weight
function on the hyperedges. On the social network point of view, hyperedges allow
one to account for more complex types of relationships between the users.

Formally, given H = (V,E,w) and c : V → N a coloring of H, the utility
function of any agent v ∈ V can now be written as the sum of the weights we, for
all hyperedge e to which v is incident and such that every vertex u ∈ e satisfies
c(u) = c(v). In short, it is: ∑

e∈E|{v}⊆e⊆Lc(v)

we,

with Lc(v) = {u ∈ V | c(u) = c(v)}. This game was studied by Deng and Papadim-
itriou in [DP94], but with transferable utilities4.

On the positive side, every coloring game played on a hypergraph is a potential
game, with its potential function being the sum of the weights we for all monocolored
hyperedges e (i.e., every two vertices in e must be assigned the same color). If the
coloring game is played on a graph then the latter function is equal to half of the
global utility. However, this is not true anymore for coloring games on hypergraphs,
because hyperedges may now be of arbitrary size.

In particular, we get that every coloring game played on a hypergraph admits
a Nash equilibrium, and that one such equilibrium can be computed in quasi-
polynomial time with better-response dynamics. We can also extend the positive
result of Theorem 75 by taking for cycles the notion of Berge cyclicity (cycles in
the incidence graph). Unfortunately, there exist hypergraphs with girth two (w.r.t.
Berge cyclicity), so, this extended Theorem 75 has weaker consequences for hyper-
graphs than it has for graphs. As an example, Corollary 76 does not hold for coloring
games on hypergraphs.

4.7 Concluding remarks

Our results in this section shed new lights on the complexity of coloring games. In
particular, our results for generalized coloring games in Section 4.5 reinforce the
relationship between these games and the maximum independent set problem in
graphs.

Furthermore, we presented in Section 4.3 an interesting relationship between
unweighted games (non generalized coloring games) and the lattice of integer par-
titions. I believe that an in-depth study of this relationship will help to better
understand the structure of stable partitions for unweighted games, and the com-

4Informally, there are transferable utilities if arbitrary subsets of agents can share their re-
spective utility functions together, whose total sum is then reparted to these agents w.r.t. some
rules.

4.7. Concluding remarks 157

plexity for computing their equilibria. In particular, the main open question in this
field is whether the problem of computing 4-stable partitions is PLS-complete.

My investigations on the parallel and space complexity for computing Nash
equilibria, in Section 4.4, have been firstly motivated by this above question. Indeed,
I hope that the reduction from the Monotone Circuit Value problem to the
computation of Nash equilibria can be transformed into a reduction from FLIP – a
circuit computation problem that is the standard PLS-complete problem [JPY88] –
to the computation of 4-stable partitions.

On a more general side, an interesting question would be to determine
whether conversely, PLS-completeness for a “weighted” game implies PTIME-
completeness for some corresponding ’unweighted” game ? Relationships between
PLS-completeness and PTIME-completeness have been investigated since the origi-
nal paper [JPY88] (introducing the complexity class PLS). It was conjectured that
PLS-completeness for a search problem implies that checking for the local opti-
mality of a solution is PTIME-complete. However, this conjecture was disproved
in [Kre89]. Since for many PLS-complete problems, there exists a local-search algo-
rithm that runs in quasi polynomial time (polynomial in the size, but exponential
in the weights), any variation of these games where the weights are bounded is triv-
ially in PTIME. Thus, proving or disproving that these variations are PTIME-hard
would make advance our understanding of what makes a search problem PLS-hard.

Chapter 5

Learning formulas in a noisy
model

Summary

We introduce a new learning model in Section 5.2. This model is motivated by
some applications in Web’s transparency, that is a nascent field where there is a
need for uncovering data misuse online. Our objective is to learn an unknown
Boolean function that represents the (potentially sensitive) data targeted by a given
advertiser.

In Section 5.3, we describe an algorithm for learning the function in the particular
case where it depends on a single data input. The cornerstone of this algorithm is
a reduction to a Set Cover problem, that is also at the basis of our work in the
subsequent sections.

In Section 5.4, we present sufficient conditions – w.r.t. the classification noise in
our model – in order to generalize this algorithm for learning every monotonic func-
tion that only depends on a fixed number of inputs. We also propose an improved
algorithm that runs in quasi-linear time, but that can only be applied assuming
more restrictive hypotheses on the noise.

Finally, we question in Section 5.5 what can be learnt within our model. On the
positive side, we prove that if the function only depends on a fixed number of inputs,
positively or negatively, then all these inputs can be computed in quasi-polynomial
time with high probability. Under one additional assumption on the classification
noise, this algorithm can be extended for learning the function. However, we prove
that in general, not all functions can be learnt within our model. Actually, it is
impossible to distinguish a conjunction from a disjunction, even if they only depend
on two inputs.

My papers on this learning problem [LDL+14, DLCG15, DTC17, CD17] are
collected in the appendix.

160 Chapter 5. Learning formulas in a noisy model

Contents
5.1 Introduction . 160

5.1.1 Our results . 161
5.1.2 Outline of the chapter . 162

5.2 Learning model . 162
5.2.1 PAC learning . 163
5.2.2 Juntas . 164
5.2.3 The oracle . 165
5.2.4 Distribution for the sampler 168

5.3 Single-input targeting . 169
5.3.1 Our results . 169
5.3.2 Reduction to Set Cover . 170
5.3.3 Concentration inequalities . 171
5.3.4 Proof overview . 173

5.4 Complex targeting: the case of monotonic functions 175
5.4.1 Beyond single-input: the influence of the targeting lift 177
5.4.2 Faster algorithms and tradeoffs 180
5.4.3 Conclusion and open perspectives 183

5.5 General case . 184
5.5.1 Identification of the relevant inputs 184
5.5.2 Filtering technique . 186
5.5.3 Impossibility results . 187

5.6 Conclusion . 188

5.1 Introduction

This chapter is now devoted to a learning problem on Boolean functions, that we
motivate next. Roughly, we aim at making possible for every user online to uncover
any misuse of her data. Although Big Data promises important societal progress,
it exacerbates at the same time the need for algorithmic accountability as more
and more decisions affecting millions of users are being automated using personal
and private information. Examples of such practices have begun to surface. In
a recent incident, Google was found to have used institutional emails from ad-
free Google Apps for Education to target ads in users’ personal accounts [Gou14,
Saf13]. MySpace was found to have violated its privacy policy by leaking personally
identifiable information to advertisers [KW10]. Several consumer sites, such as
Orbitz and Staples, were found to have adjusted their product pricing based on user
location [Mat12, VDSVS12]. And Facebook’s 2010 ad targeting was shown to be
vulnerable to micro-targeted ads specially crafted to reveal a user’s private profile
data [Kor11].

The recent area of Web’s transparency has developed generic methods to reveal
which information item or input generates personalization and differentiated treat-
ments [DTD15, LDL+14, LSS+15]. Their output should not be regarded as absolute

5.1. Introduction 161

truth, but rather as evidence for further investigation. In this work, we aim at giving
a theoretical framework in order to analyse these methods. We also describe new
core algorithms for these methods that are formally analysed in our setting.

Our contributions in this chapter are summarized in Section 5.1.1. Then, an
outline of the chapter is provided in Section 5.1.2.

5.1.1 Our results

Simply put, we aim at describing the core algorithms for Web’s transparency tools,
and to provide the theoretical framework in order to analyse these algorithms. We
detail this a bit more below.

5.1.1.1 A theory for ad targeting identification

Let Ad Targeting Detection be defined as the problem of deciding whether
some specific input is targeted by a given ad. Similarly, let Ad Targeting Iden-
tification be defined as the problem of deciding which inputs are targeted by this
ad. First, based on recent experiments [DTD15, LDL+14], we model the problems
of Ad Targeting Detection and Ad Targeting Identification as a learning
problem, where the hypothesis is a Boolean function that represents the (potentially
sensitive) data inputs targeted by a given advertiser1.

We report on this model and on its motivations in Section 5.2. This is joint work
with Augustin Chaintreau.

Furthermore, all the other results that are presented in this chapter are proved
in the learning model of Section 5.2.

5.1.1.2 A general approach reducing to Set Cover

In the following two Sections 5.3 and 5.4, we present algorithms for learning a
function that only depends on a constant number of inputs and that is monotonic
(increasing the number of data inputs cannot make decrease the likelihood to receive
an ad). These algorithms are based on a reduction to a natural variation of Set
Cover, where we seek for a minimum-size family of subsets (each representing an
input that is targeted) covering a large fraction of a given universal set (representing
all the accounts that receive a given ad).

This general approach is presented in Section 5.3, along with an algorithm for
learning a function when it depends on a single input. Then, this algorithm is
generalized in Section 5.4 for learning a monotonic function under the hypothesis
that it depends on at most k inputs, for some fixed k. However, this generalized
algorithm is proved to be correct only under a technical assumption, namely, if the
classification noise of the oracle is bounded. The latter assumption implies that it

1Note that Ad Targeting Detection can be reduced to a particular case of Ad Targeting
Identification where it is asked whether the targeting can be represented by the null-function.

162 Chapter 5. Learning formulas in a noisy model

is much likelier for an account within scope to receive an ad than for an account out
of scope.

This is joint work with Mathias Lécuyer, Francis Lan, Andrei Papancea, Theofi-
los Petsios, Riley Spahn, Max Tucker, Augustin Chaintreau and Roxana Geambasu.

5.1.1.3 Necessary and sufficient conditions for learnability

Finally, we give in Section 5.5 a more general algorithmic proof that any function
depending on a fixed number of inputs can be learnt — if we make additional
assumptions on the oracle. More precisely, we prove that all the relevant inputs on
which the function depends can be learnt if an upper-bound on their number is fixed
in advance. The latter can be extended to an algorithm for learning any function,
but that is proved to be correct only under an additional technical assumption (we
call it “strong positive variance” of the oracle). Roughly, we suppose that there can
be no population of accounts within scope that are significantly likelier to receive a
given ad than all other accounts within scope.

Last, we prove that in general, if no additional assumption is given then only
the functions depending on a single input can be learnt in our model.

5.1.2 Outline of the chapter

We first introduce a new learning model for Boolean functions in Section 5.2. In
Section 5.3, we introduce a generic method in order to design learning algorithms
in this model, and to formally analyse these algorithms. We apply this method
to the particular case where the function to be learnt only depends on a single
input. Then, in Section 5.4 we extend this approach to more general (monotonic)
functions, that requires a more in-depth analysis of our probabilistic tools. Finally,
in Section 5.5, we delineate the minimal hypotheses to incoporate in the model in
order to make any function learnable. Note that these hypotheses are not part of
the core assumptions for our learning model because they have not been confirmed
experimentally. We then conclude this chapter in Section 5.6.

5.2 Learning model

The following presentation of our learning model is kept generic on purpose in order
to apply to a broad set of scenarii of online targeting. Let D = {D1, D2, . . . , DN}
be a set of N inputs representing individual information from a given user (typi-
cally, keywords extracted from emails in an account, see also [LDL+14]). Our main
objective is to identify how these inputs affect a given output of interest (say, an
ad or a recommendation). In order to achieve the goal, we here assume that each
output is affected through an unknown targeting function foutput, that we simply
denote by f in the following. The targeting function f is a mapping from the fam-
ily of all combinations (subsets of D) to the Boolean set {0; 1}. By convention,
f(C) = 1 indicates that an account exactly containing the inputs in C is targeted,

5.2. Learning model 163

and we denote f(.) = 0 if the ad is untargeted. We aim at learning f subject to
diverse requirements, each representing one aspect of our experiments for doing so
in practice.

A generic framework from learning theory is first presented in Section 5.2.1.
Then, we detail how we adapt this framework to our needs in the subsequent Sec-
tions 5.2.2, 5.2.3 and 5.2.4. This model is part of our paper [CD17], that is joint
work with Augustin Chaintreau.

5.2.1 PAC learning

We refer to [Ang88] for basics of computational learning theory and query complex-
ity. A hypothesis H is a class of Boolean functions. Let f : {0, 1}N 7→ {0, 1} be an
(unknown) function, possibly not in H. In what follows, we are given:
• a function Of : {0, 1}N 7→ {0, 1} (possibly randomized), that is called an oracle

and whose outputs are assumed to depend on the outputs of f .
Example: a call to the oracle can represent an observation whether a given ac-
count has received the ad;
• a random generator of pairs 〈x,Of (x)〉, that is called a sampler and for which

every x ∈ {0, 1}N is picked at random w.r.t. some fixed probability distribution
Π (denoted by x ∼ Π).
Example: The sampler can represent our experimental setting. In order to learn
the targeting function, we are bound to rely on experiments — to see how it
reacts to various inputs. For instance, in [LDL+14] these experiments consist
in collecting the ads from Gmail accounts with different subsets of emails.

Let ε, δ be nonnegative2. A PAC-learning algorithm for f under H hypothesis
(a.k.a., probably approximately correct learning algorithm) is given constant-time
access to the sampler, and it must compute, in time polynomial in N and 1/δ,
the representation of a function h ∈ H such that Pr[h(x) 6= f(x) | x ∼ Π] ≤ ε.
The query complexity of the algorithm is its number of calls to the sampler. It is
preferrable to keep this complexity small, say, polylogarithmic in N .

In what follows, we will always assume that ε = 0, i.e., we aim at learning f
exactly.

There is a vast literature on this problem [Ang88, AR07, FGKP09, MOS04,
Val12], with different choices made for: the dependencies between the oracle and
the function to be learnt, the distribution for the sampler, the representation of a
function, the hypothesis, etc. The main novelty in this work is the set of assumptions
on the oracle, and to some extent the choice for the representation of the functions.
All the choices made for this work will be presented and discussed in this section.

Outline. In Section 5.2.2, we introduce basic terminology for a specific class of
functions called juntas, that will be our hypothesis. Our choice for the representation
of a function is also discussed in this section. Then, we formally describe our set of

2Note that here, δ is no longer related to graph hyperbolicity (defined in Chapter 2).

164 Chapter 5. Learning formulas in a noisy model

assumptions on the oracle in Section 5.2.3. In particular, we briefly report on some
experiments in Section 5.2.3.1 that have supported the choices made in this work.
The axioms on the oracle are given in Section 5.2.3.2. We end this section with our
choices made for the sampler in Section 5.2.4.

5.2.2 Juntas

Our choices for the hypothesis H and the representation of a function are presented
in this subsection. Complementary information for the case of monotonic functions
is given in Section 5.2.2.1.

The following presentation differs from the standard terminology in the literature
of Boolean function learning, but it is shown to be equivalent to it. This change of
terminology is motivated by our interpretation of a Boolean word w ∈ {0, 1}N as
denoting the content of an online account.

Let D = {D1, D2, . . . , DN} be a fixed ground set. There is a natural one-to-one
mapping between {0, 1}N and 2D (power-set of D), defined as φ : w ∈ {0, 1}N 7→
{Di ∈ D | wi = 1}. For simplicity, we will identify f with f ◦ φ−1 in what follows.
Furthermore, we will call a subset of D a combination. The function f is said to
depend on Di if there exists a combination C ⊆ D\Di such that f(C) 6= f(C∪{Di}).

Definition 82 ([BL97]). For every k ≥ 1, f is a k-junta if it depends on at most
k inputs Di ∈ D.

In what follows, we will select the class of k-juntas, for some constant k, as our
hypothesis. Note that in practice, it is recommended to advertisers to select k in
some range between 5 and 20 [Goo].

Representation of a junta. An implicant of f is a pair 〈Cin, Cout〉 of two disjoint
combinations of D with the property that f(C) = 1 for every combination C such
that Cin ⊆ C and C ∩ Cout 6= ∅. It is a prime implicant of f if for every strict subsets
C′in (Cin and C′out (Cout, the pair 〈C′in, C′out〉 is not an implicant of f . Every k-junta
has O(3k/

√
k) prime implicants [CM78].

In what follows, we choose as a representation for any function f the set S(core)

of its prime implicants. Note that we have, for any f :

f(C) = max
〈Cin,Cout〉∈S(core)

 ∏
Di∈Cin

I{Di∈C}

 ·
 ∏
Di∈Cout

(1− I{Di∈C})

 ,

with I{Di∈C} being an indicator function that takes value 1 only if Di ∈ C (otherwise
it is equal to 0). The latter is sometimes called the Blake canonical form of f [Bla38].

5.2.2.1 Case of monotonic functions

A function f is called monotonic if for every combination C ⊆ D such that f(C) = 1,
we have that f(C′) = 1 for every superset C′ ⊇ C. Monotonic functions naturally

5.2. Learning model 165

arise in some settings where negative keywords are unavailable, such as (until re-
cently) Facebook [FBE].

In this situation, we simplify the representation of f as follows. A family S of
size l is any collection of l distinct combinations. The order of the family is defined
as the largest order of a combination it contains. Interestingly, there is a duality
between families and monotonic functions. Indeed on the one hand, one can define
for any family S a function f : C → maxCj∈S I{Cj⊆C} that takes value f(C) = 1

whenever the subset C contains at least one combination in S. In such case we say
that S explains the function. On the other hand, we now show that the converse
also holds: given a monotonic function f , there is a unique family explaining f that
is both of minimum order and minimum size:

Lemma 83. For each monotonic function f there exists a unique family S(core)

satisfying:
(i) S(core) has size l and order r and it explains f .
(ii) No family of size l′ < l explains f .
(iii) No family of order r′ < r explains f .

Proof. We define S(in) = {C ⊆ D | f(C) = 1} the set of all combinations for
which f takes value 1. Let

−→
Df be the digraph with vertex-set S(in) and with arc-set

{(C, C′) | C (C′}. We have that
−→
Df is a DAG (Directed Acyclic Graph) because the

subset-containment relation defines a partial order. So, let S(core) be the non-empty
set of combinations with null in-degree in

−→
Df . By construction, each combination in

S(in) contains some combination of S(core) and S(core) ⊆ S(in), hence S(core) explains
f . Furthermore, we claim that S(core) is contained in any family S ′ explaining f :
indeed, since S ′ is required to contain a subset of any combination C ∈ S(core), and
no combination of S(in) is strictly contained in C, then it must contain C. This
shows that S(core) satisfies all conditions of Lemma 83. Finally, since another family
explaining f needs to include S(core), then it will necessarily have a higher size l,
hence S(core) is the unique with both minimum size and order.

For every monotonic function f , the family whose existence is proved in
Lemma 83 is called its core family and we choose this family as the representa-
tion of f .

5.2.3 The oracle

We now introduce specific assumptions on the oracle Of . We recall that the latter
formalizes the observations gathered from different online accounts, i.e., the collec-
tion of advertisements received w.r.t. the data inputs contained in the accounts. So,
we first report on some experiments in Section 5.2.3.1 in order to motivate our choices
for the oracle, presented in Section 5.2.3.2. Finally, an idealized oracle (formerly used
in our papers [LDL+14, DLCG15, DTC17]) is discussed in Section 5.2.3.3.

166 Chapter 5. Learning formulas in a noisy model

5.2.3.1 Supporting experiments

We briefly report on some experiments whose results and interpretations have mo-
tivated our choices for the oracle.

Experiment 1: Correlation of the outcomes with the function to be learnt.
In [LDL+14], we posted four Google AdWords campaigns targeted on very specific
keywords (Chaldean Poetry, Steampunk, Cosplay, and Falconry). Then, we placed
in more than 800 Gmail accounts some emails including these keywords. Overall,
the corresponding ads were received by more than 97% of the accounts. The latter
shows, as expected, a positive correlation between the outcomes of the experiments
and the scope of the campaign.

Experiment 2: Limited coverage. The coverage is defined as the true positive
rate (i.e., the average probability for an account within the scope of some adver-
tisement campaign to receive this ad). By varying the number N of inputs in our
experiments, we have observed that the coverage is a decreasing function in the
number of data inputs contained in the accounts. This might come from a larger
pool of advertising campaigns for which the accounts are within scope, that makes
obtaining an ad slot more competitive. In particular, the probability of receiving an
ad cannot be assumed to be a constant that is independent from N .

Experiment 3: Cross-unit effects. The authors in [TDDW15] showed that
multiple browser instances running in parallel affect one another. They did so by
comparing the diversity of the ads received by browsers running in isolation w.r.t.
browsers running in parallel (see [TDDW15] for details). This result suggests that
the outcomes of different observations are correlated.

5.2.3.2 Axiomatisation

Let us now introduce our assumptions on the oracle. Formally, Of is a member-
ship oracle with (asymmetric) classification noise. That is, it outputs the Boolean
f(C) for any combination C with some probability to flip the result. Unlike prior
work [Ang88], we do not assume the classification noise to be symmetric, i.e., the
oracle may flip the result with some propability depending on the combination.
Nonetheless, we will assume a few properties for the noise distribution. To our
best knowledge, the following assumptions that are made on this probability have
not been studied before in the literature.

Histories. Experiment 3 in Section 5.2.3.1 have evidenced that the noise distri-
bution is subject to cross-unit effects. So, in order to handle with these correlations,
we find it more suitable to generalize our oracle Of so that it can take families of
combinations as inputs. More precisely, let a family be any vector of combinations,
denoted by F = 〈A1, A2, . . . , At〉. The outcome Of (F) is simply defined as the

5.2. Learning model 167

binary vector Of (F) = 〈Of (A1),Of (A2), . . . ,Of (At)〉. Furthermore, let the pair
HF = (F ; Of (F)) be the history of F .

Let F−i = 〈A1, . . . , Ai−1, Ai+1, . . . , At〉. We will assume that each individual
outcome Of (Ai) is correlated to the partial history HF−i . However, it may and
must be the case that some natural properties hold independently from any history,
that we now detail as follows. Let us point out that S(in) stands for the set of all
combinations C such that f(C) = 1.

Assumption 1 (targeting lift). There exists a universal constant ϕ ∈]0; 1[, called
the targeting lift and such that for any C0, C1 with f(C0) = 0, f(C1) = 1:

Pr[Of (Ai) = 1 | Ai = C0,HF−i] < ϕ · Pr[Of (Ai) = 1 | Ai = C1,HF−i].

This Assumption 1 is local and it simply ensures that it is more likely to receive
an ad for an account within scope than out of scope (conditioned on any fixed
history HF−i). In particular, it implies that the targeting function f is related to
the outcome we study.

As we will show in Section 5.4, our most efficient algorithms are proved to be
valid only if the targeting lift is bounded.

Assumption 2 (polynomial-growth). There exist positive universal constant α, β, γ
with α ≤ 1 and such that:

P

[
t∑
i=1

Of (Ai) <
(
β · |F ∩ S(in)|α

)]
≤ e−γ·t

In accordance with Experiment 1 in Section 5.2.3.1, we properly state with
Assumption 2 that the amount of accounts receiving an ad must be at least a
significant fraction of the account population within scope , except on some small
event with low probability like, for instance, when the targeting campaign runs out
of budget.

Let us point out that if we were assuming that there is some minimum constant
probability pin for an account within scope to be targeted, Assumption 2 could
be shown to be satisfied for α = 1 by using standard concentration inequalities.
By considering the case α ≤ 1, we may consider the case where this minimum
probability slowly tends to zero when N grows, say, pin ∼ po/ logO(1)(N) where p0

is a constant. The latter case seems to be what happens in practice, as supported
by Experiment 2 in Section 5.2.3.1.

Assumption 3 (noninterference). Let the function f only depend on inputs in
V ⊆ D. Furthermore, let A′i = Ai ∩ V and let F ′ = 〈A′1, . . . , A′t〉.

Pr[Of (F)] = Pr[Of (F ′)].

Finally, we formalize with Assumption 3 that none of the input that does not
affect the function f can impact on the outcome.

168 Chapter 5. Learning formulas in a noisy model

5.2.3.3 Discussion: idealized model with independence

For simplicity, we were assuming in [LDL+14] an idealized learning model where
the outputs of the oracle were independent random variables and there were two
constant pin, pout such that:

Pr[Of (C)=1 | f(C)=1]=pin > pout=Pr[Of (C′)=1 | f(C′)=0].

Limitations. Independence in the model contradicts Experiment 3 in Sec-
tion 5.2.3.1. Similarly, a constant probability pin to be targeted contradicts Ex-
periment 2 in Section 5.2.3.1. These are the reasons why we are now considering
the more general assumptions in Section 5.2.3.2 for the oracle.

Nonetheless, we will see in what follows that our former analysis in the idealized
model still holds under more general assumptions. Precisely, the approach presented
in this chapter leaves us to analyse a random counting process whose outcome can
be lower and upper-bounded by estimating the sum of independent random variables
(see Lemma 86). In particular, by choosing pin, pout so that:pin = (1 +O(1)) · β

log1/α−1(N)

pout < ϕ · pin

all the results obtained with the simpler model in [LDL+14, DLCG15, DTC17]
can be generalized to the more general model that is presented in this Section 5.2.

5.2.4 Distribution for the sampler

Last, we present our choices for the distribution and the sampler. The latter for-
malizes our experimental process, that consists in creating fake Gmail accounts and
filling in them with random data.

Exchangeability is defined in [GR86] as the probability that if two accounts were
exchanging their data inputs, the probability distribution of the outcome would not
be impacted. So, in order to get exchangeability, we take a Bernouilli distribution
Π = B(p,N), i.e., for every random combination that is sampled, each input Di ∈ D
must be present independently at random with probability p.

Interestingly, our process is related with the so-called random intersection
model [KSSC99], that can be defined as follows. Let N,M and h be positive inte-
gers, and let p be some probability. In order to create a random intersection graph,
we first create a bipartite graph B randomly with two sides of respective size N and
M , and with each edge being present independently at random with probability p.
Then, a new graph is created from B by taking as vertex-set the side of size M and
adding an edge between every two vertices that share at least h common neighbours
in B, for some constant h. Random intersection graphs have been proposed as a
model for complex networks [GL06]. So, it makes sense to mimic this process in
order to create random Gmail accounts.

5.3. Single-input targeting 169

5.3 Single-input targeting

This section addresses the detection and identification of single-input targeting, that
is when the reception of the output is caused by the presence (or the absence) of a
single input. More formally, we propose a PAC-learning algorithm with 1-juntas as
hypothesis.

This is joint work with Mathias Lécuyer, Francis Lan, Andrei Papancea, The-
ofilos Petsios, Riley Spahn, Augustin Chaintreau and Roxana Geambasu.

Outline. Our main result is stated in Section 5.3.1, where we also discuss on its
positioning in the nascent field of Web’s transparency. Then, the following Sec-
tions 5.3.2 and 5.3.3 cover the main tools used in our study. The first tool is
algorithmic: we present in Section 5.3.2 a classical technique for learning Boolean
functions, of which we use a natural variation as the main brick basis of our algo-
rithm (presented in Section 5.3.2.1). Second, we adapt in Section 5.3.3 standard
concentration inequalities to our learning model. The latter will be our main tool in
the analysis of the algorithm. Finally, we sketch this algorithm for learning 1-juntas
in Section 5.3.4.

Full proofs can be found in our paper [LDL+14]. The version presented in this
section also borrows from our paper [CD17] (in preparation).

associations
(email→ad,

viewed→recommend)

one or more
Web services

data inputs
(emails, searches,
viewed products)

targeted outputs
(ads, recommended
products and videos)

x
R

ay

(m
o

ni
to

r,
 c

o
rr

e
la

te
)

Figure 5.1: Xray suggests plausible associations between the emails of a user and
the ads she receives, using the core algorithm presented in this section.

5.3.1 Our results

Below, we state our main result in this section.

Theorem 84. Let α ≤ 1 be the polynomial-growth (Assumption 2). There is a
PAC-learning algorithm such that, for every ε > 0, the targeting function can be
learnt with probability 1 − ε under 1-juntas hypothesis, in O(N · log1/α(N/ε))-time
and O(log1/α(N/ε))) queries.

170 Chapter 5. Learning formulas in a noisy model

Theorem 84 is the core algorithm of a prototype called Xray, that we introduced
in [LDL+14] and on which we now give more emphasis. Roughly, Xray predicts
through the help of its core algorithm which data in an arbitrary Web account
(such as emails, searches, or viewed products) is being used to target which out-
puts (such as ads, recommended products, or prices). We refer to Figure 5.1 for an
illustration of its functioning. This problem has received some attention in the lit-
erature [DTD15, HSMK+13, HSL+14, LDL+14, MGEL12]. However, concurrently
with [DTD15], our work on Xray has been the first, to the best of our knowledge, to
provide theoretical guarantees on the predictions made under plausible assumptions.
Furthermore, our core algorithm has (poly)logarithmic query complexity, whereas
the authors in [DTD15] (using a different model than in Section 5.2) have proposed
an algorithm with linear query complexity.

5.3.2 Reduction to Set Cover

The following reduction has been proposed in [AMK03] in order to infer Boolean
functions from positive and negative examples. We detail how we can adapt this
work to our setting in Section 5.3.2.1

First, suppose that Of = f (i.e., there is no classification noise). In this situa-
tion, the following lemma holds:

Lemma 85 ([MOS04]). Let f be a nonconstant k-junta. Suppose that with con-
fidence 1 − ε, it can be computed an input Di on which the function f depends in
time nc · poly(2k, 1/ε). Then there is an algorithm for exactly learning f which runs
in time nc · poly(2k, 1/ε).

By Lemma 85, if there is no classification noise then learning f can be re-
duced to compute the inputs on which this function depends. In order to do so,
let 〈C1, f(C1)〉, 〈C2, f(C2)〉, . . . , 〈Cm, f(Cm)〉 be drawn from the sampler. Let us take
as our universal set U = {(j1, j2) | j1 < j2 and f(Cj1) 6= f(Cj2)}. For every pair
(j1, j2) ∈ U , since f(Cj1) 6= f(Cj2) the two combinations Cj1 , Cj2 must differ in at
least one input on which the function f depends. In particular, let us define, for
every input Di ∈ D, the set Si = {(j1, j2) | j1 < j2 and Di ∈ Cj1∆Cj2}, where ∆

denotes the symmetric difference between two combinations. Then, it can be proved
under some assumptions on the distribution Π of the sampler and the Boolean func-
tion f that a minimum set cover for U with the Si’s is in one-to-one correspondance
with the inputs Di’s on which this function f depends [AMK03].

The obvious drawback of this approach is that computing a minimum set cover
is NP-hard [Kar72]. Therefore, greedy heuristics should be used, and the analysis
of their output is more delicate [FA05]. However, if the number of relevant variables
is assumed to be a constant (that is the case for 1-juntas and more generally, for
k-juntas with fixed k), there is no need to rely on such approximations.

5.3. Single-input targeting 171

5.3.2.1 Set Intersection algorithm

This above machinery cannot be applied to our setting directly because it is strongly
dependent on the assumption Of = f . Indeed, without this assumption, the cor-
respondance between the relevant variables and minimum set covers does not hold.
However, based on Assumption 1 (i.e., accounts within scope are much likelier to be
targeted than accounts out of scope), it looks intuitive that the relevant variables
should still correspond to a set cover for a large fraction of the universal set. Hence,
in our setting, we propose an alternative reduction to a Set Cover problem with
threshold, where we now seek for x_intersecting subsets of small size (defined as
the subsets intersecting a fraction x of the universal set), for some parameter x < 1.
The latter problem is formally described with Algorithm 1.

Input: a family F ; a threshold parameter x < 1; a size parameter s.
Output: the family Sx of x_intersecting combinations of size at most s.

Sx ← {} ;
foreach C ⊆ D s.t. |C| ≤ s do

if C intersects ≥ x · |F| accounts in F then
Sx ← Sx ∪ {C} ;

end
end

Algorithm 1: Set-intersection algorithm.

Discussion: parameter tuning. The reader may observe that Algorithm 1 re-
quires a threshold parameter x as input. For simplicity, we will assume that a good
estimate on the targeting lift (Assumption 1) is given, and we will show in the fol-
lowing that this information is enough in order to tune x. Nonetheless, we point
out that finding this parameter in practice might be cumbersome.

Two methods have been proposed for doing so in [DTC17]. If we are given a
ground-truth, i.e., a set of functions f with their representation, then we can use it
in order to tune the parameter x by reverse-engineering. However, a ground-truth
is not always available. In this situation, we are limited to pick uniformally at
random different values for x in a given interval, then to make our algorithms run
in parallel. This interval can be chosen so that there can be no false negative (i.e.,
all the relevant inputs are detected). Then, a final filtering process is used to elect
the run whose output has to be taken into account.

5.3.3 Concentration inequalities

We complete Section 5.3.2 by introducing the main tool that will be used to analyse
our subsequent algorithms (Lemma 86). Roughly, when using Algorithm 1 as a rou-
tine, we aim at approximating some random counting process in order to determine
the existence or nonexistence of x_intersecting subsets. Classically, concentration

172 Chapter 5. Learning formulas in a noisy model

inequalities such as Chernoff bounds [Hoe63] are used in the analysis. However,
standard concentration inequalities apply to the sum of independent variables, so,
they cannot be used in our setting directly. The following is a tedious (but classical)
analysis where we show how to adapt Chernoff bounds to our needs.

Lemma 86. Let X1, . . . , Xm be random Boolean variables satisfying:

pmin ≤ Pr[Xi = 1 | X1, . . . , Xi−1] ≤ pmax

for some constant pmin, pmax. Then the following hold for any 0 < δ < 1:

Pr[
m∑
i=1

Xi ≥ (1 + δ) · pmax ·m] ≤ e−δ2mpmax/3

Pr[
m∑
i=1

Xi ≤ (1− δ) · pmin ·m] ≤ e−δ2mpmin/2

Proof. By symmetry, we will only consider the first inequality. Let t > 0. Let us
show that:

E[Πm
i=1e

t·Xi] ≤
(
pmax(et − 1) + 1

)m
.

The proof is by induction. By the hypothesis,

E[et·Xm | X1, . . . , Xm−1]

= et · Pr[Xm = 1 | X1, . . . , Xm−1] + 1 · Pr[Xm = 0 | X1, . . . , Xm−1]

≤ pmax(et − 1) + 1,

that is the base case. Suppose for the induction hypothesis that:

E[Πm
j=i+1e

t·Xj | X1, . . . , Xi] ≤
(
pmax(et − 1) + 1

)m−i
.

Then by the law of total probability:

E[Πm
j=ie

t·Xj | X1, . . . , Xi−1]

= et · Pr[Xi = 1 | X1, . . . , Xi−1] · E[Πm
j=i+1e

t·Xj | X1, . . . , Xi−1, Xi = 1]

+ 1 · Pr[Xi = 0 | X1, . . . , Xi−1] · E[Πm
j=i+1e

t·Xj | X1, . . . , Xi−1, Xi = 0]

≤
(
Pr[Xi = 1 | X1, . . . , Xi−1] · (et − 1) + 1

)
·
(
pmax(et − 1) + 1

)m−i
≤
(
pmax(et − 1) + 1

)m−i+1
,

which proves the induction hypothesis. The remaining of the proof is now classical

5.3. Single-input targeting 173

computation of Chernoff Bound. By Markoff inequality:

Pr[
m∑
i=1

Xi ≥ (1 + δ) · pmax ·m] = Pr[et·
∑m
i=1Xi ≥ et·(1+δ)·pmax·m]

≤ E[et·
∑m
i=1Xi]/et·(1+δ)·pmax·m

= e−t·(1+δ)·pmax·m · E[Πm
i=1e

t·Xi]

≤ e−t·(1+δ)·pmax·m ·
(
pmax(et − 1) + 1

)m
≤ e−t·(1+δ)·pmax·m · epmax(et−1)·m

= epmax·m·(et−1−t·(1+δ))

Finally, set t = ln(1 + δ). One obtains:

Pr[
m∑
i=1

Xi ≥ (1 + δ) · pmax ·m] ≤
(

eδ

(1 + δ)1+δ

)mpmax

≤ e−δ2mpmax/3.

To summarize Sections 5.3.2 and 5.3.3, we aim at learning the targeting function
f by reducing to a natural variation of Set Cover (Section 5.3.2), of which we will
analyse the outcome by using concentration inequalities (Section 5.3.3).

5.3.4 Proof overview

Finally, let us sketch the proof of Theorem 84. It is based on the correctness proof
of the following Algorithm 2. Note that the ground-set D and its size N , the
targeting lift ϕ (Assumption 1) and the constants α, β, γ (Assumption 2) are known
parameters, so, we don’t include them in the input of the algorithms.

Roughly, we use the Set-intersection algorithm (Algorithm 1) in order to detect
an input that is significantly present (or missing) among the positive examples (i.e.,
combinations Ci such that Of (Ci) = 1). On the one hand, since irrelevant inputs (on
which the targeting function does not depend) cannot affect the outcome, they are
present or missing among the positive examples by mere chance. In particular, these
inputs can be neither significantly present nor absent among these examples. On
the other hand, since it is likelier for the oracle to output 1 for a combination within
scope (in S(in)) than for a combination out of scope, there should be slightly more
positive examples that are correctly classified than misclassified. Since any input
on which f depends positively (resp., negatively) must be present (resp., missing)
in all the positive examples that have been correctly classified, this relevant input
will be detected by the Set-intersection algorithm with high probability.

Sketch Proof of Theorem 84. Let us set the distribution Π of the sampler to the uni-
form distribution B(1/2, N). We first make Θ(log1/α(N/ε)) queries to the sampler.
Note that since f is assumed to depend on only one variable, we have in expec-
tation that f(Ci) = 1 for half of the combinations Ci queried. Hence, by Chernoff

174 Chapter 5. Learning formulas in a noisy model

Input: accuracy ε.
Output: the representation S(core) of f under 1-juntas hypothesis.

/* Parameters tuning */;
Let x ∈]1

2 ; 1
1+ϕ [;

Let m ∈ Ω
(

log1/α(N/ε)
)
/*m depends on x*/;

/* Uniform sampling */;
Draw 〈C1,Of (C1)〉, 〈C2,Of (C2)〉, . . . , 〈Cm,Of (Cm)〉 with Π = B(1/2, N) ;

F ← {Ci | 1 ≤ i ≤ m and Of (Ci) = 1} ;

/* Reduction to Set Cover */ ;
Sx ← Set-intersection(F , x, 1) ;
if ∃i,Sx = {{Di}} then

//positive targeting;
S(core) ← {〈{Di}, ∅〉} ;

end
else
F ← {D \ Ci | 1 ≤ i ≤ m and Of (Ci) = 1} ;
Sx ← Set-intersection(F , x, 1) ;
if ∃i,Sx = {{Di}} then

//negative targeting;
S(core) ← {〈∅, {Di}〉} ;

end
else

//null function;
S(core) ← {〈∅, ∅〉} ;

end
end

Algorithm 2: PAC-learning under 1-juntas hypothesis.

5.4. Complex targeting: the case of monotonic functions 175

Bound, the number of combinations queried that are in S(in) (within scope) is also
an Θ(log1/α(N/ε)). By Assumption 2, this is the correct order of magnitude in
order to ensure that, with probability 1 − Θ(ε), the oracle Of will output 1 for at
least Θ(log(N/ε)) queries.

In particular, let F be the set of all random combinations Ci such that Of (Ci) =

1. By Assumption 3, the inputs on which the function f does not depend can-
not affect the outcome, so, they are contained in half of the combinations of F
in expectation. Furthermore, since these inputs are independently distributed and
|F| = Ω(log(N/ε)) is sufficiently large, we can prove by Chernoff bounds that these
irrelevant inputs can be neither contained (nor absent) in a large fraction x > 1/2

of the combinations in F , with high probability 1−Θ(ε).
Conversely, it remains to prove that we can detect and identify the unique input

on which the function f depends. We claim that for every Ai ∈ F , Pr[f(Ai) =

1 | Of (Ai) = 1,HF−i] > 1/(1 + ϕ), with ϕ being the targeting lift. Indeed, since
f is assumed to be a 1-junta, it is equally likely for a random combination to be
in S(in) than to be out of S(in). By Assumption 1, combinations out of S(in) have
ϕ less chances to be in F than those in S(in), and so, the claim follows. Then, by
using the concentration inequalities of Lemma 86, we obtain that |F ∩S(in)| ≥ x|F|
with high probability 1 − Θ(ε), provided x is chosen such that x < 1/(1 + ϕ). In
particular, if f only depends on some input Dj ∈ D then there is a large fraction x
of the combinations in F such that either Dj is present (if f depends on the input
positively) or absent (if f depends on the input negatively) in these combinations.

Perspectives. Our work shows that single-input targeting can be always detected
and identified, under some plausible assumptions. As I mentioned earlier, similar
results have been proved under different assumptions, but up to the price of an
exponentially larger query complexity [DTD15]. To derive a unifying model where
similar results can be proved is, to my mind, an important issue.

5.4 Complex targeting: the case of monotonic functions

This section now addresses complex targeting, i.e., when the targeting function
depends on at least two inputs. This is joint work with Mathias Lécuyer, Max
Tucker, Augustin Chaintreau and Roxana Geambasu.

It has been argued in [DTD15] that this more challenging case could be re-
duced to the simpler case of single-input targeting (Section 5.3). In particular,
assuming that f strongly depends on some input, this relevant input may still be
identified with the algorithms crafted for single-input targeting. However, there is
no reason a priori why the targeting function should depend more on some input
than on the others. In [DTC17], we describe an experiment where we show that
in some cases where two inputs are simultaneously targeted (e.g., “programming

176 Chapter 5. Learning formulas in a noisy model

interview” with “new job”), the corresponding output is misclassified by our proto-
type Xray [LDL+14] as being untargeted. We detail this a bit more in Figure 5.2.
This result has motivated the study of PAC-learning algorithms with k-juntas as
hypothesis, for k > 1.

email Subject

ads received:

Title, url & text

!"#$"%%&$"#'()*+,-&.*$/.

0/1223334$"5%&5%64)+72.)+,-&.*$/.2
Apply for a Scholarship up to $10k from
Intertek for 2014!

8*%'9,:7-5%';-$,.'<+=

/$>+5-,,-=.4)+72)-&%%&.2
Pivotal Labs is hiring! Positions in SF,
NYC & Boulder

College
scholarship

College
applications

16

0

2830#accounts
including an
email, both,
or none

26

2

2125

Programming
interview

new
job

Figure 5.2: A correlation study between random placements of inputs (bottom) and
outputs received (top).

More precisely, in this section we only consider monotonic k-juntas, that are the
functions f such that C ⊆ C′ implies f(C) ≤ f(C′) (see Section 5.2.2.1). By doing so,
we do not pretend to cover all the cases of complex targetings that happen in real-
life. Our purpose is to generalize our positive results on single-input detection to a
broader set of targeting functions, and to investigate on the theoretical limitations
of our set cover approach in Section 5.3. Furthermore, we note that in settings
such as Facebook (until recently) [FBE], negative keywords are unavailable to the
advertisers, and so, every targeting function should be monotonic.

In what follows, our results will be proved under one additional assumption on
the oracle. Namely:

Assumption 4 (Nondiscrimination). Let F be any family. For any C1, C′1 with
f(C1) = f(C′1) = 1:

Pr[Of (Ai) = 1 | Ai = C1,HF−i] = Pr[Of (Ai) = 1 | Ai = C′1,HF−i].

Outline. In Section 5.4.1, we present a PAC-learning algorithm with monotonic
k-juntas as hypothesis that generalizes our work on single-input targeting. This
algorithm is proved to be correct only if some upper-bound on the targeting lift
is assumed. Then, we describe more efficient algorithms in Section 5.4.2, but that
are proved to be correct under stronger assumptions on the targeting lift. Further
discussions on this work are given in the conclusion (Section 5.4.3).

5.4. Complex targeting: the case of monotonic functions 177

5.4.1 Beyond single-input: the influence of the targeting lift

We first present an extended version of Theorem 84 that can be applied to monotonic
k-juntas with additional assumptions. This result has been published in [DLCG15],
and it is a joint work with Mathias Lécuyer, Augustin Chaintreau and Roxana
Geambasu.

Theorem 87. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). For every fixed positive integers s and w, there
exists a constant Ms,w such that the following holds if ϕ < Ms,w:

There exists a PAC-learning algorithm such that, for every ε > 0, the targeting
function can be learnt with probability 1 − ε under the hypothesis that it has a core
with size at most s and order at most w. Furthermore, this algorithm runs in
O(N s+w · log1/α(N/ε))-time and it has 2O(s+w) · log1/α(N/ε) query complexity.

Theorem 87 can be restated under monotonic k-juntas hypothesis by setting
s = w = k. The main steps of its proof are now sketched. We describe a PAC-
learning algorithm under monotonic juntas hypothesis and we prove its correctness.

Sketch of the algorithm. As for Theorem 84, we set the distribution of the
sampler to be a binomial distribution B(p,N), and then we make a polylogarithmic
number of queries. However, note that here, the probability p will depend on the
values for s and w.

The algorithm iterates on all the O(Nw) subsets C of size at most w, and it
aims at deciding whether f(C) = 1. In order to do so, the following key question is
answered: what can be said among the supersets of C for which the oracle outputs
1 ? By definition, all of those subsets contain all inputs in C so we are interested in
understanding how other inputs affect them. This is where exactly two cases emerge:
Firstly, if we assume that C does contain a combination of the core, it automatically
implies that independently of any other inputs, they all receive the ad with the same
probability (by Assumption 4 on nondiscrimination). Secondly, if we assume on the
other hand the opposite, then among all accounts including C, there will be specific
sets of inputs that may complete a combination from the core family and hence
be targeted more heavily than others. This latter case resembles the situation of
single-input targeting. The former case resembles a situation where f is untargeted
(ads appear randomly). We can therefore design a new test as follows, that is sound
and complete to determine in which case we are.

Roughly, the algorithms considers all the queried combinations Ci such that
C ⊆ Ci and Of (Ci) = 1. Then, for all these combinations Ci, the subset Ci \ C is
placed in some family ∆(ad)(C). The test concludes that f(C) = 1 if and only if
∆(ad)(C) has no x_intersecting subset of size at most s, for some predefined choice
of x. It can be verified in O(N s · log1/α(N/ε))-time by calling upon Algorithm 1.
Furthermore, if a combination C passes the test and it is inclusion wise minimal
w.r.t. this property then it is part of the core family of f with high probability.

178 Chapter 5. Learning formulas in a noisy model

In what follows (sections 5.4.1.1 and 5.4.1.2), we introduce the two propositions
that are the cornerstone of our analysis for this above algorithm. We also explain in
Section 5.4.1.3 why there is a need for assuming an upper-bound on the targeting
lift in order to prove the correctness of this algorithm.

5.4.1.1 Soundness of the algorithm

First, we need to show that in any family of random subsets, almost asymptotically
surely (a.a.s.) there can be no x_intersecting subset of small size (Lemma 88). The
following technique is similar to the one used in [NRS04] in order to prove that a.a.s.
the minimum size of a dominating set in any n-vertex random graph is Θ(log n).

Lemma 88. Let 1 > x > 0, s ∈ N, p < 1−(1−x)
1
s , and B a family of combinations

that are drawn randomly from a binomial distribution B(p,N). There exists C > 0

such that for any ε > 0 and polynomial P , if m ≥ C · (s ln(n) + lnP (n) + ln(1/ε))

then with probability (1− ε/P (n)) no x_intersecting subset of size s exists for this
family.

Proof. Let us consider an arbitrary combination C ⊆ D of size s. We introduce Y the
variable counting how many random subsets in B this combination C intersects, and
we note that C is an x_intersecting subset exactly if Y ≥ xm. We also observe that
Y is a sum of binary independent variables and so, since the probability that C inter-
sects an arbitrary subset in B is 1−(1−p)s, it has expectation µ = (1− (1− p)s)m.
Assuming p < 1− (1− x)

1
s as we do, µ is multiplicatively smaller than xm. Hence

we can apply Chernoff Bound to conclude that Pr[Y ≥ xm] ≤ ε
P (N)Ns when

m ≥ C · ln (N sP (N)/ε)with C =
3 (1− (1− p)s)

(x− (1− (1− p)s))2 .

Furthermore, since there are
(
N
l

)
≤ N s choices of C, by the union bound the prob-

ability that at least one of them is an x_intersecting subset is at most ε
P (N) .

By Lemma 88, the test routine of the algorithm will detect all the combinations
C such that f(C) = 1 with high probability. However, the latter result requires
a predetermined lower-bound on the threshold parameter x (that depends on the
probability p). In particular, the larger the size s of the core family of f , the larger
the lower-bound on x.

5.4.1.2 Completeness of the algorithm

Second, we aim at proving that the test routine of the algorithm will reject all
the combinations C such that f(C) = 0 with high probability. This case is quite
similar to single-input targeting, as it suffices to show that w.h.p., positive examples
in ∆(ad)(C) (defined above for the test) are likelier to be correctly classified than
misclassified. Indeed, if this holds then taking one input in each combination of
the core will leave an 1_intersecting subset of size at most s for the subfamily

5.4. Complex targeting: the case of monotonic functions 179

∆(ad)(C) ∩ S(in) (correctly classified), that will be an x_intersecting subset for the
whole family ∆(ad)(C), for some well-chosen x.

The main difficulty is that it is not equally likely for a random combination to
be within scope than out of scope. In particular, the larger the order w (size of a
largest combination in the core), the lesser the probability for a random combination
to be in S(in). So, we need to tune the probability p (used for the distribution Π of
the sampler) in order to increase in turn the probability for a random account to be
within scope. Formally, let us introduce the following function on this probability:

ϕ̂(k)
s,w(p) =

1− s
k (1− (1− p)s)

s
k (1− (1− p)s)

(1− (1− p)s/k)w

1− (1− (1− p)s/k)w
(5.1)

Proposition 89. Suppose that f has a core family of size at most s and order
at most w, and that ϕ ≤ ϕ̂

(k)
s,w(p) for some k ≤ s. Then, there exist two positive

constants x and C (independent of f) such that the following holds for any choice
of ε > 0, polynomial P and combination C:

Let B be a family of m combinations that are drawn randomly from a binomial
distribution B(p,N). If m ≥ p−|C| · C · (ln(N) + lnP (N) + ln(1/ε)), then with
probability (1− ε/P (N)) exactly one of the following claims holds:

(i) C contains a core combination, i.e. it is in S(in).
(ii) an x_intersecting subset of size k exists for

∆(C) = {S ∩ C | S ∈ B,Of (S) = 1, C ⊆ S}

5.4.1.3 Upper-bounds on the targeting lift

Altogether combined, Lemma 88 and Proposition 89 can be proved to be simul-
taneously correct only if x is chosen in some fixed interval, whose length depends
on: the size s of the core, its order w, the targeting lift ϕ (Assumption 1) and
the probability p that is used for the distribution Π of the sampler. Note that the
probability p can be tuned in order to maximize the length of this interval, but even
then, there will be an upper-limit (depending on ϕ, s, w) beyond which this interval
will be empty. Let us express this limit as an upper-bound Ms,w on the targeting
lift (only depending on s and w).

Lemma 90. Let Ms,w = supp∈]0;1[ϕ̂
(s)
s,w(p), we have:

if s = 1, M1,w = 1/w,

if w = 1, Ms,1 = 1/s,

for all s, w, 1
(2max(s,w)−1)2

≤Ms,w ≤ 1
(2min(s,w)−1)2

,

for all w, s, Ms,w = Mw,s,

if s = w = n, Mn,n = 1/(2n − 1)2.

Moreover, if w > 1 and s > 1 then we have Ms,w = (p∗)w

1−(p∗)w
(1−p∗)s

1−(1−p∗)s where p∗ is
the only solution in]0; 1[of:

wpw+1 − s(1− p)s+1 − (w + s)p+ w = 0.

180 Chapter 5. Learning formulas in a noisy model

0.0001

0.001

0.01

0.1

0 0.2 0.4 0.6 0.8 1

s = 2

s = 5

s = 10

s = 100

0 0.2 0.4 0.6 0.8 1

s = 2

s = 5

s = 10

s = 50

0 0.2 0.4 0.6 0.8 1

s = w = 2

s = w = 3

s = w = 4

s = w = 5

s = w = 6

Figure 5.3: Value of ϕ̂(s)
s,w as a function of 1− p for w = 1 (left), w = 2 (middle) and

w = s (right).

Discussion and perspectives. It is particularly informative to see how this un-
detected targeting lift (upper-bound on the targeting lift) grows with the complexity
of the formula used. Figure 5.3 presents the value of the function ϕ̂(s)

s,w that defines
it (it is drawn up to a change of variable to make it easier to read). As proved in
Lemma 90 and shown in the figure, if the targeting solely uses disjunction (resp.
conjunction) of inputs, i.e., w = 1 (resp., s = 1) as shown in Figure 5.3 (left), the
undetected targeting lift behaves as 1/s and hence it is polynomial. This polynomial
expansion remains if s grows while w remains small. Figure 5.3 (middle) presents
an example. In contrast, when s and w grow simultaneously, e.g., if they are equal
as shown in Figure 5.3 (right) one can show that undetected targeting lift can be
decreasing exponential fast. While this demonstrates the hardness of Web’s trans-
parency, we note that such forms of complex targeting combining so many inputs
to decide may be relatively rare in practice.

5.4.2 Faster algorithms and tradeoffs

Theorem 87 proves that the set cover approach of Section 5.3 can be generalized for
learning the monotonic k-juntas — but under some assumptions on the targeting
lift. In this subsection, we present algorithms for this task that achieve a better
running-time, but under stronger assumptions on the lift. This is joint work with
Max Tucker and Augustin Chaintreau.

Namely, in Section 5.4.2.1 we replace the exact test of Algorithm 1 with
a greedy approximation algorithm, thereby decreasing the running time from
O(N s · log1/α(N/ε)) to O(sN · log1/α(N/ε)). In Section 5.5.1, we introduce a new
PAC-learning algorithm that is more intricate than the one presented for Theorem 87
but runs in Õ((sw)! ·N)-time.

5.4.2.1 Faster detection algorithm

Our purpose is to describe a faster test of recognition for the combinations C such
that f(C) = 1.

5.4. Complex targeting: the case of monotonic functions 181

Theorem 91. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). For every fixed positive integers s and w, there
exists a constant M̂s,w such that the following holds if ϕ < M̂s,w:

Suppose that f has a core family of size at most s and order at most w. Then,
for every combination C and for every ε > 0, it can be decided in 2O(|C|+s+w) · N ·
log1/α(N/ε)-time and with probability 1− ε whether f(C) = 1.

Let us sketch the proof of Theorem 91. We recall that in order to decide whether
f(C) = 1 with high probability, it suffices to verify whether some family ∆(C) has
an x_intersecting subset of size at most s, where x is a well-chosen parameter
depending on s and w. It can be done in Õ(N s)-time by using Algorithm 1. The
gist of Theorem 91 is to make this step faster by replacing the (exact) Set-intersection
algorithm with a greedy approximation algorithm that we describe next.

Formally, let us set S = ∆(C), C′ = ∅. While S 6= ∅ and |C′| < s, we pick
any input Dj that maximizes the number of intersected subsets in S. This input
Dj is added in C′, then every combination containing Dj is removed from S. This
process has already received some attention in the literature of Boolean function
learning [FA05], but under a different learning model.

On the one hand, if the resulting combination C′ is an x_intersecting subset then
we can conclude, as before for Theorem 87, that f(C) = 0 with high probability.
On the other hand, if ∆(C) does admit an x_intersecting subset of this size then
we can prove by using standard arguments on submodular functions that C′ must
be an (1 − (1 − 1

s)1/s)x_intersecting subset. It can be proved by Lemma 88 that
no such a subset can exist if f(C) = 1 and x is large enough. So overall, we are
left to test whether the resulting combination C′ is an x′_intersecting subset with
x′ = (1− (1− 1

s)1/s)x.

As a direct consequence of Theorem 91, we obtain a faster algorithm than the
one presented for Theorem 87:

Corollary 92. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). For every fixed positive integers s and w, there
exists a constant M̂s,w such that the following holds if ϕ < M̂s,w:

There exists a PAC-learning algorithm such that, for every ε > 0, the targeting
function can be learnt with probability 1 − ε under the hypothesis that it has a core
with size at most s and order at most w. Furthermore, this algorithm runs in
O(2s ·Nw · log1/α(N/ε))-time and it has 2O(s+w) · log1/α(N/ε) query complexity.

Let us point out that this new algorithm is Fixed-Parameter Tractable in the
size s of the core family, but it still depends on its order w exponentially.

5.4.2.2 Faster identification algorithm

We have shown in Section 5.4.2.1 how to improve the detection test in order to
recognize the combinations of S(in). Getting rid of the exhaustive search of all
possible subsets of small size (at most the order w of the core) is much more difficult.

182 Chapter 5. Learning formulas in a noisy model

We show how to do so by using more properties of the intersecting subsets and a
significantly more elaborate algorithm, that has similarities with the one described
in [Ang88, Sec. 3.1, Theorem 1].

Theorem 93. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). For every fixed positive integers s and w, there
exists a constant M s,w such that the following holds if ϕ < M s,w:

There exists a PAC-learning algorithm such that, for every ε > 0, the targeting
function can be learnt with probability 1−ε under the hypothesis that it has a core with
size at most s and order at most w. Furthermore, this algorithm has 2O(sw·log(sw)) ·
log1/α(N/ε) query complexity, and with probability 1−ε it runs in 2O(sw·log(sw)) ·N ·
log1/α(N/ε)-time.

Input: a family F ; and a threshold parameter x.
Output: the representation S(core) of f .

S(core) ← {} ;
Sx ← Set-intersection(F , x, 1); S ←

⋃
{Di}∈Sx

{Di};

if S 6= ∅ then
/* Removal of inputs until obtaining a core combination */;
foreach Di ∈ S do
Ŝ = S \Di;
F̂ = {Aj \ Ŝ | Aj ∈ F , Ŝ ⊆ Aj};
Ŝx ← Set-intersection(F̂ , x, 1);
if Ŝx = ∅ then

/* the subset Ŝ is still in S(in) */;
S ← Ŝ;

end
end
S(core) ← S(core) ∪ {S};
foreach Di ∈ S do

/* Recursive call to the algorithm */;
Si ← GSI(F \ {Aj ∈ F | Di ∈ Aj}, x);
S(core) ← S(core) ∪ Si;

end
end

Algorithm 3: Generalized set-intersection algorithm (GSI).

The proof of Theorem 93 is based on Algorithm 3, that is an intricate variation
of the Set-intersection algorithm. Let us first give a better analysis of the detection
test that is used in order to recognize the combinations of S(in) (presented earlier
in Section 5.4.1). Given a combination C, this test either asserts that f(C) = 1 or it
outputs an x_intersecting subset of size at most s for some family of subsets ∆(C).

5.4. Complex targeting: the case of monotonic functions 183

The latter subset can be regarded as a “negative certificate” on which we can extract
more information as follows:

Lemma 94. Suppose that f has a core family of size at most s and order at most w,
and let k ≤ s. Then, provided ϕ < Ms,w

(k) for some constant Ms,w
(k) (only depend-

ing on s, k and w), there exist positive constants x (threshold), p (probability for the
sampler) and C such that the following holds for any choice of ε > 0, polynomial P
and combination C:

Let B be a family of m combinations that are drawn randomly from a binomial
distribution B(p,N), with m ≥ α−|C| · C · (ln(N) + lnP (N) + ln(1/ε)). The two
following claims hold for Sx,k = {S | S x_intersecting for ∆(C), |S| ≤ k} with
probability (1− ε/P (N)):

(i) All combinations in Sx,k intersect
⋃
S∈S(core) S.

(ii) C ∪
⋃
S∈Sx,k S is empty or contains a core combination.

From now on, this lemma will be used with k = 1.
Let us sketch the main principles behind the algorithm. As before, we set the

distribution Π for the sampler to be a binomial distribution B(p,N), for some
predetermined value of p. Then, we make a polylogarithmic number of queries to
the sampler, and we let F to be the set of all the combinations Ci queried such that
Of (Ci) = 1. If f is not the null-function then under the conditions of Theorem 93,
this family F has x_intersecting subsets of size 1. Furthermore, by calling upon
Algorithm 1 (with s = 1), all such intersecting subsets of unit size can be computed,
in quasi-linear time.

At this step, Lemma 94 comes into play. Indeed, let S be the union of all
x_intersecting subsets of F of unit size. By Lemma 94(i), every input in S is
in a core combination, hence |S| ≤ sw. In addition, we have by Lemma 94(ii)

that S contains a core combination with high probability. The main idea behind
Theorem 93 is to extract a core combination C from S, then to call Algorithm 3
recursively on a constant number of subsets of F in order to obtain the remaining
of the core family. More precisely, there is one recursive call for every input Di ∈ C,
before which we remove from F all the combinations that contain Di in order to
obtain different core combinations than C. The main difficulty is to bound the
depth of the recursion. This is where we use once more Lemma 94. Indeed, since
at each call to Algorithm 3, the superset S has all its inputs contained in a core
combination, and we virtually remove one of them before each recursive call, the
depth of the recursion is bounded w.h.p. by

∑
C∈S(core) |C| ≤ sw.

5.4.3 Conclusion and open perspectives

We have generalized the results obtained for single-input targeting to a larger class
of targeting functions. A main drawback of this set cover approach, when applied to
complex targeting, is that it can be proved to be correct only if the targeting lift is
close to zero (the larger the size and the order of the core, the closer the lift to zero).
So far, our learning model does not make any assumption on what a “realistic” value

184 Chapter 5. Learning formulas in a noisy model

for the lift should be. We aim at closing this gap in a near future by using some
advertising models in the literature [GEC+13] in order to better evaluate the order
of magnitude for this value.

On a more positive side, our approach can be modified in order to give efficient
algorithms with quasi-linear time. This is a neat advantage for Web transparency
tools such as Xray that, for now, do not cope with complex targeting. To the best
of our knowledge, the only prototype which goes beyond the case of single-input
targeting is Sunlight [LSS+15], where a different subclass of targeting functions is
adressed. Roughly, the core algorithm of this tool is able to detect and to identify
a class of “threshold functions” f , where each input is assigned a weight and f

outputs 1 only if the sum of the weights of the inputs in presence is greater than
some predetermined threshold.

Finally, let us point out that generalizing our approach in this section to non-
monotonic functions is challenging, at best. Indeed, we recall that our detection test
concludes that a combination C is in S(in) if and only if there is no x_intersecting
subset of small size in a given family ∆(C). This test fails if the targeting function is
non-monotonic. As an example, consider a combination C such that for every prime
implicant 〈Cin, Cout〉 of f , we have C ∩ Cout 6= ∅. By construction, there can be no
superset of C that is in S(in). Hence, it may be the case that all these supersets are
equally likely to be targeted by mistake, with all the inputs not in C being present by
mere chance. The latter would imply that the family ∆(C) that is used for the test
would not have any x_intersecting subset of small size, and so, that C is mistakenly
identified as part of S(in).

5.5 General case

Finally, this section is about the theoretical limitations of the learning model of
Section 5.2. That is, we aim at characterizing what can be learnt in our model. Full
proofs can be found in [CD17], which is joint work with Augustin Chaintreau.

Outline. On the positive side, we prove in Section 5.5.1 that all the relevant inputs
(on which the targeting depends) can be computed. Furthermore, under one addi-
tional assumption on the oracle (generalizing Assumption 4 on nondiscrimination),
any targeting function can be learnt. However in general (without an additional
assumption), it is proved in Section 5.5.3 that monotonic 2-juntas cannot be learnt
in our setting. In fact, it is already impossible to distinguish between a conjunction
or a disjunction!

Although the proofs in Sections 5.5.1 and 5.5.2 are algorithmic, they do not lead
to efficient PAC-learning algorithms.

5.5.1 Identification of the relevant inputs

This subsection presents an algorithm for computing the at most k inputs on which
a k-junta depends. Roughly, the relevant inputs will be inferred by virtually “fixing”

5.5. General case 185

k−1 inputs from the ground-set D. Such removal will reduce the problem to single-
input targeting, and so, the set cover approach of Section 5.3 can be used. This is
formalized with the following Algorithm 4.

Input: accuracy parameter ε; upper-bound k on the number of relevant
inputs.

Output: the set of relevant inputs V .

V ← {} ;

/* Parameters tuning */;
Let x ∈]1

2 ; 1
1+ϕ [;

Let m ∈ Ω
(

2k · log1/α(N/ε)
)
/*m depends on x*/;

/* Uniform sampling */;
Draw 〈C1,Of (C1)〉, 〈C2,Of (C2)〉, . . . , 〈Cm,Of (Cm)〉 with Π = B(1/2, N) ;

F ← {Ci | 1 ≤ i ≤ m and Of (Ci) = 1} ;

/* Exhaustive search for prime implicants */;
foreach 〈Cin, Cout〉 with |Cin|+ |Cout| ≤ k − 1 do

F̂ ← {Ap ∈ F | Cin ⊆ Ap and Ap ∩ Cout = ∅};
F̂ ← {D \Ap | Ap ∈ F̂} ;

if |F̂ | ≥ Ω (k · log(N/ε)) then
Sx ← Set-intersection(F̂ , 1, x) // positive dependency;

Sx ← Set-intersection(F̂ , 1, x) // negative dependency;

Ŝ ←

(⋃
{Di}∈Sx∪Sx

{Di}

)
\ Cin ;

V ← V ∪ Ŝ ;
end

end

Algorithm 4: Inference algorithm for the relevant inputs.

Theorem 95. Let α ≤ 1 be the polynomial-growth (Assumption 2). There is an
algorithm such that, for every ε > 0, the set of relevant variables V = {Di ∈ D |
f depends on Di} can be learnt with probability 1 − ε under k-juntas hypothesis.
This algorithm runs in O(Nk · log1/α(N/ε))-time and it has O(2k · log1/α(N/ε)))

complexity query.

Sketch Proof of Theorem 95. We give a correctness proof of Algorithm 4. Let
〈Cin, Cout〉 be fixed, with |Cin| + |Cout| ≤ k − 1. Let us define B̂ as the family of all
the combinations that have been queried with the sampler, that contain Cin and that
do not intersect Cout. Furthermore, let D̂ = D\(Cin ∪ Cout), let f̂(Ĉ) = f(Ĉ∪Cin) and
Ôf (Ĉ) = Of (Ĉ∪Cin) for every combination Ĉ ⊆ D̂. In order to reuse the results from

186 Chapter 5. Learning formulas in a noisy model

Section 5.3, we will base on the property that Ôf “almost” behaves like an oracle
for the targeting function f̂ . That is, it satisfies Assumptions 1 and 2 (trivially),
but it only satisfies Assumption 3 partially. More precisely, if f (but not necessarily
f̂) only depends on some inputs in V̂ ∪ Cin ∪ Cout, then Assumption 3 applies for
V̂ . By Lemma 88 (nonexistence of x_intersecting subsets of small size in random
families), this weaker version of Assumption 3 implies that the targeting function f
depends on every input that is computed by Algorithm 4 with high probability.

In order to complete the proof of the theorem, let Dj be any input on which f
depends. Since Dj is relevant, there is a bipartition 〈Cin, Cout〉 of the relevant inputs
from D \ Dj so that f(Cin ∪ {Dj}) 6= f(Cin). So, let us fix any such bipartition
〈Cin, Cout〉. In such case, f̂ is a 1-junta that only depends on Dj , furthermore Ôf

satisfies Assumption 3 for f̂ . The average size of B̂ ism/2k−1, wherem is the number
of queries. This case is thus reduced to single-input targeting (Theorem 84). Finally,
by taking a union bound over the relevant inputs, every input on which f depends
is in V (computed by Algorithm 4) with high probability.

5.5.2 Filtering technique

In this subsection we now present an algorithm for learning the targeting function
f exactly. Suppose that we are given the relevant inputs for the targeting function
f . In order to learn S(in), it suffices to learn all the subsets C on these (at most k)
inputs so that f(C) = 1. Intuitively, this can be achieved by comparing any two
combinations C0, C1 and testing whether containing one of these two subsets, say,
C1, increases the chance to be targeted (compared to C0). On may expect that the
latter certifies f(C1) = 1 and f(C0) = 0. Algorithm 5 (introduced next) builds upon
this intuition.

Input: a set of inputs V ; a family F ; a threshold parameter t.
Output: the class Tk of all bipartitions 〈Cin, Cout〉 of V s.t. 〈Cin, Cout〉 ∈ S(in).

k ← |V | ;

/* Partition of the family w.r.t. the relevant inputs */;
Partition F into F1,F2, . . . ,F2k s.t.:
• ∀1 ≤ i < 2k, |Fi| ≥ |Fi+1| ;
• ∀Ap, Aq ∈ F , Ap ∩ V = Aq ∩ V ⇐⇒ Ap, Aq ∈ Fi for some i;

/* Ordering of the bipartitions of V by decreasing presence in the family */;
for i ∈ {1, . . . , 2k} do

Vi ← Ap ∩ V with Ap ∈ Fi ;
end

/* Identification of the targeting lift */;
ilim ← min{1 ≤ i ≤ 2k | |Fi| ≥ t · |Fi+1|};

Tk ← {〈Vi, V \ Vi〉 | 1 ≤ i ≤ ilim} ;
Algorithm 5: Recognition algorithm for the targeting function.

5.5. General case 187

However, it turns out that subtle complications occur which may lead our ap-
proch in this section to failure. The reason is that we obtain an ordering over all
the bipartitions of the relevant inputs, that somewhat represents the combinations
of these inputs by nonincreasing importance, but we have no clue on where the
non-targeted combinations should start in this ordering. So, intuitively, the target-
ing function f can be learnt only if the targeting lift can be detected, for the latter
delineates the border between combinations within scope and those out of scope.

We next introduce a new parameter on the oracle that will be used in order to
prove correctness of our approach under some additional assumptions.

Definition 96. The oracle has positive variance ψ if for any family F = 〈A1, . . . , At〉
the following holds for any C1, C′1 ∈ S(in):

Pr[Of (Ai) = 1 | Ai = C1,HF−i] ≥ ψ · Pr[Of (Ai) = 1 | Ai = C′1,HF−i)].

Assumption 4 (introduced in Section 5.4 corresponds to the extremal case where
the oracle has positive variance ψ = 1. Roughly, a large positive variance implies
that there cannot exist a combination within scope that is significantly more targeted
than the other combinations of S(in). If so then the targeting lift can be detected
using a simple leftmost approach (see Algorithm 5).

Theorem 97. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). The following holds if the oracle has positive
variance ψ > ϕ:

There exists a PAC-learning algorithm such that, for every k ≥ 1 and for every
ε > 0, the targeting function can be learnt with probability 1− ε under the k-juntas
hypothesis. Furthermore, this algorithm runs in O(Nk · log1/α(N/ε))-time and it
has O(2k · log1/α(N/ε)) query complexity.

Let us point out that even when there is no classification noise (Of = f), the best
known PAC-learning algorithm under the k-juntas hypothesis has time complexity
NO(k) [MOS04]. Therefore, improving upon this time complexity will probably
require additional assumptions.

5.5.3 Impossibility results

We end up this section with a proof that not all targeting functions can be learnt
with respect to our learning model.

Proposition 98. It is impossible to learn the targeting function f in general. In
particular, there is a given monotone 2-junta that cannot be learnt even if the tar-
geting lift is arbitrarily small.

Proof. In order to prove the result, we will construct an oracle Of that satisfies
Assumptions 1, 2 and 3 for two distinct targeting functions. The latter is enough
to prove the proposition since in such case, Of could be used in our model for any

188 Chapter 5. Learning formulas in a noisy model

of the two functions, and so, these cannot be distinguished with high probability.
More precisely, fix 0 < p0 < 1/5. Let us define Of such that for any combination C:

Pr[Of (C) = 1] = p0 · (1 + 2 · I{D1∈C} + 2 · I{D2∈C}).

Note that for any combination C, we have Pr[Of (C) = 1] ≤ 5p0 < 1.
Since every combination has positive probability to be targeted and the above

oracle considers the combinations independently, by Chernoff bound, Of satisfies
Assumption 2 with α = 1 for any targeting function3. Furthermore, Of satis-
fies Assumption 3 for any targeting function that only depends on the two in-
puts D1, D2. In particular, let f1(C) = max{I{D1∈C}, I{D2∈C}} (disjunction) and
let f2(C) = I{D1∈C} · I{D2∈C} (conjunction). These two functions are monotone. In
fact, they are linear combinations since f1(C) = 1 ⇐⇒ I{D1∈C} + I{D2∈C} ≥ 1, and
similarly f1(C) = 1 ⇐⇒ I{D1∈C} + I{D2∈C} ≥ 2. For both functions, the oracle Of

satisfies Assumption 1 with any targeting lift ϕ > 1/2.
Finally, note that in order to extend this negative result to lifts arbitrarily smaller

than 1/2, one may just consider a slightly more complex oracle for the above two
functions f1, f2, namely:

Pr[Of (C) = 1] = q
3−I{D1∈C}−I{D2∈C}
0 ,

for some nonzero probability q0 that can be taken arbitrarily small.

Let us emphasize that the negative result of Proposition 98 already holds for
monotonic and threshold functions (see Section 5.4.3). In particular, it applies to the
theory behind the Web’s transparency tools XRay [LDL+14] and Sunlight [LSS+15].

5.6 Conclusion

We have proved in this chapter that the theory behind two recent Web’s trans-
parency tools – namely, Xray [LDL+14] and Sunlight [LSS+15] – can be applied to
cope with complex targeting, but that it requires stronger assumptions on the ora-
cle. When these assumptions do not hold, we show that not all targeting functions
can be learnt.

It is equally likely that not all (learnable) functions can be learnt efficiently.
Indeed, even in a simpler learning model where there is no classification noise,
learning k-juntas takes NO(k)-time [MOS04, Val12]. Furthermore, given a set of
positive and negative examples, learning a function that is compatible with these
examples under k-juntas hypothesis isW [2]-hard [AKL07]. The same negative result
holds under monotonic k-juntas hypothesis [AKL07], which makes the existence
of No(k)-time PAC-learning algorithms unlikely. I believe that the existence or

3Note that we must also choose the same constants β and γ. Here, the two functions considered
are such that the scope of one is contained into the scope of the other. So, we can choose β, γ
w.r.t. the function with smallest scope.

5.6. Conclusion 189

nonexistence of quasi-linear time algorithms in our setting is strongly related to the
value of the targeting lift — as supported by the results of Section 5.4.

For this reason, I would find it interesting to mix up our learning model with
some advertising models of the literature (e.g., [GEC+13]) in order to fix some
“plausible” estimate for the lift. This project is part of my on-going work.

Another interesting problem would be to enhance our learning model by in-
cluding a natural graph structure between the accounts. Namely, as we stated in
Section 5.2.4, the online accounts of users can be seen as the vertices of a random in-
tersection graph [KSSC99], where an edge represents two accounts sharing a certain
number of inputs. The influence of these edges on the outcome is largely ignored by
our model, but it has received some attention in [LMT17]. Combining our model
with the approach proposed in [LMT17] is thus an important issue.

Finally, on the practical point of view, one hidden drawback of the algorithms
that are proposed in this chapter is that each query to the sampler represents, in
real-life, a fake account which needs to be created and maintained [LDL+14]. This
task is hard to automate, because online accounts have to respect a policy and
they can be quickly closed if they don’t. Ideally, we would like to find a different
implementation of our algorithms that would require fewer account creations. For
instance, could we avoid creating fake accounts by making some existing accounts
collaborate (with each of them representing one query to the sampler) ? This simple
idea would raise privacy concerns, that would require a computational mechanism
design in order to handle with the communications between two accounts.

Overall, new guidelines than our “Set Cover approach” should be investigated,
such as for instance the use of different oracles (that would represent accounts on
different online platforms) [AM10]. Our work may also benefit from a bio inspired
algorithm named Ant-miner [HLC07, PLF02] whose objective is to uncover classifi-
cation rules from a dataset.

Chapter 6

Conclusion

Contents
6.1 Open perspectives . 191

As networks more and more impact our lives, the world is turned to be ruled by
algorithms. This situation has motivated the need for more efficiency in algorithmic
and more transparency in the use of algorithms. In this thesis, we have adressed
these two issues by studying metric tree-likeness in graphs – related to the way
the information flows in complex networks – and a collection of privacy oriented
problems. We provide a finer-grained analysis for the complexity of all the problems
studied, so as to question their scalability.

The contributions of my thesis are summarized in Section 6.1, with an emphasis
on future work.

6.1 Open perspectives

We summarize our results in Chapters 2–5 and raise interesting questions for future
work. In what follows, we borrow from the concluding sections of these different
chapters.

First, we have given a survey on graph hyperbolicity in Chapter 2 where known
lower and upper bounds are collected and the best known results on the complexity
for computing this parameter are covered. In particular, we have introduced a
general framework in order to sharply estimate the distortion of hyperbolicity that
may be caused by various graph operations and so, conversely, by various graph
decompositions. We also have proved new sufficient conditions in order to lower or
upper-bound the hyperbolicity in some graph classes that are used for the design of
data center interconnection networks. We expect our techniques to apply to even
more graph classes, that is left as an interesting open question.

Furthermore, on the complexity point of view, we have proposed a preprocessing
method that is based on clique-decomposition. Interestingly, the core arguments
that are used for our analysis of the preprocessing can be applied to any other “tree-
like” decomposition: where the subgraphs are the bags of a tree decomposition with
bounded-diameter adhesion sets. Now, the question is whether they can be applied
to more general decompositions, say where the subgraphs are the sets of some family
with a “tree-representation” [BXHR12]? If so, then the latter result would subsume

192 Chapter 6. Conclusion

all known results on the preservation of hyperbolicity under modular, split and clique
decomposition. Another interesting open question is whether the recognition of
graphs with “large” hyperbolicity can be done faster than computing this parameter
for general graphs. Indeed, we recall that all the hardness results proved for this
parameter have been obtained for graphs with small hyperbolicity (bounded by
a constant). This is further supported by the experiments presented in [CCL15,
BCC15]: where the practical running-time is dominated by the computation of the
all-pairs shortest-paths except for some hard instances that have been observed to
have a small hyperbolicity.

Chapter 3 is devoted to an in-depth (complexity) study of some tree decompositions
in graphs where the bags must satisfy metric constraints. More precisely, we have
proved that computing the clique-decomposition is computationally equivalent to
Triangle Detection under the standard assumption that the latter problem is
equivalent to Matrix Multiplication. We have also proved that computing the
parameters treebreadth, pathbreadth and pathlength (recently introduced in [DK14,
DKL14]) is NP-hard and not FPT. However, on a more positive side, the clique-
decomposition of planar graphs and bipartite graphs can be computed in linear time,
and in the same way it can be decided in polynomial time whether a given bipartite
graph or planar graph has treebreadth one.

In particular, let us point out that all our hardness results have been obtained for
classes of graphs with a large clique or clique-minor, whereas all our positive results
have been proved for classes of graphs with bounded clique-number or clique-minor.
Therefore, it would be interesting to find new results (positive or negative) that
could better clarify the role of the clique-number and the Hadwiger number (size of
a largest clique-minor) in the parameterized complexity of the tree decomposition
problems studied in this chapter. In this respect, we might be helped by a central
result in Chapter 3: stating that treewidth and treelength can only differ by at most
a constant-factor in the classes of graphs with bounded-length isometric cycles and
bounded genus.

Furthermore, whereas our tools in Part I have been mainly graph-theoretical, we
have used a more diverse toolkit in Part II based on combinatorics, game theory
and learning theory. This diversification of our techniques has conduced to open
questions of a different nature, that we will expose next.

In particular, we have studied coloring games in Chapter 4, exhibiting new results
on the complexity of computing strong Nash equilibria in these games and in some
of their variations. More precisely, we have proved that a k-strong Nash equilibrium
can be computed with better-response dynamics for every fixed k ≥ 1, however the
dynamics do not converge in polynomial time as soon as k ≥ 4. So, it may be the
case that computing a k-strong Nash equilibrium in coloring games is PLS-complete
for some fixed k ≥ 4. Such a result would be interesting because coloring games
are played on an unweighted graph whereas the classical PLS-complete problems are
“weighted”, i.e., they can be solved in quasi-polynomial time with respect to some
set of input weights.

Bibliography 193

Note that as a way to deepen our understanding of coloring games, we have
proved that computing a Nash equilibrium in these games is PTIME-hard. It
has been proved that computing a Nash equilibrium in generalized coloring games
(played on an edge-weighted graph) is PLS-complete. Can we prove that conversely,
if a “weighted” game is PLS-hard then any corresponding “unweighted” game (where
all the input weights are bounded) is PTIME-hard ? Such a result would make ad-
vance our understanding of the complexity of search problems.

Finally, we have studied in Chapter 5 the problem of learning a Boolean function
that only depends on a fixed number of variables, under new hypotheses on the
classification noise. Our problem is motivated by online advertising in the Internet
(we aim at unveiling data misuse), and so, it has a natural graph structure. However,
this structure has not been exploited in our algorithms. Hence, an important issue
would be to better account for this underlying graph.

As an example, is this graph hyperbolic ? If it were the case, could we take
advantage of this fact in order to obtain efficient approximation algorithms for Set
Cover, that could be used in our approach for learning the function ?

Bibliography

[AAD16] M. Abu-Ata and F. F. Dragan. Metric tree-like structures in real-
world networks: an empirical study. Networks, 67(1):49–68, 2016.
(Cited in pages 24, 36, 37, 40, 58, 73, 74, 77, 22, 34, 35, 38, 56, 71,
72 and 75.)

[ABC+91] J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Miha-
lik, M. Shapiro, and H. Short. Notes on word hyperbolic groups. In
Group theory from a geometrical viewpoint. Singapore: World Scien-
tific, 1991. (Cited in pages 15, 31, 34, 13, 29 and 32.)

[ABF+98] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup.
On the approximability of numerical taxonomy (fitting distances by
tree metrics). SIAM Journal on Computing, 28(3):1073–1085, 1998.
(Cited in pages 15 and 13.)

[ABK+07] I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubra-
manian, and K. Talwar. Reconstructing approximate tree metrics.
In Proceedings of the twenty-sixth annual ACM symposium on Prin-
ciples of distributed computing, pages 43–52. ACM, 2007. (Cited in
pages 73 and 71.)

[ABK+16] E. Angel, E. Bampis, A. Kononov, D. Paparas, E. Pountourakis,
and V. Zissimopoulos. Clustering on k-edge-colored graphs. Discrete
Applied Mathematics, 2016. (Cited in pages 120 and 118.)

[ACHK16] A. Abboud, K. Censor-Hillel, and S. Khoury. Near-linear lower
bounds for distributed distance computations, even in sparse net-
works. Technical report, ArXiv, 2016. (Cited in pages 68 and 66.)

194 Bibliography

[ACP87] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of find-
ing embeddings in a k-tree. SIAM Journal on Algebraic Discrete
Methods, 8(2):277–284, 1987. (Cited in pages 77, 103, 75 and 101.)

[AD15] H. Alrasheed and F. F. Dragan. Core-periphery models for graphs
based on their δ-hyperbolicity: An example using biological net-
works. In Complex Networks VI, pages 65–77. Springer, 2015. (Cited
in pages 35, 73, 33 and 71.)

[ADM14] R. Albert, B. DasGupta, and N. Mobasheri. Topological implications
of negative curvature for biological and social networks. Physical
Review E, 89(3):032811, 2014. (Cited in pages 24, 73, 22 and 71.)

[AF84] M. Aigner and M. Fromme. A game of cops and robbers. Discrete
Applied Mathematics, 8(1):1–12, 1984. (Cited in pages 50 and 48.)

[AGCFV] D. Aguirre-Guerrero, M. Camelo, L. Fabrega, and P. Vila. Word-
metric-based greedy routing scheme for data center networks. Sub-
mitted. (Cited in pages 15, 22, 14 and 20.)

[AJ13] A. G Aksoy and S. Jin. The apple doesn’t fall far from the (metric)
tree: The equivalence of definitions. Technical report, ArXiv, 2013.
(Cited in pages 25, 29, 34, 23, 27 and 32.)

[AK89] S. B. Akers and B. Krishnamurthy. A group-theoretic model for sym-
metric interconnection networks. IEEE transactions on Computers,
38(4):555–566, 1989. (Cited in pages 17, 52, 15 and 50.)

[AKL07] V. Arvind, J. Köbler, and W. Lindner. Parameterized learnability
of k-juntas and related problems. In International Conference on
Algorithmic Learning Theory, pages 120–134. Springer, 2007. (Cited
in pages 188, 186 and 187.)

[ALNP15] C. Avin, Z. Lotker, Y. Nahum, and D. Peleg. Core size and den-
sification in preferential attachment networks. In M. M. Halldórs-
son, K. Iwama, N. Kobayashi, and B. Speckmann, editors, ICALP
2015, Kyoto, Japan, pages 492–503. Springer Berlin Heidelberg,
2015. (Cited in page 24.)

[ALP11] C. Avin, Z. Lotker, and Y. A. Pignolet. On the elite of social net-
works. Technical report, ArXiv, 2011. (Cited in pages 24 and 22.)

[ALPT16] C. Avin, Z. Lotker, D. Peleg, and I. Turkel. On social networks of
program committees. Social Network Analysis and Mining, 6(1):18,
2016. (Cited in page 24.)

[AM10] J. Arpe and E. Mossel. Application of a generalization of russo’s for-
mula to learning from multiple random oracles. Combinatorics, Prob-
ability and Computing, 19(02):183–199, 2010. (Cited in pages 189
and 187.)

[AMK03] T. Akutsu, S. Miyano, and S. Kuhara. A simple greedy algorithm
for finding functional relations: efficient implementation and average
case analysis. Theoretical Computer Science, 292(2):481–495, 2003.
(Cited in pages 170 and 168.)

Bibliography 195

[AMM10] N. Archak, V. S. Mirrokni, and S. Muthukrishnan. Mining advertiser-
specific user behavior using adfactors. In Proceedings of the 19th in-
ternational conference on World wide web, pages 31–40. ACM, 2010.
(Cited in pages 115 and 113.)

[Ang88] D. Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, 1988. (Cited in pages 163, 166, 182, 161, 164 and 180.)

[APW12] P. Austrin, T. Pitassi, and Y. Wu. Inapproximability of treewidth,
one-shot pebbling, and related layout problems. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 13–24. Springer, 2012. (Cited in pages 73, 103,
71 and 101.)

[AR07] J. Arpe and R. Reischuk. Learning juntas in the presence of noise.
Theoretical Computer Science, 384(1):2–21, 2007. (Cited in pages 163
and 161.)

[ASHM13] A. B. Adcock, B. D. Sullivan, O. R. Hernandez, and M. W. Mahoney.
Evaluating openmp tasking at scale for the computation of graph
hyperbolicity. In International Workshop on OpenMP, pages 71–83.
Springer, 2013. (Cited in pages 55 and 53.)

[ASM13] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree-like struc-
ture in large social and information networks. In 2013 IEEE 13th
International Conference on Data Mining, pages 1–10. IEEE, 2013.
(Cited in pages 16, 73, 14 and 71.)

[ASM16] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree decompo-
sitions and social graphs. Internet Mathematics, 12(5), 2016. (Cited
in pages 69, 77, 108, 67, 75 and 106.)

[AVWW16] A. Abboud, V. Vassilevska Williams, and J. Wang. Approximation
and fixed parameter subquadratic algorithms for radius and diameter
in sparse graphs. In Proceedings of the twenty-seventh annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 377–391.
SIAM, 2016. (Cited in pages 88 and 86.)

[BAJ00] A. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of
random networks: the topology of the world-wide web. Physica
A: Statistical Mechanics and its Applications, 281(1):69–77, 2000.
(Cited in pages 2, 16, 46, 220, 14 and 44.)

[Bal04] C. Ballester. NP-completeness in hedonic games. Games and Eco-
nomic Behavior, 49(1):1–30, 2004. (Cited in pages 120 and 118.)

[Ban90] H.-J. Bandelt. Recognition of tree metrics. SIAM Journal on Dis-
crete Mathematics, 3(1):1–6, 1990. (Cited in pages 14, 29, 12 and 27.)

[BBGM15] A. Berry, A. Brandstädt, V. Giakoumakis, and F. Maffray. Efficiently
decomposing, recognizing and triangulating hole-free graphs without
diamonds. Discrete Applied Mathematics, 184:50–61, 2015. (Cited
in pages 86 and 84.)

196 Bibliography

[BC03] H.-J. Bandelt and V. Chepoi. 1-hyperbolic graphs. SIAM Journal
on Discrete Mathematics, 16(2):323–334, 2003. (Cited in pages 25,
66, 23 and 64.)

[BCC15] M. Borassi, A. Chessa, and G. Caldarelli. Hyperbolicity measures
democracy in real-world networks. Physical Review E, 92(3):032812,
2015. (Cited in pages 24, 192, 22 and 190.)

[BCCM15] M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On computing
the hyperbolicity of real-world graphs. In Algorithms-ESA 2015,
pages 215–226. Springer, 2015. (Cited in pages 41, 56, 73, 39, 54
and 71.)

[BCF94] M.-F. Bélanger, J. Constantin, and G. Fournier. Graphes et ordon-
nés démontables, propriété de la clique fixe. Discrete Mathematics,
130(1):9–17, 1994. (Cited in pages 51 and 49.)

[BCH16] M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the com-
plexity of some quadratic-time solvable problems. Electronic Notes in
Theoretical Computer Science, 322:51–67, 2016. (Cited in pages 65,
67, 111, 63 and 109.)

[BDCV98] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin. Dually
chordal graphs. SIAM Journal on Discrete Mathematics, 11(3):437–
455, 1998. (Cited in pages 37, 44, 82, 83, 35, 42 and 80.)

[Ben98] I. Benjamini. Expanders are not hyperbolic. Israel Journal of Mathe-
matics, 108(1):33–36, 1998. (Cited in pages 35, 50, 72, 33, 48 and 70.)

[Ben13] I. Benjamini. The hyperbolic plane and hyperbolic graphs. In Coarse
Geometry and Randomness, pages 23–31. Springer, 2013. (Cited in
pages 14 and 12.)

[BF06] M. Bonk and T. Foertsch. Asymptotic upper curvature bounds in
coarse geometry. Mathematische Zeitschrift, 253(4):753–785, 2006.
(Cited in pages 33, 34, 31 and 32.)

[BFGR15] R. Belmonte, F. V. Fomin, P. A. Golovach, and M. S. Ramanujan.
Metric dimension of bounded width graphs. In International Sym-
posium on Mathematical Foundations of Computer Science, pages
115–126. Springer, 2015. (Cited in pages 104 and 102.)

[BFÖ+03] G. S. Brodal, R. Fagerberg, A. Östlin, C. N. S. Pedersen, and S. S.
Rao. Computing refined buneman trees in cubic time. In Interna-
tional Workshop on Algorithms in Bioinformatics, pages 259–270.
Springer, 2003. (Cited in pages 69 and 67.)

[BFW92] H.L. Bodlaender, M.R. Fellows, and T. Warnow. Two strikes against
perfect phylogeny. In ICALP’92, Vienna, Austria, pages 273–283,
1992. (Cited in pages 95 and 93.)

[BH11] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curva-
ture, volume 319. Springer Science & Business Media, 2011. (Cited
in pages 15, 30, 31, 33, 34, 49, 13, 28, 29, 32 and 47.)

Bibliography 197

[BH12] A. E. Brouwer and W. H. Haemers. Distance-regular graphs. In
Spectra of Graphs, pages 177–185. Springer, 2012. (Cited in pages 52,
53 and 51.)

[BHO+11] I. Benjamini, C. Hoppen, E. Ofek, P. Prałat, and N. Wormald.
Geodesics and almost geodesic cycles in random regular graphs.
Journal of Graph Theory, 66(2):115–136, 2011. (Cited in pages 45
and 43.)

[BHV06] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremen-
tal approach for maintaining chordality. Discrete Mathematics,
306(3):318–336, 2006. (Cited in pages 102 and 101.)

[BK96] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms
for the pathwidth and treewidth of graphs. Journal of Algorithms,
21(2):358–402, 1996. (Cited in pages 111 and 110.)

[BK06] H. L. Bodlaender and A. Koster. Safe separators for treewidth.
Discrete Mathematics, 306(3):337–350, 2006. (Cited in pages 102
and 101.)

[BKC09] M. Boguná, D. Krioukov, and K. C. Claffy. Navigability of complex
networks. Nature Physics, 5(1):74–80, 2009. (Cited in pages 2, 16,
220 and 14.)

[BKK95] H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and path-
width of permutation graphs. SIAM Journal on Discrete Mathemat-
ics, 8(4):606–616, 1995. (Cited in pages 78 and 76.)

[BKKM98] H. L. Bodlaender, T. Kloks, D. Kratsch, and H. Müller. Treewidth
and minimum fill-in on d-trapezoid graphs. J. Graph Algorithms
Appl, 2(5):1–28, 1998. (Cited in pages 78 and 76.)

[BKM01] G. Brinkmann, J. H. Koolen, and V. Moulton. On the hyperbolicity
of chordal graphs. Annals of Combinatorics, 5(1):61–69, 2001. (Cited
in pages 25, 41, 44, 23, 39 and 42.)

[BL97] A. L. Blum and P. Langley. Selection of relevant features and exam-
ples in machine learning. Artificial intelligence, 97(1):245–271, 1997.
(Cited in pages 164 and 162.)

[BL05] Y. Bilu and N. Linial. Monotone maps, sphericity and bounded
second eigenvalue. Journal of Combinatorial Theory, Series B,
95(2):283–299, 2005. (Cited in pages 23 and 21.)

[Bla38] A. Blake. Canonical Expressions in Boolean Algebra. [Chicago], 1938.
(Cited in pages 164 and 162.)

[BM86] H.-J. Bandelt and H. M. Mulder. Distance-hereditary graphs. Jour-
nal of Combinatorial Theory, Series B, 41(2):182–208, 1986. (Cited
in pages 41 and 39.)

[BM93] H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth
of cographs. SIAM Journal on Discrete Mathematics, 6(2):181–188,
1993. (Cited in pages 78 and 76.)

198 Bibliography

[BM08] J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in
Math., 2008. (Cited in page 5.)

[Bod06] H.L. Bodlaender. Treewidth: Characterizations, applications, and
computations. In WG 2006, Bergen, Norway, pages 1–14, 2006.
(Cited in pages 39, 77, 81, 83, 38, 75, 79 and 82.)

[BPK10] M. Boguná, F. Papadopoulos, and D. Krioukov. Sustaining the in-
ternet with hyperbolic mapping. Nature communications, 1:62, 2010.
(Cited in pages 23 and 21.)

[BPS10] A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique
minimal separator decomposition. Algorithms, 3(2):197–215, 2010.
(Cited in pages 3, 18, 55, 61, 62, 77, 78, 85, 89, 221, 16, 53, 58, 60,
75, 76, 83 and 87.)

[BPS11] A. Berry, R. Pogorelcnik, and A. Sigayret. Vertical decomposition
of a lattice using clique separators. In Proceedings of The Eighth In-
ternational Conference on Concept Lattices and Their Applications,
Nancy, France, October 17-20, 2011, pages 15–29, 2011. (Cited in
pages 90 and 88.)

[BPS14] A. Berry, R. Pogorelcnik, and G. Simonet. Organizing the atoms
of the clique separator decomposition into an atom tree. Discrete
Applied Mathematics, 177:1–13, 2014. (Cited in pages 62, 85, 89, 59,
83 and 87.)

[Bra01] U. Brandes. A faster algorithm for betweenness centrality. Journal
of mathematical sociology, 25(2):163–177, 2001. (Cited in pages 23
and 21.)

[BRSV13] S. Bermudo, J. M. Rodríguez, J. M. Sigarreta, and J.-M. Vilaire.
Gromov hyperbolic graphs. Discrete Mathematics, 313(15):1575–
1585, 2013. (Cited in pages 16 and 14.)

[Bry73] T. Brylawski. The lattice of integer partitions. Discrete Mathematics,
6(3):201 – 219, 1973. (Cited in pages 122, 128, 129, 120, 126 and 127.)

[BS11] M. Bonk and O. Schramm. Embeddings of gromov hyperbolic spaces.
In Selected Works of Oded Schramm, pages 243–284. Springer, 2011.
(Cited in pages 15 and 14.)

[BS12] I. Benjamini and O. Schramm. Finite transitive graph embeddings
into a hyperbolic metric space must stretch or squeeze. In Geometric
aspects of functional analysis, pages 123–126. Springer, 2012. (Cited
in pages 52 and 50.)

[BT97] H. L. Bodlaender and D. M. Thilikos. Treewidth for graphs with
small chordality. Discrete Applied Mathematics, 79(1):45–61, 1997.
(Cited in pages 73 and 71.)

[BT12] Y. Baryshnikov and G. H. Tucci. Asymptotic traffic flow in a hy-
perbolic network. In Communications Control and Signal Processing
(ISCCSP), 2012 5th International Symposium on, pages 1–4. IEEE,
2012. (Cited in pages 23 and 21.)

Bibliography 199

[Bun74] P. Buneman. A note on the metric properties of trees. Journal
of Combinatorial Theory, Series B, 17(1):48–50, 1974. (Cited in
pages 14, 25, 69, 12, 23 and 67.)

[BW12] A. Berry and A. Wagler. Triangulation and clique separator decom-
position of claw-free graphs. In International Workshop on Graph-
Theoretic Concepts in Computer Science, pages 7–21. Springer, 2012.
(Cited in pages 86 and 84.)

[BXHR12] B.-M. Bui-Xuan, M. Habib, and M. Rao. Tree-representation of set
families and applications to combinatorial decompositions. European
Journal of Combinatorics, 33(5):688–711, 2012. (Cited in pages 191
and 189.)

[BZ03] N. Burani and W. S. Zwicker. Coalition formation games with sep-
arable preferences. Mathematical Social Sciences, 45(1):27–52, 2003.
(Cited in pages 120, 123, 146, 154, 118, 121, 145 and 152.)

[CCDL17] N. Cohen, D. Coudert, G. Ducoffe, and A. Lancin. Applying clique-
decomposition for computing gromov hyperbolicity. Submitted (Re-
search Report on HAL, hal-00989024), 2017. (Cited in pages 3, 13,
18, 61, 62, 63, 221, 11, 16, 58, 59 and 60.)

[CCL15] N. Cohen, D. Coudert, and A. Lancin. On computing the gromov
hyperbolicity. Journal of Experimental Algorithmics (JEA), 20:1–6,
2015. (Cited in pages 41, 43, 46, 56, 73, 192, 39, 40, 44, 54, 71
and 190.)

[CCNV11] J. Chalopin, V. Chepoi, N. Nisse, and Y. Vaxès. Cop and robber
games when the robber can hide and ride. SIAM Journal on Discrete
Mathematics, 25(1):333–359, 2011. (Cited in pages 32, 34, 46, 50,
30, 44 and 48.)

[CCPP14] J. Chalopin, V. Chepoi, P. Papasoglu, and T. Pecatte. Cop and
robber game and hyperbolicity. SIAM Journal on Discrete Mathe-
matics, 28(4):1987–2007, 2014. (Cited in pages 29, 33, 34, 50, 57, 27,
30, 31, 32, 48 and 55.)

[CD00] V. Chepoi and F. Dragan. A note on distance approximating trees
in graphs. European Journal of Combinatorics, 21(6):761–766, 2000.
(Cited in pages 39, 41, 69, 37 and 67.)

[CD14] D. Coudert and G. Ducoffe. Recognition of c4-free and 1/2-
hyperbolic graphs. SIAM Journal of Discrete Mathematics,
28(3):1601–1617, 2014. (Cited in pages 3, 13, 18, 57, 65, 221, 11,
16 and 63.)

[CD16a] D. Coudert and G. Ducoffe. Data center interconnection networks are
not hyperbolic. Journal of Theoretical Computer Science, 639(1):72–
90, 2016. (Cited in pages 3, 13, 17, 48, 50, 51, 53, 54, 60, 221, 11,
15, 46, 49, 52 and 58.)

200 Bibliography

[CD16b] D. Coudert and G. Ducoffe. On the hyperbolicity of bipartite graphs
and intersection graphs. Discrete Applied Mathematics, 214:187–195,
2016. (Cited in pages 3, 13, 17, 42, 43, 221, 11, 15, 40 and 41.)

[CD17] A. Chaintreau and G. Ducoffe. A theory for ad targeting identifi-
cation. In preparation, 2017. (Cited in pages 5, 159, 163, 169, 184,
223, 157, 161, 167 and 182.)

[CDE+08] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès.
Notes on diameters, centers, and approximating trees of δ-hyperbolic
geodesic spaces and graphs. Electronic Notes in Discrete Mathemat-
ics, 31:231–234, 2008. (Cited in pages 16, 55, 69, 70, 14, 53, 67
and 68.)

[CDE+12] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, Y. Vaxès, and Y. Xi-
ang. Additive spanners and distance and routing labeling schemes
for hyperbolic graphs. Algorithmica, 62(3-4):713–732, 2012. (Cited
in pages 15 and 14.)

[CDHH16] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. Canoni-
cal tree-decompositions of finite graphs I. existence and algorithms.
Journal of Combinatorial Theory, Series B, 116:1–24, 2016. (Cited
in pages 85 and 83.)

[CDN16] D. Coudert, G. Ducoffe, and N. Nisse. To approximate treewidth,
use treelength! SIAM Journal of Discrete Mathematics, 30(3):1424–
1436, 2016. (Cited in pages 4, 40, 75, 79, 104, 105, 107, 108, 109,
222, 38, 73, 77, 102, 103 and 106.)

[CDV16] V. Chepoi, F. Dragan, and Y. Vaxès. Core congestion is inherent
in hyperbolic networks. Technical Report arXiv:1605.03059, ArXiv,
2016. (Cited in pages 15, 21, 23, 50, 71, 13, 19, 48 and 69.)

[CE07] V. Chepoi and B. Estellon. Packing and covering δ-hyperbolic spaces
by balls. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 59–73. Springer, 2007.
(Cited in pages 55, 70, 53 and 68.)

[CFHM13] W. Chen, W. Fang, G. Hu, and M. W. Mahoney. On the hyperbolic-
ity of small-world and treelike random graphs. Internet Mathematics,
9(4):434–491, 2013. (Cited in pages 16, 35, 37, 38, 45, 46, 14, 33, 36,
43 and 44.)

[Cisa] The Zettabyte Era – Trends and Analysis. http://www.
cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.
html. (Cited in pages 1 and 219.)

[Cisb] The Zettabyte Era Officially Begins (How
Much is That?). http://blogs.cisco.com/sp/
the-zettabyte-era-officially-begins-how-much-is-that.
(Cited in page 1.)

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that
http://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that

Bibliography 201

[CKK97] J. Chen, S. P. Kanchi, and A. Kanevsky. A note on approximating
graph genus. Information processing letters, 61(6):317–322, 1997.
(Cited in pages 105 and 103.)

[CKPS10] I. Chatzigiannakis, C. Koninis, P. N. Panagopoulou, and P. G. Spi-
rakis. Distributed game-theoretic vertex coloring. In OPODIS’10,
pages 103–118, 2010. (Cited in pages 4, 119, 126, 222, 117 and 124.)

[CM78] A. K. Chandra and G. Markowsky. On the number of prime impli-
cants. Discrete Mathematics, 24(1):7–11, 1978. (Cited in pages 164
and 162.)

[CN04] I. Chatterji and G. A. Niblo. A characterization of hyperbolic spaces.
Technical report, ArXiv, 2004. (Cited in pages 34 and 32.)

[COS97] D. G. Corneil, S. Olariu, and L. Stewart. Asteroidal triple-free
graphs. SIAM Journal on Discrete Mathematics, 10(3):399–430,
1997. (Cited in pages 41 and 39.)

[Cou90] B. Courcelle. The monadic second-order logic of graphs. I. recogniz-
able sets of finite graphs. Information and computation, 85(1):12–75,
1990. (Cited in pages 77, 103, 75 and 101.)

[CPFV14] M. Camelo, D. Papadimitriou, L. Fàbrega, and P. Vilà. Geometric
routing with word-metric spaces. IEEE Communications Letters,
18(12):2125–2128, 2014. (Cited in pages 23 and 21.)

[CRS15] W. Carballosa, J. M. Rodríguez, and J. M. Sigarreta. Hyperbol-
icity in the corona and join of graphs. Aequationes mathematicae,
89(5):1311–1327, 2015. (Cited in pages 44 and 42.)

[Cun82] William H. Cunningham. Decomposition of directed graphs. SIAM
Journal on Algebraic Discrete Methods, 3(2):214–228, 1982. (Cited
in pages 60 and 58.)

[Dah98] E. Dahlhaus. Minimal elimination of planar graphs. In Scandina-
vian Workshop on Algorithm Theory, pages 210–221. Springer, 1998.
(Cited in pages 90 and 88.)

[Dah02] E. Dahlhaus. Minimal elimination ordering for graphs of bounded
degree. Discrete applied mathematics, 116(1):127–143, 2002. (Cited
in pages 90 and 88.)

[Dai80] D. P. Dailey. Uniqueness of colorability and colorability of planar
4-regular graphs are NP-complete. Discrete Mathematics, 30(3):289
– 293, 1980. (Cited in pages 153 and 150.)

[Dam73] R. M. Damerell. on moore graphs. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 74, pages 227–236.
Cambridge Univ Press, 1973. (Cited in pages 52 and 51.)

[Dam16] P. Damaschke. Computing giant graph diameters. In International
Workshop on Combinatorial Algorithms, pages 373–384. Springer,
2016. (Cited in pages 73 and 71.)

202 Bibliography

[DC17] G. Ducoffe and D. Coudert. Clique-decomposition revisited. In re-
vision (Research Report on HAL, hal-01266147), 2017. (Cited in
pages 4, 75, 78, 86, 87, 88, 90, 111, 222, 73, 76, 84, 85 and 109.)

[DCG14] P. De Caria and M. Gutierrez. On the correspondence between tree
representations of chordal and dually chordal graphs. Discrete Ap-
plied Mathematics, 164:500–511, 2014. (Cited in pages 37 and 35.)

[DCM] Datacenters internationaux | Microsoft. http://www.microsoft.
com/fr-fr/server-cloud/cloud-os/global-datacenters.aspx.
(Cited in pages 1 and 219.)

[DDGY07] Y. Dourisboure, F. F. Dragan, C. Gavoille, and C. Yan. Span-
ners for bounded tree-length graphs. Theoretical Computer Science,
383(1):34–44, 2007. (Cited in pages 23, 77, 21 and 75.)

[DFG11] F. F. Dragan, F. V. Fomin, and P. A. Golovach. Spanners in sparse
graphs. Journal of Computer and System Sciences, 77(6):1108–1119,
2011. (Cited in pages 112 and 110.)

[DG07] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags
of small diameter. Discrete Mathematics, 307(16):2008–2029, 2007.
(Cited in pages 39, 77, 79, 82, 91, 103, 105, 109, 110, 38, 75, 80, 81,
89, 101 and 108.)

[DG09] Y. Dieng and C. Gavoille. On the tree-width of planar graphs. Elec-
tronic Notes in Discrete Mathematics, 34:593–596, 2009. (Cited in
pages 75, 104, 73 and 102.)

[DGM06] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. K-core orga-
nization of complex networks. Physical review letters, 96(4):040601,
2006. (Cited in pages 2, 16, 220 and 14.)

[DH04] E. D. Demaine and M. Hajiaghayi. Equivalence of local treewidth
and linear local treewidth and its algorithmic applications. In Pro-
ceedings of the fifteenth annual ACM-SIAM Symposium on Discrete
algorithms (SODA), pages 840–849. Society for Industrial and Ap-
plied Mathematics, 2004. (Cited in pages 105 and 104.)

[DH08] E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and
its algorithmic applications. The Computer Journal, 51(3):292–302,
2008. (Cited in pages 77, 109, 75 and 107.)

[DHH+05] A. Dress, B. Holland, K. T. Huber, J. H. Koolen, V. Moulton,
and J. Weyer-Menkhoff. δ additive and δ ultra-additive maps, gro-
mov’s trees, and the farris transform. Discrete Applied Mathematics,
146(1):51–73, 2005. (Cited in pages 22 and 20.)

[Die10] Reinhard Diestel. Graph theory. Heidelberg, Graduate Texts in Math-
ematics, 173:451 pp., 2010. 4th edition. (Cited in pages 5, 81, 106,
107, 79 and 105.)

[Dir61] G. A. Dirac. On rigid circuit graphs. In Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, volume 25, pages
71–76. Springer, 1961. (Cited in pages 37 and 35.)

http://www.microsoft.com/fr-fr/server-cloud/cloud-os/global-datacenters.aspx
http://www.microsoft.com/fr-fr/server-cloud/cloud-os/global-datacenters.aspx

Bibliography 203

[DK14] F.F. Dragan and E. Köhler. An approximation algorithm for the
tree t-spanner problem on unweighted graphs via generalized chordal
graphs. Algorithmica, 69(4):884–905, 2014. (Cited in pages 39, 77,
78, 82, 91, 92, 192, 38, 75, 76, 80, 89, 90 and 190.)

[DKL14] F.F. Dragan, E. Köhler, and A. Leitert. Line-distortion, bandwidth
and path-length of a graph. In Algorithm Theory–SWAT 2014, pages
158–169. Springer, 2014. (Cited in pages 78, 91, 92, 192, 76, 89, 90
and 190.)

[DKMY15] B. DasGupta, M. Karpinski, N. Mobasheri, and F. Yahyanejad. Node
expansions and cuts in gromov-hyperbolic graphs. Technical report,
ArXiv, 2015. (Cited in pages 35, 55, 72, 73, 33, 53, 70 and 71.)

[DL07] F. F. Dragan and I. Lomonosov. On compact and efficient routing in
certain graph classes. Discrete applied mathematics, 155(11):1458–
1470, 2007. (Cited in pages 81 and 80.)

[DL15] F.F. Dragan and A. Leitert. On the minimum eccentricity shortest
path problem. In Algorithms and Data Structures – WADS, pages
276–288. Springer, 2015. (Cited in pages 92 and 90.)

[DLCG15] G. Ducoffe, M. Lécuyer, A. Chaintreau, and R. Geambasu. Web’s
transparency for complex targeting: Algorithms, limits and tradeoffs.
In SIGMETRICS’15 Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Modeling of Com-
puter Systems, pages 465–466, 2015. (Cited in pages 5, 159, 165,
168, 177, 223, 157, 164, 166 and 175.)

[DLN16a] G. Ducoffe, N. Legay, and N. Nisse. On the complexity of computing
treebreadth. In IWOCA 2016 – 27th International Workshop on
Combinatorial Algorithms, pages 3–15, 2016. (Cited in pages 4, 75,
78, 91, 92, 93, 94, 98, 111, 222, 73, 76, 89, 90, 96, 109 and 110.)

[DLN16b] G. Ducoffe, S. Legay, and N. Nisse. On computing tree and path de-
compositions with metric constraints on the bags. Technical Report
arXiv:1601.01958, arXiv, 2016. (Cited in pages 91, 93, 94, 96, 97,
89, 92 and 95.)

[DLVM86] P. Duchet, M. Las Vergnas, and H. Meyniel. Connected cutsets of a
graph and triangle bases of the cycle space. Discrete Mathematics,
62(2):145–154, 1986. (Cited in pages 108 and 107.)

[DM47] A. De Morgan. Formal logic: or, the calculus of inference, necessary
and probable. Taylor and Walton, 1847. (Cited in pages 139 and 137.)

[DM15] Reinhard Diestel and Malte Müller. Connected tree-width. Technical
Report arXiv preprint arXiv:1211.7353, ArXiv, oct 2015. (Cited in
pages 108 and 106.)

[DMC12] G. Ducoffe, D. Mazauric, and A. Chaintreau. Can Selfish Groups
be Self-Enforcing? Technical Report arXiv:1212.3782, ArXiv, 2012.
(Cited in pages 5, 117, 153, 155, 223, 115, 151 and 152.)

204 Bibliography

[DMC13a] G. Ducoffe, D. Mazauric, and A. Chaintreau. Can selfish groups be
self-enforcing? In Workshop on Social Computing and User Gener-
ated Content at EC’13, pages 1–47, 2013. (Cited in pages 4, 5, 117,
123, 222, 223, 115 and 121.)

[DMC13b] G. Ducoffe, D. Mazauric, and A. Chaintreau. De la difficulté de
garder ses amis (quand on a des ennemis)! In ALGOTEL 2013 –
15èmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, pages 1–4, 2013. (Cited in pages 123 and 121.)

[DMC17] G. Ducoffe, D. Mazauric, and A. Chaintreau. The complexity of
hedonic coalitions under bounded cooperation. Submitted (Research
Report on ArXiv, arXiv:1212.3782), 2017. (Cited in pages 4, 5, 117,
123, 131, 132, 133, 135, 137, 150, 222, 223, 115, 121, 129, 130, 147
and 148.)

[dMSV11] F. de Montgolfier, M. Soto, and L. Viennot. Treewidth and hyper-
bolicity of the internet. In Network Computing and Applications
(NCA), 2011 10th IEEE International Symposium on, pages 25–32,
Aug 2011. (Cited in pages 46, 77, 44 and 75.)

[DMT96] A. Dress, V. Moulton, and W. Terhalle. T-theory: An overview.
European Journal of Combinatorics, 17(2):161–175, 1996. (Cited in
pages 15, 22, 14 and 20.)

[DP94] X. Deng and C. Papadimitriou. On the Complexity of Cooperative
Solution Concepts. Mathematics of Operations Research, 19(2):257–
266, 1994. (Cited in pages 123, 156, 121 and 154.)

[DP09] R. Duan and S. Pettie. Fast algorithms for (max, min)-matrix multi-
plication and bottleneck shortest paths. In Proceedings of the twen-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
384–391. Society for Industrial and Applied Mathematics, 2009.
(Cited in pages 56 and 54.)

[DRB99] H.N. De Ridder and H.L. Bodlaender. Graph automorphisms with
maximal projection distances. In Fundamentals of Computation The-
ory, pages 204–214. Springer, 1999. (Cited in pages 51 and 49.)

[DTC17] G. Ducoffe, M. Tucker, and A. Chaintreau. Can web’s transparency
tools cope with complex targeting? In preparation, 2017. (Cited in
pages 5, 159, 165, 168, 171, 175, 223, 157, 164, 166, 169 and 173.)

[DTD15] A. Datta, M.C. Tschantz, and A. Datta. Automated experiments on
ad privacy settings. Proceedings on Privacy Enhancing Technologies,
2015(1):92–112, 2015. (Cited in pages 160, 161, 170, 175, 159, 168
and 173.)

[Dua14] R. Duan. Approximation algorithms for the gromov hyperbolicity of
discrete metric spaces. In Latin American Symposium on Theoreti-
cal Informatics, pages 285–293. Springer, 2014. (Cited in pages 57
and 55.)

Bibliography 205

[Duc16] G. Ducoffe. The parallel complexity of coloring games. In SAGT
2016 – 9th International Symposium on Algorithmic Game Theory,
pages 27–39, 2016. (Cited in pages 4, 117, 123, 143, 223, 5, 115, 121
and 140.)

[Dwo08] C. Dwork. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation,
pages 1–19. Springer, 2008. (Cited in pages 118 and 116.)

[DX09] F. F. Dragan and Y. Xiang. How to use spanning trees to navigate in
graphs. In International Symposium on Mathematical Foundations of
Computer Science, pages 282–294. Springer, 2009. (Cited in pages 16
and 14.)

[EDP] European Data Protection Supervisor. https://secure.edps.
europa.eu/EDPSWEB/edps/EDPS/Dataprotection/Legislation.
(Cited in pages 2, 118, 219 and 116.)

[EGM12] B. Escoffier, L. Gourvès, and J. Monnot. Strategic coloring of a
graph. Internet Mathematics, 8(4):424–455, 2012. (Cited in pages 4,
117, 119, 121, 122, 126, 127, 131, 155, 222, 115, 120, 124, 125, 129
and 154.)

[EKS16] K. Edwards, W. S. Kennedy, and I. Saniee. Fast approximation
algorithms for p-centres in large delta-hyperbolic graphs. Technical
report, ArXiv, 2016. (Cited in pages 55, 70, 71, 53, 68 and 69.)

[Ema] Email Statistics Report, 2015-2019. http://www.
radicati.com/wp/wp-content/uploads/2015/02/
Email-Statistics-Report-2015-2019-Executive-Summary.pdf.
(Cited in pages 1 and 219.)

[EPC+92] D. Epstein, M. S. Paterson, J. W. Cannon, D. F. Holt, S. V. Levy,
and W. P. Thurston. Word processing in groups. AK Peters, Ltd.,
1992. (Cited in pages 15 and 13.)

[EPL72] S. Even, A. Pnueli, and A. Lempel. Permutation graphs and tran-
sitive graphs. Journal of the ACM (JACM), 19(3):400–410, 1972.
(Cited in pages 41 and 39.)

[Epp00] D. Eppstein. Diameter and treewidth in minor-closed graph families.
Algorithmica, 27(3-4):275–291, 2000. (Cited in pages 110 and 109.)

[FA05] D. Fukagawa and T. Akutsu. Performance analysis of a greedy algo-
rithm for inferring boolean functions. Information Processing Letters,
93(1):7–12, 2005. (Cited in pages 170, 181, 168 and 179.)

[Fan11] W. Fang. On hyperbolic geometry structure of complex networks.
Technical report, IRIF – Institut de Recherche en Informatique Fon-
damentale, 2011. Report of M1 internship in Microsoft Research
Asia. (Cited in pages 65 and 63.)

[Far72] J. S. Farris. Estimating phylogenetic trees from distance matri-
ces. American Naturalist, pages 645–668, 1972. (Cited in pages 29
and 27.)

https://secure.edps.europa.eu/EDPSWEB/edps/EDPS/Dataprotection/Legislation
https://secure.edps.europa.eu/EDPSWEB/edps/EDPS/Dataprotection/Legislation
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf

206 Bibliography

[Far83] M. Farber. Characterizations of strongly chordal graphs. Discrete
Mathematics, 43(2):173–189, 1983. (Cited in pages 41 and 39.)

[FBE] facebook business – What are Custom Audiences from your website?
https://www.facebook.com/business/help/610516375684216.
(Cited in pages 165, 176, 163 and 174.)

[FBN] Facebook newsroom – Company info. http://newsroom.fb.com/
company-info/. (Cited in pages 1 and 219.)

[FCM14] L. Ferretti, M. Cortelezzi, and M. Mamino. Duality between prefer-
ential attachment and static networks on hyperbolic spaces. EPL
(Europhysics Letters), 105(3):38001, 2014. (Cited in pages 53
and 51.)

[FG01] J. Flum and M. Grohe. Fixed-parameter tractability, definability,
and model-checking. SIAM Journal on Computing, 31(1):113–145,
2001. (Cited in pages 77 and 75.)

[FGKP09] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. On ag-
nostic learning of parities, monomials, and halfspaces. SIAM Journal
on Computing, 39(2):606–645, 2009. (Cited in pages 163 and 161.)

[FGL+15] M. Farrell, T. D. Goodrich, N. Lemons, F. Reidl, F. S. Villaamil, and
B. D. Sullivan. Hyperbolicity, degeneracy, and expansion of random
intersection graphs. In International Workshop on Algorithms and
Models for the Web-Graph, pages 29–41. Springer, 2015. (Cited in
pages 45 and 43.)

[FGT11] F. V. Fomin, P. Golovach, and D. M. Thilikos. Contraction ob-
structions for treewidth. Journal of Combinatorial Theory, Series
B, 101(5):302–314, 2011. (Cited in pages 109 and 107.)

[FH76] S. Foldes and P. L. Hammer. Split graphs. Universität Bonn. Institut
für Ökonometrie und Operations Research, 1976. (Cited in pages 37
and 34.)

[Fin15] E. Fink. Hyperbolicity via geodesic stability. Technical report,
ArXiv, 2015. (Cited in pages 20 and 18.)

[FIV15] H. Fournier, A. Ismail, and A. Vigneron. Computing the gromov
hyperbolicity of a discrete metric space. Information Processing Let-
ters, 115(6):576–579, 2015. (Cited in pages 56, 57, 64, 53, 55 and 62.)

[FK01] S. P. Fekete and J. Kremer. Tree spanners in planar graphs. Dis-
crete Applied Mathematics, 108(1):85–103, 2001. (Cited in pages 112
and 110.)

[FKLL15] P. Floderus, M. Kowaluk, A. Lingas, and E.-M. Lundell. Detect-
ing and counting small pattern graphs. SIAM Journal on Discrete
Mathematics, 29(3):1322–1339, 2015. (Cited in pages 67 and 65.)

[FKP02] A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou. Heuristi-
cally optimized trade-offs: A new paradigm for power laws in the
internet. In P. Widmayer, S. Eidenbenz, F. Triguero, R. Morales,

https://www.facebook.com/business/help/610516375684216
http://newsroom.fb.com/company-info/
http://newsroom.fb.com/company-info/

Bibliography 207

R. Conejo, and M. Hennessy, editors, ICALP Proceedings, pages 110–
122. Springer Berlin Heidelberg, 2002. (Cited in page 46.)

[FLP+15] F. V. Fomin, D. Lokshtanov, M. Pilipczuk, S. Saurabh, and
M. Wrochna. Fully polynomial-time parameterized computations
for graphs and matrices of low treewidth. Technical Report
arXiv:1511.01379, arXiv, 2015. (Cited in pages 88, 90 and 86.)

[FM71] M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and
transitive closure. In Switching and Automata Theory, 1971., 12th
Annual Symposium on, pages 129–131, Oct 1971. (Cited in pages 64
and 62.)

[Gal67] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica
Hungarica, 18(1):25–66, 1967. (Cited in pages 60 and 58.)

[Gav72] F. Gavril. Algorithms for minimum coloring, maximum clique, mini-
mum covering by cliques, and maximum independent set of a chordal
graph. SIAM Journal on Computing, 1(2):180–187, 1972. (Cited in
pages 89 and 88.)

[Gav74] F. Gavril. The intersection graphs of subtrees in trees are exactly
the chordal graphs. Journal of Combinatorial Theory, Series B,
16(1):47–56, 1974. (Cited in pages 37, 82, 83, 35, 80 and 81.)

[GdLH90] E. Ghys and P. de La Harpe. Sur les groupes hyperboliques d’apres
Mikhael Gromov. Birkhauser Boston, Inc., Science Press, 1990.
(Cited in pages 15, 31, 49, 59, 68, 13, 29, 47, 57 and 66.)

[GEC+13] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy, K. Papagian-
naki, and P. Rodriguez. Follow the money: understanding economics
of online aggregation and advertising. In Proceedings of the Internet
measurement conference (IMC), pages 141–148. ACM, 2013. (Cited
in pages 184, 189, 182 and 187.)

[GG78] M. C. Golumbic and C. F. Goss. Perfect elimination and chordal bi-
partite graphs. Journal of Graph Theory, 2(2):155–163, 1978. (Cited
in pages 37 and 35.)

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel
computation: P-completeness theory. Oxford University Press, 1995.
(Cited in pages 138, 139, 145, 136, 137 and 144.)

[GJ85] M. C. Golumbic and R. .E Jamison. The edge intersection graphs of
paths in a tree. Journal of Combinatorial Theory, Series B, 38(1):8–
22, 1985. (Cited in pages 64 and 62.)

[GK86] C. Greene and D. J. Kleitman. Longest chains in the lattice of integer
partitions ordered by majorization. European Journal of Combina-
torics, 7(1):1–10, jan 1986. (Cited in pages 129 and 127.)

[GK14] R. D. Gray and M. Kambites. A strong geometric hyperbolicity prop-
erty for directed graphs and monoids. Journal of Algebra, 420:373–
401, 2014. (Cited in pages 74 and 72.)

208 Bibliography

[GKR13] M. Grohe, K. Kawarabayashi, and B. Reed. A simple algorithm
for the graph minor decomposition: logic meets structural graph
theory. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 414–431. Society
for Industrial and Applied Mathematics, 2013. (Cited in pages 105
and 104.)

[GKS95] M.C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich prob-
lems. Journal of Algorithms, 19(3):449–473, 1995. (Cited in pages 94,
95, 92 and 93.)

[GL05] C. Gavoille and O. Ly. Distance labeling in hyperbolic graphs. In In-
ternational Symposium on Algorithms and Computation, pages 1071–
1079. Springer, 2005. (Cited in pages 15, 23, 68, 14, 21 and 66.)

[GL06] J.-L. Guillaume and M. Latapy. Bipartite graphs as models of com-
plex networks. Physica A: Statistical Mechanics and its Applications,
371(2):795–813, 2006. (Cited in pages 168 and 166.)

[Glo67] F. Glover. Maximum matching in a convex bipartite graph. Naval
Research Logistics Quarterly, 14(3):313–316, 1967. (Cited in pages 37
and 35.)

[GM00] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-
trees. In International Symposium on Graph Drawing, pages 77–90.
Springer, 2000. (Cited in pages 85, 90, 83 and 89.)

[GMN15] A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. Polyno-
mial fixed-parameter algorithms: A case study for longest path on
interval graphs. Technical Report arXiv:1506.01652, arXiv, 2015.
(Cited in pages 88 and 86.)

[GMT84] M. C. Golumbic, C. L. Monma, and W. T. Trotter. Tolerance graphs.
Discrete Applied Mathematics, 9(2):157–170, 1984. (Cited in pages 41
and 39.)

[GO95] A. Gajentaan and M. H. Overmars. On a class of o(n2) problems
in computational geometry. Computational geometry, 5(3):165–185,
1995. (Cited in pages 65 and 63.)

[Gol71] A.J. Goldman. Optimal center location in simple networks. Trans-
portation science, 5(2):212–221, 1971. (Cited in pages 21, 62, 82, 19,
60 and 80.)

[Goo] AdWords Help: About Keyword Planner. https://support.
google.com/adwords/answer/2999770. (Cited in pages 164
and 162.)

[Gou14] J. Gould. SafeGov.org - Google admits data mining student emails
in its free education apps, 2014. (Cited in pages 2, 160, 219 and 158.)

[GR86] S. Greenland and J. M. Robins. Identifiability, exchangeability, and
epidemiological confounding. International journal of epidemiology,
15(3):413–419, 1986. (Cited in pages 168 and 166.)

https://support.google.com/adwords/answer/2999770
https://support.google.com/adwords/answer/2999770

Bibliography 209

[GR13] C. Godsil and G. F. Royle. Algebraic graph theory, volume 207.
Springer Science & Business Media, 2013. (Cited in pages 53 and 51.)

[Gro87] M. Gromov. Hyperbolic groups. In Essays in group theory, pages
75–263. Springer, 1987. (Cited in pages 2, 14, 15, 19, 25, 28, 29, 30,
31, 34, 35, 57, 68, 69, 220, 12, 13, 17, 23, 26, 27, 32, 55, 66 and 67.)

[Gro16] M. Grohe. Tangles and Connectivity in Graphs, pages 24–41.
Springer International Publishing, 2016. (Cited in pages 85 and 83.)

[GS10] M. Groshaus and J.L. Szwarcfiter. Biclique graphs and biclique ma-
trices. Journal of Graph Theory, 63(1):1–16, 2010. (Cited in pages 17,
44, 15 and 42.)

[Ham68] R.C. Hamelink. A partial characterization of clique graphs. Journal
of Combinatorial Theory, 5(2):192–197, 1968. (Cited in pages 17, 42,
15 and 40.)

[Hay85] R. B. Hayward. Weakly triangulated graphs. Journal of Combi-
natorial Theory, Series B, 39(3):200–208, 1985. (Cited in pages 41
and 39.)

[Heg06] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete
Mathematics, 306(3):297–317, 2006. (Cited in pages 84 and 82.)

[HLC07] J. He, D. Long, and C. Chen. An improved ant-based classifier for
intrusion detection. In Third International Conference on Natural
Computation (ICNC 2007), volume 4, pages 819–823. IEEE, 2007.
(Cited in pages 189 and 187.)

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and
their applications. Bulletin of the American Mathematical Society,
43(4):439–561, 2006. (Cited in pages 50 and 48.)

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American statistical association,
58(301):13–30, 1963. (Cited in pages 172 and 170.)

[Hor87] J. D. Horton. A polynomial-time algorithm to find the shortest cycle
basis of a graph. SIAM Journal on Computing, 16(2):358–366, 1987.
(Cited in pages 106 and 104.)

[How79] E. Howorka. On metric properties of certain clique graphs. Journal
of Combinatorial Theory, Series B, 27(1):67–74, 1979. (Cited in
pages 65 and 63.)

[HPR14] V. Hernández, D. Pestana, and J. M. Rodríguez. Bounds on the
hyperbolicity constant. Electronic Notes in Discrete Mathematics,
46:137–144, 2014. (Cited in pages 16, 41, 14 and 38.)

[HSL+14] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson. Mea-
suring price discrimination and steering on e-commerce web sites. In
Proceedings of the 2014 conference on internet measurement confer-
ence, pages 305–318. ACM, 2014. (Cited in pages 170 and 168.)

[HSMK+13] A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy,
D. Lazer, A. Mislove, and C. Wilson. Measuring personalization of

210 Bibliography

web search. In Proceedings of the 22nd international conference on
World Wide Web, pages 527–538. ACM, 2013. (Cited in pages 170
and 168.)

[HT73] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into tricon-
nected components. SIAM Journal on Computing, 2(3):135–158,
1973. (Cited in pages 77, 85, 75 and 83.)

[HTV05] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal
triangulations in time o(nα log n) = o(n2.376). In Proceedings of
the sixteenth annual ACM-SIAM Symposium on Discrete algorithms
(SODA), pages 907–916. Society for Industrial and Applied Mathe-
matics, 2005. (Cited in pages 90 and 88.)

[HW79] G. H. Hardy and E. M. Wright. An introduction to the theory of num-
bers. Oxford University Press, 1979. (Cited in pages 128 and 126.)

[IDC] IDC – Extracting Value from Chaos. http:
//www.emc.com/collateral/analyst-reports/
idc-extracting-value-from-chaos-ar.pdf. (Cited in pages 1
and 219.)

[IPZ98] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have
strongly exponential complexity? In Foundations of Computer Sci-
ence, 1998. Proceedings. 39th Annual Symposium on, pages 653–662.
IEEE, 1998. (Cited in pages 64 and 62.)

[JL04] E. Jonckheere and P. Lohsoonthorn. Geometry of network security.
In American Control Conference, 2004. Proceedings of the 2004, vol-
ume 2, pages 976–981. IEEE, 2004. (Cited in pages 15, 23, 24, 14,
21 and 22.)

[JLB08] E. Jonckheere, P. Lohsoonthorn, and F. Bonahon. Scaled gromov
hyperbolic graphs. Journal of Graph Theory, 57(2):157–180, 2008.
(Cited in pages 16, 46, 73, 14, 44 and 71.)

[JLBB11] E. Jonckheere, M. Lou, F. Bonahon, and Y. Baryshnikov. Euclidean
versus hyperbolic congestion in idealized versus experimental net-
works. Internet Mathematics, 7(1):1–27, 2011. (Cited in pages 23
and 21.)

[Jor69] C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math,
70(185):81, 1869. (Cited in pages 70 and 68.)

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy
is local search? Journal of computer and system sciences, 37(1):79–
100, 1988. (Cited in pages 122, 127, 157, 120, 125 and 155.)

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations, pages 85–103. Springer, 1972.
(Cited in pages 170 and 168.)

[KBSP16] K.-K. Kleineberg, M. Boguñá, M. Serrano, and F. Papadopoulos.
Hidden geometric correlations in real multiplex networks. Nature
Physics, 2016. (Cited in pages 119 and 118.)

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf

Bibliography 211

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of
computing (STOC), pages 767–775. ACM, 2002. (Cited in pages 72
and 71.)

[KK95] T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs.
Journal of Algorithms, 19(2):266–281, 1995. (Cited in pages 78
and 76.)

[KL06] R. Krauthgamer and J.R. Lee. Algorithms on negatively curved
spaces. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 119–132. IEEE, 2006. (Cited in pages 17, 55, 71, 15,
53 and 69.)

[KL13] J. Kleinberg and K. Ligett. Information-sharing in social networks.
Games and Economic Behavior, 82:702–716, 2013. (Cited in pages 4,
115, 117, 118, 119, 121, 122, 123, 124, 126, 127, 151, 153, 155, 222,
113, 120, 125, 150 and 154.)

[Kle07] R. Kleinberg. Geographic routing using hyperbolic space. In IEEE
INFOCOM 2007-26th IEEE International Conference on Computer
Communications, pages 1902–1909. IEEE, 2007. (Cited in pages 23
and 21.)

[KLNS15] A. Kosowski, B. Li, N. Nisse, and K. Suchan. k-Chordal Graphs:
from Cops and Robber to Compact Routing via Treewidth. Algo-
rithmica, 72(3):758–777, 2015. (Cited in pages 23, 77, 21 and 75.)

[Klo96] T. Kloks. Treewidth of circle graphs. International Journal of Foun-
dations of Computer Science, 7(2):111–120, 1996. (Cited in pages 78
and 76.)

[KM02] J. H. Koolen and V. Moulton. Hyperbolic bridged graphs. European
Journal of Combinatorics, 23(6):683–699, 2002. (Cited in pages 25,
40, 65, 23, 38 and 64.)

[KNS13] W. Sean Kennedy, Onuttom Narayan, and Iraj Saniee. On the hyper-
bolicity of large-scale networks. Technical Report arXiv:1307.0031,
ArXiv, 2013. (Cited in pages 55, 57, 58, 59, 73, 53, 56 and 71.)

[Kor11] A. Korolova. Privacy Violations Using Microtargeted Ads: A Case
Study. Journal of Privacy and Confidentiality, 3(1):27–49, 2011.
(Cited in pages 160 and 159.)

[KPK+10] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bo-
guná. Hyperbolic geometry of complex networks. Physical Review
E, 82(3):036106, 2010. (Cited in pages 16, 53, 14 and 51.)

[Kre89] M. W. Krentel. Structure in locally optimal solutions. In Foundations
of Computer Science, 1989., 30th Annual Symposium on, pages 216–
221. IEEE, 1989. (Cited in pages 157 and 155.)

[KS06a] D. Kratsch and J. Spinrad. Between o(nm) and o(nα). SIAM Journal
on Computing, 36(2):310–325, 2006. (Cited in pages 65, 86, 88, 63
and 84.)

212 Bibliography

[KS06b] D. Kratsch and J. Spinrad. Minimal fill in o(n2.69) time. Discrete
mathematics, 306(3):366–371, 2006. (Cited in pages 86 and 84.)

[KS15] K. Kawarabayashi and A. Sidiropoulos. Beyond the euler character-
istic: approximating the genus of general graphs. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting (STOC), pages 675–682. ACM, 2015. (Cited in pages 105
and 103.)

[KSSC99] M. Karonski, E. R. Scheinerman, and K. B. Singer-Cohen. On
random intersection graphs: The subgraph problem. Combina-
torics, Probability and Computing, 8(1&2):131–159, 1999. (Cited
in pages 168, 189, 166 and 187.)

[KW10] B. Krishnamurthy and C. E. Wills. On the leakage of personally
identifiable information via online social networks. SIGCOMM Com-
puter Communication Review, 40(1), jan 2010. (Cited in pages 160
and 158.)

[Lan14] A. Lancin. Study of complex networks properties for the optimiza-
tion of routing models. Theses, Université Nice Sophia Antipolis,
December 2014. (Cited in pages 18 and 16.)

[LB62] C Lekkeikerker and J Boland. Representation of a finite graph by a
set of intervals on the real line. Fundamenta Mathematicae, 51(1):45–
64, 1962. (Cited in pages 37 and 34.)

[LDL+14] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn,
A. Chaintreau, and R. Geambasu. Xray: Enhancing the web’s trans-
parency with differential correlation. In USENIX Security Sympo-
sium, pages 49–64, 2014. (Cited in pages 5, 159, 160, 161, 162, 163,
165, 166, 168, 169, 170, 176, 188, 189, 223, 157, 164, 167, 174, 186
and 187.)

[LdMS98] C. L. Lucchesi, C. P. de Mello, and J. L. Szwarcfiter. On clique-
complete graphs. Discrete Mathematics, 183(1):247–254, 1998.
(Cited in pages 44 and 42.)

[Leh74] P. Lehot. An optimal algorithm to detect a line graph and output
its root graph. Journal of the ACM (JACM), 21(4):569–575, 1974.
(Cited in pages 64 and 62.)

[Lei93] H.-G. Leimer. Optimal decomposition by clique separators. Discrete
mathematics, 113(1-3):99–123, 1993. (Cited in pages 86 and 84.)

[LG14] F. Le Gall. Powers of tensors and fast matrix multiplication. In
Proceedings of the 39th international symposium on symbolic and
algebraic computation, pages 296–303. ACM, 2014. (Cited in pages 56
and 54.)

[LLDM09] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters. Internet Mathematics, 6(1):29–
123, 2009. (Cited in pages 2, 16, 220 and 14.)

Bibliography 213

[LMT17] E. Le Merrer and G. Trédan. Uncovering influence cookbooks : Re-
verse engineering the topological impact in peer ranking services.
In The 20th ACM Conference on Computer-Supported Cooperative
Work and Social Computing. ACM, 2017. (Cited in pages 189
and 187.)

[Lok10] D. Lokshtanov. On the complexity of computing treelength. Discrete
Applied Mathematics, 158(7):820–827, 2010. (Cited in pages 78, 83,
91, 94, 95, 103, 111, 76, 82, 89, 92, 93, 101 and 109.)

[Lot15] Z. Lotker. Voting algorithm in the play julius caesar. In ASONAM
’15, pages 848–855. ACM, 2015. (Cited in page 24.)

[LSS+15] M. Lecuyer, R. Spahn, Y. Spiliopolous, A. Chaintreau, R. Geam-
basu, and D. Hsu. Sunlight: Fine-grained targeting detection at
scale with statistical confidence. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’15, pages 554–566, New York, NY, USA, 2015. ACM. (Cited
in pages 160, 184, 188, 159, 182 and 186.)

[LT15] S. Li and G. H. Tucci. Traffic congestion in expanders and (p,
δ)–hyperbolic spaces. Internet Mathematics, 11(2):134–142, 2015.
(Cited in pages 23, 73, 21, 71 and 72.)

[Mal15] A. Malyshev. Expanders are order diameter non-hyperbolic. Tech-
nical report, ArXiv, 2015. (Cited in pages 50, 72, 48 and 70.)

[Mat12] D. Mattioli. WSJ.com - On Orbitz, Mac Users Steered to Pricier
Hotels, 2012. (Cited in pages 2, 160, 219 and 158.)

[MGEL12] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris. Detecting
price and search discrimination on the internet. In Proceedings of
the 11th ACM Workshop on Hot Topics in Networks, pages 79–84.
ACM, 2012. (Cited in pages 170 and 168.)

[MGHB15] H. Miao, P. Gao, M. Hajiaghayi, and J. Baras. Hypercubemap:
Optimal social network ad allocation using hyperbolic embedding.
In Proceedings of the 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2015, pages 357–
362. ACM, 2015. (Cited in pages 15 and 14.)

[MLH08] Clémence Magnien, Matthieu Latapy, and Michel Habib. Fast com-
putation of empirically tight bounds for the diameter of massive
graphs. ACM Journal of Experimental Algorithmics, 13, 2008. (Cited
in pages 16, 70, 14 and 68.)

[MOS04] E. Mossel, R. O’Donnell, and R. A. Servedio. Learning functions
of k relevant variables. Journal of Computer and System Sciences,
69(3):421–434, 2004. (Cited in pages 163, 170, 187, 188, 161, 168,
185 and 186.)

[MP14] D. Mitsche and P. Prałat. On the hyperbolicity of random graphs.
The Electronic Journal of Combinatorics, 21(2):2–39, 2014. (Cited
in pages 40, 45, 38 and 43.)

214 Bibliography

[MP15] A. Martínez-Pérez. Chordality properties and hyperbolicity on
graphs. Technical report, ArXiv, 2015. (Cited in pages 41 and 39.)

[MRSV10] J. Michel, J. M. Rodríguez, J. M. Sigarreta, and M. Villeta. Gromov
hyperbolicity in cartesian product graphs. Proceedings-Mathematical
Sciences, 120(5):593–609, 2010. (Cited in pages 44 and 42.)

[MS99] V. Moulton and M. Steel. Retractions of finite distance functions
onto tree metrics. Discrete Applied Mathematics, 91(1):215–233,
1999. (Cited in pages 15, 22, 14 and 20.)

[MT01] B. Mohar and C. Thomassen. Graphs on surfaces, volume 10. JHU
Press, 2001. (Cited in pages 105 and 103.)

[MW13] J. R. Marden and A. Wierman. Distributed welfare games. Opera-
tions Research, 61(1):155–168, 2013. (Cited in pages 119, 120, 117
and 118.)

[Mye13] R. B. Myerson. Game theory. Harvard university press, 2013. (Cited
in pages 123 and 121.)

[New02] M. E. J. Newman. Assortative mixing in networks. Physical review
letters, 89(20):208701, 2002. (Cited in pages 24 and 22.)

[Nis14] N. Nisse. Algorithmic complexity: Between Structure and Knowl-
edge How Pursuit-evasion Games help. Accreditation to supervise
research, Université Nice Sophia Antipolis, May 2014. (Cited in
pages 32 and 30.)

[NRS04] S. Nikoletseas, C. Raptopoulos, and P. Spirakis. The existence and
efficient construction of large independent sets in general random
intersection graphs. In International Colloquium on Automata, Lan-
guages, and Programming, pages 1029–1040. Springer, 2004. (Cited
in pages 178 and 176.)

[NS95] W. D. Neumann and M. Shapiro. Automatic structures, rational
growth, and geometrically finite hyperbolic groups. Inventiones
mathematicae, 120(1):259–287, 1995. (Cited in pages 20 and 18.)

[NS11] O. Narayan and I. Saniee. Large-scale curvature of networks. Physical
Review E, 84(6):066108, 2011. (Cited in pages 2, 11, 23, 220, 9
and 21.)

[NST15] O. Narayan, I. Saniee, and G. H. Tucci. Lack of hyperbolicity in
asymptotic erdös–renyi sparse random graphs. Internet Mathemat-
ics, 11(3):277–288, 2015. (Cited in pages 45 and 43.)

[NW83] R. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph.
Discrete Mathematics, 43(2):235–239, 1983. (Cited in pages 32
and 30.)

[OM16] I. Olkin and A. W. Marshall. Inequalities: theory of majorization
and its applications, volume 143. Academic press, 2016. (Cited in
page 128.)

[OR94] M. J. Osborne and A. Rubinstein. A course in game theory. MIT
press, 1994. (Cited in pages 123 and 121.)

Bibliography 215

[Pap95] P. Papasoglu. Strongly geodesically automatic groups are hyperbolic.
Inventiones mathematicae, 121(1):323–334, 1995. (Cited in pages 32
and 30.)

[Pap96] P. Papasoglu. An algorithm detecting hyperbolicity. Geometric
and computational perspectives on infinite groups, 25:193–200, 1996.
(Cited in page 55.)

[Pap03] C. H. Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003. (Cited in pages 138 and 136.)

[PLF02] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an
ant colony optimization algorithm. IEEE transactions on evolution-
ary computation, 6(4):321–332, 2002. (Cited in pages 189 and 187.)

[PR05] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to
geometric routing. Theoretical Computer Science, 344(1):3–14, 2005.
(Cited in pages 22 and 21.)

[Pri94] E. Prisner. A common generalization of line graphs and clique
graphs. Journal of Graph Theory, 18(3):301–313, 1994. (Cited in
pages 44 and 42.)

[Pri95] E. Prisner. Graph dynamics, volume 338. CRC Press, 1995. (Cited
in pages 44 and 42.)

[PRST13] A. Portilla, J. M. Rodrıguez, J. M. Sigarreta, and E. Tourıs. Gromov
hyperbolic directed graphs. Appl. Sinica, 2013. (Cited in pages 74
and 72.)

[PS97] A. Parra and P. Scheffler. Characterizations and algorithmic appli-
cations of chordal graph embeddings. Discrete Applied Mathematics,
79:171–188, 1997. (Cited in pages 84 and 82.)

[PS08] P. N. Panagopoulou and P. G. Spirakis. A game theoretic approach
for efficient graph coloring. In ISAAC’08, pages 183–195, 2008.
(Cited in pages 119, 122, 126, 127, 131, 117, 120, 124, 125 and 129.)

[Qui83] A. Quilliot. Problèmes de jeux, de point fixe, de connectivité et de
représentation sur des graphes, des ensembles ordonnés et des hyper-
graphes. PhD thesis, Thèse de doctorat d’état, Université de Paris
VI, France, 1983. (Cited in pages 32 and 30.)

[Reu16] Bernhard Reus. Robustness of p. In Limits of Computation, pages
173–181. Springer, 2016. (Cited in pages 17 and 15.)

[RS84] N. Robertson and P. D. Seymour. Graph minors. III. planar tree-
width. Journal of Combinatorial Theory, Series B, 36(1):49–64,
1984. (Cited in pages 109 and 107.)

[RS86] N. Robertson and P.D. Seymour. Graph minors. II. algorithmic as-
pects of tree-width. Journal of algorithms, 7(3):309–322, 1986. (Cited
in pages 39, 76, 37 and 74.)

[RS10] P. Raghavendra and D. Steurer. Graph expansion and the unique
games conjecture. In ACM STOC, pages 755–764. ACM, 2010.
(Cited in pages 72 and 70.)

216 Bibliography

[RST94] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a
planar graph. Journal of Combinatorial Theory, Series B, 62(2):323–
348, 1994. (Cited in pages 109 and 107.)

[RW09] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume
317. Springer Science & Business Media, 2009. (Cited in pages 20
and 18.)

[Saf13] SafeGov.org. Declaration of Kyle C. Wong in Support of Google
Inc.’s Opposition to Plaintiffs’ Motion for Class Certification, 2013.
(Cited in pages 160 and 158.)

[Sch91] A. A. Schäffer. Simple local search problems that are hard to solve.
SIAM journal on Computing, 20(1):56–87, 1991. (Cited in pages 146
and 145.)

[Sch92] P. Scheffler. Optimal embedding of a tree into an interval graph
in linear time. Annals of Discrete Mathematics, 51:287–291, 1992.
(Cited in pages 105 and 103.)

[SD10] S.-C. Sung and D. Dimitrov. Computational complexity in ad-
ditive hedonic games. European Journal of Operational Research,
203(3):635–639, 2010. (Cited in pages 154 and 152.)

[Sei74] D. Seinsche. On a property of the class of n-colorable graphs. Journal
of Combinatorial Theory, Series B, 16(2):191–193, 1974. (Cited in
pages 41 and 39.)

[Sey16] P. Seymour. Tree-chromatic number. Journal of Combinatorial The-
ory, Series B, 116:229–237, 2016. (Cited in pages 77 and 75.)

[SG11] Mauricio A. Soto Gómez. Quelques propriétés topologiques des
graphes et applications à internet et aux réseaux. PhD thesis, Univ.
Paris Diderot (Paris 7), 2011. (Cited in pages 30, 34, 38, 60, 61, 28,
32, 36, 58 and 59.)

[Sha11] Y. Shang. Lack of gromov-hyperbolicity in colored random networks.
PanAmerican Mathematical Journal, 21(1):27–36, 2011. (Cited in
pages 45 and 43.)

[Sha12] Y. Shang. Lack of gromov-hyperbolicity in small-world networks.
Open Mathematics, 10(3):1152–1158, 2012. (Cited in pages 45
and 43.)

[Sha13] Y. Shang. Non-hyperbolicity of random graphs with given expected
degrees. Stochastic Models, 29(4):451–462, 2013. (Cited in pages 45,
46, 43 and 44.)

[Shc13a] V. Shchur. A quantitative version of the morse lemma and quasi-
isometries fixing the ideal boundary. Journal of Functional Analysis,
264(3):815–836, 2013. (Cited in pages 20 and 18.)

[Shc13b] V. Shchur. Quasi-isometries between hyperbolic metric spaces, quan-
titative aspects. PhD thesis, Université Paris-Sud, 2013. (Cited in
pages 49, 59, 68, 47, 57 and 66.)

Bibliography 217

[Shi77] D. R. Shier. A min-max theorem for p-center problems on a tree.
Transportation Science, 11(3):243–252, 1977. (Cited in pages 70
and 68.)

[ST08] Y. Shavitt and T. Tankel. Hyperbolic embedding of internet graph
for distance estimation and overlay construction. IEEE/ACM Trans-
actions on Networking (TON), 16(1):25–36, 2008. (Cited in pages 23
and 21.)

[Sys79] M.M. Sysło. Characterizations of outerplanar graphs. Discrete Math-
ematics, 26(1):47–53, 1979. (Cited in pages 63 and 61.)

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972. (Cited in pages 77, 85,
90, 75, 83 and 88.)

[Tar85] R. E. Tarjan. Decomposition by clique separators. Discrete Mathe-
matics, 55(2):221 – 232, 1985. (Cited in pages 64, 78, 85, 86, 62, 76,
83 and 84.)

[TDDW15] M.C. Tschantz, A. Datta, A. Datta, and J.M. Wing. A methodology
for information flow experiments. In Computer Security Founda-
tions Symposium (CSF), 2015 IEEE 28th, pages 554–568, July 2015.
(Cited in pages 166 and 164.)

[Ten16] S.-H. Teng. Scalable algorithms for data and network analysis. Foun-
dations and Trends in Theoretical Computer Science, 12(1–2):1–274,
2016. (Cited in pages 1 and 219.)

[The14] The Guardian. Snapchat’s expired snaps are not deleted, just hidden,
2014. (Cited in pages 2 and 219.)

[Tho89] C. Thomassen. The graph genus problem is NP-complete. Journal
of Algorithms, 10(4):568–576, 1989. (Cited in pages 105 and 103.)

[Tuc13] G. H. Tucci. Non-hyperbolicity in random regular graphs and their
traffic characteristics. Central European Journal of Mathematics,
11(9):1593–1597, 2013. (Cited in pages 45 and 43.)

[Twi] Twitter Usage Statistics. http://www.internetlivestats.com/
twitter-statistics/. (Cited in pages 1 and 219.)

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selec-
tively reduce acyclic hypergraphs. SIAM Journal on Computing,
13(3):566–579, 1984. (Cited in pages 89 and 87.)

[Ueh99] R. Uehara. Tractable and intractable problems on generalized
chordal graphs. Models of Computation and Algorithms, 1093:27–
32, 1999. (Cited in pages 41 and 39.)

[Val12] G. Valiant. Finding correlations in subquadratic time, with applica-
tions to learning parities and juntas. In Foundations of Computer
Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 11–
20. IEEE, 2012. (Cited in pages 163, 188, 161 and 186.)

http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/

218 Bibliography

[VDSVS12] J. Valentino-Devries, J. Singer-Vine, and A. Soltani. WSJ.com -
Websites Vary Prices, Deals Based on Users’ Information, 2012.
(Cited in pages 2, 160, 219 and 158.)

[VS14] K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and
social networks. In Proceedings of the thirtieth annual symposium on
Computational geometry, page 501. ACM, 2014. (Cited in pages 15,
17, 22, 45, 46, 48, 49, 55, 68, 14, 20, 43, 44, 53 and 66.)

[VWW10] V. Vassilevska Williams and R. Williams. Subcubic equivalences be-
tween path, matrix and triangle problems. In 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages
645–654. IEEE, 2010. (Cited in pages 65, 87, 63 and 85.)

[VWWWY15] V. Vassilevska Williams, J. R. Wang, R. Williams, and H. Yu.
Finding four-node subgraphs in triangle time. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 1671–1680. SIAM, 2015. (Cited in pages 67 and 65.)

[WAPL14] Y. Wu, P. Austrin, T. Pitassi, and D. Liu. Inapproximability of
treewidth and related problems. J. Artif. Intell. Res. (JAIR), 49:569–
600, 2014. (Cited in pages 77 and 75.)

[Whi92] H. Whitney. Congruent graphs and the connectivity of graphs.
In Hassler Whitney Collected Papers, pages 61–79. Springer, 1992.
(Cited in pages 3, 17, 42, 221, 15 and 40.)

[Wil16] Vassilevska Williams. Fine-grained algorithms and complexity (in-
vited talk). In 33rd Symposium on Theoretical Aspects of Computer
Science (STACS 2016), volume 47, page 3. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016. (Cited in pages 17, 64, 67, 87, 16,
62, 65 and 85.)

[WLJX12] C. Wang, T. Liu, W. Jiang, and K. Xu. Feedback vertex sets on
tree convex bipartite graphs. In COCOA 2012, Banff, AB, Canada,
pages 95–102, 2012. (Cited in pages 92, 98, 90 and 96.)

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. nature, 393(6684):440–442, 1998. (Cited in pages 2, 16,
220 and 14.)

[WZ11] Y. Wu and C. Zhang. Hyperbolicity and chordality of a graph.
the Electronic Journal of Combinatorics, 18(1):P43, 2011. (Cited
in pages 27, 35, 40, 41, 47, 58, 63, 65, 25, 33, 38, 39, 45, 56, 61
and 64.)

[Yan15] M. Yancey. An investigation into graph curvature’s ability to mea-
sure congestion in network flow. Technical Report arXiv:1512.01281,
ArXiv, 2015. (Cited in pages 23, 39, 69, 73, 21, 36, 67 and 71.)

Appendix A

Résumé de la thèse

A.1 Contexte

Le partage d’information en ligne a gagné en importance au cours de ces dernières
décennies. Les chiffres parlent d’eux mêmes: en 2015 il y a eu 205 milliards de
courriels échangés quotidiennement [Ema]; sur la même période, près de 500 millions
de tweets par jour ont été envoyés [Twi]; on observe plus généralement une hausse
du trafic Internet, qui est passé de 100 GB par jour en 1992 à 20 235 GBps en
2015 [Cisa]. De même le volume des données stockées a explosé, avec des prévisions
de l’ordre de 40 zettaoctets pour 2020 [IDC].

Alors que nous entrons de plain-pied dans cette “ère du zettaoctet”, les techni-
ciens de l’information se retrouvent confrontés à diverses problématiques qui sont
régulièrement relayées par les médias. Dans cette thèse, nous nous intéressons à
deux de ces problématiques:
• Le Passage à l’échelle – défini dans [Ten16] comme l’impératif d’obtenir des

algorithmes en temps quasi-linéaire en la taille des réseaux. Dans une perspec-
tive plus large, il y a une demande croissante d’algorithmes efficaces pour gérer
les réseaux de communication. Ces demandes émanent de nombreux domaines
scientifiques tels que ceux des télécommunications, de la bio-informatique, de la
vision artificielle et de l’économie. La difficulté principale est qu’avec l’essor des
échanges d’information et des collectes de données en ligne la taille des réseaux
a augmenté, avec à présent des millions de serveurs dans certains centres de
données [DCM], des milliards d’utilisateurs sur les réseaux sociaux [FBN], etc.
Devant pareilles tailles mêmes les algorithmes cas d’école ne passent pas tous
à l’échelle, ce qui accroît le fossé entre ce qui est calculable et ce qu’on veut
calculer. Il y a donc lieu de redéfinir ce que signifie un calcul efficace, ou qui
passe à l’échelle, dans ce contexte.

Nous proposons des avancées dans cette direction en nous basant sur des outils
de la théorie des graphes et de la complexité.
• Le respect de la vie privée – est défini dans [EDP] comme “un droit qui inter-
dit aux autorités publiques [et à toute autre organisation ou individu] d’exercer
des mesures [de nature à rendre publique la vie privée des gens] à moins que cer-
taines conditions soient vérifiées.” Plus précisément, des inquiétudes naissent
de la collecte effrénée de données par les entreprises en ligne, dont les dérives
se font jour fréquemment [Gou14, Mat12, VDSVS12, The14]. De là le besoin

220 Appendix A. Résumé de la thèse

de modèles prédictifs afin que chaque individu puisse détecter ces dérives, voire
même les identifier.

Nos principaux outils pour cette tâche sont ceux de la théorie de l’apprentissage
et la théorie algorithmique des jeux.
Avant d’annoncer nos résultats dans la Section A.2, nous commençons par es-

quisser notre approche pour cette thèse. Le travail présenté est la somme de plusieurs
problèmes combinatoires sur les graphes, dont l’étude est motivée par les deux prob-
lématique exposées ci-dessus. Puisque les solutions proposées pour ces problèmes
doivent passer à l’échelle sur les grands réseaux, on s’intéresse tout particulièrement
à l’étude fine de leur complexité.

En particulier, la Partie I est dédiée à l’étude de paramètres dans les graphes
dont les relations avec les problématiques ci-dessus ont été montrées dans d’autres
travaux [NS11]. L’étude des propriétés des “réseaux complexes”, ainsi que de leurs
applications, est un sujet bien établi [LLDM09, BAJ00, BKC09, WS98, DGM06].
Dans notre cas, l’accent est mis sur la proximité des métriques de graphes avec les
métriques d’arbres [Gro87]. Ce sujet a reçu une attention croissante au cours des
dernières décennies. Nous détaillons dans la Partie I comment les avantages et les
inconvénients des arbres (avec d’un côté d’importantes applications algorithmiques
mais de l’autre côté des vulnérabilités bien connues) peuvent s’étendre aux graphes
qui sont (métriquement) proches des arbres.

Cette ligne principale de la thèse sera complétée dans la Partie II par l’analyse de
deux processus dynamiques sur les graphes. Ces deux processus modélisent des as-
pects fondamentaux de la problématique du respect de la vie privée dans les réseaux
de communications. En d’autres termes, l’objectif dans cette ligne secondaire de la
thèse est de concevoir des outils (qui passent à l’échelle) afin de renforcer le respect
de la vie privée dans ces réseaux.

A.2 Contributions

Notre travail est exposé dans deux parties disjointes et indépendantes l’une de
l’autre. Leur contenu est présenté dans les Sections A.2.1 et A.2.2 ci-dessous.

Par ailleurs, l’annexe regroupe l’ensemble des articles par lesquels les résultats de
cette thèse ont été publiés. En effet, nous avons fait le choix de ne pas inclure toutes
les preuves dans le corps des chapitres, en partie pour des raisons de lisibilité car
certaines d’entre elles dépassent allègrement la douzaine de pages. Seront seulement
données les preuves qui, de notre point de vue, illustrent le mieux les techniques
utilisées. Le tout accompagné d’esquisses des preuves les plus longues.

A.2.1 Partie I: Sur les graphes dont la métrique est proche de celle
d’un arbre

Nous étudions dans la Partie I des propriétés métriques des graphes et des décompo-
sitions de graphes. L’objectif majeur de cette partie est l’étude fine de la complexité

A.2. Contributions 221

de leur calcul. En particulier, ces propriétés peuvent-elles être calculées sur de très
grands graphes, avec parfois des millions de noeuds et des milliards d’arêtes ? Nos
pistes pour répondre à ces questions nous ont amené à étudier les relations entre
les propriétés métriques d’un graphe et ses propriétés structurelles, topologiques,
algébriques, etc.

A.2.1.1 Chapitre 2: Une vue d’ensemble sur l’hyperbolicité dans les
graphes

Ce chapitre introduit la notion d’hyperbolicité dans les graphes. Ce paramètre
donne des bornes sur la meilleure distorsion possible des distances dans un graphe
quand il est plongé dans un arbre.

Tout d’abord nous démontrons plusieurs résultats, positifs comme négatifs, sur
la complexité du calcul de ce paramètre. Plus précisément, sur le plan positif nous
proposons une méthode de pré calcul afin de réduire la taille des graphes en entrée de
nos algorithmes. Cette méthode utilise une décomposition des graphes bien connue,
selon les cliques-séparatrices [BPS10]. Nous en faisons une analyse poussée. Sur un
plan plus négatif, nous prouvons que reconnaître les graphes de petite hyperbolicité
(au plus 1/2) est un problème de complexité équivalente à la détection de carrés
induits dans un graphe. Ce résultat implique, sous certaines hypothèse de complexité
standard, que calculer l’hyperbolicité d’un graphe est impossible en temps sous-
cubique. Ces travaux ont été réalisés en collaboration avec Nathann Cohen, David
Coudert et Aurélien Lancin [CD14, CCDL17].

Ensuite, nous établissons de nouvelles bornes sur ce paramètre dans des classes
de graphes utilisées dans la conception des réseaux d’interconnexion de centre de
données. Dans la pratique, nous avons utilisé ce résultat pour estimer fidèlement
l’hyperbolicité de graphes de très grande taille sans le moindre calcul. Nous complé-
tons ce résultat par une analyse fine des variations de l’hyperbolicité sous certaines
opération bien connues sur les graphes telles que le graphe adjoint, le graphe des
cliques, etc. Cette analyse prend une tout autre saveur dans les cas où l’opération
peut facilement s’inverser (par exemple, la racine d’un graphe adjoint se calcule en
temps linéaire [Whi92]), car elle donne alors de nouvelles méthodes de pré calcul
pour le calcul de l’hyperbolicité d’un graphe. Ce travail a été réalisé en commun
avec David Coudert [CD16a, CD16b].

A.2.1.2 Chapitre 3: Décompositions arborescentes avec des contraintes
sur les distances dans les sacs

De nouveaux résultats sont présentés sur la complexité du calcul de décompositions
arborescentes avec des contraintes sur les distances dans les sacs (ç.a.d. les sous-
graphes résultant de la décomposition).

D’abord, on présente une analyse fine de la complexité du calcul de la décompo-
sition d’un graphe selon ses cliques-séparatrices. La complexité de ce problème est
prouvée équivalente, sous des hypothèses de complexité standard, à la détection de

222 Appendix A. Résumé de la thèse

triangles dans un graphe et au produit de deux matrices carrées. Sur un plan plus
positif nous montrons que cette décomposition est calculable en temps quasi-linéaire
pour des classes de graphes où la taille d’une plus grande clique est bornée par une
constante. Ce travail a été réalisé en commun avec David Coudert [DC17].

Dans un deuxième temps, nous répondons à des questions ouvertes de la lit-
térature sur la complexité du calcul de différents paramètres métriques des graphes,
tous reliés à l’hyperbolicité (treebreadth, pathbreadth et pathlength). Nous prou-
vons que pour tous ces paramètres, leur calcul est un problème NP-difficile. En
particulier, nous montrons que reconnaître les graphes de treebreadth au plus une
est NP-complet. Cependant, nous prouvons que ce dernier problème devient poly-
nomial si l’on se restreint aux graphes bipartis et aux graphes planaires. Ce travail
a été réalisé en collaboration avec Sylvain Legay et Nicolas Nisse [DLN16a].

Enfin, nous étudions les relations entre une autre propriété métrique des graphes:
la treelength, et une propriété structurelle bien connue: la treewidth des graphes.
Nous bornons la treewidth par deux fonctions affines de la treelength dans les classes
de graphes sans long cycle isométrique et de genre borné. Sur le plan algorithmique,
on mentionne plusieurs applications de ce résultat. C’est un travail effectué en
commun avec David Coudert et Nicolas Nisse [CDN16].

A.2.2 Partie II: Le respect de la vie privée à grande échelle dans
les réseaux sociaux

Deux problèmes autour du respect de la vie privée sont introduits et étudiés dans
cette partie. Notre objectif est d’obtenir une analyse fine de leur complexité.

A.2.2.1 Chapitre 4: le calcul d’équilibres dans les jeux de coloration

Nous considérons un jeu de coloration sur les graphes. Ce jeu a été proposé
dans [KL13] pour modéliser la dynamique des communautés dans les réseaux so-
ciaux. D’autres applications avaient été précédemment suggérées pour ce jeu, dont
la sécurisation de groupes de communication [CKPS10].

Nous présentons de nouveaux résultats sur la complexité du calcul d’équilibres
dans ce jeu. Pour être plus précis, nous nous concentrons tout d’abord sur le calcul
d’équilibres par meilleure réponse. Cette méthode de recherche locale permet de
calculer, pour tout entier k, un équilibre de Nash robuste contre toutes les coalitions
d’agents possibles de taille au plus k. Sur le plan positif, nous établissons le temps
de convergence exact de cette méthode dans le pire cas, pour k ≤ 2. Toutefois, sur le
plan négatif, nous prouvons que ce temps de convergence n’est pas polynomialement
borné dès que k ≥ 4. Ce résultat négatif répond aux questions ouvertes de [EGM12,
KL13]. Ce travail a été effectué en commun avec Dorian Mazauric et Augustin
Chaintreau [DMC13a, DMC17].

Nous complétons ce dernier résultat par une analyse plus fine de la complexité du
calcul d’un équilibre de Nash dans le jeu de coloration (robuste contre les déviations
de n’importe quel agent). On montre que ce problème est P-difficile, ce qui suggère

A.2. Contributions 223

qu’il est intrinsèquement séquentiel [Duc16].
Enfin, le reste du chapitre est dédié à une généralisation naturelle du jeu de

coloration sur les graphes arêtes-pondérés. Nous donnons des conditions suffisantes
pour l’existence d’équilibres dans ces jeux qui dépendent de la structure du graphe
sous-jacent (notamment, de sa maille). Nous proposons également des constructions
surprenantes de jeux pour lesquels de tels équilibres n’existent pas. Pour finir, il
est prouvé que reconnaître les jeux de coloration généralisés qui admettent de tels
équilibres est un problème NP-complet. Des extensions de tous ces résultats à des
classes de jeux plus générales sont aussi discutées. C’est un travail commun avec
Dorian Mazauric et Augustin Chaintreau [DMC12, DMC13a, DMC17].

A.2.2.2 Chapitre 5: Apprentissage de formules logiques dans un modèle
bruité

Nous consacrons le dernier chapitre à un problème d’apprentissage dont le contexte
peut s’énoncer comme suit. Soient un ensemble D (qui représente des mots-clefs)
et un graphe où chaque sommet est étiqueté par un sous-ensemble de D (ç.a.d.
une collection de mots-clefs présents dans les courriels d’un utilisateur). On assigne
un Booléen à chaque sommet selon un processus (boîte noire) aléatoire, qui lui-
même est corrélé à une certaine fonction Booléenne (inconnue) sur les étiquettes. Le
problème posé est l’apprentissage de cette fonction. Nous entendons ainsi modéliser
le problème de la détection de l’utilisation des données utilisateur dans les campagnes
publicitaires en ligne.

D’abord nous proposons un algorithme pour apprendre la fonction dans un
cas simple où elle dépend d’au plus une variable. Cet algorithme est à la base
de méthodes d’apprentissage plus sophistiquées pour d’autres classes de fonc-
tions — mais sous des hypothèses plus contraignantes. Par ailleurs il est mon-
tré que sans ces hypothèses supplémentaires, il est impossible d’apprendre la
fonction dès qu’elle dépend d’au moins deux variables. Ce travail a été ef-
fectué en collaboration avec Mathias Lécuyer, Francis Lan, Max Tucker, Riley
Sphan, Andrei Papancea, Theofilos Petsios, Augustin Chaintreau et Roxana Geam-
basu [LDL+14, DLCG15, DTC17, CD17].

	Introduction
	Context
	Contributions
	Part I: Metric tree-likeness in graphs
	Part II: Privacy at large scale in social graphs

	Preliminaries and notations
	List of publications

	I Metric tree-likeness in graphs
	A survey on graph hyperbolicity
	Introduction
	First objective: characterizing ``hyperbolic'' and ``non hyperbolic'' graph classes
	Second objective: computing the hyperbolicity of large graphs
	Outline of the chapter

	Motivation
	Implications/applications of hyperbolicity

	Definitions of hyperbolicity
	-hyperbolic graphs
	Reformulation of hyperbolicity
	What is a ``hyperbolic'' graph ?

	Hyperbolic graph classes
	Tree-likeness in graphs and hyperbolicity
	Classical upper-bounds on hyperbolicity
	Contribution: Graph operations and hyperbolicity
	Conclusion and open perspectives

	Obstructions to hyperbolicity
	Related work: random graphs are non hyperbolic
	Lower-bounds on the hyperbolicity
	Open problems

	On computing the hyperbolicity of graphs
	Related work
	Contribution of this thesis: Preprocessing
	Hardness results

	Algorithmic applications
	Distance approximations
	p-centers
	Traveling Salesman Problem
	Cut problems

	Conclusion

	Tree decompositions with metric constraints on the bags
	Introduction
	Context
	General objective: efficient computation of tree decompositions

	Some basics on tree decompositions
	Tree-likeness parameters
	Relationship with triangulations
	Tree decompositions with constrained adhesion sets

	Computational aspects of clique-decomposition
	State of the art
	Contributions
	Summarizing the proofs

	On the complexity of computing treebreadth and its relatives
	Summarize of our contributions
	Approach and the techniques used in the proofs
	Open problems and future work

	Treewidth versus treelength!
	State of the art
	Contributions: upper and lower bounds for treewidth by using treelength
	Proving the bounds

	Conclusion

	II Privacy at large scale in social graphs
	The computation of equilibria in coloring games
	Introduction
	Presentation of coloring games
	Contributions

	Definitions
	Stable partitions and better-response dynamics
	Friendship and conflict graphs

	Unweighted games: the time of convergence for better-response dynamics
	A finer-grained complexity for the problem of computing k-stable partitions
	Closed formula for the worst-case time of convergence of better-response dynamics (k 2)
	Lower-bounds for the worst-case time of convergence of better-response dynamics (k 4)

	The parallel complexity of coloring games
	Overall approach and main result
	The reduction
	Proof of the main result

	Weighted games: existence of equilibria
	Positive results
	The hardness of recognizing games with k-stable partitions

	Extensions of coloring games
	Gossiping
	Asymmetry
	List coloring games
	Coloring games on hypergraphs

	Concluding remarks

	Learning formulas in a noisy model
	Introduction
	Our results
	Outline of the chapter

	Learning model
	PAC learning
	Juntas
	The oracle
	Distribution for the sampler

	Single-input targeting
	Our results
	Reduction to Set Cover
	Concentration inequalities
	Proof overview

	Complex targeting: the case of monotonic functions
	Beyond single-input: the influence of the targeting lift
	Faster algorithms and tradeoffs
	Conclusion and open perspectives

	General case
	Identification of the relevant inputs
	Filtering technique
	Impossibility results

	Conclusion

	Conclusion
	Open perspectives

	Bibliography
	Résumé de la thèse
	Contexte
	Contributions
	Partie I: Sur les graphes dont la métrique est proche de celle d'un arbre
	Partie II: Le respect de la vie privée à grande échelle dans les réseaux sociaux

