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Abstract. In this work we will deal with a macroscopic model of multi-anticipative
car-following behaviour i.e. driving behaviour taking into account several vehicles
ahead. Some empirical studies have suggested that drivers not only react to the
closest leader vehicle but also anticipate on traffic conditions further ahead. Using
a recent mathematical result of homogenization for a general class of car-following
models (and also available for multi-anticipative models), we will deeply investigate
the effects of multi-anticipation at the microscopic level on the macroscopic traffic
flow. To investigate multi-anticipation behaviour may be fundamental to understand
better cooperative traffic flow dynamics.

1 Introduction

1.1 Motivation

Our motivation comes from the sky-rocketing development of new technologies in
transportation leading to the multiplication of Intelligent Transportation Systems
(ITS). More precisely we would like to assess the impact of cooperative systems on
general traffic flow. Cooperative systems include vehicle-to-vehicle (V2V) or vehicle-
to-infrastructure (V2I) communications, generally designated as V2X technologies.
There is a fast growing literature about cooperative systems. The interested reader
can refer for instance to [14] and references therein.

The fact that the observed headway between two consecutive vehicles is often
strictly less than the reaction time of the drivers, suggests that drivers anticipate
on more than one leader. Indeed, if not, the proportion of accidents should be dra-
matically increased. The multi-anticipation has been shown as a key element for the
stabilization of traffic flow, above all in dense traffic situations.

However multi-anticipation behaviour has only been taken into consideration at
a microscopic scale. Indeed such macroscopic models as the Payne-Whitham one
only account for anticipation in time. The macroscopic issues encompass multi-lane
traffic with lane changing and assignment but also multi-anticipation on each lane
or the combination of those both processes. In classical approaches, the whole traffic
is projected on a single line to simplify the problem in a one-dimensional framework.
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1.2 Notations

Let x denotes the position and t > 0 the time. xi(t) refers to the trajectory of the
vehicle i ∈ Z. The speed and the acceleration of vehicle i are described by the first
and second derivative of xi w.r.t. time. Notice that we also introduce a time delay
T ≥ 0.

We assume that the vehicles are labelled according to a snapshot of a section
of road from upstream to downstream (see Figure 1). Vehicle labels increase with
x. Thus (xi+1 − xi)(t) is the spacing and (ẋi+1 − ẋi)(t) the relative speed at time t
between vehicle i and its leader (i+ 1). We also denote by m ≥ 1 the total number
of leaders that are considered by vehicle i ∈ N.

x

xi−1xi−2 xi+1 xi+2xi

Fig. 1. Notations for the microscopic car-following models

At the macroscopic level, we denote respectively the density and the flow of
vehicles at location x and time t as ρ(x, t) and Q(x, t).

1.3 Main results and organization of the paper

As a main result we describe a new macroscopic model that encompass multi-
anticipative car-following behaviour that are classically taken into account only at
the microscopic scale. Moreover our model is able to consider multi-lane dynamics.

The rest of the paper is organized as follows: we first recall some existing multi-
anticipative car-following models in Section 2. We particularly highlight what we
think to be the seminal form of such a model. In Section 3, we describe the formal
mathematical result that allows us to pass from microscopic models to equivalent
macroscopic ones. Our macro model is also described in Section 4. Finally we provide
some numerical considerations in Section 5 before to discuss the results and to
conclude.

2 Multi-anticipative traffic modelling: an introduction

Multi-anticipative models. The main existing multi-anticipative car-following
models come from adaptations of classical car-following ones with a single leader
vehicle. We recall below some examples. The interested reader could refer to [4] for
references. We can quote for instance

• the model of Bexelius extends the car-following model of Chandler et al..
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• Lenz et al. extend the model of Bando et al., yielding a second order multi-
anticipative model.

• Hoogendoorn et al. [7] propose an extension of the model of Helly

ẍi(t+ T ) =

m1
∑

j=1

αj (ẋi+j − ẋi) (t) +

m2
∑

j=1

βj [(xi+j − xi) (t)− S0 − jT ẋi(t)] , (1)

with two different number of considered leaders m1 ≥ 1 and m2 ≥ 1 according
to either speed variations or headway variations.

• Treiber et al. introduces the Human Driver Model (HDM) as an extension of his
well-known Intelligent Driver Model (IDM).

• Farhi et al. [4] describes a first order model that extends the Min-Plus car-
following model. This model is described in Section 3. As it is based on algebra
Min-Plus, it is easy to check its global properties.

Remark 1. The additive form in the multi-anticipative models yields models which
are easier to study analytically. But the minimum form expresses the fact that a
driver will adapt its velocity (or equivalently its acceleration) according to the worst
behaviour of all the considered leaders and thus offers more physical interpretation.

Experimental results. In [6, 15], the model (1) is calibrated on real data and
it fits best for m1 = 3 and m2 = 1, meaning that the drivers are more sensitive to
speed variations than headway variations. It is also shown that the multi-anticipative
models improves the representation of driving behaviour. However there is a high
variance in driving behaviour which is not totally accounted for.

In many studies (for instance [14, 17] and references therein), platoon stability
(on a single lane) is shown to decrease when the reaction time increases, and to
increase when the spatial and/or temporal anticipation are increased.

3 Macroscopic model for multi-anticipative traffic.

3.1 First result in the Min-Plus algebra

First order multi-anticipative models can be viewed as high-viscosity approximation
of second order models (such as the Frenkel-Kontorova model studied in [5]). For
instance, in [4] the model is a first order and based on a piecewise linear fundamental
diagram (FD). The velocity is computed by taking the minimum of all constraints
imposed by preceding vehicles. The model is expressed in the Min-Plus algebra as
follows

xi(t+ 1) = xi(t) + min
1≤j≤m

(1 + λ)m−1 min
v∈U

max
w∈W

[

αvw

(

xi+j(t)− xi(t)

j

)

+ βvw

]

(2)

where U and W are two finite sets of indices. The λ ≥ 0 is a discount parameter
favouring closer leaders over the farther ones.

The authors obtain semi-analytical results concerning the stability of the model
and the existence of fixed points. These fixed points match invariant states for the
macroscopic traffic flow.

Notice moreover that the simulation results in [4] show the smoothing effects of
multi-anticipative driving on the macroscopic traffic flow.
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3.2 Multi-anticipative first order models and Hamilton-Jacobi

equation

One approach to micro-macro passage relies on the mathematical homogenization
of car-following models into Hamilton-Jacobi equation.

Let us first consider the following first order multi-anticipative model

ẋi(t+ T ) = max

[

0, Vmax −
m
∑

j=1

f (xi+j(t)− xi(t))

]

(3)

with T ≥ 0 and with f : R∗
+ 7→ R+ which needs to be a non-negative and non-

decreasing function describing the speed-spacing relationship. Let us choose

f(r) = β exp(−γr), for any r > 0, (4)

with β, γ > 0. This choice is mathematically convenient because if we set

F
(

{xk}k
)

:= Vmax −
m
∑

j=1

f (xi+j(t)− xi(t)) ,

then we can check that
∂F

∂xk

≥ 0, for any k = {i, ..., i+m}. Thus, it is possible to

recover (at least formally) homogenization results.

Remark 2. Notice that qualitatively this choice of an exponential speed-spacing fun-
damental diagram (FD) implies that the more the vehicles anticipate on their lead-
ers, the lower their speeds and the higher their spacings. However one would expect
that multi-anticipation allows shorter spacing and with high speeds.

Remark 3 (Equivalence result). One can check that if we consider a piecewise linear
speed-spacing relationship, then the model (3) can be approximated by the Min-Plus
model (2).

Let us consider the model (3). If we apply an unzooming procedure by introduc-
ing the rescaled position of vehicles as follows

Xε(y, t) = εx⌊ y

ε
⌋

(

t

ε

)

, for y ∈ R, t ∈ [0,+∞) (5)

where ⌊.⌋ denotes the floor integer, then we can recover a Hamilton-Jacobi equation
by homogenization when the scale factor ε goes down to zero:

∂X0

∂t
= V̄

(

∂X0

∂n
,m

)

(6)

with m the number of considered leaders and the (macroscopic) flow speed as follows

V̄ (r,m) = max

[

0, Vmax −
m
∑

j=1

f(jr)

]

.

The unknown X0(n, t) denotes the position of the vehicle labelled n at time t:



Multi-anticipative car-following models 5

∂X0

∂t
= v and

∂X0

∂n
= r,

where v and r describe respectively the speed and the spacing.
We recover the classical LWR model (standing for Lighthill, Whitham [13] and

Richards [16]) in Lagrangian coordinates (n, t) that is

{

∂tr + ∂nv = 0,

v = V̄ (r,m).
(7)

We recall that the LWR model in Eulerian coordinates (t, x) expresses the con-
servation of vehicles on a section

{

∂tρ+ ∂x (ρv) = 0,

v = V (ρ,m) := V̄ (1/ρ,m).

with ρ the density of vehicles and the modified speed-density fundamental diagram
(FD) V : (ρ,m) 7→ V (ρ,m) which is non-negative and non-increasing w.r.t. ρ.

This homogenization result is fully described in [1, 9]. Homogenization is a gen-
eral technique which has been used for several different models involving interactions
with a finite number of particles. The interested reader is referred to [5] and refer-
ences therein.

3.3 General multi-lane traffic flow model with multi-anticipation

We consider a multi-lane road section and we consider the projection of vehicles
on the spatial axis as in Figure 1. Assume that the traffic flow on such a section is
composed of a mixture of multi-anticipative vehicles. The model (7) implies that low
anticipation vehicles will be stuck behind high anticipation vehicles. In the case of
multi-lane traffic such behaviour is precluded by the fact that vehicles can overtake
each other.

Therefore let us denote by χj the fraction of j-anticipative vehicles. Then the
traffic flow is the superposition of traffic of j-anticipative vehicles, i.e.

χ = (χj)j=1,...,m
,

with 0 ≤ χj ≤ 1 for any j = {1, ..., m} and

m
∑

j=1

χj = 1. It is then obvious that

the composition is advected with the traffic flow. We can express this concept using
a model of the Generic Second Order Modelling (GSOM) familly as it has been
introduced by Lebacque et al. in [11]. The driver attribute is the composition χ. We
get the following expression























∂tρ+ ∂x (ρv) = 0,

v :=
m
∑

j=1

χjV (ρ, j) =
m
∑

j=1

χj V̄ (1/ρ, j),

∂t(ρχ) + ∂x(ρχv) = 0.

(8)

Let us set
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W̄ (ρ, χ) :=
m
∑

j=1

χj V̄ (1/ρ, j), and W (r,χ) = W̄ (1/r, χ) =
m
∑

j=1

χjV̄ (r, j)).

We can check that the third line in equation (8) could be rewritten as a simple
advection equation

∂tχ+ v∂xχ = 0.

As it has been already shown (see for instance [11]), the system (8) admits only
two kinds of waves:

• kinematic waves (rarefaction or shock) for the vehicles density, similar to kine-
matic waves for the LWR model. Through such a wave, the composition of traffic
χ is preserved but not the speed;

• contact discontinuities for the composition of traffic. In this case, the wave ve-
locity is equal to the speed of traffic v which is conserved through the wave.

In Lagrangian coordinates (t, n), with n the label of cars, the flux variable is v and
the stock variable is the spacing r = 1/ρ. The model can be recast as:











∂tr + ∂nv = 0

v = W (r, χ)

∂tχ = 0

(9)

The model (8), (9) is new in the sense that there already exist some multilanes
models such as the model of Greenberg, Klar and Rascle (see [11] and references
therein) which belongs to the GSOM family. However to the best authors knowledge,
there does not exists any macroscopic PDE model taking into consideration multi-
anticipative behaviour in a multi-lane context.

4 Numerical approaches

To numerically solve the system (8), we can use classical GSOM methodologies
[11, 12] that encompass:

• Godunov-like schemes for which we need to introduce finite time and space steps
∆t, ∆xk that need to satisfy a CFL condition. Consider the following scheme



















ρt+1

k = ρtk +
∆t

∆xk

[

qtk − qtk+1

]

,

qtk := min
{

∆k

(

ρtk, χ
t
k

)

, Σk+1

(

ρtk+1, χ
t
k+1

)}

,

ρt+1

k χt+1

k = ρtkχ
t
k +

∆t

∆xk

[

qtkχ
t
k − qtk+1χ

t
k+1

]

.

(10)

We also need to define the supply and demand functions as in [10]

∆k(ρ,χ) = max
0≤ξ≤ρ

[

ξW̄k(ξ, χ)
]

, and Σk(ρ,χ) = max
ξ≥ρ

[

ξW̄k(ξ, χ)
]

.

• variational formulation and dynamic programming techniques [2].
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• particle methods in the Lagrangian framework (t, n). A standard way of obtain-
ing these (refer to [11], [12]) is to apply a Godunov scheme to (9). This is easy:
the supply is simply vmax, the demand is W , because r 7→ W (r, χ) is increasing.
Since a cell can be associated to a packet of ∆n vehicles having a total spacing
rtn and tail position xt

n, a simple car-following like model (11) is derived. Consid-
ering Lagrangian finite difference methods, we can either deal with a vectorial
attribute χ or with an integer j = 1, ..., m with randomization of probability χj .
We opt here for the first option. The resulting model is described hereafter:

∣

∣

∣

∣

∣

∣

xt+1
n = xt

n +∆tW
(

rtn, χ
t
n

)

rtn =
(

xt
n+1 − xt

n

)

/∆n
χt+1
n = χt

n

(11)

The Lagrangian method (11) is more precise (less smoothing of waves) than (10)
and easier to calculate (the demand being the speed).

4.1 Choice of the fundamental diagram

For this numerical example, we have used the speed-spacing function described in
(4) that is

V̄ (r,m) = max

[

0, Vmax −

m
∑

j=1

β exp(−γjr)

]

with β, γ > 0. As we consider that those coefficients are strictly independent of the
number of considered leaders j ∈ {1, ..., m}, one can easily check that

β = Vmax exp (γrmin)

where rmin is the minimal spacing between two consecutive vehicles. The maximal
speed Vmax is equal to 25 m/s and γrmin is fixed to 0.18 in order to ensure a proper
critical density. The maximal number of considered leaders m is equal to 5.
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0

40 0.50.40.30.20.10.0
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0.5

0.0

0.6

Fig. 2. Speed-spacing fundamental diagram r 7→ V̄ (r, κ) (left) and Flow-density
fundamental diagram ρ 7→ ρV (ρ, κ) (right) for different values of κ

Note that the fundamental diagrams plotted on Figure 2 are intended for a
single lane. Then the higher the number of considered leaders, the higher the critical
spacing (or equivalently the lower the critical density) per single lane.
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4.2 Description of the use case

Let consider a traffic flow on a multi-lane road section. Roughly speaking, assume
that entering the section we have two distinct compositions of traffic: high antic-
ipatory, then low anticipatory, then high anticipatory again (see Figure 3). The
downstream supply is formulated in terms of speed, which is more convenient in
the Lagrangian framework. The supply is assumed to drop in the middle of the
considered period (from times t = 250 to t = 2200), generating a high-density wave
propagating backwards.

300025002000150010005000
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time

Downstream supply

Vehicles

300250200150100500
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0.0
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t
t
r
i
b
u
t
e
s

Arrival Process

Fig. 3. Downstream supply value (left) and traffic composition attribute χ (right)

This shock wave interacts with the contact discontinuities carried by the incom-
ing traffic (at times t = 1000 and t = 1800). Note that the increase of downstream
supply at time t = 2200 generates also a rarefaction wave (see Figure 4).

Fig. 4. Positions in Lagrangian framework (left) and Eulerian trajectories (right)

This simple numerical example shows that the low anticipatory fraction of the
traffic allows to reduce or annihilate the shock wave because drivers accept lower
critical spacings. This effect results is strongly dependent on our choice of the speed-
spacing relationship V̄ which implies that less anticipative drivers driver faster, take
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more risks. The inclusion of stochastic effects [8] would show another effect: that
multi-anticipation smoothens traffic.

5 Conclusion and future directions

Possible extensions include adding source terms for the equation of advection of
the composition. This could account for the spatial variability of multi-anticipatory
behaviour. See for instance [12]. Moreover our model should be tested on real mea-
surement data. The main problem is the identification of instantaneous traffic com-
position χ as well the speed-spacing function parameters as it was done in [4].

Another study should be based on the analysis of individual trajectories to re-
cover the results of previous studies which state that the multi-anticipative car-
following models improve the representation of individual driving behaviour. While
the existing experiments only take into account already congested situations, these
work should extend the results by considering for congested and also fluid traffic
flow situations. Such a study could also confirm or infirm the impact of anticipatory
traffic on the driving behavior (see Remark 2).

Aknowledgements

The authors are grateful to Prof. Régis Monneau. We also want to thank the orga-
nizers of the Conference on Traffic and Granular Flow (TGF’13) in Jülich, Germany.
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Transports Sécurité, (29).
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