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Abstract. In this paper, we consider a numerical scheme to solve first order
Hamilton-Jacobi (HJ) equations posed on a junction. The main mathemati-
cal properties of the scheme are first recalled and then we give a traffic flow
interpretation of the key elements. The scheme formulation is also adapted
to compute the vehicles densities on a junction. The equivalent scheme for
densities recovers the well-known Godunov scheme outside the junction point.
We give two numerical illustrations for a merge and a diverge which are the
two main types of traffic junctions. Some extensions to the junction model are
finally discussed.

1. Introduction. There exist many mathematical methods to deal with road traf-
fic modelling, including Hamilton-Jacobi (HJ) equations. However HJ theory has
been mainly used up to now in the frame of an infinite one-directional road [7, 11,
29]. Hamilton-Jacobi equations have been introduced in [21] for modelling junction
problems. The approach was very recently completed in [20]. To the best authors’
knowledge, they are the only works which model the flow on a junction as a unique
function. The works [17, 18] introduce also an Hamilton-Jacobi formulation for net-
works but they need to deal with tedious coupling conditions at each junction. Here
the goal of this paper is to introduce a numerical scheme to solve the model from [21]
and to give a traffic interpretation of this scheme. We mainly refer hereafter to [10]
in which the mathematical properties of the numerical scheme have been deeply
studied. Our scheme (10) is related to the Godunov scheme for conservation laws
in one space dimension, as it is explained in our application to traffic in Section 3.

The outline of the paper is the following: in Section 2 we recall the main elements
of the HJ model on junction and we introduce the numerical scheme for solving
such equations. The main mathematical results from [10] are also recalled. In
Section 3, we propose the traffic flow interpretation of our numerical results. In
particular, the numerical scheme for HJ equations (10) is derived and the junction
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condition is interpreted in terms of traffic flow modelling. Indeed, we recover the
well-known junction condition of Lebacque (see [25]) or equivalently those for the
Riemann solver at the junction as in the book of Garavello and Piccoli [13]. Then
in Section 4 we illustrate the numerical behaviour of our scheme for two cases of
junctions: a diverge (one incoming and two outgoing branches) and a merge (two
incoming and one outgoing branches) which are classical junction configurations for
arterial traffic. Finally, we discuss some possible extensions for the HJ model in
Section 5.

2. Hamilton-Jacobi framework.

2.1. Setting of the PDE problem. In this subsection, we first define the junc-
tion, then the space of functions on the junction and finally the Hamilton-Jacobi
Partial Differential Equation (HJ-PDE). We follow [21].

The junction. Let us consider N ≥ 1 different unit vectors eα ∈ R
2 for α =

1, . . . , N . We define the branches as the half-lines generated by these unit vectors

Jα = [0,+∞)eα and J∗
α = Jα \ {0}, for all α = 1, . . . , N,

and the whole junction (see Figure 1) as

J =
⋃

α=1,...,N

Jα.

The origin y = 0 is called the junction point. For a time T > 0, we also consider
the time-space domain defined as

JT = (0, T )× J.

J3

e3

eN

JN

J1

J2

e1

e2

Figure 1. Junction model

HJ equation on the junction. We are interested in continuous functions
u : [0, T )× J → R which are viscosity solutions (see Definition 3.3 in [10]) on JT of





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












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



uα
t +Hα(u

α
x) = 0 on (0, T )× (0,+∞), for α = 1, . . . , N,

uβ =: u, for all β = 1, . . . , N

ut + max
β=1,...,N

H−
β (uβ

x) = 0

∣

∣

∣

∣

∣

∣

∣

∣

on (0, T )× {0},

(1)
for functions Hα and H−

α that will be defined below in assumption (A1).
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We consider an initial condition

uα(0, x) = uα
0 (x), with x ∈ [0,+∞) for α = 1, . . . , N. (2)

Remark 1. Following [21], we recall that (1) can be rigorously rewritten as

ut +H(y, uy) = 0, for (t, y) ∈ [0, T )× J, (3)

with

H(y, p) :=











Hα(p), for p ∈ R, if y ∈ J∗
α,

max
α=1,...,N

H−
α (pα), for p = (p1, ..., pN) ∈ R

N, if y = 0,

subject to the initial condition

u(0, y) = u0(y) := (uα
0 (x))α=1,...,N , for y = xeα ∈ J with x ∈ [0,+∞). (4)

This formulation highlights that HJ equation (3) subsumes all branches incident
to the junction, making the state variable u a vector. This approach is very new
compared to what is done in traffic literature (see Subsection 3.3).

We make the following assumptions:
(A0) Initial data
The initial data u0 := (uα

0 )α is globally Lipschitz continuous on J , i.e. each associ-

ated uα
0 is Lipschitz continuous on [0,+∞) and uα

0 (0) = uβ
0 (0) for any α 6= β.

(A1) Strong convexity of the Hamiltonians
We assume that there exists a constant γ > 0, such that for each α = 1, ..., N , there
exists a lagrangian function Lα ∈ C2(R;R) satisfying L′′

α ≥ γ > 0 such that Hα is
the Legendre-Fenchel transform of Lα i.e.

Hα(p) = L∗
α(p) = sup

q∈R

(pq − Lα(q)). (5)

H+
α (p)H−

α (p)

pα
0

p

Figure 2. Illustration of Hamiltonian function

The assumption (A1) implies that

• the functions Hα ∈ C1(R;R) are coercive, i.e. lim
|p|→+∞

Hα(p) = +∞;
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• and there exists a unique pα0 ∈ R such that Hα is non-increasing on (−∞, pα0 ]
and non-decreasing on [pα0 ,+∞), and we set:

H−
α (p) =











Hα(p) for p ≤ pα0

Hα(p
α
0 ) for p ≥ pα0

and

H+
α (p) =











Hα(p
α
0 ) for p ≤ pα0

Hα(p) for p ≥ pα0

(6)

where H−
α is non-increasing and H+

α is non-decreasing (see Figure 2). More-
over, we have the following relationships

H−
α (p) = sup

q≤0
(pq − Lα(q)) and H+

α (p) = sup
q≥0

(pq − Lα(q)). (7)

2.2. Presentation of the scheme. We denote by ∆x the space step and by ∆t the
time step. We denote by Uα,n

i an approximation of uα(n∆t, i∆x) for n ∈ N, i ∈ N,
where α stands for the index of the considered branch, as illustrated on Figure 3.

i = 1

JN

J3

J2

J1
i = 2

i = 2
i = 1

i = 2

i = 0

i = 1
i = 2

i = 1

Figure 3. Discretization of the junction model

We define the discrete space derivatives

pα,ni,+ :=
Uα,n
i+1 − Uα,n

i

∆x
and pα,ni,− :=

Uα,n
i − Uα,n

i−1

∆x
, (8)

and similarly the discrete time derivative

Wα,n
i :=

Uα,n+1
i − Uα,n

i

∆t
. (9)
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Then we consider the following numerical scheme corresponding to the discretiza-
tion of the HJ equation (1) for n ≥ 0:










































Uα,n+1
i − Uα,n

i

∆t
+max

{

H+
α (pα,ni,− ), H−

α (pα,ni,+ )
}

= 0, for i ≥ 1, α = 1, . . . , N,

Uβ,n
0 =: Un

0 , for all β = 1, . . . , N

Un+1
0 − Un

0

∆t
+ max

β=1,...,N
H−

β (pβ,n0,+) = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

for i = 0,

(10)
with the initial condition

Uα,0
i = uα

0 (i∆x) for i ≥ 1, α = 1, . . . , N. (11)

As usual, it is natural to introduce a Courant-Friedrichs-Lewy (CFL) condition

∆x

∆t
≥ sup

α=1,...,N
pα∈[p

α
,pα]

|H ′
α(pα)|. (12)

It is easy to check that if the CFL condition (12) is satisfied, then the numerical
scheme (10) is monotone.

2.3. Main result: convergence of the numerical solution. Hereafter is re-
called one of the main results extracted from [10]. We particularly skip gradient
and time derivatives estimates and also convergence property under weaker assump-
tion than (A1) on the Hamiltonians. Interested readers are refered to [10].

Recall that under (A1), it is possible to recover the uniqueness of the solution
(see [21]):

Theorem 2.1. (Existence and uniqueness for a solution of the HJ-PDE)
Assume (A0)-(A1) and let T > 0. Then there exists a unique viscosity solution u
of (1)-(2) on JT in the viscosity sense, satisfying for some constant CT > 0

|u(t, y)− u0(y)| ≤ CT for all (t, y) ∈ JT .

Moreover the function u is Lipschitz continuous with respect to (t, y) on JT .

Then from [10], we recover the following convergence result:

Theorem 2.2. (Convergence of the numerical solution)
Assume (A0)-(A1). Let T > 0 and ε = (∆t,∆x) such that the CFL condition (12)
is satisfied. If the function u := (uα)α is the unique solution of (1)-(2) in the
viscosity sense, then the numerical solution (Uα,n

i ) of (10)-(11) converges locally
uniformly to u when ε → 0 on any compact set K ⊂ [0, T )× J , i.e.

lim sup
ε→0

sup
(n∆t,i∆x)∈K

|uα(n∆t, i∆x)− Uα,n
i | = 0 (13)

where the index α in (13) is chosen such that (n∆t, i∆x) ∈ K ∩ [0, T )× Jα.

Remark 2. (Extension to weaker assumptions on Hα than (A1))
All the results above can be extended if we consider some weaker conditions than
(A1) on the Hamiltonians Hα. Indeed, we can assume that u0 and Hα for any
α = 1, ..., N are at least locally Lipschitz. Such definitions are more accurate for
our traffic application (see Section 3).
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We need to consider that CFL condition (12) is replaced by the following one

∆x

∆t
≥ ess sup

α=1,...,N
pα∈[p

α
,pα]

|H ′
α(pα)|, (14)

where ess sup denotes the essential supremum defined such as the smallest number
c for which the function H ′

α only exceeds c on a set of measure zero.

Using our scheme (10), we will present in Section 4 illustrations by numerical
simulations with application to traffic.

3. Application to traffic flow. As our motivation comes from traffic flow mod-
elling, this section is devoted to the traffic interpretation of the model and the
scheme. Notice that [21] has already focused on the meaning of the junction condi-
tion in this framework.

3.1. Settings. We first recall the main variables adapted for road traffic modelling
as they are already defined in [21]. We consider a junction with NI ≥ 1 incoming
roads and NO ≥ 1 outgoing ones, such that NI +NO =: N .

Densities and scalar conservation law. We assume that the vehicles densi-
ties denoted by (ρα)α solve the following scalar conservation laws (also called LWR
model for Lighthill, Whitham [28] and Richards [30]):
{

ραt + (fα(ρα))X = 0, for (t,X) ∈ [0,+∞)× (−∞, 0), α = 1, ..., NI ,

ραt + (fα(ρα))X = 0, for (t,X) ∈ [0,+∞)× (0,+∞), α = NI + 1, ..., NI +NO,

(15)
where we assume that the junction point is located at the origin X = 0.

We assume that for any α the flux function fα : R → R reaches its unique
maximum value for a critical density ρ = ραc > 0 and it is non decreasing on
(−∞, ραc ) and non-increasing on (ραc ,+∞). In traffic modelling, ρα 7→ fα(ρα) is
usually called the fundamental diagram.

Let us define for any α = 1, ..., N the Demand function fα
D (resp. the Supply

function fα
S ) such that

fα
D(p) =

{

fα(p) for p ≤ ραc
fα(ραc ) for p ≥ ραc

(

resp. fα
S (p) =

{

fα(ραc ) for p ≤ ραc
fα(p) for p ≥ ραc

)

.

(16)
These functions are illustrated on Figure 4.
We assume that we have a set of fixed coefficients 0 ≤ (γα)α ≤ 1 that denote:

• either the proportion of the flow from the branch α = 1, ..., NI which enters
in the junction,

• or the proportion of the flow on the branch α = NI +1, ..., N exiting from the
junction.

We also assume the natural relations
NI
∑

α=1

γα = 1 and

NI+NO
∑

β=NI+1

γβ = 1.

Remark 3. We consider that the coefficients (γα)α=1,...,N are fixed and known at
the beginning of the simulations. Such framework is particularly relevant for “quasi
stationary” traffic flows.
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ρmax

ρmax

fmax

Density ρ

Density ρ

Density ρ

Flow f

Demand fD

Supply fS

fmax

fmax

ρc

ρc

ρc

Figure 4. Supply and demand functions

Vehicles labels and Hamilton-Jacobi equations. Extending for anyNI ≥ 1
the interpretation and the notations given in [21] for a single incoming road, let us
consider the continuous analogue uα of the discrete vehicles labels (in the present
paper with labels increasing in the backward direction with respect to the flow)






















uα(t, x) = u(t, 0)−
1

γα

∫ −x

0

ρα(t, y)dy, for x := −X > 0, if α ≤ NI ,

uβ(t, x) = u(t, 0)−
1

γβ

∫ x

0

ρβ(t, y)dy, for x := X > 0, if β ≥ NI + 1,

(17)
with equality of the functions at the junction point (x = 0), i.e.

uα(t, 0) = uβ(t, 0) =: u(t, 0) for any α, β. (18)

where the common value u(t, 0) is nothing else than the (continuous) label of the
vehicle at the junction point.

Remark 4. The vehicles labels are actually very useful for traffic management
because on the one hand they are more reliable than flow and densities in-situ
measurements and on the other hand, they give birth to the so-called Moskowitz
function (or the Cumulative Vehicles Curves) of the labels on (t, x) which is very
tractable. See [23] for a complete review.

Following [21], for a suitable choice of the function u(t, 0), it is possible to check
that the vehicles labels uα satisfy the following Hamilton-Jacobi equation:

uα
t +Hα(u

α
x) = 0, for (t, x) ∈ [0,+∞)× (0,+∞), α = 1, ..., N (19)

where

Hα(p) :=



















−
1

γα
fα(γαp) for α = 1, ..., NI ,

−
1

γα
fα(−γαp) for α = NI + 1, ..., NI +NO.

(20)

Remark 5. It worths to notice that the Hamiltonian Hα and the flow function fα

differ from a sign because flow function is classically assumed to be non-decreasing
on [0, ρc] and non-increasing on [ρc, ρmax] while it is the opposite for Hα according
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to (A1). The convexity of Hα is a key element for the uniqueness of the HJ solution
as it is explained in [21].

Following definitions of H−
α and H+

α in (6) we get

H−
α (p) =



















−
1

γα
fα
D(γαp) for α ≤ NI ,

−
1

γα
fα
S (−γαp) for α ≥ NI + 1,

and

H+
α (p) =



















−
1

γα
fα
S (γ

αp) for α ≤ NI ,

−
1

γα
fα
D(−γαp) for α ≥ NI + 1.

(21)

H−
α

p

−
fmax

γα

ρmax

γα

H+
α

Hα ρc

γα −
ρmax

γα

p

H+
αH−

α

Hα

−
fmax

γα

−
ρc

γα

(a) Incoming branches (b) Outgoing branches

Figure 5. Graphs of the Hamiltonians

3.2. Derived scheme for the densities. The aim of this subsection is to prop-
erly express the numerical scheme satisfied by the densities in the traffic modelling
framework. Let us recall that the density denoted by ρα is a solution of (15).

Let us consider a discretization with time step ∆t and space step ∆x. Then we
define the discrete car density ρα,ni ≥ 0 for n ≥ 0 and i ∈ Z (see Figure 6) by

ρα,ni :=







γαpα,n|i|−1,+, for i ≤ −1, α = 1, ..., NI ,

−γαpα,ni,+ , for i ≥ 0, α = NI + 1, ..., NI +NO,
(22)

where we recall

pα,nj,+ :=
Uα,n
j+1 − Uα,n

j

∆x
, for j ∈ N, α = 1, ..., N.

We have the following result:

Lemma 3.1 (Derived numerical scheme for the density).
If (Uα,n

i ) stands for the solution of (10)-(11), then the density (ρα,ni ) defined in (22)
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ρ
β,n
−1 ρ

λ,n
0

0
Jλ

x > 0x < 0

−2 −1 21

JNI+NO

JNI+1

J1

Jβ

JNI

Figure 6. Discretization of the branches with the nodes for (Uα,n
i )

and the segments for (ρα,ni )

is a solution of the following numerical scheme for α = 1, ..., N

∆x

∆t
{ρα,n+1

i − ρα,ni } =











































Fα(ρα,ni−1, ρ
α,n
i )− Fα(ρα,ni , ρα,ni+1) for

{

i ≤ −1 if α ≤ NI ,

i ≥ 1 else,

Fα
0

(

(ρβ,n−1 )β≤NI
, (ρλ,n0 )λ≥NI+1

)

− Fα(ρα,ni , ρα,ni+1) for i = 0, α ≥ NI + 1,

Fα(ρα,ni−1, ρ
α,n
i )− Fα

0

(

(ρβ,n−1 )β≤NI
, (ρλ,n0 )λ≥NI+1

)

for i = −1, α ≤ NI ,

(23)
where we define the fluxes by















































Fα(ρα,ni−1, ρ
α,n
i ) := min

{

fα
D(ρα,ni−1), fα

S (ρ
α,n
i )

}

for

{

i ≤ −1 if α ≤ NI ,

i ≥ 1 else,

Fα
0

(

(ρβ,n−1 )β≤NI
, (ρλ,n0 )λ≥NI+1

)

:= γαF0 for α = 1, ..., N,

F0 := min

{

min
β≤NI

1

γβ
fβ
D(ρ

β,n
−1 ), min

λ≥NI+1

1

γλ
fλ
S (ρ

λ,n
0 )

}

.

(24)
and fα

S , f
α
D are defined in (16).

The initial condition is given by

ρα,0i :=



















γαu
α
0 (|i|∆x)− uα

0 ((|i| − 1)∆x)

∆x
, for i ≤ −1, α ≤ NI ,

γαu
α
0 (i∆x)− uα

0 ((i + 1)∆x)

∆x
, for i ≥ 0, α ≥ NI + 1.

(25)

The proof of Lemma 3.1 is available in [10].

Remark 6. Notice that (23) recovers the classical Godunov scheme [16] for i 6=
0,−1 while it is not standard for the two other cases i = 0,−1. Moreover we
can check that independently of the chosen CFL condition, the scheme (23) is not
monotone (at the junction, i = 0 or i = −1) if the total number of branches N ≥ 3
and is monotone if N = 2 for a suitable CFL condition.
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Junction condition. The junction condition in (1) reads

ut(t, 0) + max
α=1,...,N

H−
α (ux(t, 0

+)) = 0. (26)

It is a natural condition from the traffic point of view. Indeed condition (26) can
be rewritten as

ut(t, 0) =
∑

1≤α≤NI

fα(ρα(t, 0−))

= min

(

min
α=1,...,NI

1

γα
fα
D(ρα(t, 0−)), min

β=NI+1,...,N

1

γβ
fβ
S (ρ

β(t, 0+))

)

.

(27)

The condition (27) claims that the passing flux is equal to the minimum between
the upstream demand and the downstream supply functions as they were presented
by Lebacque in [25] (also for the case of junctions). This condition maximises the
flow through the junction (also equal to the sum of all incoming flows or equivalently
to the sum of all outgoing flows). Condition (27) could be recast as a linear opti-
mization problem. Indeed if the densities (ρα(t, 0−))α≤NI

and
(

ρβ(t, 0+)
)

β≥NI+1
at

the boundaries of the junction point are known at time t ≥ 0, we then can compute
the densities at time t+ by solving

max
∑

1≤α≤NI

fα(ρα(t+, 0−))

s.t.

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ fα(ρα(t+, 0−) ≤ fα
D(ρα(t, 0−)), ∀α ≤ NI ,

0 ≤ fβ(ρβ(t+, 0+) ≤ fβ
S (ρ

β(t, 0+)), ∀β ≥ NI + 1,

0 = fβ(ρβ(t+, 0+))−
γβ

γα
fα(ρα(t+, 0−)), ∀α, β.

(28)

where the constraints respectively express demand constraints on the incoming
branches, supply constraints on outgoing branches and conservation of flows through
the junction.

Remark 7. The supply and demand conditions in (28) prescribe the values of
densities at the boundaries of the junction point. For instance, consider the demand
constraint

fα(ρα(t, 0−) ≤ fα
D(ρα(t, 0−)), for any α ≤ NI . (29)

We have to distinguish two cases:

• either there is equality in (29) and then the density at time t+ is given by

ρα(t+, 0−) = (fα
D)

−1 (
fα(ρα(t, 0−))

)

,

• or we have the strict inequality in (29) and then the density at time t+ becomes

ρα(t+, 0−) = (fα
S )

−1 (fα(ρα(t, 0−))
)

.

3.3. Review of the literature about junction modelling. Junction modelling
has recently attracted an increasing interest but it was considered a long time ago
by traffic engineers. In first papers (see Chapters 8 and 9 of [14]) the approaches
were mainly built on microscopic description of vehicles. In the present work we
adopt a macroscopic point of view in which individual cars behaviors are not taken
into account.

Modelling approach. Intersections models can be classified into two cate-
gories: pointwise models and spatial extended models. On the one hand, spatial
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extended models consider the junction in its true space dimensions and analyze each
conflicts between flows. These models offer a higher precision but also a greater com-
plexity [24, 5]. On the other hand, pointwise models neglect the spatial dimension
of the junction. Pointwise models are commonly restated in many instances as
optimization problems [26, 27]. For sake of accuracy, some pointwise models take
into account the node dynamics. The junction is seen as a buffer where incoming
vehicles wait to be assigned on the outgoing roads. The literature often refers to
internal state junction models [22]. The junction has an internal dynamics and it
could be characterized by internal variables like the number of encompassed vehicles
(denoted by N) or internal demand and supply constraints (respectively denoted
by ∆(N) and Σ(N) on Figure 7 (b)).

(j)

γij
(i)

∆(N)

γij
(i)

(j)

N vehicles
Σ(N)

(a) Without internal dynamics (b) With internal dynamics

Figure 7. Pointwise junction models

Lebacque’s works [26, 27] have shown that in case of vehicles equilibrium in-
side the junction (for which the time scale of internal dynamics is infinitely small
in regard to the variation of upstream demand and downstream supply), internal
state models and optimization pointwise models are strictly equivalent for merges
(two incoming and one outgoing roads) and FIFO diverges (one incoming and two
outgoing roads).

General requirements. Formalizing the ideas expressed in [22], the authors
in [31] propose a list of seven generic requirements that should be verified by every
first order macroscopic junction model:

• General applicability to any kind of junction, regardless to the number of
incoming and outgoing roads: merge and diverge models which are not appli-
cable for general junctions, are then totally excluded.

• Maximization of the flows from an user point of view: road users try to max-
imize their own velocity whenever it is possible. In practice each flow would
increase until be restricted by some constraint. Then the through-flow is not
necessarily the maximum possible according to the difference between system
optimum and user optimum.

• Non-negativity of flows since traffic flow only propagates forward.
• Satisfaction of supply and demand constraints: the outflow from an incoming
road (resp. the inflow into a outgoing road) can never exceed the demand
(resp. the supply) at the boundary of the road.

• Conservation of vehicles: no vehicle appears or disappears at the junction.
• Conservation if turning fractions: the model has to consider the users route
choices and it should not maximize the flows without considering the turning
fractions of vehicles.
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• Satisfaction of the invariance principle: stated first in [27] this principle ex-
presses that the flows through the junction have to stay unchanged if the
initial conditions (demand on incoming roads or supply on outgoing roads)
are changed to the maximal capacity. Then (a) as long as a flow is limited
by a capacity, a variation of its arriving demand cannot change the flow and
(b) as long as a flow is not limited by a capacity, a variation of this capacity
cannot change the flow.

In [12] and in [15], the authors consider an additional requirement:

• Internal supply constraints: such constraints are mainly justified for urban
and regional junctions because they represent supply constraints due to ve-
hicles interactions inside the junction. Such conflicts could be neglected for
highways merges and diverges. However, [9] highlights that the uniqueness of
the solution is not guaranteed with these additional constraints.

4. Simulations. In this section, we present two numerical experiments. The main
goal is to check if the numerical scheme (10)-(11) (or equivalently the scheme (23)-
(25)) is able to illustrate the propagation of shock or rarefaction waves for densities
through a junction. We propose to apply the scheme for some special configura-
tions of junctions that is (i) a diverge for which the scheme was originally designed
(see [21]) and (ii) a simple merge. The scheme has been also applied to a more
complex junction in [10].

Notice that here the computations are carried out for the discrete variables (Uα,n
i )

while the densities (ρα,ni ) are computed in a post-treatment using (22). It is also pos-
sible to compute directly the densities (ρα,ni ) according to the numerical scheme (23).

4.1. Settings. For the simulation, we consider that the flow functions are bi-
parabolic (and only Lipschitz continuous) and defined as follows

fα(ρ) =































vαmaxρ
α
c

(ραc )
2

ρ [(1− k)ρ+ kρmax] , for ρ ≤ ραc ,

vαmaxρ
α
c

(ραmax − ραc )
2
[(1 − k)ρ2 + (kραc + (k − 2)ραmax)ρ

−ραmax(kρ
α
c − ραmax)], for ρ > ραc ,

where k = 1.5. The jam density ραc (resp. the maximal density ραmax) on branch α
is obtained as the product of the nominal jam density ρc = 20 veh/km (resp. the
nominal maximal density ρmax = 160 veh/km) times the number of lanes on the
branch. The maximal flow (or capacity) fα

max is given by vαmaxρ
α
c where vαmax is the

maximal speed on branch α.
The Hamiltonians Hα are defined in (20) according to the flow function fα. See

also Remark 2 on weaker assumptions than (A1) on the Hamiltonians. We consider

branches of length L = 200 m and we have Nb :=

⌊

L

∆x

⌋

points on each branch

such that i ∈ {0, ..., Nb}.

4.2. Initial and boundary conditions.
Initial conditions. In traffic flow simulations it is classical to consider Riemann
problems for the vehicles densities (ρα0 ) at the junction point. We then consider
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initial conditions (uα
0 (x))α=1,...,N corresponding to the primitive of the densities

according to (25). We also take the initial label at the junction point such that

uα
0 (0) =: u0(0) = 0, for any α.

We can check that if the initial densities (ρα0 ) are piecewise constant, then the initial
data (uα

0 (x))α=1,...,N satisfy (A0).
We are interested in the time evolution of the densities. We stop to compute

once we get a stationary final state.
Boundary conditions. For any i ≤ Nb we use the numerical scheme (10) for

computing (Uα,n
i ). Nevertheless at the last grid point i = Nb, we have

Uα,n+1
Nb

− Uα,n
Nb

∆t
+max

{

H+
α (pα,nNb,−

), H−
α (pα,nNb,+

)
}

= 0, for α = 1, . . . , N,

where pα,nNb,−
is defined in (8) and we set the boundary gradient as follows

pα,nNb,+
=







ρα0
γα

, if α ≤ NI ,

pα,nNb,−
, if α ≥ NI + 1.

These boundary conditions are motivated by our traffic application. Indeed while
they are presented for the scheme (10) on (Uα,n

i ), the boundary conditions are easily
translatable to the scheme (23) for the densities. For incoming roads, the flow that
can enter the branch is given by the minimum between the supply of the first cell
and the demand of the virtual previous cell which correspond to the value of f
evaluated for the initial density on the branch ρα0 (see Table 1). For outgoing roads,
the flow that can exit the branch is given by the minimum between the demand
of the last cell and the supply of the virtual next cell which is the same than the
supply of the last cell.

Remark 8. From [27], we recall that to prescribe some supply/demand condi-
tions at the boundaries of a branch is strictly equivalent to respect Bardos-LeRoux-
Nédélec conditions [1].

4.3. Simulation results for a diverge. We consider the case of a diverge: one
incoming road denoted α = 1 dividing into two outgoing roads respectively denoted
2 and 3 (see Figure 8). This case could illustrate the case of an off-ramp on a
beltway. We introduce γα which represents the proportion of vehicles which exit
the junction point on the branch indexed by α, with α = 2, 3. These coefficients γ2

and γ3 are defined such as:

γ2 + γ3 = 1 and 0 ≤ γ2, γ3 ≤ 1.

γ3

J1 J2

J3

γ1 γ2

Figure 8. Diverge junction model

For the simulation, let us consider that roads 1 and 2 have both two lanes and

that the maximal speed on both roads is supposed to be v
{1,2}
max = 90 km/h. Roads

1 and 2 represent the main section of the beltway. Road 3, corresponding to the
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off-ramp, has a single lane and its maximal speed is v3max = 50 km/h. We assume
that 80 percent of the vehicles coming from road 1 wish to continue on the main
section while the remaining 20 percent exit the beltway. These values are recalled
in Table 1.

Branch Number Maximal speed γα

of lanes (km/h)
1 2 90 1
2 2 90 0.80
3 1 50 0.20

Table 1. Traffic flow characteristics of each branch

We then consider the flow functions fα according to the values of Table 1 (see
Figure 9). The values of densities and flows for initial and final states are summa-
rized in Table 2. They are respectively plotted on (a) and (d) of Figure 12.

Initial state Final state
Branch Density Flow Density Flow

(veh/km) (veh/h) (veh/km) (veh/h)
1 50 3533 40 3600
2 20 2250 28 2880
3 30 962 12 720

Table 2. Values of densities and flows for initial and final states
on each branch
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Figure 9. Graphs of the functions fα

Vehicles labels and trajectories. Hereafter we consider ∆x = 5m (that
corresponds to the average size of a vehicle) and ∆t = 0.16s.
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The numerical solution (Uα,n
i ) is depicted on Figure 10. The vehicles trajectories

are deduced by considering the iso-values of the labels surface (Uα,n
i ) (see Figure 11).

In this case, one can observe that the congestion (described in the next part) induces
a break in the velocities of the vehicles when going through the shock waves. It is
still true through the junction point.

Figure 10. Numerical solution on each branch for the diverge
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Figure 11. Trajectories of some vehicles on each branch for the diverge

Propagation of waves. Let us describe in detail the shock and rarefaction
waves that appear from the considered initial Riemann problem (see Figure 12).
We first notice that at the initial time, roads 1 and 3 are congested (see Figure 12
(a)). The incoming road has a demand of 3600veh/h splitted into 2880veh/h toward
road 2 and 720veh/h toward road 3. The supplies on roads 2 and 3 are respectively
3600veh/h and 962veh/h. Thus the partial demands are totally satisfied on both
outgoing roads. On road 1 (see the Figure 12 (b) and (c)), the vehicles density
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(a) Initial conditions for densities (b) Densities at t = 5 s
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(c) Densities at t = 50 s (d) Densities at t = 150 s

Figure 12. Time evolution of vehicles densities on a diverge

decreases from 50veh/km to the critical density 40veh/km and thus the flow in-
creases to 3600veh/h. There is the apparition of a rarefaction wave which should
propagate at the speed given by the Rankine-Hugoniot formula

v1 =
[f1]

[ρ1]
=

3533− 3600

50− 40
= −6.7 km/h.

The negative sign means that the rarefaction wave propagates backward. Road 3
is no longer congested because the demand is fully satisfied and the vehicles can go
freely on the branch (see the Figure 12 (b) and (c)). The flow goes from 962veh/h
to 720veh/h and the density collapses from 30veh/km to 12veh/km. Then a shock
wave propagates forward at the speed v3 = 13km/h which matches to the Rankine-
Hugoniot speed. On road 2, a rarefaction wave appears and propagates at speed
v2 = 79km/h which matches to the Rankine-Hugoniot speed. The flow increases
from 2250veh/h to 2880veh/h and the density goes from 20veh/km to 28veh/km
(see the Figure 12 (b) and (c)).
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4.4. Simulation results for a merge. We consider the case of a merge: two
incoming roads denoted α = 1 and 2 merging into a single outgoing road denoted 3
(see Figure 13). This case could illustrate the case of an on-ramp on a beltway.

γ2
J3J1

J2

γ3γ1

Figure 13. Merge model

For the numerical simulation, let us consider the characteristics summarized in
Table 3. We assume that 80 percent of the through-flow comes from road 1 while
the remaining 20 percent comes from the on-ramp 2.

Remark 9. Notice that for NI ≥ 2 incoming roads, a realistic choice of coefficients
(γα)α=1,...,N is not obvious. We discuss that point in Section 5. Here we assume
that the mix coefficients (γα)α≤NI

are capacity proportional that is the ratio of
the maximal flows that each incoming road could send to the junction point. This
choice is motivated by what it was already established by empirical data sets in [2, 6]
for which the merge ratios were closely related to the number of lanes per incoming
branches.

Branch Number Maximal speed γα

of lanes (km/h)
1 3 90 0.80
2 1 70 0.20
3 3 90 1

Table 3. Traffic flow characteristics of each branch

We then consider the flow functions fα according to the values of Table 3 (see
Figure 14). The values of densities and flows for initial and final states are summa-
rized in Table 4. They are respectively plotted on (a) and (d) of Figure 18.

Initial state Final state
Branch Density Flow Density Flow

(veh/km) (veh/h) (veh/km) (veh/h)
1 50 4875 189 4320
2 20 1400 68 1080
3 30 3375 60 5400

Table 4. Values of densities and flows for initial and final states
on each branch

Vehicles labels and trajectories. Hereafter we consider ∆x = 5m (that
corresponds to the average size of a vehicle) and ∆t = 0.09s.

The numerical solution (Uα,n
i ) is depicted on Figure 15. The vehicles trajectories

are deduced by considering the iso-values of the labels surface (Uα,n
i ) (see Figure 16).
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Figure 14. Graphs of the functions fα

Once again, we can notice that the congestion spillback (described in the next part)
induces a break in the velocity of the vehicles when going through the shock waves.
It is still true through the junction point.

Figure 15. Numerical solution on each branch for the merge

Propagation of waves. Let us describe in detail the shock and rarefaction
waves that appear from the considered initial Riemann problem (see Figure 18). At
the initial state (see Figure 18 (a)) all the branches are not congested. At the initial
state the supply on road 3 is 5400veh/h while the demands on roads 1 and 2 are
respectively 4900veh/h and 1400veh/h, that to say a total demand of 6300veh/h.
Thus all the demand can not be satisfied through the junction point. The junction
is thus supply constrained and the flows are regulated by a priority share between
both competitive roads.
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Figure 16. Trajectories of some vehicles on each branch for the merge

To understand the behaviour of the flows at the junction point, we adopt the
optimization viewpoint (see Figure 17). The share is given by the fixed mix coef-
ficients γα with α = {1, 2}. The supply of road 3 is divided into roads 1 and 2

such that f
{1→3}
S = 0.8f3

S and f
{2→3}
S = 0.2f3

S that is f
{1→3}
S = 4320veh/h and

f
{2→3}
S = 1080veh/h.
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Figure 17. Flows distribution at merge

The flow through the junction is limited by the supply and it is weaker than the
demands on both incoming roads (see Figure 17). Then there are shock waves that
propagate backward on each incoming road (see Figure 18 (b) and (c)). The waves
speeds should match the Rankine-Hugoniot speeds, that is −4km/h on road 1 and
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(a) Initial conditions for densities (b) Densities at t = 10 s
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(c) Densities at t = 50 s (d) Densities at t = 200 s

Figure 18. Time evolution of vehicles densities on a merge

−7km/h on road 2. Moreover a rarefaction wave appears on the outgoing road 3
and it propagates at the same speed than the traffic flow (see Figure 18 (b)). The
flux on road 3 reaches the capacity.

5. Extensions. We discuss hereafter some possible extensions for the model (1)-(2)
and the numerical scheme (10)-(11). We recall that our numerical scheme allows to
find an approximate solution which converges to the exact solution of (1)-(2) when
the time and space steps go to zero. However, we can improve the realism of the
HJ model by considering a more general law (even sub optimal) for the junction
condition or to numerically deal with time dependent coefficients γα(t).

Junction condition. Up to now, we have only considered the maximization
of the total amount of incoming flows in the perspective of a system optimum.
However it is classical to observe that the passing flow through the junction is often
(if not always) sub-optimal. It is particularly the case when the number of incoming
branches is strictly greater than 1, due to competitive aspects of the merging. That
is the reason why it should be interesting to consider another condition F which is
less than the function F0 (the maximal theoretical flow that could pass through the
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junction) given by

F0(γ) := min

{

min
β≤NI

1

γβ
fβ
D(ρβ,n−1 ), min

λ≥NI+1

1

γλ
fλ
S (ρ

λ,n
0 )

}

. (30)

The condition F ≤ F0 could be obtained by considering a simple penalization of the
optimal flow according to the load of competitive flows at the junction. The very
recent paper [20] extends the mathematical results of [21] to more general junction
conditions considering a flux limiter. The uniqueness of the solution to HJ equa-
tions still holds.

Fixed coefficients. The reader can notice that the flux coefficients γα for any
α = 1, ..., n+m are already considered known at the beginning of the simulations.
Moreover we suppose that these coefficients are given constant during the whole
duration of the simulations. Both assumptions are not so realistic in a strict traffic
context. Indeed for the incoming roads, the coefficients γα could be interpreted as
mixing coefficients of the incoming flows through the junction point. For instance,
consider a junction with two incoming roads for which themixing coefficients depend
on time and on the state of traffic. If the coefficients are chosen such that the road
with the higher flow has the weakest mixing coefficient, then the main flow will
be restricted in the junction model. In reality, the mixing coefficients are time
dependent. It is obvious in the case of a signalized junction with priority rules or
stop lights management. Fixed coefficients are only justified for a stationary traffic
flow.

Numerical extension for non-fixed coefficients (γα). Up to now, we were
considering fixed coefficients γ := (γα)α and the flux of the scheme at the junction
point at time step n ≥ 0 was (30).

In certain situations, we want to maximize the flux F0(γ) for γ belonging to an
admissible set Γ. Indeed we can consider the set

A := argmax
γ∈Γ

F0(γ).

In the case where this set is not a singleton, we can also use a priority rule to
select a single element γ∗,n of A. This defines a map

(

(ρβ,n−1 )β≤NI
, (ρλ,n0 )λ≥NI+1

)

7→ γ∗,n.

At each time step n ≥ 0 we can then choose this value γ = γ∗,n in the numerical
scheme (23)-(24).

Towards a new model for non-fixed coefficients? Both previous parts
about junction condition and fixed coefficients point out some rigidity of the frame-
work given by the model (1). This model is particularly convenient to treat the
flows on a junction in a unified approach, i.e. without considering incoming or
outgoing roads. However it has the drawback of introducing fixed coefficients (γα)
which are hard to use in traffic modelling.

As a first extension, we can introduce non-fixed coefficients for the traffic flow
model (15), (26). However, the vehicles labels uα are defined in (17) according to
the vehicles densities ρα and up to the coefficients γα. It is not obvious that in this
case (with non-fixed coefficients γα(t)), the vehicles labels still satisfy the model (1).

Another extension could be to introduce assignment coefficients γij which stand
for the percentage of vehicles coming from branch i and going on branch j. It is
not suitable with the model (1) even if we sort incoming and outgoing branches.
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Remark 10. In traffic flow litterature, [5] already introduces junction models with
dependent coefficients γα(ρ). However the developed methods are no longer satis-
factory because these models do not comply the invariance principle of [27].

6. Conclusion. In this article, we provide a discussion about traffic flow modelling
on junctions. Using the well-known links between scalar conservation laws and
Hamilton-Jacobi equations of the first order on a simple section, a new framework
has been built to model junctions [20, 21]. This framework based on Hamilton-
Jacobi equations allows to overpass certain shortcuts of the classical approach [13],
yielding e.g. the uniqueness of the solution whatever the number of incoming or
outgoing branches. Thus we can built a numerical scheme that converges to that
unique solution. The mathematical properties of the numerical scheme are deeply
investigated in a companion article [10].

The numerical scheme we propose for Hamilton-Jacobi equations is strictly equiv-
alent to the Godunov scheme for conservations laws. The numerical tests performed
in this paper attempt to illustrate the ability of the scheme to reproduce kinematic
waves such as shocks or rarefaction fans. For a deeper numerical comparison be-
tween numerical schemes (in the conservation laws framework), the interested reader
is referred to [3, 4]. It is out of the scope here.
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