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1 Numerical schemes for the Hamiltonian approach

This section is devoted to the presentation of the most classical (and the most used) numerical
scheme for solving partial differential equations in traffic flow research and engineering. We
restrict our attention to the LWR model, standing for Lighthill, Whitham and Richards [30, 32].
In this model, the traffic density q ∈ R at a location p and time t satisfies to a scalar conservation
law

∂

∂t
q +

∂

∂p
h(q) = 0, for any (t, p) ∈ [t0,+∞)× [p0,+∞), (1)

where q 7→ ϕ = h(q) is the flow function, also called the flow-density fundamental diagram in
the traffic flow literature. This function is also an Hamiltonian as it has been shown in the
above sections. Assume moreover that the initial densities are known

q(t = t0, p) = g(p), for any p ∈ [p0,+∞). (2)

Existence and uniqueness of the solution of (1)-(2) can be obtained under weak assumptions on
h and g. See [3] for instance. We simply assume that h is concave and C1 differentiable and
that g is Lipschitz continuous. We denote by h↑ (resp. h↓) the increasing (resp. decreasing)
part of h.

To solve such an equation, Daganzo and Lebacque proposed independently a numerical
scheme in the mid of the nineties [8, 9, 10, 22]. This is a finite volume scheme, explicit in
time, which was first published by Serguei Godunov in 1959 [15]. Let us introduce a time
and space discretization with respectively ∆t and ∆p > 0 the finite steps. We denote by qij,
for any (i, j) ∈ N × Z, a numerical approximation of the continuous solution q of the Cauchy
problem (1)-(2)

qij :=
1

∆p

∫ p
j+1

2

p
j− 1

2

q(ti, ξ)dξ,

with pj := p0 +

(

j −
1

2

)

∆p and ti := t0 + i∆t.

Then the Godunov scheme reads as follows

qi+1
j = qij +

∆t

∆p

[

F
(

qij−1, q
i
j

)

− F
(

qij, q
i
j+1

)]

, for any (i, j) ∈ N× Z, (3)

with
F (q1, q2) := min {h↑ (q1) ,h↓ (q2)} .

In order to ensure the stability of the numerical scheme (3) (and thus the convergence of the
scheme thanks to Lax theorem), one needs to satisfy the Courant-Friedrichs-Lewy condition [7]

∆t

∆p
≥ sup

q∈Dom(h)

∣

∣h′(q)
∣

∣ . (4)

The condition (4) teaches us that the numerical scheme has to be greater or equal to the maximal
characteristic speed of the “fluid”. One characteristic wave cannot go through more than one
cell [ti, ti+1]× [pj, pj+1] at each time step.

Obviously, this numerical scheme can be applied for another conservation laws for instance
for the LWR equation recast in Lagrangian or Lagrangian-space frameworks (see Section 2.3
p. 5).
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2 A Panorama on Macroscopic Hamiltonian Models

In this section, we propose some insights coming from the traffic flow engineering world. More
precisely, we aim at presenting different Hamiltonian approaches that have been developed by
researchers to make the seminal LWR model (see Section 6.4 p.169) more realistic or more
easily usable.

2.1 General background

For day-to-day operations, traffic managers use macroscopic traffic flow models. These models
must be simple, robust, allowing to get solutions at a low computational cost. The main
macroscopic models are based on conservation laws or hyperbolic systems (see [17] or Chapter 5
in [14] for traffic aspects and [13] for mathematical aspects). The seminal LWR model (for
Lighthill-Whitham and Richards) was proposed in [30, 32] as a single conservation law with
unknown the vehicle density. This model based on a first order partial differential equation is
very simple and robust but it fails to recapture some empirical features of traffic. Indeed, it
assumes that all the vehicles are in an equilibrium traffic state meaning that they are never
accelerating or braking. Thus, it does not allow to take into account out-of-the-equilibrium
traffic states that are responsible for the set-valuedness of the flow-density fundamental diagram
mainly observed in congested situations (see Figure 1.3.1 p.16 for instance). More sophisticated
models referred to as higher order models were developed to encompass kinematic constraints
of real vehicles or also the wide variety of driver behaviors, even at the macroscopic level.
Some examples are given in this section where we deal with models of the Generic Second
Order Modeling (GSOM) family [25, 27]. Even if these models are more complicated to deal
with, they permit to reproduce traffic instabilities (such as the so-called stop-and-go waves,
the hysteresis phenomenon or the capacity drop) which move at the traffic speed and differ
from kinematic waves [33] (see also [27] and references therein). As these models combine the
simplicity of the LWR model with the dynamics of driver specific attributes, we are able to
recapture more specific phenomenon with a higher accuracy.

2.2 The GSOM family of Hamiltonian models

2.2.1 General GSOM formulation

Any model of the GSOM family can be stated in conservation form (and in Eulerian coordinates)
as follows











































∂

∂t
q +

∂

∂p
(qu) = 0 Conservation of vehicles,

∂

∂t
(qz) +

∂

∂p
(quz) = qψ(z) Dynamics of the driver attribute z,

u = U(q, z) Speed-density fundamental diagram,

(5)

where q stands for the density of vehicles, u for the flow speed (equal to the mean spatial
velocity of vehicles), p and t for position and time. The variable z is a specific driver attribute
or specification which can represent for example the driver aggressiveness, the driver destination,
the vehicle class or a combination of such information. The flow-density fundamental diagram
is defined by

h : (q, z) 7→ qU(q, z).
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The function ψ leads the dynamics of the attribute z. Its expression depends on the choice of
the modeling.

2.2.2 Examples of models from the GSOM family

The GSOM family recovers a wide range of existing models:

• The LWR model [30, 32] itself is simply a GSOM model with no specific driver attribute
(z is the same for any driver), expressed as follows







∂

∂t
q +

∂

∂p
(qu) = 0 Conservation of vehicles,

u = Ue(q) Speed-density fundamental diagram.
(6)

The fundamental diagram for the LWR model h : q 7→ ϕ = qUe(q) states that traffic
flow is always at an equilibrium state (no acceleration or deceleration for instance). It
is commonly assumed that the flow is an increasing function of density between zero
(corresponding to an empty section) and a critical density and then the flow decreases
until the jam density (corresponding to a bumper-to-bumper situation). However the
fundamental diagram shape is always a subject of debates (see for instance [12]) and there
exists a wide variety of them in the literature encompassing concave and triangular flow
functions (see Figure 1 and also Chapter 3 of [13] for additional examples).

0 00

F low, ϕ

qmax qmax qmax

F low, ϕ F low, ϕ

Density, qDensity, q Density, q

Figure 1: Illustrations of some flow functions h for the LWR model: Greenshields (left), trian-
gular (center) and exponential (right).

• The LWR model with bounded acceleration proposed in [23, 24, 28] is also a GSOM model
in which the propagated driver attribute is simply the speed of vehicles.

• The ARZ model (standing for Aw, Rascle [1] and Zhang [33]) for which the driver attribute
is taken as the gap between the current speed and the equilibrium speed (given by the
LWR model) z = u− Ue(q), that gives us U(q, z) = z + Ue(q).

• The Generalized ARZ model proposed in [11] that can be also seen as a particular case of
the model described in [34]. These models introduce an interaction mechanism between
two different fundamental diagrams for distinguish equilibrium and non-equilibrium states.

• Multi-commodity models (multi-class, multi-lanes) of Jin and Zhang [18], Bagnerini and
Rascle [2] or Herty, Kirchner, Moutari and Rascle [16]. It encompasses also the model of
Klar, Greenberg and Rascle [20].
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• The Colombo 1-phase model deduced in [27] from the 2-phase model of Colombo [4]. In
this case, the driver attribute z is a scalar which is non-trivial in congested situation. In
fluid area, the model follows the classical LWR model.

• The stochastic GSOM model of Khoshyaran and Lebacque [19]. The driver attribute z is
a random variable depending on the vehicle index V and on the random event ω such that
z = z(V, t, ω). The random perturbations do not affect the vehicle dynamics but affect
the driver perception and its behavior.

The interested reader is referred to [26] and references therein for more details on examples.

2.3 The three-dimension representation of traffic flow

Let us introduce the Lagrangian coordinate

V (t, p) :=

∫ ∞

p

q(t, ξ)dξ

which stands for the (continuous) label of the vehicle (or the cumulated vehicle count as pre-
sented above) at position p and at time t. Lagrangian coordinates are fixed to a given fluid
particle and move with it in space-time. Note that in the continuum, v = V (t, p) is not neces-
sarily an integer.

The Lagrangian system of coordinates has been first used in the case of gas dynamics by
Courant and Friedrichs [6]. It has been introduced in traffic flow theory by Leclercq and its
co-authors in [29].

The term Eulerian refers to the “classical” framework t − p. Eulerian data stand for data
coming from fixed equipment giving records of occupancy or flow of vehicles on a freeway sec-
tion. This kind of measurements come from e.g. fixed inductive loop detectors, Radio Frequency
Identification (RFID) transponders, radars or video cameras. Conversely, the term Lagrangian

is used to characterize a moving framework. Data coming from sensors which move within the
measured field of interest are called Lagrangian data. Lagrangian data are provided by on board
mobile sensors such as Global Positioning Systems (GPS) or GPS-enabled smartphones.

We define the headway (the average time gap between vehicles), the spacing (the average
spatial gap between vehicles) and the pace (the average time used to travel a unit distance)
respectively as follows

h =
1

ϕ
, s =

1

q
, r =

1

u

where ϕ, q and u denote respectively the flow, the density and the speed. Considering the
different systems of coordinates for the three representations of traffic, we obtain the following
systems of equations to solve (see Table 1):

The three-dimension representation of traffic flow has been firstly produced by Makigami
and co-authors in [31]. The Eulerian framework is the mostly used in the traffic flow community
while Lagrangian system of coordinate has been proved to provide a very good framework for
specific applications like treating moving constraints (the so-called moving bottleneck problem).
The last system of coordinates is attracting more and more attention (see for instance [5] and
references therein).
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Eulerian Lagrangian Lagrangian-space
t− p t− v v − p

Variables q density s spacing r pace
ϕ flow u speed h headway

First equation: ∂q

∂t
+
∂ϕ

∂p
= 0

∂s

∂t
+
∂u

∂v
= 0

∂r

∂v
−
∂h

∂p
= 0

Conservation law

Second equation: ∂z

∂t
+ u

∂z

∂p
= ψ(z)

∂z̃

∂t
= ψ(z̃)

∂ž

∂p
= rψ(ž)

Attribute dynamics

Table 1: Coordinate systems, variable definitions and equations for the three representations.

2.4 The three kinds of Hamiltonians

It has been shown in [21] that one can define

• V (t, p) the (continuous) label of the vehicle located at position p at time t

• P (t, v) the position of the vehicle labeled v at time t

• Ω(v, p) the passing time of vehicle labeled v at position p (or the travel duration between
a reference position and p)

such that one has


















ϕ =
∂V

∂t
, (flow)

q = −
∂V

∂p
, (density)

,



















u =
∂P

∂t
, (speed)

s = −
∂P

∂v
, (spacing)

,



















h =
∂Ω

∂v
, (headway)

r =
∂Ω

∂p
. (pace)

Then, it is easy to show that the conservation laws presented in Table 1 can be recast as
follows (see Table 2)

Eulerian Lagrangian Lagrangian-space
t− p t− v v − p

First equation: ∂V

∂t
− h

(

−
∂V

∂p
, z

)

= 0
∂P

∂t
− h

(

−
∂P

∂v
, z̃

)

= 0
∂Ω

∂v
− h

(

∂Ω

∂p
, ž

)

= 0
Hamilton-Jacobi

Second equation: ∂z

∂t
+ u

∂z

∂p
= ψ(I)

∂z̃

∂t
= ϕ(z̃)

∂ž

∂p
=
∂Ω

∂p
ϕ(ž)

Attribute dynamics

Table 2: Coordinate systems, variable definitions and equations for the three representations.

where the following Hamiltonian h have been designed as follows (for sake of clarity, we only
consider the LWR case i.e. with no specific driver attribute – see also Figure 2):

1. in the Eulerian case, h maps densities q to flows ϕ = h(q). The derivative h′(q) is
interpreted as a velocity of traffic waves (say the velocity of the characteristics such as
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shock waves). The traffic mean spatial speed is given by u =
ϕ

q
whenever q 6= 0. One can

distinguish:

(a) The demand side associates with densities the maximal upstream flux that wishes
to flow through a position. It matches the non-decreasing part of the Hamiltonian
denoted by h↑;

(b) The supply side associates with densities the maximal flux that can be locally accom-
modated downstream It matches the non-increasing part of the Hamiltonian denoted
by h↓.

2. in the Lagrangian case, h maps the spacing (or interdistance between vehicles) s :=
1

q
to speed u := h (s). The derivative h′ (s) is homogeneous to a flux. The traffic flux is

computed as ϕ =
u

s
. One can distinguish:

(a) The demand side associates with the interdistance the wished maximal speed allowed
to the vehicle. The demand function reduces to the horizontal asymptote u = umax;

(b) The supply side associates with the interdistance the actual maximum speed allowed
to the vehicle by downstream traffic conditions. It exactly matches the Hamiltonian.

3. in the the spatial Lagrangian case, h maps rhythm or (pace, frequency) r :=
1

u
to the head-

way h := h(r) corresponding to the inverse of flow ϕ. The derivative h′ (r) is homogeneous

to a spacing. The traffic spacing is given by s =
h

r
. One can distinguish:

(a) The demand side associates with the pace the minimal headway at which the driver
wishes to circulate. It matches the non-increasing part of the Hamiltonian denoted
by h↓;

(b) The supply side associates with the pace the minimal headway allowed by down-
stream traffic conditions. It matches the non-decreasing part of the Hamiltonian
denoted by h↑.

Naturally, the Hamiltonians can depend also on time, duration and position, on one hand,
as well as specification or attributes z and their velocities z′.
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0 00

Headway, h Headway, h Headway, h

0 00

Speed, u Speed, u Speed, u

0 00

Pace, r Pace, r Pace, r

Density, qDensity, q Density, q

qmaxqmax qmax

smin Spacing, sSpacing, ssminsmin Spacing, s

F low, ϕ F low, ϕ F low, ϕ

Figure 2: Illustrations of some Hamiltonians h: Greenshields (left), triangular (center) and
exponential (right).
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