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Abstract. In this work, we derive first order continuum traffic flow models from a microscopic delayed follow-5
the-leader model. Those are applicable in the context of vehicular traffic flow as well as pedestrian6
traffic flow. The microscopic model is based on an optimal velocity function and a reaction time7
parameter. The corresponding macroscopic formulations in Eulerian or Lagrangian coordinates8
result in first order convection-diffusion equations. More precisely, the convection is described by the9
optimal velocity while the diffusion term depends on the reaction time. A linear stability analysis for10
homogeneous solutions of both continuous and discrete models are provided. The conditions match11
the ones of the car-following model for specific values of the space discretization. The behavior of the12
novel model is illustrated thanks to numerical simulations. Transitions to collision-free self-sustained13
stop-and-go dynamics are obtained if the reaction time is sufficiently large. The results show that the14
dynamics of the microscopic model can be well captured by the macroscopic equations. For non–zero15
reaction times we observe a scattered fundamental diagram. The scattering width is compared to16
real pedestrian and road traffic data.17
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1. Introduction. Microscopic and macroscopic approaches for the purpose of vehicular21

traffic flow modelling have been often developed separately in the engineering community [45,22

23, 5, 26]. Similar models can also be used in the description of pedestrian dynamics [42, 11, 1].23

Typically, microscopic models are based on the so-called “follow-the-leader” strategy and they24

are stated as (finite or infinite) systems of Ordinary Differential Equations (ODEs). They are25

generally based on speed or acceleration functions which depend on distance spacing, speed,26

predecessor’ speed, relative speed and so on. One of the simplest approach is a speed model27

solely based on the spacing, firstly proposed by Pipes [40]28

(1) ẋi(t) = W (∆xi(t)),29

where ∆xi(t) = xi+1(t)− xi(t) denotes the spacing between the vehicle (i) to its predecessor30

(i + 1) and W (·) stands for the equilibrium (or optimal) speed function depending on the31

spacing. The microscopic models are discrete in the sense that the vehicles or pedestrians32

i ∈ Z are individually considered. A macroscopic description consider the flow of vehicles33

or pedestrians (in the following also referred to as agents) as a continuum in Eulerian or34

Lagrangian coordinates. For instance in the most classical Eulerian time-space framework,35

the main variables are the density, the flow and the mean speed. The simplest approach is36
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2 A. TORDEUX, G. COSTESEQUE, M. HERTY AND A. SEYFRIED

the scalar hyperbolic equation of the celebrated Lighthill-Whitham-Richards (LWR) model37

[30, 41]38

(2) ∂tρ+ ∂x(ρV (ρ)) = 0.39

Here ρ is the density, V (·) is the equilibrium speed function which is assumed to depend40

only on the density. The flow Q(ρ) = ρV (ρ) is given by the product of the density times41

the mean speed. The model is derived from the continuity equation for which the flow is42

supposed in equilibrium. The microscopic and macroscopic models Eq. (1) and Eq. (2) well43

reproduce shock-wave phenomena for Riemann problems. Yet such models are not able to44

describe the observed transition to scattered flow/density relation (the fundamental diagram)45

with hysteresis and self-sustained stop-and-go phenomena (see [46, 25, 10] and Fig. 1). This46

is due to the fact that spatially homogeneous regime are always in the equilibrium solutions47

and determined by the functions W (·) and V (·), respectively.48

Figure 1. Empirical fundamental diagrams. Left, [24, Figure 1] and right, [50, Figure 5].

Therefore, the microscopic behavior is modified by introducing reaction and relaxation49

times. The simplest following model of this type may be the delayed model by Newell [32]50

(3) ẋi(t+ τ) = W (∆xi(t)),51

with τ the reaction time (if positive). Applying a Taylor expansion in the l.h.s. of the delayed52

speed model Eq. (3), we obtain the second order ‘optimal velocity model’ (OVM) introduced53

by Bando et al. in [4]. The OVM has limit-cycles in stationary states, with self-sustained prop-54

agation of non-linear stop-and-go waves, and hysteresis curves in the fundamental flow/density55

diagram (see [35, 36]). Macroscopic second-order models comprised of systems of hyperbolic56

equations are also able to reproduce non-linear stop-and-go waves and scattering of the funda-57

mental diagram. One of the first approach is the one by Payne and Whitham (PW) [38, 48].58

The model can be derived from the microscopic Newell model Eq. (3). The main drawback59

of this model is that, as pointed out by Daganzo [14], the speed and the density could yield60

negative values and are not bounded. Note that this drawback is also observed with follow–61

the–leader models like the OVM and is referred as collision between the vehicles (see for62

instance [15, 37] or [45, Chap. 15]). Aw and Rascle have corrected this issue by replacing the63
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FROM FOLLOW-THE-LEADER MODELS TO CONVECTION-DIFFUSION FLOW MODELS 3

space derivative of the ‘pressure’ by a convective derivative [3] (AR model). Nowadays exten-64

sions of the AR model such as the ARZ, GARZ or generalized models [22, 49, 6, 18, 43, 17],65

as well as two phase models coupled with the LWR model [12, 20, 13, 7], are used to de-66

scribe transition to congested traffic with scattered fundamental diagrams and self-sustained67

non-linear shock waves. A general framework is the generic second order model (GSOM)68

family introduced in [29, 28]. Most of the approaches are a posteriori based on the continuous69

description.70

In this article, we derive minimalist macroscopic traffic flow models of first order from71

a microscopic speed model to describe stop-and-go wave phenomena and scattering of the72

fundamental diagram. The use of first order models allow us to ensure by construction that73

the speed and the density remain positive and bounded. The starting point is a OV micro-74

scopic model of first order including a reaction time parameter. We show in Sec. 2 that the75

corresponding macroscopic model results in a convection-diffusion equation. The macroscopic76

model is discretized using distinct Godunov and Euler-based schemes and the linear stability77

conditions for the homogeneous solutions of these numerical schemes are provided in Sec. 3.78

The conditions match the ones of the car-following model for specific values of the spatial79

discretization step. Simulations are carried out in Sec. 4. Systems with different initial con-80

ditions are numerically solved. Further, we compare with data of realistic traffic flow as well81

as pedestrian flow.82

2. Microscopic and macroscopic models.83

2.1. The microscopic follow-the-leader model. The microscopic model we use has been84

introduced in [44]. It is based on the Newell model Eq. (3). In the remaining of the paper,85

we assume that W : s 7→W (s) is Lipschitz continuous, non-decreasing and upper bounded in86

order to get the well-posedness of Eq. (3) supplemented with initial conditions xi(t = 0) = xi,087

for any i ∈ Z. We rewrite the equation as88

(4) ẋi(t) = W (xi+1(t− τ)− xi(t− τ)),89

and apply a Taylor expansion in the argument of W . Neglecting higher–order terms in τ we90

obtain91

(5) ẋi(t) = W
(
∆xi(t)− τ

[
W (∆xi+1(t))−W (∆xi(t))

])
.92

The model is a system of ordinary differential equations of first order with two predecessors in93

interaction. It is calibrated by the delayed time τ ∈ R, that is a reaction time if positive and94

an anticipation time if negative, and the optimal speed function W (·). The function W (·) is95

supposed to be bounded by V0 > 0, positive and zero if the spacing is smaller than `, ` > 096

being the vehicle’s length or size of the pedestrian. Note that the model admits a minimum97

principle, say ∆xi(t) ≥ ` ∀i, t. Thus it is by construction collision-free and it has the same98

stability condition as the initial microscopic Newell model Eq. (3) or as the OVM from [4].99

This condition is for all s ∈ R100

(6) |τ |W ′(s) < 1/2.101

Note that the condition simply reduces to |τ | < T/2 if one considers the linear fundamental102

diagram W : s 7→ W (s) := max
{

0,min
{

1
T (s− `), V0

}}
, with T > 0. When unstable, the103

model transits to states with collision-free self-sustained stop-and-go dynamics, see [44].104
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2.2. Derivation of macroscopic models. In the following, we consider i = 1, . . . , N agents105

with periodic boundary conditions (i.e. the predecessor of the agent N is the agent 1). The106

derivation of macroscopic models from microscopic models is useful to fully understand the107

dynamics. In [2], Aw et al. established the connection between a microscopic car-following108

model and the second-order AR macroscopic traffic flow model. The rigorous proof, based on a109

scaling limit where the time and space linearly increase while the speed and the density remain110

constant, assumes homogeneous conditions. We use here the same methodology considering111

the local density ρi(t) around the vehicle or pedestrian (i) and at time t > 0, as the inverse112

of the spacing113

(7) ρi(t) :=
1

∆xi(t)
.114

The density could also be normalized by multiplication with `. Here, we prefer to keep the115

unit of one over length as density to ease the comparison with the classical models. Then, the116

microscopic model reads117

(8) ẋi(t) = W

(
1

ρi(t)
− τ

[
W

(
1

ρi+1(t)

)
−W

(
1

ρi(t)

)])
=: Ṽ (ρi+1(t), ρi(t)),118

for a velocity profile Ṽ . Then,119

(9) ∂t
1

ρi(t)
= ∂t∆xi(t) = Ṽ (ρi+2(t), ρi+1(t))− Ṽ (ρi+1(t), ρi(t)).120

In [2] it has been observed that Eq. (9) is a semi–discretized version of hyperbolic partial121

differential equation in Lagrangian coordinates. This requires to consider limits of many122

vehicles or pedestrians N → ∞ and diminishing length ` → 0. We introduce the continuous123

variable y ∈ R such that yi = i∆y as counting variable for the number of agents where124

∆y is proportional to `. By piecewise constant extension of the given spacing, we construct125

a density ρ(t, y) such that
1

ρi(t)
=

1

∆y

∫ yi+
∆y
2

yi−∆y
2

1

ρ(t, z)
dz. The quantity 1

ρi(t)
is the volume126

average over a cell of length ∆y centered at yi. The r.h.s. of (9) describes the flux across127

the cell boundaries. Introduce V : k 7→ V (k) = W ( 1
k ) for any k > 0. Then, it follows that128

Ṽ (k1, k2) = V
(

k2
1−k2τ [V (k1)−V (k2)]

)
for any (k1, k2) ∈ (0,+∞)2 satisfying V (k1) 6= V (k2)+ 1

τk2
.129

As for OVM, W is non-decreasing, therefore we observe that V is non-increasing on (0,+∞).130

We obtain from (9)131

(10) ∂t
1

ρi(t)
− ∆y

∆y

[
V

(
ρi+1

1− τρi+1Zi+1

)
− V

(
ρi

1− τρiZi

)]
= 0,132

where Zi := V (ρi+1) − V (ρi). Provided that −V is increasing and ρ(t, y) is piecewise con-133

stant on each cell, the reconstruction at the cell interface yi± 1
2

is given by cell averages, i.e.,134

1

ρ

(
t,y

i+ 1
2

) = 1
ρi+1(t) . Next, we rescale time t→ t∆y and also reaction time τ → τ∆y to obtain135

(11) ∂t
1

ρi(t)
− 1

∆y

[
V

(
ρi+1

1− τρi+1
Zi+1

∆y

)
− V

(
ρi

1− τρi Zi
∆y

)]
= 0.136
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Hence, we observe that in the rescaled time and in the limit ∆y → 0 the microscopic model137

is an upwind discretization of the following macroscopic equation138

(12) ∂t
1

ρ
− ∂yV

(
ρ

1− τρ∂yV (ρ)

)
= 0.139

The upwind or Godunov scheme is the most mathematically reasonable discretization provided140

τ is sufficiently small due to the decreasing behavior of V for suitable OVM functions W. Up to141

second–order in τ we approximate (12) by Taylor expansion and obtain a convection–diffusion142

model as143

(13) ∂t
1

ρ
− ∂yV (ρ) = τ∂y

(
(ρV ′(ρ))2∂yρ

)
.144

The relation between the density in Lagrangian coordinates and Eulerian coordinates is145

given by the coordinate transformation (t, y) → (t, x) where y =
∫ x
−∞ ρ(t, x)dx. Note that y146

counts the number of vehicles/pedestrians up to position x in Eulerian coordinates. In the147

Eulerian coordinates (t, x), the macroscopic model Eq. (12) reads148

(14) ∂tρ+ ∂x

(
ρV

(
ρ

1− τ∂xV (ρ)

))
= 0.149

The model could be seen as an extension of the LWR model Eq. (2) with a modified speed-150

density relationship ρ 7→ V (ρ/(1− τ∂xV (ρ))). Such a family of models is related to as151

fictitious density non-linear diffusion models in the literature [8]. For illustrating the behavior152

of this modified speed-density mapping, we set I := τ∂xV (ρ)) and we define V : (ρ, I) 7→153

V (ρ/(1− I)). The fundamental diagrams obtained for a constant term I ∈ {−0.3, 0, 0.3} and154

for a speed function V : ρ 7→ max{0,min{2, 1/ρ − 1}} are shown on Figure 2. Note that for155

constant (in space) densities ρ (and/or for τ = 0), the additional term I vanishes and we156

recover the classical LWR model.157
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Figure 2. Illustration for the fundamental diagram V : (ρ, I) 7→ V
(
ρ/(1− I)

)
obtained in the macroscopic

model (14) with constant inhomogeneity I ∈ {−0.3, 0, 0.3} and V : ρ 7→ max{0,min{2, 1/ρ− 1}}.
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A Taylor expansion up to second-order in terms of τ for equation (14) yields158

(15) ∂tρ+ ∂x(ρV (ρ)) = −τ∂x
(
(ρV ′(ρ))2∂xρ

)
.159

We also consider an initial condition160

(16) ρ(t = 0, x) = ρ0(x) for any x ∈ R161

where ρ0 ∈ L1(R)∩BV(R). Eq. (15) is a partial differential equation of the first order in time162

and of the second in space. Oppositely to classical second order approaches such as PW, AR,163

ARZ or GSOM models [38, 48, 3, 49, 28] which are hyperbolic, the model is parabolic and164

simply requires Neumann boundary conditions.165

By defining D(ρ) :=

∫ x

−∞
−τ(ρV ′(ρ))2∂xρ dy, we obtain an diffusion equation similar to166

the one considered in [9], say167

(17) ∂tρ+ ∂x(ρV (ρ)) = ∂2
xD(ρ).168

One can verify that D(ρ0) is absolutely continuous on R and that ∂xD(ρ0) ∈ BV(R). Note169

that the model simply describes a linear diffusion in the special case where D(ρ) = −τρ and170

τ < 0.171

3. Linear stability analysis.172

3.1. Linear stability analysis of the continuous macroscopic model. In (15), the l.h.s. is173

the LWR model with additional diffusion proportional to the reaction time parameter τ and174

that can be either negative or positive. More precisely the diffusion is negative in deceleration175

phases where the density get higher upstream, and it is positive in the opposite acceleration176

phases. This type of diffusion seems to induce an instability of the homogeneous (constant)177

solutions and the formation of oscillations (i.e. jam waves). The diffusion coefficient (ρV ′(ρ))2178

depends on the density and the fundamental diagram. In fluid dynamics the coefficient is179

a characteristic for the flexibility of the random movement responsible for the diffusion. In180

traffic flows, comparable diffusion-convection forms have been used in [31, 9]. We refer the181

interested reader to [9] (and references therein) for a proof of existence and uniqueness of182

the solution to Eq. (15)-(16). In the following we analyze the linear stability of homogeneous183

solutions for the macroscopic model at equilibrium density ρe.184

Proposition 1. The homogeneous configurations for which ρ(x, t) = ρe for all x and t are185

linearly stable for the continuous traffic model Eq. (15) if and only if186

(18) τ < 0.187

Note that a negative τ refers to an anticipation time.188

Proof. If ε(x, t) = ρ(x, t)− ρe is a perturbation to homogeneous solution ρe, then189

(19) εt = F (ρe + ε, εx, εxx) = αε+ βεx + γεxx + o(LC(ε, εx, εxx)),190

with F (ρ, ρx, ρxx) = −∂x
(
ρV (ρ)−τ(ρV ′(ρ))2∂xρ

)
, α = ∂F

∂ρ (ρe, ρe, ρe) = 0, β = ∂F
∂ρx

= −V (ρe)−191

ρeV
′(ρe), γ = ∂F

∂ρxx
= −τ(ρeV

′(ρe))
2. The solutions of the linear system are the Ansatz192
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ε = zeλt−ixl where λ ∈ C, x, l ∈ R. We get εt = λε, εx = −ilε and εxx = −l2ε. Therefore the193

characteristic equation of the perturbed system Eq. (19) is λl = τ(lρeV
′(ρe))

2 + il(V (ρe) +194

ρeV
′(ρe)). The homogeneous solution are stable when ε→ 0, i.e. <(λl) < 0 for all l > 0. This195

holds only if the diffusion is positive. This is τ < 0.196

Therefore the macroscopic model is unstable as soon as the reaction time τ is positive197

which is the physically reasonable case. An explanation is that the Taylor expansion of the198

original model in terms of τ does lead to a perturbed equation with different properties.199

However, the discrete model does not have this stability requirement. Therefore, we show200

below that for suitable discretization of the model we recover stability.201

3.2. Linear stability analysis for the discrete schemes. Discretizations of the macroscopic202

models Eqs. (12) and (13) in ‘Lagrangian’ coordinates give the initial microscopic model203

Eq. (5). Our purpose in this section is the discretization of the macroscopic models Eqs. (14)204

and (15) in Eulerian coordinates. We denote dt and dx the time and space discretization steps205

and use the Godunov scheme [21] for the discretization of the density206

(20) ρj(t+ dt) = ρj(t) +
dt

dx

(
fj−1(t)− fj(t)

)
207

where fj denotes the flow at cell boundary and has to be determined. For this aim, we208

introduce the demand and supply functions from the flow-density fundamental diagram Q :209

ρ 7→ Q(ρ) := ρV (ρ) as first proposed in [14, 27] and that read respectively210

(21) ∆(ρ) := max
k≤ρ

Q(k) and Σ(ρ) := max
k≥ρ

Q(k)211

and we define the Godunov flux as G(x, y) := min{∆(x),Σ(y)}. We are now ready to propose212

three different strategies to compute the boundary flows fj . The first two methods discretize213

the linearized model Eq. (15) using a splitting scheme which treats separately the convection214

and the diffusion terms. The last scheme is a simple discretization of the exact macroscopic215

model Eq. (14).216

1. The Godunov/Euler scheme: a Godunov scheme for the convection term and an explicit217

Euler scheme for the diffusive term of the linearised model Eq. (15):218

(22) f
(1)
j = G(ρj , ρj+1) +

τ

dx
(ρjV

′(ρj))
2(ρj+1 − ρj).219

Such a scheme is the one used in [2].220

2. The Godunov/Godunov scheme: a Godunov scheme for the convection term and a Go-221

dunov scheme for the diffusion term of the Taylor–expanded model Eq. (15):222

(23) f
(2)
j = G(ρj , ρj+1) +

τ

dx
ρjV

′(ρj)
[
G(ρj+1, ρj+2)−G(ρj , ρj+1)

]
.223

3. The Godunov scheme: a Godunov scheme for the modified convection term in the exact224

macroscopic model Eq. (14):225

(24) f
(3)
j = G

(
ρj

1− τ
dx

(
V (ρj+1)− V (ρj)

) , ρj+1

1− τ
dx

(
V (ρj+2)− V (ρj+1)

)
)
.226
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Note that this scheme is valid if 1− τ
dx

(
V (ρj+1)−V (ρj)

)
> 0 for all ρj and ρj+1. By denoting227

V0 = supx V (x), this inequality holds if228

(25) τ < dx /V0.229

Proposition 2. In a system of K cells with periodic boundary conditions, the homogeneous230

configurations for which ρj(t) = ρe for all j and t are linearly stable for the discrete traffic231

model Eq. (20) if and only if232

(26) α2 + β2 + γ2 + ξ2 − 2αγ − 2βξ + 2h(cl) < 1, ∀l = 1, . . . ,K − 1,233

with cl = cos(2πl/K) and h(x) = (αβ+αξ+βξ−3γξ)x+2(αγ+βξ)x2 +4γξx3, and α = ∂F
∂ρj

,234

β = ∂F
∂ρj+1

, γ = ∂F
∂ρj+2

and ξ = ∂F
∂ρj−1

the partial derivatives of the model in equilibrium.235

Proof. The perturbations to homogeneous solution are the variables εj(t) = ρj(t) − ρe.236

The perturbed system is237

(27)
εj(t+ dt) = ρj(t+ dt)− ρe = F (ρj(t), ρj+1(t), ρj+2(t), ρj−1(t))− ρe

= α εj(t) + β εj+1(t) + γ εj+2(t) + ξ εj−1(t) + o(LC(εj , εj−1, εj+1, εj+2)),
238

with α = ∂F
∂ρj

, β = ∂F
∂ρj+1

, γ = ∂F
∂ρj+2

and ξ = ∂F
∂ρj−1

at (ρe, ρe, ρe, ρe). General conditions239

for the global stability of the discrete schemes can be obtained for a system of K cells with240

periodic boundary conditions for which the equilibrium density ρe = N/(K dx), N being the241

number of agents. The linear perturbed system is ~ε (t+ dt) = M ~ε (t), with ~ε = T(ε1, . . . , εK)242

and M a sparse matrix with (ξ, α, β, γ) on the diagonal. If M = PDP−1 with D a diagonal243

matrix, then ~ε (t) = PDt/dtP−1 ~ε (0)→~0 if all the coefficients of D are less than one excepted244

one equal to 1. M is circulant therefore the eigenvectors of M are z(ι0, ι1, . . . , ιm−1) with245

ι = exp
(
i2πl
K

)
and z ∈ Z, and the eigenvalues are λl = α + βιl + γι2l + ξι−1

l . The system is246

linearly stable if |λl| < 1 for all l = 1, . . . ,K − 1. This is247

(28) λ2
l = α2 + β2 + γ2 + ξ2 − 2αγ − 2βξ + 2h(cl) < 1, ∀l = 1, . . . ,K − 1,248

with cl = cos(2πl/K) and h(x) = (αβ + αξ + βξ − 3γξ)x+ 2(αγ + βξ)x2 + 4γξx3.249

These conditions Eq. (26) are applied to the different numerical schemes Eq. (22), Eq. (23)250

and Eq. (24) with optimal speed V (ρ) = 1
T (1/ρ − `), T > 0 being the vehicles time gap and251

` ≥ 0 the vehicle’ size. For such speed function, the Godunov scheme is simply G(x, y) =252
1
T (1− y`).253

Lemma 3. The homogeneous configurations are linearly stable for the Godunov-Euler scheme254

Eqs. (20-22) if255

(29) 2τ < T` dx ρ2
e,256

and if dt is sufficiently small.257
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Proof. Mixed with the scheme for the density Eq. (20), Godunov/Euler scheme Eq. (22)258

is259

(30) F1(ρj , ρj+1, ρj+2, ρj−1) = ρj +
dt

T dx

(
`(ρj+1 − ρj) +

τ

T dx

(
ρj − ρj−1

ρ2
j−1

− ρj+1 − ρj
ρ2
j

))
,260

where α = 1−A+ 2B, β = A−B, γ = 0 and ξ = −B with A = dt `
T dx and B = dt τ

(T dx ρe)2 .261

If τ < 1
2T` dx ρ

2
e, then α > 0 for262

(31) dt <
T dx

`+ 2τ
T dx ρ2

e

,263

and for all dt ≥ 0 if τ ≥ 1
2T` dx ρ

2
e. Moreover 1 − α > 0 if τ < 1

2T` dx ρ
2
e while β is positive264

only if τ < T` dx ρ2
e and the sign of ξ is the one of −τ .265

The stability conditions are distinguished according to the sign of τ .266

• If τ < 0 and Eq. (31) holds, then h(x) = α(1−α)x+ 2βξx2 is strictly convex and is maximal267

on [−1, 1] for x = −1 or x = 1. Therefore the model is stable if h(−1) < h(1); this is simply268

−α(1 − α) < α(1 − α) that is always true since α > 0 if (31) holds and 1 − α > 0 on τ < 0.269

Therefore the system is stable for all τ < 0.270

• Several cases have to be distinguished for τ > 0. We assume in the following that Eq. (31)271

holds.272

– For 0 < τ < 1
2T` dx ρ

2
e, we have α, 1− α, β > 0, ξ < 0 and h(x) = α(1 − α)x + 2βξx2273

is strictly concave and maximal for x0 = −α(1−α)
4βξ > 0. The model is stable if x0 > 1,274

this is275

(32) dt <
T dx

`
− 2τ

(`ρe)2
.276

This condition is more restrictive than Eq. (31).277

– For 1
2T` dx ρ

2
e < τ < T` dx ρ2

e, we have α, β > 0, 1 − α, ξ < 0 and h(−1) > h(1)278

therefore the model is unstable. More precisely, h maximal for x0 < −1, i.e. the279

unstable solution have shortest wavelength if280

(33) dt <

(
τ − 1

2
T` dx ρ2

e

)(
2τ

T dx ρe

)−2

.281

This condition is also more restrictive than Eq. (31).282

– For τ > T` dx ρ2
e, we have α > 0, 1 − α, β, ξ < 0 and the system is unstable for all dt283

with shortest wavelength since h(·) strictly convex and h(−1) > h(1).284

The stability conditions for the Godunov/Euler splitting scheme Eq. (22) are summarised285

in Fig. 3. The same conditions as the continuous macroscopic model are obtained for dx→ 0286

and dt→ 0 such that dt / dx→ 0. At the limit dt→ 0, the stability does not occur as soon as287

the reaction time τ is positive if the space discretization dx is sufficiently small. Large dx may288

lead to stability even if τ is positive due to numerical stabilization.289
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Stable

dt < Tdx
`− 2τ

T dxρ2e

Stable

dt < Tdx
` − 2τ

(`ρe)2

Unstable

dt <
τ− 1

2T`dxρ
2
e(

2τ
T dxρe

)2

Shortest
Wavelength

Unstable

For all dt > 0

Shortest
Wavelength

1
2T`dxρ

2
e0 T`dxρ2e τ

Figure 3. Summary of the stability conditions for the Godunov/Euler splitting scheme Eq. (22).

Lemma 4. The homogeneous configurations are linearly stable for the Godunov-Euler schemes290

Eqs. (20-23) and Eqs. (20-24) if291

(34) 2|τ | < T dx ρe,292

and if dt is sufficiently small.293

Proof. The Godunov numerical schemes Eq. (23) and Eq. (24) are respectively294

(35) F2(ρj , ρj+1, ρj+2, ρj−1) = ρj +
dt `

T dx

(
ρj+1 − ρj +

τ

T dx

(
ρj+1 − ρj+2

ρj
− ρj − ρj+1

ρj−1

))
,295

and296

(36) F3(ρj , ρj+1, ρj+2, ρj−1) = ρj +
dt `

T dx

( ρj+1

1− τ
T dx

(
1

ρj+2
− 1

ρj+1

) − ρj

1− τ
T dx

(
1

ρj+1
− 1

ρj

)
)
.297

By construction, both give α = 1 − A(1 + B), β = A(1 + 2B), γ = −AB and ξ = 0 with298

A = dt `
T dx and B = τ

T dx ρe
. As expected, the stability conditions of these two schemes are the299

same.300

If τ > −T dx ρe, then α > 0 for301

(37) dt <
T dx

`+ `τ
T dx ρe

,302

and for all dt ≥ 0 if τ ≤ −T dx ρe. β is positive only if τ > −1
2T dx ρe. Moreover 1− β > 0 if303

Eq. (37) holds while the sign of γ is the one of −τ .304

Here again, the stability conditions are distinguished according to the sign of τ .305

• If τ < 0 and Eq. (37) holds, h(x) = β(1−β)x+ 2αγx2 is strictly convex is maximal on [−1, 1]306

for x = −1 or x = 1. Therefore the model is stable if h(−1) < h(1); this is307

(38) τ > −1

2
T dx ρe and dt <

T dx

`+ 2`τ
T dx ρe

.308

The condition for dt is weaker than (37) since τ is negative. If τ ≤ −1
2T dx ρe then the system309

is unstable at the shortest wave-length frequency. A sufficiently condition for that the finite310

system produces the shortest frequency is simply K ≥ 2. Note that no condition holds on dt311

if τ ≤ −T dx ρe.312
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• If τ > 0 and Eq. (37) holds then h(x) = β(1 − β)x + 2αγx2 is concave and is maximum at313

arg supx h(x) = x0 = −β(1−β)
4αγ > 0. We know that λ2

0 = α2 + β2 + γ2 − 2αβ + h(1) = 1 (case314

l = 0). Therefore the model is stable if x0 > 1; this is315

(39) τ <
1

2
T dx ρe and dt <

T dx

`
− 2τ

`ρe
.316

The condition for dt is stronger than Eq. (37). If τ ≥ 1
2T dx ρe then the system is unstable at317

the frequency cos−1(x0) that is reachable in the finite system if K > 2π/ cos−1(x0). We have318

x0→ 1/2 + T dx ρe/(4τ) as dt→ 0, going from 1 to 1/2 according to τ (long wave).319

The stability conditions for the Godunov/Godunov and Godunov schemes Eq. (23) and320

Eq. (24) are summarised in Fig. (4). The same conditions as the microscopic model are321

obtained at the limit dt→ 0 for dx = 1/ρe, i.e. a space step equal to the mean spacing. In this322

case, the stability occurs when the absolute value of the reaction time τ is smaller than two323

times the time gap T (see Eq. (6) and [4]).324

Unstable

for all dt > 0

Shortest
wavelength

Unstable

dt < Tdx
`+ `τ

T dxρe

Shortest
wavelength

Stable

dt < Tdx
`+ `τ

T dxρe

Stable

dt < Tdx
` − 2τ

`ρe

Unstable

dt < Tdx
`+ `τ

T dxρe

Wavelength
from N/2 to N/6

0− 1
2Tdxρe−Tdxρe 1

2Tdxρe τ

Figure 4. Summary of the stability conditions for the Godunov/Godunov and Godunov schemes Eq. (23)
and Eq. (24). Note that we have the additional condition τ < dx /V0, with V0 = supx V (x), for the simple
Godunov scheme Eq. (24).

3.3. Bounds on the speed and the density. The microscopic model Eq. (5) is collision-325

free: the spacing remains by construction bigger than the vehicle length ` > 0, and the speed326

is positive and bounded. We check whether this property also occurs with the numerical327

schemes Fn, n = 1, 2, 3 of the macroscopic models Eqs. (30), (35) and (36). The models328

are from the first order therefore the speed is necessary positive and bounded if the optimal329

velocity functions are so defined. Moreover, the density remains bounded in [1, ρM ], with330

ρM = 1/`, if331

(40) Fn(0, a, b, c) ≥ 0 and Fn(ρM , a, b, c) ≤ ρM for all (a, b, c).332

It is easy to check that such property holds only if τ ≤ 0 for the Godunov/Euler Eq. (30),333

while it holds for τ ≥ − dx ρe/W
′ with the Godunov/Godunov scheme Eq. (35), and for334

τ < dx /V0 with the simple Godunov scheme Eq. (36). The non-linear part of the diffusion335

term −τ∂x
(
(ρV ′(ρ))2∂xρ

)
in Eq. (15) allows to avoid unrealistic unbounded density level336

phenomena that can be obtained by using linear diffusion models (see [14, 3]).337

This manuscript is for review purposes only.



12 A. TORDEUX, G. COSTESEQUE, M. HERTY AND A. SEYFRIED

As the microscopic model, Eq. (35) and Eq. (36) are able to describe macroscopically338

unstable homogeneous solutions with large waves by ensuring that speed and density remain339

positive and bounded. The relation between instability and self-sustained traffic waves (or340

jamiton) are notably described in [18, 35, 36, 43] with microscopic and macroscopic second341

order models. In the next section, we analyse by simulation the unstable solutions we get342

with the first order models for different initial conditions.343

4. Simulation results. In this section numerical simulations of the microscopic model344

Eq. (5) and of the simple Godunov scheme Eq. (36) macroscopic model are compared. The345

car-following model Eq. (5) is simulated using an explicit Euler scheme. A ring (periodic346

boundaries) with a length 101 and 50 vehicles is considered. The optimal speed functions are347

W (∆) = max{0,min{2,∆−1}} and V (ρ) = W (1/ρ) corresponding to a triangular fundamen-348

tal diagram, while the reaction time is τ = 1. The values of the parameters are set to obtain349

unstable homogeneous solutions. The time step is dt = 0.01. The space step for the Godunov350

scheme is the mean spacing dx = 101/50 = 2.02 in order to match the stability conditions351

of both microscopic and macroscopic model (see Eq. (6) and Fig. 4) and to hold the CFL352

conditions (see Eq. (25) and Fig. 4). Three experiments are carried out with different initial353

conditions. In the first one, the initial configuration is a jam. The initial condition is random354

in the second experiment while it is a perturbed homogeneous configuration in the last one.355

4.1. Trajectories. In Figs. 5, 6 and 7, the trajectories of the microscopic model and356

the time series for the density by cell for the discrete macroscopic model (gray levels) are357

plot for respectively the jam, random and perturbed initial conditions. The jam stationary358

propagates within the first experiment in Fig. 5. Both microscopic and macroscopic models359

rigorously describe the same dynamics. The dynamics obtained does not perfectly coincide360

for the random and perturbed initial conditions (see Figs. 6 and 5). Yet most of the dynamics361

seems to be well recaptured and notably the self-sustained emergence of traffic stop-and-go362

waves. Note that the waves propagate backward with the speed −`/T that is close to the363

value empirically observed (see [33]).364

4.2. Fundamental diagram. The fundamental diagram is the plot of the flow or the mean365

speed as a function of the density. It generally refers to spatial performances [16], that have366

to be distinguished from temporal ones [47]. Here to deal with spatial performances, we367

measured the spatial speed and the density and express the flow as the product of the density368

by the speed. The density for the microscopic model is the inverse of the spacing (see Eq. (7))369

while the speed in the macroscopic model is (see Eq. (9))370

(41) Ṽ (ρj , ρj+1) = V

(
ρ

1− τρ(V (ρj+1)− V (ρj))

)
.371

The sequences obtained for the perturbed initial conditions (see Fig. 7) are presented in Fig. 8.372

The performances are instantaneous ones in the sense that they correspond to instantaneous373

measurements for a vehicle (microscopic model) and a cell (macroscopic) in the system. The374

variability in such diagram is larger than the one of the aggregated fundamental diagram375

plotted in Fig. 1 where the performances were averaged over time intervals.376

Both microscopic and macroscopic systems converge to limit-cycles with self-sustained377

stop-and-go waves resulting in hysteresis curves in the microscopic fundamental diagram.378
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Figure 5. The trajectories of the microscopic model (cyan curves) and the time series for the density by
cell for the discrete macroscopic model (gray levels) for jam initial conditions.
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Figure 6. The trajectories of the microscopic model (cyan curves) and the time series for the density by
cell for the discrete macroscopic model (gray levels) for random initial conditions.
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Figure 7. The trajectories of the microscopic model (cyan curves) and the time series for the density by
cell for the discrete macroscopic model (gray levels) for perturbed initial conditions.

Such phenomenon generate scattering of the fundamental diagram for which some bounds379

can be calculated [49, 12, 20, 13, 43, 17]. The bounds V + and V − for the fundamental380

diagrams can here intuitively been determined from the microscopic model. The upper bound381

V + corresponds to the sequence of a vehicle moving at maximal speed V0 behind a stopped382

vehicle:383

(42) V +(ρ) = Ṽ (ρ, 1/`) = V

(
ρ

1 + τρV (ρ)

)
.384

Due to the reaction time, the distance tends to be smaller and the fundamental diagram is385

‘over-estimated’. Oppositely, the lower bound V − corresponds to the sequence of a stopped386

vehicle following a predecessor moving at the maximal speed V0:387

(43) V −(ρ) = Ṽ (ρj , 0) = V

(
ρ

1− τρ(V0 − V (ρ))

)
.388

Here the reaction time induces a delay in the acceleration and an under-estimation of the389

fundamental diagram.390

As in [43, 17], the bounds Eqs. (42) and (43) obtained with the macroscopic model are391

compared to real instantaneous pedestrians and road traffic data in Figs. 9 and 10. The392

pedestrians data comes from a laboratory experiment with participants in a ring geometry393

[19]. Several experiments have been carried out with different density levels. The road traffic394

data are real measurement of trajectories on an American highway [34]. The speed, density395
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Figure 8. Sequence of speed and flow / density relation for the perturbed initial conditions (see Fig. 7).
Left, for one vehicle (microscopic model) and right, for one cell (macroscopic model).

and the flow are measured as previously (i.e. the density is the inverse of the spacing while396

the flow is the product of the density by the speed). A triangular fundamental diagram with397

3 parameters V (ρ) = min
{
V0,

1
T (1/ρ− 1)

}
is used again. The parameters are the ones of an398

estimation by least squares for the pedestrians V0 = 0.9 m/s, ` = 0.3 m and T = τ = 1 s,399

see Fig. 9, while V0 = 15 m/s, ` = 5 m and T = τ = 2 s for the vehicles, see Fig. 10. The400

bounds present a reasonable agreement with the data, even if no clustering of measurements401

are observed around them.402

5. Conclusion. Starting from a speed following model, we derive a parabolic convection-403

diffusion continuum traffic flow model that we discretised using Godunov and Euler schemes.404

Simulation results shown that discrete macroscopic models can recapture the dynamics of the405

microscopic model, if specific values for the space discretization are chosen. More precisely,406

the linear stability conditions of the homogeneous solutions for the macroscopic models match407

the ones of the microscopic model for specific values of the space discretization and sufficiently408

small time steps.409

For unstable conditions, i.e. for large reaction times, the dynamics obtained describe self-410

sustained stop-and-go waves, with hysteresis cycles and a large scattering of the fundamental411

flow/density diagram. Such characteristics are observed in real data [46, 25, 24, 10, 50] as well412

as for second order models [49, 12, 20, 6, 18, 43, 13, 17]. Here it is achieved with first order413
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Figure 9. Instantaneous speed/density and flow/density measurements for real pedestrian flows [19] and
the bounds Eqs. (42) and (43) for V0 = 0.9 m/s, ` = 0.3 m and T = τ = 1 s.
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Figure 10. Individual speed/density and flow/density measurements for real road traffic flows [34] and the
bounds Eqs. (42) and (43) for V0 = 15 m/s, ` = 5 m and T = τ = 2 s.

models ensuring by construction that the models are physical and ‘collision-free’ (i.e. bounded414

and positive speed as well as density). Further investigations are necessary to understand the415

impact of the shape of the optimal velocity function on the characteristics of the waves.416

The macroscopic model corresponding to the follow-the-leader model is a first order ellip-417

tic convection-diffusion equation, for which the convection part is calibrated by the optimal418

velocity function (i.e. the fundamental diagram), while the diffusion is proportional to the419

reaction time parameter. More precisely the diffusion is negative in deceleration phases where420

the density get higher, and it is positive in acceleration phases where the density decreases.421

Such mechanism seems to be responsible for the appearance of oscillations and self-sustained422

non-linear stop-and-go waves in the system. This observation remains to be confirmed rigor-423

ously, yet it could give us a way to explain the wave formations.424
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