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Motivation

Traffic scales

Microscopic scale

Individual vehicle behaviors
Car-following (or Follow-The-Leader)
Lane changing, gap acceptance...

Macroscopic scale

Aggregate variables
Hydrodynamics

Passage from micro to macro?

Mathematical sound basis and
consistency
Well-established for classical first order
models
Non-local models?
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Motivation

Outline

1 Background

2 Our approach
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Background

Outline

1 Background

2 Our approach
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Background Settings

General setting

N vehicles (N ∈ N)
initial density ρ0 ∈ BVc(R, [0, 1])

∫

R

ρ0(y)dy = 1

linear mass attributed to each vehicle

lN :=
1

N

∫

R

ρ0(y)dy =
1

N

xi+1

ρ0

xi

∫ 1

0

ρ0(y)dy = M

∫ xi+1

xi

ρ0(y)dy =
M

N

x
0 1
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Background Settings

Speed function

(V) Speed function v : ρ 7→ v(ρ) strictly decreasing on [0, 1] and
v(0) = vmax with 0 < vmax < +∞ and v(1) = 0
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Background LWR model (DiFrancesco, Rosini)

Hyperbolic approach (Di Francesco, Rosini, 2015)

Micro-to-macro for the LWR model [3]

Micro car-following model



















ẋN = vmax

ẋi = v

(

lN

xi+1 − xi

)

, ∀i = 1, . . . ,N − 1,

xi (t = 0) = xi ,0, ∀i = 1, . . . ,N.

(1)

Macro LWR model
{

ρt + (ρv(ρ))x = 0, on (0,+∞)× R,

ρ(0, x) = ρ0(x), on R
(2)
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Background LWR model (DiFrancesco, Rosini)

Some theoretical results (Di Francesco, Rosini)

Theorem (Convergence in L1
loc)

Set the empirical density ρ̂N as follows

ρ̂N(t, x) :=

N−1
∑

i=0

lN

xi+1(t)− xi (t)
χ[xi (t),xi+1(t)[(x).

It converges to the unique entropy solution ρ of the Cauchy problem (2)
almost everywhere and in L1

loc([0,+∞)× R).
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Background LWR model (DiFrancesco, Rosini)

Some theoretical results (Di Francesco, Rosini)
(continued)

Theorem (Convergence w.r.t. the 1-Wasserstein distance)

The empirical measure ρ̃N defined as

ρ̃(t, x) := lN

N−1
∑

i=0

δxi (t)(x)

converges to the unique entropy solution ρ of the Cauchy problem (2) in
the topology of L1

loc([0,+∞); dL,1) where dL,1 defines a scaled

1-Wasserstein distance between two measures.
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Background LWR model (DiFrancesco, Rosini)

sketch of the proof

1 Definitions: Introduce the cumulative distribution of ρ̂

X̂ (x) := inf {y ∈ R | ρ̂ ((−∞, y ]) > x }

and the one of ρ̃

X̃ (x) := inf {y ∈ R | ρ̃ ((−∞, y ]) > x } .

Introduce finally the discrete Lagrangian density

ρ̌ := ρ̂ ◦ X̂ .

2 Convergence:

proof of
(

X̃
)

→ X in L1
loc ([0,+∞)× [0, L];R)

equivalent to prove that (ρ̃) → ρ in L1
loc ([0,+∞); dL,1)

And proof of
(

X̂
)

→ X in L1
loc ([0,+∞)× [0, L];R)

equivalent to prove that (ρ̂) → ρ in L1
loc ([0,+∞); dL,1)
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Background LWR model (DiFrancesco, Rosini)

sketch of the proof
(continued)

3 Bounds:

X has difference quotients bounded below by 1/R
ρ is in L∞ and bounded by R

4 Weak-* convergence: (ρ̌) ⇀ ρ̌ in L∞

5 Uniform BV estimates:

if ρ̄ ∈ ML ∩ BV, then direct for ρ̂
if ρ̄ ∈ ML ∩ L∞, then discrete version of the Oleinik condition for ρ̌
that implies BV estimates for ρ̌ and thus for ρ̂
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Background LWR model (DiFrancesco, Rosini)

sketch of the proof
(continued)

6 Passing to the limit in the system of ODEs: Formulation of the
system of ODEs as a PDE

X̃t = v (ρ̌) .

7 Discrete entropy condition + limit using the L1 compactness:
∫

R

∫

R

[|ρ(t, x)− k |ϕt(t, x) + sgn (ρ(t, x)− k) [f (ρ(t, x))− f (k)]ϕx (t, x)] dtdx

+

∫

R

|ρ̄(x)− k |ϕ(0, x)dx ≥ 0
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Background LWR model (DiFrancesco, Rosini)

Some extensions

ARZ model [(Aw, Rascle, 2000), (Zhang, 2002)]







∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρvw) = A
ρ

TR

(V (ρ)− v)

with w := v + P(ρ) (P called a “pseudo-pressure”)

Lagrangian approach (Aw et al., 2002) [1]
Eulerian approach (Di Francesco et al., 2015) [2]
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Background LWR model (DiFrancesco, Rosini)

Some extensions

ARZ model [(Aw, Rascle, 2000), (Zhang, 2002)]







∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρvw) = A
ρ

TR

(V (ρ)− v)

with w := v + P(ρ) (P called a “pseudo-pressure”)

Lagrangian approach (Aw et al., 2002) [1]
Eulerian approach (Di Francesco et al., 2015) [2]

Non-local model (Goatin, Blandin, 2015) (Goatin, Rossi, 2015) [4]
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Background Non-local (Goatin, Rossi)

Goatin-Rossi
(macro)







∂tρ+ ∂x

[

ρv

(∫ x+η

x

ρ(t, y)w(y − x)dy

)]

= 0, for x ∈ R, t > 0,

ρ(0, x) = ρ0(x), for x ∈ R

(3)

(w) η > 0 is a given parameter and w : [0, η] → R
+ is a non-increasing

Lipschitz weight satisfying

∫

η

0
w(x)dx = 1
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Background Non-local (Goatin, Rossi)

Goatin-Rossi
(micro)



























ẋN(t) = v(0), for any t > 0,

ẋi(t) = v





1

N

N
∑

j=1

wlN (xj(t)− xi(t))



 , for i = 1, . . . ,N − 1, and

xi(0) = xi ,0, for i = 1, . . . ,N

(4)
with

wlN :=



































w(0)
lN + 2x

lN
, if x ∈

[

−
lN

2
, 0

]

,

w(x), if x ∈ [0, η] ,

w(η)
2η + lN − 2x

lN
, if x ∈

[

η, η +
lN

2

]

,

0, elsewhere.
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Background Non-local (Goatin, Rossi)

Goatin-Rossi
(convergence result)

Theorem (Convergence of a micro model to the unique solution
of (3))

Fix any 0 < T < +∞.

If (xi )i is a solution of the system of coupled ODEs (4), then, for any
N ∈ N, we have

[ρ(t)] =
1

N

N
∑

i=1

δxi (t) ⇀ ρ(t)

where ρ ∈ C 0 ([0,T ],Pc (R)) is the unique solution of (3).
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Our approach

Outline

1 Background

2 Our approach
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Our approach Settings

Multi-anticipative model

N vehicles

1 ≤ k < N considered leaders



















































ẋN = vmax

ẋi = v





N−i
∑

j=1

w̃j

(

j
lN

xi+j − xi

)



 , ∀i = N − k + 1, . . . ,N − 1,

ẋi = v





k
∑

j=1

wj

(

j
lN

xi+j − xi

)



 , ∀i = 1, . . . ,N − k ,

xi (t = 0) = xi ,0, ∀i = 1, . . . ,N.

(5)
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Our approach Settings

Assumptions

(V) Speed function v : ρ 7→ v(ρ) strictly decreasing on [0, 1] and
v(0) = vmax with 0 < vmax < +∞ and v(1) = 0

(W) The map wj : ρ 7→ wj(ρ) is Lipschitz continuous, non-decreasing from
[0, 1] to [0, 1] for any j = 1, . . . , k and satisfies moreover

k
∑

j=1

wj (ρ) = ρ, for any ρ ∈ [0, 1].
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Our approach Settings

Simplified model

Only two leaders k = 2



































ẋN = vmax

ẋN−1 = v

(

lN

xN − xN−1

)

,

ẋi = v

(

w1

(

lN

xi+1 − xi

)

+ w2

(

2lN
xi+2 − xi

))

, ∀i = 1, . . . ,N − 2,

xi (t = 0) = xi ,0, ∀i = 1, . . . ,N.

(6)
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Our approach Settings

Simplified model

Only two leaders k = 2

Linear weights: ∃θ ∈ [0, 1] such that

w1(ρ) = θρ and w2(ρ) = (1− θ)ρ



































ẋN = vmax

ẋN−1 = v

(

lN

xN − xN−1

)

,

ẋi = v

(

θ
lN

xi+1 − xi
+ (1− θ)

2lN
xi+2 − xi

)

, ∀i = 1, . . . ,N − 2,

xi(t = 0) = xi ,0, ∀i = 1, . . . ,N.

(6)
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Our approach Some results

Maximum principle

Proposition (Discrete maximum principle)

Assume that (V) and (W) hold true.

Consider (xi )i=1,...,N the unique solution of (6).
If there exists l ≥ lN > 0 such that

xi+1,0 − xi ,0 ≥ l , for any i = 1, . . . ,N − 1,

Then, it follows

xi+1(t)− xi (t) ≥ l , for any i = 1, . . . ,N − 1, t > 0.

Equivalently, if there exists a i0 ∈ J1,N − 1K such that

xi0+1(t̄)− xi0(t̄) = l ≥ lN for some time t̄ ≥ 0, then

ẋi0(t̄) ≤ ẋi0+1(t̄).
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Our approach Some results

Convergence (still ongoing)

Theorem (Convergence)

Assume (V)-(W). Assume also that ρ0 ∈ BVc(R) ∩ L1(R) and that

∫ xi+1,0

xi,0

ρ0(y)dy = lN , for any i = 1, . . . ,N − 1.

Consider the unique solution (xi )i=1,...,N of (6).
Then, the empirical density

ρN(t, x) :=
N−1
∑

i=1

lN

xi+1(t)− xi(t)
χ[xi(t),xi+1(t)[(x) (7)

converges in L1 towards the unique weak entropy solution ρ of (2), when
N goes to +∞.
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Our approach Some results

BV estimates (still ongoing)

Proposition (BV estimates)

Assume that (V)-(W) hold true. Assume also that ρ0 ∈ BVc(R) ∩ L1(R).
Then the total variation t 7→ TV [ρN(t)] of ρN for any N ∈ N is bounded

as follows

TV [ρN(t)] ≤ C (t) +KN

(

2

N
∑

i=1

|εi (t)|+ TV [ρN(0)]

)

, for any t ≥ 0,

(8)
where

{

C (t) := |y1(t)|+ |yN−1(t)|

KN := 2N.
(9)
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Our approach Some results

BV estimates (still ongoing)

Proposition (Estimation on the Total Variation)

If (W) holds true and if θ >
2

3
, then we have

1

2− θ

N−3
∑

i=1

|Li | ≤ TV [ρN ] ≤
1

3θ − 2

N−3
∑

i=1

|Li |+ 4, (10)

from which we deduce that

lim
N→+∞

TV [ρN ]

N
= 0.
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