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Variational theory (VT) was an important milestone to
solve the kinematic wave model:

Allows analytical global solutions

No need of shocks and/or entropy conditions (as in the
method of characteristics)

Current approximation methods for the Macroscopic

Fundamental Diagram (MFD) of urban networks rely on
VT

=>»Here we revisit VT now including Eulerian lateral
inflows and outflows.

Georgia
Tech



VT solutions:
OK in Eulerian coordinates for exogenous source terms

but not when they are a function of traffic conditions
(merge model e.g.)

In discrete time source terms become exogenous
- improved numerical solution methods

In Lagrangian-Space and Lagrangian-Time coordinates,
VT solutions may not exist even if source terms are

exogenous.
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Problem formulation

e Long homogeneous Ireeway with many entrances and exits.

e Let ¢ = net lateral freeway inflow units of veh/time-distance.
e The Kinematic Wave model reads:

ke + H(k)s = ¢, (la)
k=g on T (1b)

where H is the fundamental diagram, ¢ is the data defined on a boundary I'
e integrate (1) with respect to x to obtain its Hamilton-Jacobi form:

N; — H(—N,) = ®, (2a)
N=G on T, (2b)

where N, = — k and :
G(t,x) = 7{ g(t,z)dl'; (t,x) eI, and (3a)
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Exogenous inflow

o If (¢, x) is given: H(t,z, k) = H(k)+®(t, z)
e Triangular FD: passing rate is () — Kv +
®(t,x) and the variational problem reads:

N(P) = i B ith
(P) BerglgnevBPf( €,  wi

F(B,&) = G(B) + (t—t5)Q — (z — y)K +J

£(s)
/ / (s,z) dzds,

where ()=capacity K =critical density.
e J= net # of vehs leaving area A(§)

e min f : find £(¢) that maximizes the net num-
ber of vehicles entering A(£).

P=(z,x)

all valid paths in
this areqd define %p

ﬁ/\ig)—area

t,=0 t time




Extended Riemann problems (ERP)

e building block for Godunov-type methods. 4 space
e initial data:

(kur,av), r <z

(), 6(2) = {

(kDaa’D)a T > X,

e We show that:

N(t,zo) = 22351 f(y)

y = {warO)xDayT) .. yg}
fly) = G(y) +tQ — (xo —y) K + J(y)

J(y) = {min{jl(y)aj2(y)7j3(y)}7 Yy > Zo
min{js(y), js(y), Js(¥)}, ¥ < @o
® j1...j56 = value of J(&) along upper, lower

and middle paths. Georgia
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Endogenous inflow

e If » = ¢(k) then the potential function ® depends non-locally
on [V:

B(t, ) = —— [ o(-Nat.v))a, (1)
e Our problem becomes the more general HJ equation
N, — H(z,N,—N,) =0

The Hamiltonian’s /N-dependency is what complicates matters.
Barron (1996 , 2015) show that a Variational solution do not exist
in general.
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Numerical solution methods

Idea: in discrete time stepping methods, endogenous
inflows computed from the previous time step become
exogenous for the current time step and therefore the

VT solution may be applied.

2 methods are presented:
Godunov's method (Kinematic Wave model)

Variational networks (Hamilton-Jacobi model)
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Godunov's method

e increments At and Az = uAt, and:
k = k(jAt,iAx) (1)

is the numerical approximation of the density.

e update scheme: | |
k.. -k gt .
1+1 1 qZ qz J
— (K 2
e the flow into cell ¢, qg are obtained by solving Riemann problems.
e Traditionally, inflows not considered in Riemann problems; e.g. the Cell

Transmission (CT) rule:

qg = min{Q, ukg, (k — k‘gﬂ)w}, (CT rule) (3)

e we now compare the CT rule with the extended Riemann problems (ERP)
presented earlier.
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Godunov's method - Example

e empty freeway at ¢ = 0 subject to an inflow linear in both = and k; i.e.:

o(k) = ax — buk, a,b> 0. (1b)

e linear inflows arise in the continuum approximation of the Newell-Daganzo
merge model

e analytical solution is:

k(t, ) = % (b — 1+ (1 — b(z — tu))e ") (2)
provided k(t,x) < K.

e we now compare (2) with the CT rule and ERP rule.
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Godunov's method - Example
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Variational networks

N space e the cost in each link becomes:
| < | <
A A A A ci = L(v;)T + J;. (1)
B— . L o e
4 4 4 .
4, A 4
o— — 8 — dy [&.
« « 4 5 Ji—=r E 5ja’j7 (2&)
A A l—>i A ,
h—— - - - T, - JES;
4 4 N )
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Other coordinates

e Space-Lagrangian coordinates:
Let X (t,n) be the position of vehicle n at time t. We showed that the
corresponding HJ equation reads:

Xy —V(—X,) =—-X,P(t, X), (1)

where V(s) is the spacing-speed FD. We conclude that (1) does not admit a VT
solution due to the term involving X.
e Time-Lagrangian coordinates:

Let T'(n,x) be the time vehicle n crosses location z. Now:

(1)
In =17 (T, z)F(T,)

=0, (2)

where F(r) is the headway-pace relationship. Again, (2) does not admit a VT
solution due to the term involving T
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Main result

VT solutions:
OK in Eulerian coordinates for exogenous source terms

but not when they are a function of traffic conditions
(merge model e.g.)

In discrete time source terms become exogenous
- improved numerical solution methods

In Lagrangian-Space and Lagrangian-Time coordinates,
VT solutions may not exist even if source terms are

exogenous.
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THANK YOU !
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