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Abstract

This paper revisits the variational theory of traffic flow, now under the presence of contin-
uum lateral inflows and outflows to the freeway say Eulerian source terms. It is found that a
VT solution can be easily exhibited only in Eulerian coordinates when source terms are exoge-
nous meaning that they only depend on time and space, but not when they are a function of
traffic conditions, as per a merge model. In discrete time, however, these dependencies become
exogenous, which allowed us to propose improved numerical solution methods. In Lagrangian
and vehicle number-space coordinates, VT solutions may not exist even if source terms are
exogenous.
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1. Introduction1

The variational theory (VT) applied in traffic flow theory (Daganzo, 2005a,b; Claudel and2

Bayen, 2010a,b) was an important milestone. Previously, the only analytical solution to the3

kinematic wave model of Lighthill and Whitham (1955); Richards (1956) was obtained thanks4

to the method of characteristics, which does not give a global solution in time as one needs5

to keep track of characteristics crossings (shocks and rarefaction waves) and impose entropy6

conditions to ensure uniqueness. This means that analytical solutions cannot be formulated7

except for very simple problems.8

In contrast, VT makes use of the link between conservation laws and the Hamilton-Jacobi9

partial differential equation (HJ PDE), allowing the kinematic wave model to be solved using10

the Hopf-Lax formula (Lax, 1957; Olejnik, 1957; Hopf, 1970), better known in transportation as11

Newell’s minimum principle (Newell, 1993) whenever the fundamental diagram or Hamiltonian12

is piecewise linear. The big advantage is that this representation formula gives an analytical13

global solution in time that does not require explicit consideration of shocks and/or entropy con-14

ditions. Moreover, current approximation methods for the Macroscopic Fundamental Diagram15

(MFD) of urban networks rely on this approach (Daganzo and Geroliminis, 2008; Geroliminis16

and Boyacı, 2013; Leclercq and Geroliminis, 2013; Laval and Castrillón, 2015). In addition,17

when the flow-density fundamental diagram is triangular (or piecewise linear more generally),18

numerical solutions become exact in the HJ framework, and this is not the case in the con-19

servation law approach (LeVeque, 1993). It has also been shown that the traffic flow problem20

∗Corresponding author. Tel. : +1 (404) 894-2360; Fax : +1 (404) 894-2278
Email address: jorge.laval@ce.gatech.edu (Jorge A. Laval)

Preprint submitted to Transportation Research Part B June 21, 2016



cast in Lagrangian or vehicle number-space coordinates also accepts a VT solution, which can21

be used to obtain very efficient numerical solution methods (Leclercq et al., 2007; Laval and22

Leclercq, 2013).23

The traffic flow problem with source term is also of great interest; e.g., it can be used to24

approximate (i) long freeways with closely spaced entrances and exits, (ii) the effect of lane-25

changing activity on a single lane, or (iii) the effects of turning movements, trip generation26

and trip ends in the MFD. But the underlying assumption in the previous paragraphs is that27

vehicles are conserved. This begs the twofold question, are representation formulas for the28

VT solutions still valid, or even applicable, when there is a Eulerian source term? If not, can29

efficient numerical solution methods still be implemented? Recent developments in this area30

have not answered these questions as they are primarily concerned with discrete source terms31

(e.g., Daganzo, 2014; Costeseque and Lebacque, 2014a,b; Li and Zhang, 2013).32

To answer these questions this paper is organized as follows. In section 2 we formulate the33

general problem and show that in general VT solutions are not applicable; but section 3 shows34

that they are when the source term is exogenous. Based on these results, section 4 presents35

numerical methods for the endogenous inflow problem that outperform existing methods. Sec-36

tion 5 briefly shows that in space-Lagrangian and time-Lagrangian coordinates VT solutions do37

not exist even if source terms are exogenous. A discussion of results and outlook is presented38

in section 6.39

2. Problem Formulation40

Consider a long homogeneous freeway corridor with a large number of entrances and exits41

such that the net lateral freeway inflow rate, φ, or inflow for short, can be treated as a continuum42

variable in time t≥ 0 and location x∈ R, and has units of veh/time-distance. The inflow is an43

endogenous variable consequence of the demand for travel, and could be captured by a function44

of the traffic states both in the freeway and the ramps. For simplicity, in this paper the inflow45

is assumed to be a function of the density, k(t, x), of the freeway only, i.e. φ = φ(k(t, x)), but46

also the exogenous case φ = φ(t, x) will be of interest.47

In any case, the traffic flow problem analyzed in this paper is the following conservation law
with source term:

kt +H(k)x = φ,

k = g on Γ

(1a)

(1b)

where H is the fundamental diagram, g is the data defined on a boundary Γ, and variables in
subscript represent partial derivatives. Now we define the function N(t, x) such that:

Nx = − k say N(t, x) :=

∫ +∞

x

k(t, y)dy, (2)

and integrate (1) with respect to x to obtain its HJ form (Evans, 1998):

Nt −H(−Nx) = Φ,

N = G on Γ,

(3a)

(3b)
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where we have defined:

G(t, x) =

∮

Γ

g(t, x)dΓ, (t, x) ∈ Γ, and

Φ(t, x) = −

∫ x

0

φ(t, y)dy

(4a)

(4b)

where Φ is a potential function; the negative sign in (4b) follows from the traditional counting48

convention in traffic flow, where further downstream vehicles have lower vehicle numbers.49

It is important to note that compared to the traditional case with zero inflow, under a
continuum source term the interpretation of N changes: for fixed x it still defines a cumulative
count curve due to (2) but its isometrics do no longer give vehicle trajectories. To see this we
note that according to (3a) the flow q = H(k) is now:

q = Nt − Φ, (5)

The time integration of (5) reveals that cumulative count curves are now given, up to an50

arbitrary constant, by Ñ(t, x) +
∫ t

0

∫ x

0
φ(s, y)dsdy, where Ñ(t, x) :=

∫ t

0
q(s, x)ds denotes the51

usual N -curve without source terms and the integral represents the net number of vehicles52

entering (φ > 0) or exiting (φ < 0) the road segment by time t and upstream of x.53

The method to obtain the solution of (3) depends on the dependencies of the potential
function. If the inflow function is allowed to depend on the traffic state in the freeway, i.e.
φ = φ(k) then the potential function Φ depends non-locally on N , since:

Φ(t, x) = Φ̃(N, x) = −

∫ x

0

φ(−Nx(t, y))dy, (6)

and therefore it is not obvious that (3) accepts a representation formula as a VT solution. To
see this, we note that even in the simplest linear case:

φ(k) = a− bk, a, b ≥ 0, we get:

Φ̃(N, x) = −ax+

(∫ x

0

k(t, y) dy

)

b = −ax − (N(t, x)− c)b,

(7a)

(7b)

where c=
∫ +∞

0
k(t, y)dy = N(t, 0) is an arbitrary constant of integration. This means that (3)54

becomes the more general HJ equation Nt − H̃(x,N,−Nx) = 0, where H̃ is the Hamiltonian.55

The Hamiltonian’s N -dependency is what complicates matters. Barron et al. (1996); Barron56

(2015) show that a Hopf-Lax type solution exists in this case only when (among other assump-57

tions) a = 0 i.e. H̃(x, u, p) = Ĥ(u, p) where Ĥ does not depend on the space variable and H̃58

is homogeneous of degree one with respect to Nx, which is of no use in traffic flow since in59

practice it means that the Hamiltonian has to be monotone linear. As explained in section 5,60

we argue that this N -dependency prevents formulating an equivalent VT problem (such as (8)61

below) that can be solved with variational methods.62

As shown in the next section, it turns out that when inflows are exogenous a global VT63

solution can still be identified, albeit not in Hopf-Lax form because optimal paths are no longer64

straight lines.65
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3. Exogenous inflow66

3.1. Setting of the VT problem67

The results in this section are based on VT (Daganzo, 2005a), where the solution of the HJ
equation Nt − H̃(t, x,−Nx) = 0 is given by the solution of the following variational problem:

N(P ) = min
B∈ΓP , ξ∈VBP

f(B, ξ), with

f(B, ξ) = G(B) +

∫ t

tB

R(s, ξ(s), ξ′(s)) ds

(8a)

(8b)

where P is a generic point with coordinates (t, x), B ≡ (tB, y) is a point in the boundary ΓP ,
ξ is a member of the set of all valid paths between B and P denoted VBP , and ξ(tB) = y; see
Fig. 1a. The function R(·) gives the maximum passing rates along the observer and corresponds
to the (concave) Legendre transform of H̃, i.e.,

R(t, x, v) = sup
k

{

H̃(t, x, k)− vk
}

.

It is worth mentioning that in the simplest homogeneous case where H̃ = H(k) the VT
solution (8) becomes the Hopf-Lax formula:

N(P ) = min
B∈ΓP

{

G(B) + (t− tB)R

(
x− y

t− tB

)}

, (9)

where the minimization over ξ(t) is no longer necessary since characteristics become straight68

lines in this case. With a little abuse of notation, consider R(v) = supk {H(k)− kv}. Un-69

fortunately, even the presence of exogenous lateral inflows that vary in time or space make70

characteristics not to be straight lines and therefore a Hopf-Lax type solution cannot be de-71

vised. A VT solution, however, still exists as shown next.72

73

We now formulate VT solution to account for source terms explicitly. In the remaining of
the paper, we assume a triangular flow-density diagram. It may be defined by its free-flow
speed u, wave speed −w (with w > 0) and jam density κ such that

H(k) = min {uk , w(κ− k)} for any k ∈ [0, κ]. (10)

It follows that the capacity is Q = κwu/(w + u) and the critical density K = Q/u.74

75

When the potential function is exogenous, i.e. Φ = Φ(t, x), the Hamiltonian can be written
as the sum of the fundamental diagram and the potential function, i.e.: H̃(t, x, k) = H(k) +
Φ(t, x). In the case of a triangular fundamental diagram we have R(t, x, v) = Q−Kv+Φ(t, x)
with v ∈ [−w, u], and the function f(B, ξ) to be minimized reads:

f(B, ξ) = G(B) + (t− tB)Q− (x− y)K +

∫ t

tB

Φ(s, ξ(s)) ds

︸ ︷︷ ︸

=:J

. (11)
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The J-integral in (11) is what separates this problem from the problems studied so far in traffic
flow using VT principles. This integral in terms of φ is:

J = −

∫ t

tB

∫ ξ(s)

y

φ(s, x) dxds, (12)

and represents the net number of vehicles leaving the area below the curve x = ξ(t), namely76

area A(ξ); see Fig. 1b. Therefore, minimizing J given y = ξ(tB), can be interpreted as finding77

ξ(t) that maximizes the net number of vehicles entering A(ξ).78

3.2. Initial value problems79

In the initial value problem (IVP) the boundary Γ is the line {tB = 0}×R, so that the
problem here is (3a) supplemented with:

N(0, x) = G(x), x ∈ R, (13)

where we assume that G ∈ C2(R). The candidate set for B,ΓP is reduced to B’s x-coordinate,
y, which is delimited by two points U = (0, xU) and D = (0, xD), where:

xU = x− ut, and xD = x+ wt,

xU < y < xD

(14a)

(14b)

see Fig. 1a. The following subsections examine simplified versions of this problem that reveal80

considerable insight into the general solution.81

3.2.1. Constant inflow82

Consider the IVP with constant inflow problem:

φ(t, x) = a, (t, x) ∈ (0,+∞)× R, (15)

for some a ∈ R \ {0}. It follows from (12) that J = −aA(ξ) and therefore, for a fixed y = ξ(0)
the minimum of (11) is obtained by a path that: (i) maximizes A(ξ) when a > 0; or (ii)
minimizes A(ξ) when a < 0. These two optimum paths are the extreme paths in VBP that
define its boundary; see “upper” and “lower” paths in Fig. 2a. This solution is a “bang-bang”
solution, typical for this kind of optimal control problems. The reader can verify that the areas
under these paths are given by A(y, xD) and A(y, xU), respectively, where we have defined:

A(y, x−) =
1

2

(

(x+ x−)t− sign(a)
(x− − y) 2

u+ w

)

(16)

where sign(a) is the sign of a and x− is a placeholder for xD if a > 0 or xU if a < 0. Thus the
optimization problem (8) has been reduced to a single variable, y

N(t, x) = min f(B, ξ) ⇔N(t, x) = min
xU≤y≤xD

f(y),

with f(y) := G(y) + tQ + (y − x)K − aA(y, x−)

(17a)

(17b)
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whose first- and second-order conditions for a minimum y∗ read:

f ′(y∗) = ψ (y∗ − x−) +G′(y∗) +K = 0,

f ′′(y∗) = ψ +G′′(y∗) > 0, where:

ψ :=
|a|

u+ w
,

(18a)

(18b)

(18c)

where | · | denotes the absolute value. Notice that ψ > 0 as long as a 6= 0.83

Of course, the optimal point y∗ needs to satisfy (14b): xU ≤ y∗ ≤ xD.84

3.2.2. Constant initial density85

Here, in addition to φ(t, x) = a, we assume

g(x) = k0,⇒ G(x) = −k0x −∞ < x <∞ (19)

which implies that the function(17b) to minimize is a parabola:

f(y) = −c0 − c1y +
ψ

2
y2, (20)

with constants c0 = KxU −
ψ

2

[
x2−−sign(a) (x− + x) (u+ w)t

]
and c1 = ψx− − (K − k0), and

extremum:

y∗ = x− −
K − k0
ψ

. (21)

Notice that (18b) is always satisfied in this case and therefore y∗ is always a minimum and
should be included so long as xU ≤ y∗ ≤ xD. Combining this with (21) gives that the final
solution can be expressed as:

N(t, x) =

{
f(y∗), t > (K − k0)/a > 0

min{f(xU), f(xD)}, otherwise

(22a)

(22b)

Notice that (K − k0)/a represents the time it takes for the system to reach critical density,86

namely “time-to-capacity”. This means that y∗ will be the optimal candidate only once a87

regime transition occurs. This will happen only if the time to capacity is positive, i.e. when88

sign(a) = sign(K − k0) or more explicitly, when k0 is under-critical and φ is an inflow (a89

positive) or when k0 is over-critical and φ is an outflow (a negative).90

Somewhat unexpectedly, we note that −fx(xU) = −fx(xD) = −fx(y
∗) = k0 + at, which

means that the density is always given by the traveling wave k(t, x) = k0 + at, which is also
the solution of (1) in this case using the method of characteristics. One should also impose
feasibility conditions for the density, i.e. 0 ≤ k ≤ κ, which gives:

k(t, x) =







0, t > −k0/a, a < 0

κ, t > (κ− k0)/a, a > 0

k0 + at, otherwise

(23a)

(23b)

(23c)

The flow can be obtained using (5), but it is equivalent and simpler to use q = H(k).91
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3.2.3. Extended Riemann problems92

Riemann problems are the building blocks of Godunov-type numerical solution methods.
As illustrated in Fig. 2b, in these problems one is interested in the value of N at x = x0 ≥ ut,
i.e. at point P = (t, x0), with initial data typically given by the density at t = 0. This is
a very special case for with the ‘target’ point P is located on the discontinuity of the initial
data at x = x0. However the methodology below can be easily extended to the cases where
P = (t, x) with x < x0 or x > x0. Here, we extend the initial data to include the inflow:

(g(x), φ(x)) =

{
(kU , aU), x ≤ x0

(kD, aD), x > x0,

(24a)

(24b)

which in conjunction with (3) define an extended Riemann problem, or ERP for short. We
assume that (aU , aD) 6= (0, 0). Notice that now:

xU = x0 − ut, and xD = x0 + wt. (25)

For simplicity and without loss of generality we set G(x0) = 0, which implies:

G(x) =

{
(x0 − x)kU , x ≤ x0

(x0 − x)kD, x > x0

(26a)

(26b)

It will be convenient to define:

η = aU/aD, ψ =
aD

u+ w
, θ = u/w. (27)

The J-integral in this case is a weighted average of the portion of A(ξ) upstream and down-93

stream of x = x0, weighted by aU and aD, respectively. For instance, if ξ(t) > 0 for all t, we94

have J = −
∫ t

0

∫ ξ(t)

0
φ(x) dxdt = −

∫ t

0
(aUx0 + aD(ξ(t)− x0))dt = −(aUx0t + aD

∫ t

0
ξ(t)− x0dt),95

where x0t is the portion of A(ξ) upstream of x = x0 and
∫ t

0
ξ(t)− x0dt is the portion of A(ξ)96

downstream of x = x0 in this particular case.97

It follows that the minimization of the J(ξ) can be achieved analogously to the previous
section by considering the upper and lower paths from each candidate y = ξ(0). In addition,
however, one has to include 2 middle “paths” that would reach and stay at x = x0 until reaching
P ; see Fig. 2b. To formalize, let j1, j2 and j3 be the value of J(ξ) when y ≥ x0 along the upper,
lower and middle paths, respectively; similarly for j4, j5 and j6 when y ≤ x0. Calculating the
areas upstream and downstream of x = x0 defined by each path, it can be shown that the ji’s
can be obtained from:

2(j1(y)− J0)/ψ = −θt2w2(2η(θ + 1) + 1) + 2twy0 + y20,

2(j2(y)− J0)/ψ = −ηθ(2θ + 1)t2w2 + 2ηθtwy0 + y20((η − 1)θ − 1),

2(j3(y)− J0)/ψ = −(θ + 1)
(
2ηθt2w2 + y20

)
,

2(j4(y)− J0)/ψ = −θt2w2(2η(θ + 1) + 1) + 2twy0 + y20(ηθ + η − 1)/θ,

2(j5(y)− J0)/ψ = −η
(
θ(2θ + 1)t2w2 − 2θtwy0 + y20

)
,

2(j6(y)− J0)/ψ = η(θ + 1)
(
y20 − 2θ2t2w2

)
/θ,

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

where y0 = x0−y and J0 is a constant of our problem that represents the net number of vehicles
leaving the area upstream of xU , i.e. −aUxU t in this case. Notice that j1(x0) = j4(x0), j2(x0) =
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j5(x0) and j3(x0) = j6(x0), as expected. The function to minimize in this case can be written
as:

f(y) = G(y) + tQ− (x0 − y)K + J(y), where: (29)

J(y) =

{
min{j1(y), j2(y), j3(y)}, y > x0

min{j4(y), j5(y), j6(y)}, y ≤ x0

(30a)

(30b)

The solution of (3) under these conditions can be reduced to the evaluation of f(y) at a
small number of candidates. In addition to candidates y = xU and y = xD, we have to consider
the discontinuity at y = x0 and the possible minima produced by each of the components in
(28). Since f(y) is piecewise quadratic, each one of these components has at most one minimum,
namely y = yi, i = 1, . . . 6, which can be obtained by solving the first-order conditions f ′(yi) = 0
associated with each of the ji’s; i.e.:

y1 = xD − (K − kD)/ψ, y2 = x0 +
ηθxD − (K − kD)/ψ

θ(η − 1)− 1
,

y3 = x0 +
K − kD
(θ + 1)ψ

, y4 = x0 +
xU + θ(K − kU)/ψ

1− η(1 + θ)
,

y5 = xU + (K − kU)/(ηψ), y6 = x0 +
θ (kU −K)

η(θ + 1)ψ
,

(31a)

(31b)

(31c)

For the yi’s to be valid candidates they must meet the following conditions:

x0 < yi < xD, i = 1, 2, 3

xU < yi < x0, i = 4, 5, 6

(32a)

(32b)

which ensure that yi is on the boundary ΓP . With all, the sought solution can be expressed as:

N(t, x0) = min
y∈Y

f(y), with: Y = {xU , x0, xD, y
∗
1, . . . y

∗
6} (33)

where y∗i is yi if (32) is met and null otherwise. Notice that this solution method does not98

require imposing f ′′(y∗) > 0 because maxima will be automatically discarded in the minimum99

operation.100

The average flow q̄(t, x0) during (0, t) can be obtained as follows:

q̄(t, x0) =
1

t

∫ t

0

Nt(s, x0)− Φ(s, x0) ds =
1

t
(N(t, x0)−

∫ t

0

Φ(s, x0) ds)

=
1

t
(N(t, x0)− (J0 + xUaU)t) = N(t, x0)/t− J0 − xUaU .

(34a)

(34b)

As shown in Section 4, this formula allows to formulate improved numerical solution methods101

for the endogenous problem.102
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3.3. Initial and boundary value problem103

We restrict the space to a segment of road [ξ, χ] with ξ < χ. In the initial and boundary
value problem (IBVP) the boundary Γ is the set defined as

({tB = 0} × [ξ, χ]) ∪ ((0,+∞)× {x = ξ}) ∪ ((0,+∞)× {x = χ}) ,

so that the problem here is (3a) supplemented with:







N(0, x) = Gini(x), on [ξ, χ],

N(t, ξ) = Gup(t), on (0,+∞),

N(t, χ) = Gdown(t), on (0,+∞).

(35)

For obvious compatibility reasons, we request these conditions to satisfy

Gini(ξ) = Gup(0) and Gini(χ) = Gdown(0).

We also consider a a 6= 0 and k0 ∈ [0, κ] such that the inflow rate is given by

ϕ(t, x) = a, for any (t, x) ∈ [0,+∞)× [ξ, χ]

and the initial density
gini(x) = k0, for any x ∈ [ξ, χ].

According to the position of point P = (t, x) with t > 0 and x ∈ (ξ, χ), we have the following
cases to distinguish (see also Jin (2015))

(tU , xU ) =







(

0, x−
t

u

)

, if x ≥ ξ +
t

u
,

(

t−
x− ξ

u
, ξ

)

, else,

and

(tD, xD) =







(

0, x+
t

w

)

, if x ≤ χ−
t

w
,

(

t+
x+ χ

w
, χ

)

, else,

that define 4 regions (see Figure 6)

Region Set of points Upstream point Downstream point

I :

{

(t, x)

∣
∣
∣
∣
χ−

t

w
≥ x ≥ ξ +

t

u

}

(tU , xU ) =

(

0, x−
t

u

)

(tD, xD) =

(

0, x+
t

w

)

II :

{

(t, x)

∣
∣
∣
∣
x ≤ min

{

ξ +
t

u
, χ−

t

w

}}

(tU , xU ) =

(

t−
x− ξ

u
, ξ

)

(tD, xD) =

(

0, x+
t

w

)

III :

{

(t, x)

∣
∣
∣
∣
x ≥ max

{

ξ +
t

u
, χ−

t

w

}}

(tU , xU ) =

(

0, x−
t

u

)

(tD, xD) =

(

t+
x+ χ

w
, χ

)

IV :

{

(t, x)

∣
∣
∣
∣
ξ +

t

u
≥ x ≥ χ−

t

w

}

(tU , xU ) =

(

t−
x− ξ

u
, ξ

)

(tD, xD) =

(

t+
x+ χ

w
, χ

)

104
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Then in Region I, everything is exactly the same than in previous Subsection 3.2 while in
the other cases, we will compare initial data Gini coming from (tD, xD) with upstream data Gup

coming from (tU , xU) (Region II), initial data Gini from (tU , xU) with downstream data Gdown

from (tD, xD) (Region III) and finally upstream data Gup from (tU , xU) and downstream data
Gdown from (tD, xD) (Region IV). Everything can be done exactly in the same way and finally
the idea is to use the inf-morphism from Aubin et al. (2011)

N(t, x) = min {Nini(t, x) , Nup(t, x) , Ndown(t, x)}

where Nini, Nup and Ndown denote the partial solutions obtained by considering respectively105

initial, upstream and downstream conditions. The interested reader is also referred to (Mazaré106

et al., 2011).107

It is noteworthy that additional constraints could be also addressed in the same framework.108

In particular, any internal boundary condition could be added as long as this condition is109

exogenous and do not depend on the traffic state. Such internal boundary condition can110

represent for instance a moving bottleneck constraint as discussed in Claudel and Bayen (2010b);111

Mazaré et al. (2011).112

4. Numerical solution methods113

In the following two subsections we formulate two numerical solution methods to find the114

global solution of the endogenous inflow problem in conservation law form (1), (7) and in HJ115

form (3), (7), respectively. The basic idea is that in discrete time, if the (endogenous) inflows116

are computed using the traffic states from the previous time step using an explicit-in-time117

numerical scheme, then they become exogenous for the current time step and therefore the VT118

solution may be applied.119

4.1. Godunov’s method120

This method has been traditionally used to solve the traffic problem in conservation law
form without inflows, and constitutes the basis of the well known Cell Transmission (CT) model
(Daganzo, 1994) assuming the triangular Hamiltonian (10). In this method, time and space
are discretized in increments ∆t and ∆x = u∆t, respectively, and we let:

kji = k(j∆t, i∆x) (36)

be the numerical approximation of the density. The update scheme is the following discrete
approximation of the conservation law (1):

kj+1
i − kji
∆t

+
qji+1 − qji

∆x
= φ(kji ) (37)

The key to Godunov’s method is the computation of the flow into cell i, qji , which are obtained
by solving Riemann problems. Traditionally, inflows have been considered explicitly only in the
update scheme (37) but not in the solution of the Riemann problems (Laval and Leclercq, 2010).
This implies that the computation of qji corresponds to the original CT rule (also equivalent to
the minimum formula between upstream demand and downstream supply (Lebacque, 1996)):

qji = min{Q, ukji , (κ− kji+1)w}, (CT rule) (38)
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Here, we will compare the CT rule with the ERP rule (34b), i.e. the flow based on extended121

Riemann problems. Both methods are first-order accurate since both are Godunov-type meth-122

ods, and therefore the rate of convergence of both methods should be similar and roughly123

proportional to the mesh size. The main difference is in the magnitude of the error, where the124

ERP rule should be more accurate because the impacts of inflows are explicitly considered in125

the solution of Riemann problems. We illustrate this with the following example.126

127

Example. Consider an empty freeway at t = 0 subject to an inflow linear in both x and k;
i.e.:

g(x) = 0,

φ(k) = ax− buk, a, b > 0.

(39a)

(39b)

Notice that (Laval and Leclercq, 2010) showed that linear inflow functions arise in the contin-
uum approximation of the Newell-Daganzo merge model (Newell, 1982; Daganzo, 1994), which
accounts for the interactions between freeway and on-ramp demands. The particular coeffi-
cients of the linear function depend upon the state of the freeway and on-ramps. In particular,
(39b) corresponds to the case where both are in free-flow, ax represent the inflow demand rate
at x and b the exit probability per unit distance. Using the method of characteristics (Laval
and Leclercq, 2010) showed that the solution of (1), (39) is :

k(t, x) =
a

b2u

(
bx− 1 + (1− b(x− tu))e−btu

)
(40)

provided k(t, x) ≤ K. To get an idea of the solution for all densities, Fig. 3 shows the numerical128

ERP solution with ∆t = 1 s, with parameters given in its caption. Notice that similarly to129

Laval and Leclercq (2010) we chose θ = 1 (say u = w) to avoid the numerical errors intrinsic130

to Godunov’s method and to focus on those caused by the treatment of the inflow.131

Fig. 4 compares the CT-rule with the ERP-rule numerical solution (with ∆t = 40 s) for132

this example vis-a-vis the exact solution (40). Parts (a) and (b) show the time evolution of133

the density and flow, respectively, at x = 14 km obtained with each method. It can be seen134

that the main difference, as expected, is in the flow estimates, particularly at t = 0 where the135

CT rule predicts zero flow since the freeway is empty and it does not consider inflows in its136

calculations.137

To assess the accuracy of each method, part (c) of Fig. 4 shows the density root-mean-138

squared error (RMSE) of each method with respect to (40) for varying ∆t and only until139

t = 2.35 s, when the density exceeds the critical density K; see Fig. 4a. It becomes apparent140

that both methods converge to the right solution as ∆t→ 0, but the accuracy of the proposed141

method outperforms the existing method by a factor of two for all values of ∆t.142

Fig. 4d shows the optimal candidate that minimizes f(y) at each time step of the numerical143

method, which is an element of the set Y , for the ERP rule, and of {xU , x0, xD} for the CT144

rule. It can be seen that both methods coincide except for the time step where the density145

approaches the critical density, in which case the proposed method finds the more accurate146

optimal candidate y∗1.147

4.2. Variational networks148

Daganzo (2005b) introduced time-space networks to solve the traffic problem without inflows149

in variational form using shortest paths. Notice that this is an application of Bellman’s dynamic150
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programming principle. Each link i in these “variational networks” is defined by its: (i) slope151

vi: wave speed, (ii) cost ci: maximum number of vehicles that can pass, (iii) time length τi,152

and (iv) distance length δi = τivi; see inset in Fig. 5.153

Since the fundamental diagram is assumed triangular and the freeway homogeneous, there
are only three wave speeds to be considered, u,−w and 0, and the corresponding passing rates
are given by

L(vi) =







wκ, vi = −w

Q, vi = 0

0, vi = u

(41a)

(41b)

(41c)

Let Ji be the contribution of the J-integral in the cost of each link i. It corresponds to the
(negative of) integral of φ(t, x) over the shaded region in Fig. 5, Si, and can be approximated
by:

Ji = −τi
∑

j∈Si

δjaj, (42a)

where aj is the inflow associated with link j and j ∈ Si means all links that “touch” area Si.
Finally, the cost to be used in each link becomes:

ci = L(vi)τi + Ji. (43)

The advantage of this method is that it is free of numerical errors (when inflows are exoge-154

nous) but it may be cumbersome to implement unless θ is an integer. In that case, as illustrated155

in Fig. 5 for θ = u
w

= 2, the location of nodes align on a grid pattern. This allows defining156

a conventional grid with cell size ∆t,∆x where inflows may be assumed constant. The other157

disadvantage is that merge models are typically expressed in terms of flows or densities rather158

than N values, and therefore an additional computational layer has to be added.159

5. Other coordinates160

As pointed out in Laval and Leclercq (2013) there are two additional coordinate systems161

that provide alternative solution methods of the traffic flow problems without inflows. In space-162

Lagrangian coordinates the quantity of interest is X(t, n), the position of vehicle n at time t; in163

time-Lagrangian coordinates one is interested in T (n, x), the time vehicle n crosses location x.164

These representations correspond to the same surface in the three-dimensional space of vehi-165

cle number, time and distance, but expressed with respect to a different coordinate system. We166

briefly analyze these two alternatives when considering Eulerian source terms and conclude that167

even if a HJ equation is still valid in both cases, one cannot expect to get a VT representation168

formula even when inflows φ(t, x) are exogenous.169

5.1. Space-Lagrangian coordinates: X-models170

Let s(t, n) be the spacing of vehicle n at time t. To derive the X-model we multiply the N-
model (3a) by s to get sNt− sH(k) = sΦ(t, x). Noting that s = −Xn and sNt = −XnNt = Xt,
this can be rewritten as:

Xt − V (−Xn) = −XnΦ(t, X), (44)
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where V (s) = sH(1/s) is this spacing-speed fundamental diagram. We conclude that (44) is still
a HJ PDE but does not admit a VT solution due to the term involving X . The corresponding
conservation law can be obtained by taking the partial derivative with respect to n of (44):

st + V (s)n = −φ(t, X)s2 − Φ(t, X)sn, (45)

Notice that van Wageningen-Kessels et al. (2013) identified (45) but without the term Φ(t, X)sn171

using a different approach, and used it to formulate a numerical solution method in the case of172

discrete inflows.173

5.2. Time-Lagrangian coordinates: T-models174

Let r = Tx and h = 1/q be the pace and the headway of vehicle n at location x, and let
F (r) be the fundamental diagram in this case, i.e. h = F (r). Here, the T-model is simply
F (r) = 1/q, where q is given by q = Nt − Φ(t, x), per (5). Noting that Nt = 1/Tn this can be
rewritten as:

Tn −
F (Tx)

1 + Φ(T, x)F (Tx)
= 0, (46)

which, again, is still a HJ PDE but does not admit a VT solution due to the term involving
T . The corresponding conservation law can be obtained by taking the partial derivative with
respect to x of (46):

rn −
F (r)x + F (r)2φ(T, x)

(1 + Φ(T, x)F (r))2
= 0. (47)

To summarize, it becomes apparent that in Lagrangian and vehicle number-space coordi-175

nates the solution to our problem does not accept VT solutions and therefore becomes more176

difficult to solve.177

6. Discussion178

We have shown in this paper that VT solutions to the traffic flow problem exist only in179

Eulerian coordinates when inflows are exogenous. In all other cases the Hamiltonian is a180

non-local function of the independent variable, and the corresponding variational may not be181

possible to formulate. Even in the simplest endogenous linear case (7) the reader can appreciate182

the mathematical difficulties: using Φ = Φ(s,N(s, ξ(s))) in (8a)-(11) turns the problem implicit183

in N , and therefore it is no longer a VT problem.184

Improved numerical solution methods for the endogenous case were derived by taking ad-185

vantage of this insight. In other fields, it appears that solving the extended Riemann problems186

explicitly considering the inflows has not been possible, and the only alternative has been to use187

high-resolution Riemann solvers (Schroll and Winther, 1996; LeVeque, 1998). We have shown188

that this is not the case in traffic flow, and that the ERP method presented here is indeed more189

accurate.190

A streamlined version of the ERP method could be envisioned that drastically improves191

computation times with minimal impact in the quality of the solution. To see this, recall that192

Fig. 4d showed that the candidate y∗1 was optimal only during the time step where the density193

approaches the critical density. Based on the discussion following eqn. (41) it is reasonable to194

conjecture that candidates y∗1, y
∗
2 . . . y

∗
6 in (33) would be optimal only when a transition takes195
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place. Therefore, the streamlined method would consider only the reduced set Y = {xU , x0, xD}196

in (33), which would induce an error only in the time step where the transition occurs. This197

error can be made arbitrarily small by decreasing ∆t. Notice that this does not mean that the198

continuum solution (33) can be streamlined in this way; this is only possible in discrete time199

where N -values are updated at each time step.200

The implications of our findings in the context of MFD analytical approximation methods201

considering turns as a continuum inflow are not encouraging. This is because inflows in this202

case would have to be endogenous for the method to be meaningful, and in such case we have203

seen that there is no VT solution. This implies that the method of cuts–the only method used204

so far to provide analytical MFD approximations–is no longer applicable. At the same time,205

however, a stochastic extension of the method of cuts proved successful in approximating a206

real-life MFD (Laval and Castrillón, 2015). This would indicate that, at least in the context of207

the MFD, VT solutions still provide good approximations. Research in this topic is ongoing.208
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