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Motivation

Traffic flows on a network

[Caltrans, Oct. 7, 2015]
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Motivation

Traffic flows on a network

[Caltrans, Oct. 7, 2015]

Road network ≡ graph made of edges and vertices
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Motivation

Breakthrough in traffic monitoring

Traffic monitoring

“old”: loop detectors at fixed locations (Eulerian)

“new”: GPS devices moving within the traffic (Lagrangian)

Data assimilation of Floating Car Data

[Mobile Millenium, 2008]
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Introduction to traffic Macroscopic models

Convention for vehicle labeling
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Introduction to traffic Macroscopic models

Three representations of traffic flow

Moskowitz’ surface
F
lo
w x

t

N

x

See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
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Introduction to traffic Macroscopic models

Notations: macroscopic

N(t, x) vehicle label at (t, x)

the flow Q(t, x) = lim
∆t→0

N(t +∆t, x)− N(t, x)

∆t
= ∂tN(t, x)

x

N(x , t ±∆t)

the density ρ(t, x) = lim
∆x→0

N(t, x) − N(t, x +∆x)

∆x
= −∂xN(t, x)

x

∆x

N(x ±∆x , t)

the stream speed (mean spatial speed) V (t, x).
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Introduction to traffic Macroscopic models

Macroscopic models

Hydrodynamics analogy

Two main categories: first and second order models

Two common equations:











∂tρ(t, x) + ∂xQ(t, x) = 0 conservation equation

Q(t, x) = ρ(t, x)V (t, x) definition of flow speed

(1)

x x +∆x
ρ(x , t)∆x

Q(x , t)∆t Q(x +∆x , t)∆t
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Introduction to traffic Focus on LWR model

First order: the LWR model

LWR model [Lighthill and Whitham, 1955], [Richards, 1956] [6, 7]

Scalar one dimensional conservation law

∂tρ(t, x) + ∂xF (ρ(t, x)) = 0 (2)

with
F : ρ(t, x) 7→ F (ρ(t, x)) := Q(t, x)
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Introduction to traffic Focus on LWR model

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangian
t − x t − n

CL
Variable Density ρ Spacing r

Equation ∂tρ+ ∂xF(ρ) = 0 ∂tr + ∂nV (r) = 0

HJ

Variable Label N Position X

N(t, x) =

∫ +∞

x

ρ(t, ξ)dξ X (t, n) =

∫ +∞

n

r(t, η)dη

Equation ∂tN + H (∂xN) = 0 ∂tX + V (∂nX ) = 0

Hamiltonian H(p) = −F(−p) V(p) = −V (−p)
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Introduction to traffic Focus on LWR model

Fundamental diagram (FD)

Flow-density fundamental diagram F

Empirical function with

ρmax the maximal or jam density,
ρc the critical density

Flux is increasing for ρ ≤ ρc : free-flow phase

Flux is decreasing for ρ ≥ ρc : congestion phase

ρmax

Density , ρ

ρmax

Density , ρ

0

Flow ,F

0

Flow ,F

0 ρmax

Flow ,F

Density , ρ

[Garavello and Piccoli, 2006]
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Introduction to traffic Second order models

Motivation for higher order models

Experimental evidences

fundamental diagram: multi-valued in congested case

[S. Fan, U. Illinois], NGSIM dataset
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Introduction to traffic Second order models

Motivation for higher order models

Experimental evidences

fundamental diagram: multi-valued in congested case
phenomena not accounted for: bounded acceleration, capacity drop...

Need for models able to integrate measurements of different traffic
quantities (acceleration, fuel consumption, noise)
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Introduction to traffic Second order models

GSOM family [Lebacque, Mammar, Haj-Salem 2007] [5]

Generic Second Order Models (GSOM) family











∂tρ+ ∂x(ρv) = 0 Conservation of vehicles,

∂t(ρI ) + ∂x(ρvI ) = ρϕ(I ) Dynamics of the driver attribute I ,

v = I(ρ, I ) Speed-density fundamental diagram,

(3)

Specific driver attribute I

the driver aggressiveness,
the driver origin/destination or path,
the vehicle class,
...

Flow-density fundamental diagram

F : (ρ, I ) 7→ ρI(ρ, I ).
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Introduction to traffic Second order models

GSOM family [Lebacque, Mammar, Haj-Salem 2007] [5]

(continued)

Kinematic waves or 1-waves:

similar to the seminal LWR model
density variations at speed ν = ∂ρI(ρ, I )
driver attribute I is continuous

Contact discontinuities or 2-waves:

variations of driver attribute I at speed ν = I(ρ, I )
the flow speed v is constant.
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Introduction to traffic Second order models

Examples of GSOM models

• LWR model = GSOM model with no specific driver attribute

• LWR model with bounded acceleration = GSOM model with I := v

• ARZ model = GSOM with I := v + p(ρ)











∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρvw) = 0,

w = v + p(ρ)

• Generalized ARZ model [Fan, Herty, Seibold]

• Multi-commodity models (multi-class, multi-lanes) of [Jin and
Zhang], [Bagnerini and Rascle] or [Herty, Kirchner, Moutari and
Rascle], [Klar, Greenberg and Rascle]

• Colombo 1-phase model

• Stochastic GSOM model [Khoshyaran and Lebacque]
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Variational principle applied to GSOM models

Outline

1 Introduction to traffic

2 Variational principle applied to GSOM models

3 GSOM models on a junction
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)

Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)

Q = ∂tN and ρ = −∂xN

If density ρ satisfies the scalar (LWR) conservation law

∂tρ+ ∂xF(ρ) = 0

Then N satisfies the first order Hamilton-Jacobi equation

∂tN − F(−∂xN) = 0 (4)
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)

Legendre-Fenchel transform with F concave (relative capacity)

M(q) = sup
ρ

[F(ρ)− ρq]

M(q)

u

w

Density ρ

q

q

Flow F

w u

q

TransformM

−wρmax
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)
(continued)

Lax-Hopf formula (representation formula) [Daganzo, 2006]

N(T , xT ) = min
u(.),(t0,x0)

∫ T

t0

M(u(τ))dτ + N(t0, x0),

∣

∣

∣

∣

∣

∣

∣

∣

Ẋ = u

u ∈ U
X (t0) = x0, X (T ) = xT
(t0, x0) ∈ J

(5) Time

Space

J

(T , xT )Ẋ (τ )

(t0, x0)

Viability theory [Claudel and Bayen, 2010]
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)
(Historical note)

Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)

Flow ,F

w

u

0 ρmax

Density , ρ

u

x

w

t

Time

Space

(t, x)

Minimum principle [Newell, 1993]

N(t, x) = min
[

N

(

t −
x − xu

u
, xu

)

,

N

(

t −
x − xw

w
, xw

)

+ ρmax(xw − x)
]

,

(6)
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Variational principle applied to GSOM models LWR model

LWR in Lagrangian (n, t)

Consider X (t, n) the location of vehicle n at time t ≥ 0

v = ∂tX and r = −∂nX

If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.)

∂tr + ∂nV(r) = 0

Then X satisfies the first order Hamilton-Jacobi equation

∂tX − V(−∂nX ) = 0. (7)
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Variational principle applied to GSOM models LWR model

LWR in Lagrangian (n, t)
(continued)

Dynamic programming for triangular FD

1/ρcrit

Speed ,V

u

−wρmax

Spacing , r

1/ρmax

−wρmax

n

t

(t, n)

Time

Label

Minimum principle ⇒ car following model [Newell, 2002]

X (t, n) = min
[

X (t0, n) + u(t − t0),

X (t0, n + wρmax(t − t0)) + w(t − t0)
]

.
(8)
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)

From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian











∂tr + ∂Nv = 0 Conservation of vehicles,

∂t I = 0 Dynamics of I ,

v =W(N, r , t) := V(r , I (N, t)) Fundamental diagram.

(9)

Position X (N, t) :=

∫ t

−∞

v(N, τ)dτ satisfies the HJ equation

∂tX −W(N,−∂NX , t) = 0, (10)

And I (N, t) solves the ODE

∣

∣

∣

∣

∣

∂t I (N, t) = 0,

I (N, 0) = i0(N), for any N.
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Legendre-Fenchel transform of W according to r

M(N, c , t) = sup
r∈R

{W(N, r , t) − cr}

M(N , p, t)

pq

W(N , q, t)

W(N , r , t)

q r

p

p

u

c

TransformM
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Lax-Hopf formula

X (NT ,T ) = min
u(.),(N0,t0)

∫ T

t0

M(N, u, t)dt + c(N0, t0),

∣

∣

∣

∣

∣

∣

∣

∣

Ṅ = u

u ∈ U
N(t0) = N0, N(T ) = NT

(N0, t0) ∈ K

(11)
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Optimal trajectories = characteristics

{

Ṅ = ∂rW(N, r , t),

ṙ = −∂NW(N, r , t),
(12)

System of ODEs to solve

Difficulty: not straight lines in the general case

G. Costeseque (Inria) GSOM on networks Sfax, May 04 2017 28 / 58



Variational principle applied to GSOM models Methodology

General ideas

First key element: Lax-Hopf formula

Computations only for the characteristics

X (NT ,T ) = min
(N0,r0,t0)

∫ T

t0

M(N, ∂rW(N, r , t), t)dt + c(N0, r0, t0),

∣

∣

∣

∣

∣

∣

∣

∣

Ṅ(t) = ∂rW(N, r , t)
ṙ(t) = −∂NW(N, r , t)
N(t0) = N0, r(t0) = r0, N(T ) = NT

(N0, r0, t0) ∈ K
(13)

K := Dom(c) is the set of initial/boundary values
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Variational principle applied to GSOM models Methodology

General ideas
(continued)

Second key element: inf-morphism prop. [Aubin et al, 2011]

Consider a union of sets (initial and boundary conditions)

K =
⋃

l

Kl ,

then the global minimum is

X (NT ,T ) = min
l
Xl(NT ,T ), (14)

with Xl partial solution to sub-problem Kl .
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Variational principle applied to GSOM models Methodology

IBVP

Consider piecewise affine initial and boundary conditions:

• initial condition at time t = t0 = initial position of vehicles ξ(·, t0)

• “upstream” boundary condition = trajectory ξ(N0, ·) of the first
vehicle,

• and internal boundary conditions given for instance by cumulative
vehicle counts at fixed location X = x0.
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Variational principle applied to GSOM models Numerical example

Fundamental Diagram and Driver Attribute
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Variational principle applied to GSOM models Numerical example

Initial and Boundaries Conditions
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + first traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + first traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond.+ 3 traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + 3 traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + 3 traj. + Eulerian data)
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GSOM models on a junction

Outline

1 Introduction to traffic

2 Variational principle applied to GSOM models

3 GSOM models on a junction
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GSOM models on a junction

The whole picture

We need

(i) a link model

(ii) a junction model

(iii) the upstream (resp. downstream) boundary conditions for an
incoming (resp. outgoing) link

(iv) link-node and node-link interfaces
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GSOM models on a junction Recalls

GSOM lagrangian

General expressions of GSOM family

In Eulerian,











∂tρ+ ∂x(ρv) = 0 Conservation of vehicles,

∂t(ρI ) + ∂x(ρvI ) = ρϕ(I ) Dynamics of the driver attribute I ,

v = I(ρ, I ) Fundamental diagram,

(15)

Transformed in Lagrangian,











∂T r + ∂nv = 0 Conservation of vehicles,

∂T I = ϕ(I ) Dynamics of the driver attribute I ,

v = V(r , I ) Fundamental diagram.

(16)
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GSOM models on a junction Recalls

GSOM lagrangian

Following classical approach [3, 4] we set

∆t, ∆N time and particle steps;

r tn := r(t∆t, n∆N), for any t ∈ N and any n ∈ Z

and I tn := I (t∆t, n∆N).

Numerical scheme














r t+1
n := r tn +

∆t

∆N

[

V t
n−1 − V t

n

]

,

V t
n := V (r tn , I

t
n ) ,

I t+1
n = I tn +∆tϕ (I tn )

(17)

CFL condition:
∆N

∆t
≥ sup

N,r ,t

|∂rV(r , I (t,N))| . (18)
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GSOM models on a junction Recalls

GSOM lagrangian (HJ)

Introduce X (T ,N) the position of particle N at time T and satisfying

r = −∂NX and v = ∂TX

such that
{

∂TX = V (−∂NX , I ) ,

∂T I = ϕ(I ).
(19)

Numerical scheme for HJ equation


















X t+1
n = X t

n +∆t V t
n ,

V t
n := V

(

X t
n−1 − X

t
n

∆N
, I tn

)

,

I t+1
n = I tn +∆t ϕ (I tn)

(20)

G. Costeseque (Inria) GSOM on networks Sfax, May 04 2017 43 / 58



GSOM models on a junction Recalls

Boundary conditions

We have two different solutions:

“Classical” supply-demand methodology [3, 2, 1]
but it implies to work with flows;

Using tools developed in [Lebacque, Khoshyaran, (2013)] [4] that
allow to compute directly spacing.
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

σt

x
(n) (n − 1)

xS

r tn∆N

X t
n X t

n−1

Exit point S located at xS

Boundary data = downstream supply
σt = σ(t∆t).

(n) the last particle located on the link
(or at least a fraction η∆N of it is still
on the link, with 0 ≤ η < 1).
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions

tn ∆t

X
tn−1
n

∆t

tn−1 ∆t

V(., I )
σt

r ∗r∗

xS

rcrit(I )

r tn∆N

X t
n X t

n−1

r

x

t

xS

x
(n) (n − 1)

(n)

(n − 1)

X
tn−1

n−1
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:

1 Define the spacing associated to particle (n) as r tn :=
X t
n−1 − X

t
n

∆N
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:

1 Define the spacing associated to particle (n) as r tn :=
X t
n−1 − X

t
n

∆N

2 Define the proportion of (n) already out η :=
xS − X

t
n

r tn∆N
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:

1 Define the spacing associated to particle (n) as r tn :=
X t
n−1 − X

t
n

∆N

2 Define the proportion of (n) already out η :=
xS − X

t
n

r tn∆N

3 Distinguish two cases:

• either V(r tn , I
t
n ) ≤ σt r tn : spacing is conserved.

• or V(r tn , I
t
n) > σt r tn : then, we solve V(r tn , I

t
n) = σt r tn

and choice of the smallest value r tn ← r∗ (congested)

G. Costeseque (Inria) GSOM on networks Sfax, May 04 2017 47 / 58



GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:

1 Define the spacing associated to particle (n) as r tn :=
X t
n−1 − X

t
n

∆N

2 Define the proportion of (n) already out η :=
xS − X

t
n

r tn∆N

3 Distinguish two cases:

• either V(r tn , I
t
n ) ≤ σt r tn : spacing is conserved.

• or V(r tn , I
t
n) > σt r tn : then, we solve V(r tn , I

t
n) = σt r tn

and choice of the smallest value r tn ← r∗ (congested)

4 Update X t+1
n (Euler scheme)

• If X t+1
n > xS , go to next particle n ← n + 1

• Else, update η ← η −
∆t

r tn∆N
V (r tn , I

t
n )
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:
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r tn∆N

3 Distinguish two cases:

• either V(r tn , I
t
n ) ≤ σt r tn : spacing is conserved.

• or V(r tn , I
t
n) > σt r tn : then, we solve V(r tn , I

t
n) = σt r tn

and choice of the smallest value r tn ← r∗ (congested)

4 Update X t+1
n (Euler scheme)

• If X t+1
n > xS , go to next particle n ← n + 1

• Else, update η ← η −
∆t

r tn∆N
V (r tn , I

t
n ) and update I t+1

n (Euler scheme)

5 Go to next time step t ← t + 1
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

δt

(n + 1) (n)
x

xE X t
n

r tn+1∆N

X t
n+1

Entry point E located at xE

Boundary data = (discrete) upstream
demand δt = δ(t∆t)

n the last vehicle entered in the link

next particle (n + 1) is still part of the
demand and will enter in the link at
time (t + ε)∆t
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions

We don’t know the position of next particle!

εn+1∆t

tn

tn+1
x

xE X t
n

δt

X t
n+1

qt

ηr tn+1∆N

(n + 1) (n)

x
xE

t

(t − 1)∆t

(n)(n + 1)

(t + 1)∆t

t∆t

∆t

σt
loc
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

Computational steps:
1 Instantiation:

We initialize the fraction η

η = qt−1 (t∆t − tn)

∆N

and

r tn+1 =
X t

n − xE

η∆N
.

We introduce the local supply

σt
loc = Ξ

(

1

r tn+1

, I tn+1, I
t
n ; xE

)

for any t ∈ N, n ∈ Z,

Let F t be the number of particles stored inside the upstream “queue”.
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

2 Stock model: The evolution of the stock F t is given by

F t+1 = F t + (δt − qt)∆t, (21)

where δt is the (cumulative) demand and qt is the effective inflow.

• if F t > 0, then there is a (vertical) queue upstream and

qt = min

{

σt
loc , Qmax(I

t
n+1) ,

F t

∆t
+ δt

}

,

• if F t = 0, then there is no queue and

qt = min
{

σt
loc , δt

}

.
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

3 Update: Particle (n + 1) is generated if and only if
η∆N + qt∆t ≥ ∆N.

if qt∆t < (1− η)∆N , then

η ← η +
qt∆t

(1 − η)∆N
.

if qt∆t ≥ (1− η)∆N , then the particle (n + 1) has entered the link at
time tn+1 = (t + εn+1)∆t where

εn+1 =
(1− η)∆N

qt∆t
.

The position of particle (n + 1) is updated

X t+1
n+1 = xE + (1 − εn+1)∆t V

(

r tn+1, I
t
n+1

)

.

Go to next particle n← n + 1.
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

4 Final update: We compute the attribute

I t+1
n+1 = I tn+1 +∆t ϕ

(

I tn
)

and update the time step t ← t + 1.
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GSOM models on a junction Junction model

Junction model

Internal state model (acts like a buffer)

Qi

δi(i)

(j)

σjRj

Σi(t)

γij
∆j(t)

[Nz(t),Nz ,j(t)]
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GSOM models on a junction Junction model

Assignment of particles through the junction

3 methods:

The assignment of particles is known: ∃ (γij)i ,j that describe the
proportion of particles coming from any road i ∈ I that want to exit
the junction on road j ∈ J

The path through the junction of each particle n ∈ Z is known:
included in the particle attribute I (t, n) and does not evolve in time
[straightforward]

The origin-destination (OD) information for each particle is known
(may depend on time): consider a reactive assignment model that
give us the path followed by particles.
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Thanks for your attention

Any question?

guillaume.costeseque@inria.fr
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