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Traffic flows on a network
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Traffic flows on a network
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Breakthrough in traffic monitoring

Traffic monitoring
@ “old": loop detectors at fixed locations (Eulerian)

@ “new": GPS devices moving within the traffic (Lagrangian)

Data assimilation of Floating Car Data

[Mobile Millenium, 2008]
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Outline

@ Introduction to traffic
© Variational principle applied to GSOM models

© GSOM models on a junction
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Outline

@ Introduction to traffic
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Introduction to traffic Macroscopic models

Convention for vehicle labeling

Flow

v
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Introduction to traffic Macroscopic models

Three representations of traffic flow

Moskowitz' surface

Flow

See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
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Introduction to traffic Macroscopic models

Notations: macroscopic

@ N(t,x) vehicle label at (t, x)
N(t + At, x) — N(t,x)

o the flow Q(t,x) = Alltrll0 At = 0:N(t, x)
M [0 [d:
N(x.t+At)
. . N(t,x) — N(t,x + Ax)
h = | = —0xN(t,
@ the density p(t,x) Aim A OxN(t,x)

X

M, IO [0

Ax

N(x £ Ax, t)

@ the stream speed (mean spatial speed) V/(t, x).
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Introduction to traffic Macroscopic models

Macroscopic models

@ Hydrodynamics analogy

@ Two main categories: first and second order models

@ Two common equations:

6tp(t,X) + 6XQ(t7X) =0

Q(t,x) = p(t,x)V(t,x)

1D

G. Costeseque (Inria)

p(x, t)Ax

GSOM on networks

conservation equation

definition of flow speed
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Focus on LWR model
First order: the LWR model

LWR model [Lighthill and Whitham, 1955], [Richards, 1956] [6, 7]

Scalar one dimensional conservation law

dep(t, x) + 0xF (p(t,x)) =0 (2)
with
§ 1 p(t,x) = F(p(t,x)) = Q(t, x) )
GSOM on networks
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Introduction to traffic Focus on LWR model

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangian
t—x t—n
Variable Density p Spacing r
CL
Equation ‘ Orp+ 0xF(p) =0 ‘ ‘ Orr +0,V(r)=0 ‘
Variable Label N Position X
+00 +oo
Mex) = [ pleode | X = [ (e
HJ x n
Equation | |9:N + H (0,N) = 0] 0:X +V(9,X) = 0]

Hamiltonian

G. Costeseque (Inria)
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Focus on LWR mode
Fundamental diagram (FD)

Flow-density fundamental diagram §
@ Empirical function with

@ Pmax the maximal or jam density,
@ pc the critical density

@ Flux is increasing for p < pc: free-flow phase

@ Flux is decreasing for p > p.: congestion phase

Flow, § Flow,§
A A

Density, p Density, p

0 Pmax 0 Prmax

[Garavello and Piccoli, 2006]
GSOM on networks

Flow, §
A

Density, p

0 Prmax
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Introduction to traffic Second order models

Motivation for higher order models

@ Experimental evidences

o fundamental diagram: multi-valued in congested case

FD offrst order models A family of flow rate curves of ARZ model
-+ sensor data + sensor data
—equilbrium curve Q,(0 — equilbrium curve Q0
= — famiy o low rate curves
12000
10000)
10000
2 s g
-4 2
g £
£ oo H
5000
4000|
2000)
density ¢ Cmax. density ¢ Simax.

[S. Fan, U. lllinois], NGSIM dataset
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Introduction to traffic Second order models

Motivation for higher order models

@ Experimental evidences
o fundamental diagram: multi-valued in congested case

@ phenomena not accounted for: bounded acceleration, capacity drop...

@ Need for models able to integrate measurements of different traffic
quantities (acceleration, fuel consumption, noise)
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Introduction to traffic Second order models

GSOM famlly [Lebacque, Mammar, Haj-Salem 2007] [5]

@ Generic Second Order Models (GSOM) family

Orp+ Ox(pv) =0 Conservation of vehicles,
Ot(pl) + Ox(pvl) = pe(l) Dynamics of the driver attribute /,
v="7(p, 1) Speed-density fundamental diagram,

(3)
@ Specific driver attribute /
the driver aggressiveness,
o the driver origin/destination or path,
@ the vehicle class,
)

©

@ Flow-density fundamental diagram
§:(ps 1) = p3(p;1).
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Introduction to traffic Second order models

GSOM famlly [Lebacque, Mammar, Haj-Salem 2007] [5]
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Introduction to traffic Second order models

GSOM famlly [Lebacque, Mammar, Haj-Salem 2007] [5]
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Ol + vOxl =0 Dynamics of the driver attribute /, (3)
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Introduction to traffic Second order models

GSOM famlly [Lebacque, Mammar, Haj-Salem 2007] [5]

(continued)

@ Kinematic waves or 1-waves:

@ similar to the seminal LWR model
@ density variations at speed v = 9,J3(p, /)
@ driver attribute / is continuous

@ Contact discontinuities or 2-waves:

o variations of driver attribute / at speed v = J(p, /)
o the flow speed v is constant.
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ezl o el
Examples of GSOM models

e LWR model = GSOM model with no specific driver attribute
e LWR model with bounded acceleration = GSOM model with [ := v
e ARZ model = GSOM with / := v + p(p)

Orp + Ox(pv) = 0,
Ot(pw) + Ox(pvw) = 0,
w = v+ p(p)

Generalized ARZ model [Fan, Herty, Seibold]

Multi-commodity models (multi-class, multi-lanes) of [Jin and
Zhang], [Bagnerini and Rascle] or [Herty, Kirchner, Moutari and
Rascle], [Klar, Greenberg and Rascle]

e Colombo 1-phase model
e Stochastic GSOM model [Khoshyaran and Lebacque]
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Variational principle applied to GSOM models
Outline

© Variational principle applied to GSOM models
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LW model
LWR in Eulerian (t, x)

@ Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)
Q=0;N and p=—-0N
@ If density p satisfies the scalar (LWR) conservation law
Orp + 0xF(p) =0

@ Then N satisfies the first order Hamilton-Jacobi equation

AN — F(—0cN) =0 (4)
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LW model
LWR in Eulerian (t, x)

@ Legendre-Fenchel transform with § concave (relative capacity)
M(q) = sup [3(p) — pq]
p

Transform M
A

Flow §

A

N —WPmax

1 Density p w u
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LW model
LWR in Eulerian (t, x)

(continued)

@ Lax-Hopf formula (representation formula) [Daganzo, 2006]

4+ Space
N(T XT mltn / M dT + N(to,Xo)
(to,x0)
X(r (T.x7)
ue Z/{
X(to) =x0, X(T)=xr (15,0)
(to,x0) € T
(5) J Time

@ Viability theory [Claudel and Bayen, 2010]
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)

(Historical note)

@ Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)

Space

Flow, §

0

@ Minimum principle [Newell, 1993]

N(t,x) = min [N <t— X_Xu,xu>,

X — X
N <t_ W W7XW> +pmax(Xw _X) s

GSOM on networks
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LW model
LWR in Lagrangian (n, t)

o Consider X(t, n) the location of vehicle n at time t > 0
v=0:X and r=-0,X
@ If the spacing r := 1/p satisfies the LWR model (Lagrangian coord.)
Otr +0V(r) =0
@ Then X satisfies the first order Hamilton-Jacobi equation

DX — V(—0,X) = 0. (7)
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LW model
LWR in Lagrangian (n, t)

(continued)

@ Dynamic programming for triangular FD

Label

Speed,V 4

Spacing,

1/ Pmax 1/ pesie

@ Minimum principle = car following model [Newell, 2002]
X(t,n) = min | X(to, n) + u(t — tp),

X(to, n + wpmax(t — to)) + w(t — to)].
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GSOM family
GSOM in Lagrangian (n, t)

@ From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian

Oir +0yv =0 Conservation of vehicles,
ol =0 Dynamics of /, 9)
v=W(N,r,t) :=V(r,I(N,t)) Fundamental diagram.

t

@ Position X(N,t) := / v(N, T)dT satisfies the HJ equation

8 X — W(N, —Oy X, t) = 0, (10)
@ And /(N,t) solves the ODE

Bel(N, t) =0,
I(N,0) = io(N), for any N.
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GSOM family
GSOM in Lagrangian (n, t)

(continued)

® Legendre-Fenchel transform of W according to r

M(N,c,t) =sup {W(N,r,t) —cr}
reR

W(N,r,t) , A Transform M

W(N,q,t)

M(N.pt) — |
Paq

v
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GSOM family
GSOM in Lagrangian (n, t)

(continued)

@ Lax-Hopf formula

X(Nt,T) = m|n / M(N, u, t)dt + c(No, to),

u(.),(No,to)

N=u 11
veld (1D
N(to) = No, N(T)=

(No, to) el
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GSOM family
GSOM in Lagrangian (n, t)

(continued)

@ Optimal trajectories = characteristics

{N = W(N, r, t), 12)

r= —ONW(N, r, t),

@ System of ODEs to solve

o Difficulty: not straight lines in the general case
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Variational principle applied to GSOM models Methodology

General ideas

First key element: Lax-Hopf formula

@ Computations only for the characteristics

X(Nr.T)= min_ / MN, O W(N, 1. £), £)dt + (N, 1o, to),

0,10,to

N(t) = d,W(N,r,t)

F(t) = —OnW(N,r,t)

N(to) = Np, r(to) =, N(T) =Nt

(No, o, to) ek

(13)

@ K := Dom(c) is the set of initial/boundary values
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Variational principle applied to GSOM models Methodology

General ideas

(continued)

Second key element: inf-morphism prop. [Aubin et al, 2011]

@ Consider a union of sets (initial and boundary conditions)
K=JKi,
/

@ then the global minimum is
X(NT, T) = mlin X/(NT, T), (14)

@ with X partial solution to sub-problem IC;.
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Variational principle applied to GSOM models Methodology

Consider piecewise affine initial and boundary conditions:
e initial condition at time t = t; = initial position of vehicles £(-, tp)
e ‘upstream” boundary condition = trajectory &(No, -) of the first
vehicle,

e and internal boundary conditions given for instance by cumulative
vehicle counts at fixed location X' = xp.
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Variational principle applied to GSOM models Numerical example

Fundamental Diagram and Driver Attribute

Initial conditions I(N,to)

Fundamental diagram F(p,l)

aso0 T T T T T T T T T
sk B
3000 a5k
o
2500
—° 35}
= 2
£ >
£ 2000 L
g 2 3
2 £
w © L
z w25
8 1500 ]
[ 2z,
a
1000 15 1
s ]
500
o5k B
0 20 40 60 80 100 120 140 160 180 200 0 5 10 15 20 25 30 35 40 45 50
Density p (veh/km) Label N
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Variational principle applied to GSOM models Numerical example

Initial and Boundaries Conditions

Initial conditions r(N,tO) Initial positions X(N,to)
5
4 -a0)
) -a00)
EF E
° 50l x
> <
£ Ll S
5 =
g 8 =
[ <
15 -1000
10
-1z
B
0 s w5 = w % w0 4 & B N
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E
=
2000)
2
T €
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S c
2 2
s 2 1om)
g 4
@D 1
" s00)
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izt
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + first traj.)

2500
2000
1500
1000

500

Position (m)

-500

-1000

-1500
120

Time (s) Vehicle label
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + first traj.)

Vehicles trajectories

2500

2000 -

1500 -

1000

500

Location (m)

-500F

-1000

_1500 I I I I
0 20 40 60 80 100 120

Time (s)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond.+ 3 traj.)

2500
2000
1500
1000

500

Position (m)

-500

-1000

-1500
120

Time (s) Vehicle label
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + 3 traj.)

Vehicles trajectories

2500

2000 -

1500 - r

Location (m)

-1500 L L
0

20 40 60 80 100 120
Time (s)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + 3 traj. + Eulerian data)

2500
2000
1500
1000

500

Position (m)

-500

-1000

-1500
120

Time (s) Vehicle label
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GSOM models on a junction
Outline

© GSOM models on a junction
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GSOM models on a junction

The whole picture

We need
(i) a link model
(ii) a junction model

(i) the upstream (resp. downstream) boundary conditions for an
incoming (resp. outgoing) link

(iv) link-node and node-link interfaces
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e
GSOM lagrangian

General expressions of GSOM family
In Eulerian,
Otp+ Ox(pv) =0 Conservation of vehicles,
Oe(pl) + Ox(pvl) = pep(1) Dynamics of the driver attribute /, (15)
v=73(p, 1) Fundamental diagram,
Transformed in Lagrangian,
Orr+0,v=0 Conservation of vehicles,
orl = (1) Dynamics of the driver attribute /, (16)
v=WV(r1) Fundamental diagram.
GSOM on networks Sfax, May 04 2017 41 / 58



e
GSOM lagrangian

Following classical approach [3, 4] we set
o At, AN time and particle steps;
o r}:=r(tAt,nAN), for any t €« N and any n € Z
e and I} := I(tAt, nAN).

Numerical scheme

At
=t i Vi = Vil
VE =V (ri 1), (17)

57 = 15+ Ao (1)

CFL condition:

AN
—— > sup |0, V(r, I(t, N))] . (18)
At N,r,t
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Recall
GSOM lagrangian (HJ)

Introduce X (T, N) the position of particle N at time T and satisfying

r=—-0yX and v=07rX

such that
oTX =V (-0nX,1),
T (=Ont.1) (19)
orl = ().
Numerical scheme for HJ equation
X=X+ At V]
Xt — Xt
iy (S ) (20)
[ = 1+ At o (1)
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GSOM models on a junction Recalls

Boundary conditions

We have two different solutions:

@ “Classical” supply-demand methodology [3, 2, 1]
but it implies to work with flows;

@ Using tools developed in [Lebacque, Khoshyaran, (2013)] [4] that
allow to compute directly spacing.
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

@ Exit point S located at xs

ot @ Boundary data = downstream supply
& s X ot = o(tAt).
——eo------- - -->x
(n) (n=1) @ (n) the last particle located on the link
« . (or at least a fraction nAN of it is still
AN on the link, with 0 <7 < 1).
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions

o)) Iaf

t, At

ty1 At

Xy Xs X
——@®------- ®--->x
(n) {(n—1)
: x
rtAN
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:
t t
X - X

n— n

© Define the spacing associated to particle (n) as r} == AN
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:

n

© Define the spacing associated to particle (n) as r} == AN

xs — Xt

© Define the proportion of (n) already out 7 := rEAN
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:

n

© Define the spacing associated to particle (n) as r} == AN
. . _xs— &,
© Define the proportion of (n) already out 7 := W
© Distinguish two cases:
o either V(r}, I}) < o'r}: spacing is conserved.
o or V(r}, I}) > otrl: then, we solve V(rf, If) = o'r}
and choice of the smallest value rf < r. (congested)

G. Costeseque (Inria) GSOM on networks Sfax, May 04 2017
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:

© Define the spacing associated to particle (n) as r} ==

) ) xs — Xt
© Define the proportion of (n) already out 1 := ———"
prop (n) yout 11:= =l Ay
© Distinguish two cases:

o either V(r}, I}) < o'r}: spacing is conserved.

o or V(r}, I}) > otrl: then, we solve V(rf, If) = o'r}

and choice of the smallest value rf < r. (congested)

Q Update X!+ (Euler scheme)

o If X1 > x5, go to next particle n < n+1

At

V(rt, It

rﬁAN (rn n)

e Else, update n < n —

G. Costeseque (Inria) GSOM on networks Sfax, May 04 2017
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GSOM models on a junction Downstream boundary conditions

Downstream boundary conditions
(Continued)

Computational steps:
Xoy—Xp

© Define the spacing associated to particle (n) as r} == AN
© Define the proportion of (n) already out 7 := M
rEAN
© Distinguish two cases:
o either V(r}, I}) < o'r}: spacing is conserved.
o or V(r}, I}) > otrl: then, we solve V(rf, If) = o'r}
and choice of the smallest value rf < r. (congested)
Q Update X!+ (Euler scheme)

o If X1 > x5, go to next particle n < n+1

At
r,f,ANV(r’E’ It) and update /f+1 (Euler scheme)

© Go to next timestep t + t+1

e Else, update n < n —
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

@ Entry point E located at xg

@ Boundary data = (discrete) upstream

X o e Xt demand 0f = 0(tAt)
B SRR &——®—> x o pthe last vehicle entered in the link
(n+1) H(n)

‘ @ next particle (n+ 1) is still part of the
rt AN ‘ demand and will enter in the link at
time (t 4 ¢)At
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions

We don't know the position of next particle!

t
A

|
|

L — i /
0 Tloc i
Lo XE X (t+1)At E
B > x (- ’
(n+1) (n) ennAt /.
tAt !

N AN e /‘\ At
(t—1)At !
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

Computational steps:
© Instantiation:
@ We initialize the fraction 7

e (tAt—ty)
n=4q AN
and
t 7X£_XE
rn+1—W.

@ We introduce the local supply

— 1
Oloc == =151, 1 xe ) forany teN, nelZ,
M1

o Let F' be the number of particles stored inside the upstream “queue”.
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

© Stock model: The evolution of the stock F! is given by
F = F' 4+ (6' - q")At, (21)

where §' is the (cumulative) demand and q* is the effective inflow.
e if F* > 0, then there is a (vertical) queue upstream and

) Ft
g" = min {afoc . Qmax(1i1) x 4 5t} 7

e if Ft =0, then there is no queue and

g" =min{of,., 6'}.
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

© Update: Particle (n + 1) is generated if and only if
nAN + qtAt > AN.
o if gfAt < (1 —n)AN, then

qtAt

TNt A= an

o if g'At > (1 —n)AN, then the particle (n + 1) has entered the link at
time ty41 = (t + €441) At where

_ (1-n)AN
Entl = PN .

The position of particle (n+ 1) is updated
X,fﬂ =xe + (1 —ep1)AtV ( Fns1 n+1)

Go to next particle n < n+ 1.
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GSOM models on a junction Upstream boundary conditions

Upstream boundary conditions
(Continued)

© Final update: We compute the attribute
I = laa + At o (1)

and update the time step t < t + 1.
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GSOM models on a junction Junction model

Junction model

Internal state model (acts like a buffer)
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GSOM models on a junction Junction model

Assignment of particles through the junction

3 methods:

® The assignment of particles is known: 3 (7jj); ; that describe the
proportion of particles coming from any road i € Z that want to exit
the junction on road j € J

@ The path through the junction of each particle n € Z is known:
included in the particle attribute /(t,n) and does not evolve in time
[straightforward]

@ The origin-destination (OD) information for each particle is known
(may depend on time): consider a reactive assignment model that
give us the path followed by particles.
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Any question?

guillaume.costeseque@inria.fr
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