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Motivation

Traffic flows on a network

[Caltrans, Oct. 7, 2015]
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Motivation

Breakthrough in traffic monitoring

Traffic monitoring

“old”: loop detectors at fixed locations (Eulerian)

“new”: GPS devices moving within the traffic (Lagrangian)

Data assimilation of Floating Car Data

[Mobile Millenium, 2008]
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Introduction to traffic Macroscopic models

Convention for vehicle labeling
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Introduction to traffic Macroscopic models

Three representations of traffic flow

Moskowitz’ surface
F
lo
w x

t

N

x

See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
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Introduction to traffic Macroscopic models

Notations: macroscopic

N(t, x) vehicle label at (t, x)

the flow Q(t, x) = lim
∆t→0

N(t +∆t, x)− N(t, x)

∆t
,

x

N(x , t ±∆t)

the density ρ(t, x) = lim
∆x→0

N(t, x) − N(t, x +∆x)

∆x
,

x

∆x

N(x ±∆x , t)

the stream speed (mean spatial speed) V (t, x).
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Introduction to traffic Macroscopic models

Macroscopic models

Hydrodynamics analogy

Two main categories: first and second order models

Two common equations:







∂tρ(t, x) + ∂xQ(t, x) = 0 conservation equation

Q(t, x) = ρ(t, x)V (t, x) definition of flow speed

(1)

x x +∆x
ρ(x , t)∆x

Q(x , t)∆t Q(x +∆x , t)∆t
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Introduction to traffic Focus on LWR model

First order: the LWR model

LWR model [Lighthill and Whitham, 1955], [Richards, 1956]

Scalar one dimensional conservation law

∂tρ(t, x) + ∂xF (ρ(t, x)) = 0 (2)

with
F : ρ(t, x) 7→ Q(t, x) =: Fx (ρ(t, x))
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Introduction to traffic Focus on LWR model

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangian
t − x t − n

CL
Variable Density ρ Spacing r

Equation ∂tρ+ ∂xF(ρ) = 0 ∂tr + ∂nV (r) = 0

HJ

Variable Label N Position X

N(t, x) =

∫ +∞

x

ρ(t, ξ)dξ X (t, n) =

∫ +∞

n

r(t, η)dη

Equation ∂tN + H (∂xN) = 0 ∂tX + V (∂nX ) = 0

Hamiltonian H(p) = −F(−p) V(p) = −V (−p)
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Introduction to traffic Focus on LWR model

Fundamental diagram (FD)

Flow-density fundamental diagram F

Empirical function with

ρmax the maximal or jam density,
ρc the critical density

Flux is increasing for ρ ≤ ρc : free-flow phase

Flux is decreasing for ρ ≥ ρc : congestion phase

ρmax

Density , ρ

ρmax

Density , ρ

0

Flow ,F

0

Flow ,F

0 ρmax

Flow ,F

Density , ρ

[Garavello and Piccoli, 2006]
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Introduction to traffic Second order models

Motivation for higher order models

Experimental evidences

fundamental diagram: multi-valued in congested case

[S. Fan, U. Illinois], NGSIM dataset
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Introduction to traffic Second order models

Motivation for higher order models

Experimental evidences

fundamental diagram: multi-valued in congested case
phenomena not accounted for: bounded acceleration, capacity drop...

Need for models able to integrate measurements of different traffic
quantities (acceleration, fuel consumption, noise)
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Introduction to traffic Second order models

GSOM family [Lebacque, Mammar, Haj-Salem 2007]

Generic Second Order Models (GSOM) family







∂tρ+ ∂x(ρv) = 0 Conservation of vehicles,

∂t(ρI ) + ∂x(ρvI ) = ρϕ(I ) Dynamics of the driver attribute I ,

v = I(ρ, I ) Fundamental diagram,

(3)

Specific driver attribute I

the driver aggressiveness,
the driver origin/destination or path,
the vehicle class,
...

Flow-density fundamental diagram

F : (ρ, I ) 7→ ρI(ρ, I ).
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Micro to macro in traffic models

Outline

1 Introduction to traffic

2 Micro to macro in traffic models

3 Variational principle applied to GSOM models

4 HJ equations on a junction

5 Conclusions and perspectives
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Micro to macro in traffic models Homogenization

Setting

Speed

Time

(i − 1)Space

x

Spacing

Headway

t

(i) t 7→ xi(t) trajectory of vehicle i

i = discrete position index (i ∈ Z)

n = continuous (Lagrangian) variable

n = iε and t = εs

ε > 0 a scale factor
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Micro to macro in traffic models Homogenization

Setting

Speed

Time

(i − 1)Space

x

Spacing

Headway

t

(i) t 7→ xi(t) trajectory of vehicle i

i = discrete position index (i ∈ Z)

n = continuous (Lagrangian) variable

n = iε and t = εs

ε > 0 a scale factor

Proposition (Rescaled positions)

Define

xi(s) =
1

ε
X ε(εs, iε) ⇐⇒ X ε(t, n) = εx⌊ n

ε
⌋

( t

ε

)
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Micro to macro in traffic models Homogenization

General result

Let consider

the simplest microscopic model;

ẋi (t) = F (xi−1(t)− xi (t)) (4)

the LWR macroscopic model (HJ equation in Lagrangian):

∂tX
0 = F (−∂nX

0) (5)
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Micro to macro in traffic models Homogenization

General result

Let consider

the simplest microscopic model;

ẋi (t) = F (xi−1(t)− xi (t)) (4)

the LWR macroscopic model (HJ equation in Lagrangian):

∂tX
0 = F (−∂nX

0) (5)

Theorem ((Monneau) Convergence to the viscosity solution)

If X ε(t, n) := εx⌊ n
ε
⌋

( t

ε

)

with (xi )i∈Z solution of (4) and X 0 the unique

solution of HJ (5), then under suitable assumptions,

|X ε − X 0|L∞(K) −→
ε→0

0, ∀K compact set.
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Micro to macro in traffic models Multi-anticipative traffic

Toy model

Vehicles consider m ≥ 1 leaders

First order multi-anticipative model

ẋi(t + τ) = max



0,Vmax −

m∑

j=1

f (xi−j(t)− xi (t))



 (6)

f speed-spacing function

non-negative
non-increasing
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Micro to macro in traffic models Multi-anticipative traffic

Homogenization

Proposition ((Monneau) Convergence)

Assume m ≥ 1 fixed.

If τ is small enough, if X ε(t, n) := εx⌊ n
ε
⌋

( t

ε

)

with (xi )i∈Z solution of (6)

and if X 0(n, t) solves

∂tX
0 = F

(
−∂nX

0,m
)

(7)

with

F (r ,m) = max



0,Vmax −

m∑

j=1

f (jr)



 ,

then under suitable assumptions,

|X ε − X 0|L∞(K) −→
ε→0

0, ∀K compact set.
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Micro to macro in traffic models Multi-anticipative traffic

Multi-anticipatory macroscopic model

χj the fraction of j-anticipatory vehicles

traffic flow ≡ mixture of traffic of j-anticipatory vehicles

χ = (χj)j=1,...,m , with 0 ≤ χj ≤ 1 and

m∑

j=1

χj = 1

GSOM model with driver attribute I = χ







∂tρ+ ∂x (ρv) = 0,

∂t(ρχ) + ∂x(ρχv) = 0,

v :=

m∑

j=1

χjF (1/ρ, j) = W (1/ρ, χ).

(8)
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Micro to macro in traffic models Numerical schemes

Numerical resolution

Godunov scheme in Eulerian t − x
with (∆t,∆xk) steps ⇒ CFL condition

Variational formulation and dynamic programming techniques [2]

Particle methods in the Lagrangian framework t − n







x t+1
n = x tn +∆tW

(
x tn−1 − x tn

∆n
, χt

n

)

χt+1
n = χt

n

(9)
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Micro to macro in traffic models Numerical schemes

Numerical example
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Micro to macro in traffic models Numerical schemes

Numerical example: (χj)j
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Micro to macro in traffic models Numerical schemes

Numerical example: Lagrangian trajectories
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Micro to macro in traffic models Numerical schemes

Numerical example: Eulerian trajectories
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Variational principle applied to GSOM models

Outline

1 Introduction to traffic

2 Micro to macro in traffic models

3 Variational principle applied to GSOM models

4 HJ equations on a junction

5 Conclusions and perspectives
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)

Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)

Q = ∂tN and ρ = −∂xN

If density ρ satisfies the scalar (LWR) conservation law

∂tρ+ ∂xF(ρ) = 0

Then N satisfies the first order Hamilton-Jacobi equation

∂tN − F(−∂xN) = 0 (10)
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)

Legendre-Fenchel transform with F concave (relative capacity)

M(q) = sup
ρ

[F(ρ)− ρq]

M(q)

u

w

Density ρ

q

q

Flow F

w u

q

Transform M

−wρmax
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)
(continued)

Lax-Hopf formula (representation formula) [Daganzo, 2006]

N(T , xT ) = min
u(.),(t0,x0)

∫ T

t0

M(u(τ))dτ + N(t0, x0),

∣
∣
∣
∣
∣
∣
∣
∣

Ẋ = u
u ∈ U
X (t0) = x0, X (T ) = xT
(t0, x0) ∈ J

(11) Time

Space

J

(T , xT )Ẋ (τ )

(t0, x0)

Viability theory [Claudel and Bayen, 2010]
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)
(Historical note)

Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)

Flow ,F

w

u

0 ρmax

Density , ρ

u

x

w

t

Time

Space

(t, x)

Minimum principle [Newell, 1993]

N(t, x) = min
[

N

(

t −
x − xu

u
, xu

)

,

N

(

t −
x − xw

w
, xw

)

+ ρmax(xw − x)
]

,

(12)
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Variational principle applied to GSOM models LWR model

LWR in Lagrangian (n, t)

Consider X (t, n) the location of vehicle n at time t ≥ 0

v = ∂tX and r = −∂nX

If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.)

∂tr + ∂nV(r) = 0

Then X satisfies the first order Hamilton-Jacobi equation

∂tX − V(−∂nX ) = 0. (13)
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Variational principle applied to GSOM models LWR model

LWR in Lagrangian (n, t)
(continued)

Dynamic programming for triangular FD

1/ρcrit

Speed ,V

u

−wρmax

Spacing , r

1/ρmax

−wρmax

n

t

(t, n)

Time

Label

Minimum principle ⇒ car following model [Newell, 2002]

X (t, n) = min
[

X (t0, n) + u(t − t0),

X (t0, n + wρmax(t − t0)) + w(t − t0)
]

.
(14)
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)

From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian







∂tr + ∂Nv = 0 Conservation of vehicles,

∂t I = 0 Dynamics of I ,

v = W(N, r , t) := V(r , I (N, t)) Fundamental diagram.

(15)

Position X (N, t) :=

∫ t

−∞
v(N, τ)dτ satisfies the HJ equation

∂tX −W(N,−∂NX , t) = 0, (16)

And I (N, t) solves the ODE
∣
∣
∣
∣
∣

∂t I (N, t) = 0,

I (N, 0) = i0(N), for any N.
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Legendre-Fenchel transform of W according to r

M(N, c , t) = sup
r∈R

{W(N, r , t) − cr}

M(N , p, t)

pq

W(N , q, t)

W(N , r , t)

q r

p

p

u

c

Transform M
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Lax-Hopf formula

X (NT ,T ) = min
u(.),(N0,t0)

∫ T

t0

M(N, u, t)dt + c(N0, t0),

∣
∣
∣
∣
∣
∣
∣
∣

Ṅ = u
u ∈ U
N(t0) = N0, N(T ) = NT

(N0, t0) ∈ K

(17)
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Optimal trajectories = characteristics

{

Ṅ = ∂rW(N, r , t),

ṙ = −∂NW(N, r , t),
(18)

System of ODEs to solve

Difficulty: not straight lines in the general case
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Variational principle applied to GSOM models Methodology

General ideas

First key element: Lax-Hopf formula

Computations only for the characteristics

X (NT ,T ) = min
(N0,r0,t0)

∫ T

t0

M(N, ∂rW(N, r , t), t)dt + c(N0, r0, t0),

∣
∣
∣
∣
∣
∣
∣
∣

Ṅ(t) = ∂rW(N, r , t)
ṙ(t) = −∂NW(N, r , t)
N(t0) = N0, r(t0) = r0, N(T ) = NT

(N0, r0, t0) ∈ K
(19)

K := Dom(c) is the set of initial/boundary values
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Variational principle applied to GSOM models Methodology

General ideas
(continued)

Second key element: inf-morphism prop. [Aubin et al, 2011]

Consider a union of sets (initial and boundary conditions)

K =
⋃

l

Kl ,

then the global minimum is

X (NT ,T ) = min
l

Xl(NT ,T ), (20)

with Xl partial solution to sub-problem Kl .
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Variational principle applied to GSOM models Numerical example

Fundamental Diagram and Driver Attribute
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Variational principle applied to GSOM models Numerical example

Initial and Boundaries Conditions
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + first traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + first traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond.+ 3 traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + 3 traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + 3 traj. + Eulerian data)
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HJ equations on a junction

Outline

1 Introduction to traffic

2 Micro to macro in traffic models

3 Variational principle applied to GSOM models

4 HJ equations on a junction

5 Conclusions and perspectives
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HJ equations on a junction

Motivation

Classical approaches:

Macroscopic modeling on (homogeneous) sections

Coupling conditions at (pointwise) junction

For instance, consider







∂tρ+ ∂xQ(ρ) = 0, scalar conservation law,

ρ(., t = 0) = ρ0(.), initial conditions,

ψ(ρ(x = 0−, t)
︸ ︷︷ ︸

upstream

, ρ(x = 0+, t)
︸ ︷︷ ︸

downstream

) = 0, coupling condition.
(21)

See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1]
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HJ equations on a junction HJ junction model

Star-shaped junction

JN

J1

J2

branch Jα

x

x

0

x

x
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HJ equations on a junction HJ junction model

Junction model

Proposition (Junction model [IMZ, ’13])

That leads to the following junction model (see [5])







∂tu
α + Hα (∂xu

α) = 0, x > 0, α = 1, . . . ,N

uα = uβ =: u, x = 0,

∂tu +H
(
∂xu

1, . . . , ∂xu
N
)
= 0, x = 0

(22)

with initial condition uα(0, x) = uα0 (x) and

H
(

∂xu
1, . . . , ∂xu

N
)

= max
α=1,...,N

{
H−
α (∂xu

α)
}

︸ ︷︷ ︸

from optimal control

.
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HJ equations on a junction HJ junction model

Basic assumptions

For all α = 1, . . . ,N,
(A0) The initial condition uα0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are C 1(R) and convex such that:

p

H−
α (p) H+

α (p)

pα0
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HJ equations on a junction Numerical scheme

Presentation of the scheme

Proposition (Numerical Scheme)

Let us consider the discrete space and time derivatives:

pα,ni :=
Uα,n
i+1 − Uα,n

i

∆x
and (DtU)α,ni :=

Uα,n+1
i − Uα,n

i

∆t

Then we have the following numerical scheme:







(DtU)α,ni +max{H+
α (pα,ni−1),H

−
α (pα,ni )} = 0, i ≥ 1

Un
0 := Uα,n

0 , i = 0, α = 1, ...,N

(DtU)n0 + max
α=1,...,N

H−
α (pα,n0 ) = 0, i = 0

(23)
With the initial condition Uα,0

i := uα0 (i∆x).

∆x and ∆t = space and time steps satisfying a CFL condition
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HJ equations on a junction Mathematical results

Stronger CFL condition

−m0

pα
p

Hα(p)

pα

As for any α = 1, . . . ,N, we have
(gradient estimates)

p
α
≤ pα,ni ≤ pα for all i , n ≥ 0

Then the CFL condition becomes:

∆x

∆t
≥ sup

α=1,...,N
pα∈[p

α

,p
α
]

|H ′
α(pα)| (24)
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HJ equations on a junction Mathematical results

Existence and uniqueness

Theorem (Existence and uniqueness [IMZ, ’13])

Under (A0)-(A1), there exists a unique viscosity solution u of (22) on the
junction, satisfying for some constant CT > 0

|u(t, y)− u0(y)| ≤ CT for all (t, y) ∈ JT .

Moreover the function u is Lipschitz continuous with respect to (t, y).
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HJ equations on a junction Mathematical results

Convergence

Theorem (Convergence from discrete to continuous [CML, ’13])

Assume that (A0)-(A1) and the CFL condition (24) are satisfied. Then the
numerical solution converges uniformly to u the unique viscosity solution
of the junction model (22) when ε := (∆t,∆x) → 0

lim sup
ε→0

sup
(n∆t,i∆x)∈K

|uα(n∆t, i∆x)− Uα,n
i | = 0

Proof
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HJ equations on a junction Traffic interpretation

Setting

J1

JNI

JNI+1

JNI+NO

x < 0 x = 0 x > 0

Jβ

γβ Jλ
γλ

NI incoming and NO outgoing roads
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HJ equations on a junction Traffic interpretation

Links with “classical” approach

Definition (Discrete car density)

The discrete vehicle density ρα,ni with n ≥ 0 and i ∈ Z is given by:

ρα,ni :=







γαpα,n|i |−1 for α = 1, ...,NI , i ≤ −1

−γαpα,ni for α = NI + 1, ...,NI + NO , i ≥ 0

(25)

J1

JNI

JNI+1

JNI+NO

x < 0 x > 0

−2

−1

2

1

0

−2

−2
−1

−1
1

1

2

2

Jβ
Jλ

ρλ,n1
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HJ equations on a junction Traffic interpretation

Traffic interpretation

Proposition (Scheme for vehicles densities)

The scheme deduced from (23) for the discrete densities is given by:

∆x

∆t
{ρα,n+1

i − ρα,ni } =







Fα(ρα,ni−1, ρ
α,n
i )− Fα(ρα,ni , ρα,ni+1) for i 6= 0,−1

Fα
0 (ρ

·,n
0 )− Fα(ρα,ni , ρα,ni+1) for i = 0

Fα(ρα,ni−1, ρ
α,n
i )− Fα

0 (ρ
·,n
0 ) for i = −1

With







Fα(ρα,ni−1, ρ
α,n
i ) := min

{
Qα

D(ρ
α,n
i−1), Q

α
S (ρ

α,n
i )

}

Fα
0 (ρ

·,n
0 ) := γα min

{

min
β≤NI

1

γβ
Qβ

D(ρ
β,n
0 ), min

λ>NI

1

γλ
Qλ

S (ρ
λ,n
0 )

}

incoming outgoing

ρλ,n0ρβ,n−1ρβ,n−2 ρλ,n1

x
x = 0
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HJ equations on a junction Traffic interpretation

Supply and demand functions

Remark

It recovers the seminal Godunov scheme with passing flow = minimum
between upstream demand QD and downstream supply QS .

Density ρ
ρcrit ρmax

Supply QS

Qmax

Density ρ
ρcrit ρmax

Flow Q
Qmax

Density ρ
ρcrit

Demand QD

Qmax

From [Lebacque ’93, ’96] and [Daganzo ’95]
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HJ equations on a junction Numerical simulation

Example of a Diverge

An off-ramp:

J1
ρ1

J2
ρ2

ρ3
J3

with 





γe = 1,

γl = 0.75,

γr = 0.25
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HJ equations on a junction Numerical simulation

Fundamental Diagrams
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HJ equations on a junction Numerical simulation

Initial conditions (t=0s)
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HJ equations on a junction Numerical simulation

Numerical solution: densities
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HJ equations on a junction Numerical simulation

Numerical solution: Hamilton-Jacobi
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HJ equations on a junction Numerical simulation

Trajectories
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HJ equations on a junction Recent developments

New junction model

Proposition (Junction model [IM, ’14])

From [4], we have







∂tu
α + Hα (∂xu

α) = 0, x > 0, α = 1, . . . ,N

uα = uβ =: u, x = 0,

∂tu +H
(
∂xu

1, . . . , ∂xu
N
)
= 0, x = 0

(26)

with initial condition uα(0, x) = uα0 (x) and

H
(

∂xu
1, . . . , ∂xu

N
)

= max
[
flux limiter
︷︸︸︷

L , max
α=1,...,N

{
H−
α (∂xu

α)
}

︸ ︷︷ ︸

minimum between
demand and supply

]

.
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HJ equations on a junction Recent developments

Weaker assumptions on the Hamiltonians

For all α = 1, . . . ,N,
(A0) The initial condition uα0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are continuous and quasi-convex i.e.
there exists points pα0 such that







Hα is non-increasing on (−∞, pα0 ],

Hα is non-decreasing on [pα0 ,+∞).
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HJ equations on a junction Recent developments

Homogenization on a network

Proposition (Homogenization on a periodic network [IM’14])

Assume (A0)-(A1). Consider a periodic network.
If uε ∈ R

d satisfies HJ equation on network,
then uε converges uniformly towards u0 when ε→ 0,
with u0 ∈ R

d solution of

∂tu
0 + H

(
Du0

)
= 0, t > 0, x ∈ R

d (27)

See [Imbert, Monneau ’14] [4]
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HJ equations on a junction Recent developments

Numerical homogenization on a network

Numerical scheme adapted to the cell problem (d = 2)

T
ra

ff
ic

Traffic eH

γH

eV

γH

γV

γV

i = 0
i =

N

2
i = −

N

2
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HJ equations on a junction Recent developments

First example

Proposition (Effective Hamiltonian for fixed coefficients [IM’14])

If (γH , γV ) are fixed, then the

(Hamiltonian) effective Hamiltonian H is given by

H (∂xuH , ∂xuV ) = max

{

L, max
i={H,V }

H (∂xui)

}

,

(traffic flow) effective flow Q is given by

F(ρH , ρV ) = min

{

−L,
F(ρH)

γH
,
F(ρV )

γV

}

.
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HJ equations on a junction Recent developments

First example

Numerics: assume F(ρ) = 4ρ(1 − ρ) and L = −1.5,
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HJ equations on a junction Recent developments

Second example

Two consecutive traffic signals on a 1D road

flow

l LL

x1 x2xE

E

xS

S

Homogenization theory by [Galise, Imbert, Monneau, ’14]
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HJ equations on a junction Recent developments

Second example

Effective flux limiter −L (numerics only)
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Conclusions and perspectives

Outline

1 Introduction to traffic

2 Micro to macro in traffic models

3 Variational principle applied to GSOM models

4 HJ equations on a junction

5 Conclusions and perspectives
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Conclusions and perspectives

Personal conclusions

Advantages Drawbacks

Micro-macro link Limited time delay
Homogeneous Explicit solutions Concavity of the FD

link Data assimilation
Exactness (2nd order)

Multilane

Uniqueness of the solution Fixed proportions
Junction Homogenization result

Multilane
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Conclusions and perspectives

Perspectives

Some open questions:

Micro-macro: higher time delay?

Confront the results with real data (micro datasets)

Explicit Lax-Hopf formula for time/space dependent Hamiltonians?
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