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Motivation

Breakthrough in traffic monitoring

Traffic monitoring

“old”: loop detectors at fixed locations (Eulerian)

“new”: GPS devices moving within the traffic (Lagrangian)

Data assimilation of Floating Car Data

[Mobile Millenium, 2008]
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Introduction to traffic Macroscopic models

Convention for vehicle labeling
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Introduction to traffic Macroscopic models

Three representations of traffic flow

Moskowitz’ surface
F
lo
w x

t

N

x

See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
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Introduction to traffic Macroscopic models

Notations: macroscopic

N(t, x) vehicle label at (t, x)

the flow Q(t, x) = lim
∆t→0

N(t +∆t, x)− N(t, x)

∆t
,

x

N(x , t ±∆t)

the density ρ(t, x) = lim
∆x→0

N(t, x) − N(t, x +∆x)

∆x
,

x

∆x

N(x ±∆x , t)

the stream speed (mean spatial speed) V (t, x).
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Introduction to traffic Macroscopic models

Macroscopic models

Hydrodynamics analogy

Two main categories: first and second order models

Two common equations:







∂tρ(t, x) + ∂xQ(t, x) = 0 conservation equation

Q(t, x) = ρ(t, x)V (t, x) definition of flow speed

(1)

x x +∆x
ρ(x , t)∆x

Q(x , t)∆t Q(x +∆x , t)∆t
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Introduction to traffic Focus on LWR model

First order: the LWR model

LWR model [Lighthill and Whitham, 1955], [Richards, 1956]

Scalar one dimensional conservation law

∂tρ(t, x) + ∂xF (ρ(t, x)) = 0 (2)

with
F : ρ(t, x) 7→ Q(t, x) =: Fx (ρ(t, x))
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Introduction to traffic Focus on LWR model

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangian
t − x t − n

CL
Variable Density ρ Spacing r

Equation ∂tρ+ ∂xF(ρ) = 0 ∂tr + ∂nV (r) = 0

HJ

Variable Label N Position X

N(t, x) =

∫ +∞

x

ρ(t, ξ)dξ X (t, n) =

∫ +∞

n

r(t, η)dη

Equation ∂tN + H (∂xN) = 0 ∂tX + V (∂nX ) = 0

Hamiltonian H(p) = −F(−p) V(p) = −V (−p)
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Introduction to traffic Focus on LWR model

Fundamental diagram (FD)

Flow-density fundamental diagram F

Empirical function with

ρmax the maximal or jam density,
ρc the critical density

Flux is increasing for ρ ≤ ρc : free-flow phase

Flux is decreasing for ρ ≥ ρc : congestion phase

ρmax

Density , ρ

ρmax

Density , ρ

0

Flow ,F

0

Flow ,F

0 ρmax

Flow ,F

Density , ρ

[Garavello and Piccoli, 2006]
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Introduction to traffic Second order models

Motivation for higher order models

Experimental evidences

fundamental diagram: multi-valued in congested case

[S. Fan, U. Illinois], NGSIM dataset
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Introduction to traffic Second order models

Motivation for higher order models

Experimental evidences

fundamental diagram: multi-valued in congested case
phenomena not accounted for: bounded acceleration, capacity drop...

Need for models able to integrate measurements of different traffic
quantities (acceleration, fuel consumption, noise)
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Introduction to traffic Second order models

GSOM family [Lebacque, Mammar, Haj-Salem 2007]

Generic Second Order Models (GSOM) family







∂tρ+ ∂x(ρv) = 0 Conservation of vehicles,

∂t(ρI ) + ∂x(ρvI ) = ρϕ(I ) Dynamics of the driver attribute I ,

v = I(ρ, I ) Fundamental diagram,

(3)

Specific driver attribute I

the driver aggressiveness,
the driver origin/destination or path,
the vehicle class,
...

Flow-density fundamental diagram

F : (ρ, I ) 7→ ρI(ρ, I ).
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Micro to macro in traffic models

Outline
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Micro to macro in traffic models Homogenization

Setting

Speed

Time

(i − 1)Space

x

Spacing

Headway

t

(i) t 7→ xi(t) trajectory of vehicle i

i = discrete position index (i ∈ Z)

n = continuous (Lagrangian) variable

n = iε and t = εs

ε > 0 a scale factor
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Micro to macro in traffic models Homogenization

Setting

Speed

Time

(i − 1)Space

x

Spacing

Headway

t

(i) t 7→ xi(t) trajectory of vehicle i

i = discrete position index (i ∈ Z)

n = continuous (Lagrangian) variable

n = iε and t = εs

ε > 0 a scale factor

Proposition (Rescaled positions)

Define

xi(s) =
1

ε
X ε(εs, iε) ⇐⇒ X ε(t, n) = εx⌊ n

ε
⌋

( t

ε

)
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Micro to macro in traffic models Homogenization

General result

Let consider

the simplest microscopic model;

ẋi (t) = F (xi−1(t)− xi (t)) (4)

the LWR macroscopic model (HJ equation in Lagrangian):

∂tX
0 = F (−∂nX

0) (5)
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Micro to macro in traffic models Homogenization

General result

Let consider

the simplest microscopic model;

ẋi (t) = F (xi−1(t)− xi (t)) (4)

the LWR macroscopic model (HJ equation in Lagrangian):

∂tX
0 = F (−∂nX

0) (5)

Theorem ((Monneau) Convergence to the viscosity solution)

If X ε(t, n) := εx⌊ n
ε
⌋

( t

ε

)

with (xi )i∈Z solution of (4) and X 0 the unique

solution of HJ (5), then under suitable assumptions,

|X ε − X 0|L∞(K) −→
ε→0

0, ∀K compact set.
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Micro to macro in traffic models Multi-anticipative traffic

Toy model

Vehicles consider m ≥ 1 leaders

First order multi-anticipative model

ẋi(t + τ) = max



0,Vmax −

m∑

j=1

f (xi−j(t)− xi (t))



 (6)

f speed-spacing function

non-negative
non-increasing

G. Costeseque (Inria) HJ on networks Berkeley, Oct. 09 2015 19 / 79



Micro to macro in traffic models Multi-anticipative traffic

Homogenization

Proposition ((Monneau) Convergence)

Assume m ≥ 1 fixed.

If τ is small enough, if X ε(t, n) := εx⌊ n
ε
⌋

( t

ε

)

with (xi )i∈Z solution of (6)

and if X 0(n, t) solves

∂tX
0 = F

(
−∂nX

0,m
)

(7)

with

F (r ,m) = max



0,Vmax −

m∑

j=1

f (jr)



 ,

then under suitable assumptions,

|X ε − X 0|L∞(K) −→
ε→0

0, ∀K compact set.
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Micro to macro in traffic models Multi-anticipative traffic

Multi-anticipatory macroscopic model

χj the fraction of j-anticipatory vehicles

traffic flow ≡ mixture of traffic of j-anticipatory vehicles

χ = (χj)j=1,...,m , with 0 ≤ χj ≤ 1 and

m∑

j=1

χj = 1

GSOM model with driver attribute I = χ







∂tρ+ ∂x (ρv) = 0,

∂t(ρχ) + ∂x(ρχv) = 0,

v :=

m∑

j=1

χjF (1/ρ, j) = W (1/ρ, χ).

(8)
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Micro to macro in traffic models Numerical schemes

Numerical resolution

Godunov scheme in Eulerian t − x
with (∆t,∆xk) steps ⇒ CFL condition

Variational formulation and dynamic programming techniques [2]

Particle methods in the Lagrangian framework t − n







x t+1
n = x tn +∆tW

(
x tn−1 − x tn

∆n
, χt

n

)

χt+1
n = χt

n

(9)

G. Costeseque (Inria) HJ on networks Berkeley, Oct. 09 2015 22 / 79



Micro to macro in traffic models Numerical schemes

Numerical example
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Micro to macro in traffic models Numerical schemes

Numerical example: (χj)j
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Micro to macro in traffic models Numerical schemes

Numerical example: Lagrangian trajectories
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Micro to macro in traffic models Numerical schemes

Numerical example: Eulerian trajectories
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Variational principle applied to GSOM models

Outline

1 Introduction to traffic
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)

Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)

Q = ∂tN and ρ = −∂xN

If density ρ satisfies the scalar (LWR) conservation law

∂tρ+ ∂xF(ρ) = 0

Then N satisfies the first order Hamilton-Jacobi equation

∂tN − F(−∂xN) = 0 (10)
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)

Legendre-Fenchel transform with F concave (relative capacity)

M(q) = sup
ρ

[F(ρ)− ρq]

M(q)

u

w

Density ρ

q

q

Flow F

w u

q

Transform M

−wρmax
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)
(continued)

Lax-Hopf formula (representation formula) [Daganzo, 2006]

N(T , xT ) = min
u(.),(t0,x0)

∫ T

t0

M(u(τ))dτ + N(t0, x0),

∣
∣
∣
∣
∣
∣
∣
∣

Ẋ = u
u ∈ U
X (t0) = x0, X (T ) = xT
(t0, x0) ∈ J

(11) Time

Space

J

(T , xT )Ẋ (τ )

(t0, x0)

Viability theory [Claudel and Bayen, 2010]
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Variational principle applied to GSOM models LWR model

LWR in Eulerian (t, x)
(Historical note)

Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)

Flow ,F

w

u

0 ρmax

Density , ρ

u

x

w

t

Time

Space

(t, x)

Minimum principle [Newell, 1993]

N(t, x) = min
[

N

(

t −
x − xu

u
, xu

)

,

N

(

t −
x − xw

w
, xw

)

+ ρmax(xw − x)
]

,

(12)
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Variational principle applied to GSOM models LWR model

LWR in Lagrangian (n, t)

Consider X (t, n) the location of vehicle n at time t ≥ 0

v = ∂tX and r = −∂nX

If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.)

∂tr + ∂nV(r) = 0

Then X satisfies the first order Hamilton-Jacobi equation

∂tX − V(−∂nX ) = 0. (13)
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Variational principle applied to GSOM models LWR model

LWR in Lagrangian (n, t)
(continued)

Dynamic programming for triangular FD

1/ρcrit

Speed ,V

u

−wρmax

Spacing , r

1/ρmax

−wρmax

n

t

(t, n)

Time

Label

Minimum principle ⇒ car following model [Newell, 2002]

X (t, n) = min
[

X (t0, n) + u(t − t0),

X (t0, n + wρmax(t − t0)) + w(t − t0)
]

.
(14)
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)

From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian







∂tr + ∂Nv = 0 Conservation of vehicles,

∂t I = 0 Dynamics of I ,

v = W(N, r , t) := V(r , I (N, t)) Fundamental diagram.

(15)

Position X (N, t) :=

∫ t

−∞
v(N, τ)dτ satisfies the HJ equation

∂tX −W(N,−∂NX , t) = 0, (16)

And I (N, t) solves the ODE
∣
∣
∣
∣
∣

∂t I (N, t) = 0,

I (N, 0) = i0(N), for any N.
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Legendre-Fenchel transform of W according to r

M(N, c , t) = sup
r∈R

{W(N, r , t) − cr}

M(N , p, t)

pq

W(N , q, t)

W(N , r , t)

q r

p

p

u

c

Transform M
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Lax-Hopf formula

X (NT ,T ) = min
u(.),(N0,t0)

∫ T

t0

M(N, u, t)dt + c(N0, t0),

∣
∣
∣
∣
∣
∣
∣
∣

Ṅ = u
u ∈ U
N(t0) = N0, N(T ) = NT

(N0, t0) ∈ K

(17)
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Variational principle applied to GSOM models GSOM family

GSOM in Lagrangian (n, t)
(continued)

Optimal trajectories = characteristics

{

Ṅ = ∂rW(N, r , t),

ṙ = −∂NW(N, r , t),
(18)

System of ODEs to solve

Difficulty: not straight lines in the general case
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Variational principle applied to GSOM models Methodology

General ideas

First key element: Lax-Hopf formula

Computations only for the characteristics

X (NT ,T ) = min
(N0,r0,t0)

∫ T

t0

M(N, ∂rW(N, r , t), t)dt + c(N0, r0, t0),

∣
∣
∣
∣
∣
∣
∣
∣

Ṅ(t) = ∂rW(N, r , t)
ṙ(t) = −∂NW(N, r , t)
N(t0) = N0, r(t0) = r0, N(T ) = NT

(N0, r0, t0) ∈ K
(19)

K := Dom(c) is the set of initial/boundary values
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Variational principle applied to GSOM models Methodology

General ideas
(continued)

Second key element: inf-morphism prop. [Aubin et al, 2011]

Consider a union of sets (initial and boundary conditions)

K =
⋃

l

Kl ,

then the global minimum is

X (NT ,T ) = min
l

Xl(NT ,T ), (20)

with Xl partial solution to sub-problem Kl .
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Variational principle applied to GSOM models Numerical example

Fundamental Diagram and Driver Attribute
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Variational principle applied to GSOM models Numerical example

Initial and Boundaries Conditions
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + first traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + first traj.)

0 20 40 60 80 100 120
−1500

−1000

−500

0

500

1000

1500

2000

2500
Lo

ca
tio

n 
(m

)

Time (s)

Vehicles trajectories

G. Costeseque (Inria) HJ on networks Berkeley, Oct. 09 2015 43 / 79



Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond.+ 3 traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + 3 traj.)
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Variational principle applied to GSOM models Numerical example

Numerical result (Initial cond. + 3 traj. + Eulerian data)
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HJ equations on a junction

Outline

1 Introduction to traffic

2 Micro to macro in traffic models

3 Variational principle applied to GSOM models

4 HJ equations on a junction

5 Conclusions and perspectives
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HJ equations on a junction

Motivation

Classical approaches:

Macroscopic modeling on (homogeneous) sections

Coupling conditions at (pointwise) junction

For instance, consider







∂tρ+ ∂xQ(ρ) = 0, scalar conservation law,

ρ(., t = 0) = ρ0(.), initial conditions,

ψ(ρ(x = 0−, t)
︸ ︷︷ ︸

upstream

, ρ(x = 0+, t)
︸ ︷︷ ︸

downstream

) = 0, coupling condition.
(21)

See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1]
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HJ equations on a junction HJ junction model

Star-shaped junction

JN

J1

J2

branch Jα

x

x

0

x

x
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HJ equations on a junction HJ junction model

Junction model

Proposition (Junction model [IMZ, ’13])

That leads to the following junction model (see [5])







∂tu
α + Hα (∂xu

α) = 0, x > 0, α = 1, . . . ,N

uα = uβ =: u, x = 0,

∂tu +H
(
∂xu

1, . . . , ∂xu
N
)
= 0, x = 0

(22)

with initial condition uα(0, x) = uα0 (x) and

H
(

∂xu
1, . . . , ∂xu

N
)

= max
α=1,...,N

{
H−
α (∂xu

α)
}

︸ ︷︷ ︸

from optimal control

.
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HJ equations on a junction HJ junction model

Basic assumptions

For all α = 1, . . . ,N,
(A0) The initial condition uα0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are C 1(R) and convex such that:

p

H−
α (p) H+

α (p)

pα0
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HJ equations on a junction Numerical scheme

Presentation of the scheme

Proposition (Numerical Scheme)

Let us consider the discrete space and time derivatives:

pα,ni :=
Uα,n
i+1 − Uα,n

i

∆x
and (DtU)α,ni :=

Uα,n+1
i − Uα,n

i

∆t

Then we have the following numerical scheme:







(DtU)α,ni +max{H+
α (pα,ni−1),H

−
α (pα,ni )} = 0, i ≥ 1

Un
0 := Uα,n

0 , i = 0, α = 1, ...,N

(DtU)n0 + max
α=1,...,N

H−
α (pα,n0 ) = 0, i = 0

(23)
With the initial condition Uα,0

i := uα0 (i∆x).

∆x and ∆t = space and time steps satisfying a CFL condition
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Stronger CFL condition

−m0

pα
p

Hα(p)

pα

As for any α = 1, . . . ,N, we have
(gradient estimates)

p
α
≤ pα,ni ≤ pα for all i , n ≥ 0

Then the CFL condition becomes:

∆x

∆t
≥ sup

α=1,...,N
pα∈[p

α

,p
α
]

|H ′
α(pα)| (24)
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Existence and uniqueness

Theorem (Existence and uniqueness [IMZ, ’13])

Under (A0)-(A1), there exists a unique viscosity solution u of (22) on the
junction, satisfying for some constant CT > 0

|u(t, y)− u0(y)| ≤ CT for all (t, y) ∈ JT .

Moreover the function u is Lipschitz continuous with respect to (t, y).
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Convergence

Theorem (Convergence from discrete to continuous [CML, ’13])

Assume that (A0)-(A1) and the CFL condition (24) are satisfied. Then the
numerical solution converges uniformly to u the unique viscosity solution
of the junction model (22) when ε := (∆t,∆x) → 0

lim sup
ε→0

sup
(n∆t,i∆x)∈K

|uα(n∆t, i∆x)− Uα,n
i | = 0

Proof
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Setting

J1

JNI

JNI+1

JNI+NO

x < 0 x = 0 x > 0

Jβ

γβ Jλ
γλ

NI incoming and NO outgoing roads
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Links with “classical” approach

Definition (Discrete car density)

The discrete vehicle density ρα,ni with n ≥ 0 and i ∈ Z is given by:

ρα,ni :=







γαpα,n|i |−1 for α = 1, ...,NI , i ≤ −1

−γαpα,ni for α = NI + 1, ...,NI + NO , i ≥ 0

(25)

J1

JNI

JNI+1

JNI+NO

x < 0 x > 0

−2

−1

2

1

0

−2

−2
−1

−1
1

1

2

2

Jβ
Jλ

ρλ,n1
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Traffic interpretation

Proposition (Scheme for vehicles densities)

The scheme deduced from (23) for the discrete densities is given by:

∆x

∆t
{ρα,n+1

i − ρα,ni } =







Fα(ρα,ni−1, ρ
α,n
i )− Fα(ρα,ni , ρα,ni+1) for i 6= 0,−1

Fα
0 (ρ

·,n
0 )− Fα(ρα,ni , ρα,ni+1) for i = 0

Fα(ρα,ni−1, ρ
α,n
i )− Fα

0 (ρ
·,n
0 ) for i = −1

With







Fα(ρα,ni−1, ρ
α,n
i ) := min

{
Qα

D(ρ
α,n
i−1), Q

α
S (ρ

α,n
i )

}

Fα
0 (ρ

·,n
0 ) := γα min

{

min
β≤NI

1

γβ
Qβ

D(ρ
β,n
0 ), min

λ>NI

1

γλ
Qλ

S (ρ
λ,n
0 )

}

incoming outgoing

ρλ,n0ρβ,n−1ρβ,n−2 ρλ,n1

x
x = 0
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Supply and demand functions

Remark

It recovers the seminal Godunov scheme with passing flow = minimum
between upstream demand QD and downstream supply QS .

Density ρ
ρcrit ρmax

Supply QS

Qmax

Density ρ
ρcrit ρmax

Flow Q
Qmax

Density ρ
ρcrit

Demand QD

Qmax

From [Lebacque ’93, ’96] and [Daganzo ’95]
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Example of a Diverge

An off-ramp:

J1
ρ1

J2
ρ2

ρ3
J3

with 





γe = 1,

γl = 0.75,

γr = 0.25
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Fundamental Diagrams
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Initial conditions (t=0s)
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Numerical solution: densities
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Numerical solution: Hamilton-Jacobi
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Trajectories
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New junction model

Proposition (Junction model [IM, ’14])

From [4], we have







∂tu
α + Hα (∂xu

α) = 0, x > 0, α = 1, . . . ,N

uα = uβ =: u, x = 0,

∂tu +H
(
∂xu

1, . . . , ∂xu
N
)
= 0, x = 0

(26)

with initial condition uα(0, x) = uα0 (x) and

H
(

∂xu
1, . . . , ∂xu

N
)

= max
[
flux limiter
︷︸︸︷

L , max
α=1,...,N

{
H−
α (∂xu

α)
}

︸ ︷︷ ︸

minimum between
demand and supply

]

.
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Weaker assumptions on the Hamiltonians

For all α = 1, . . . ,N,
(A0) The initial condition uα0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are continuous and quasi-convex i.e.
there exists points pα0 such that







Hα is non-increasing on (−∞, pα0 ],

Hα is non-decreasing on [pα0 ,+∞).
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Homogenization on a network

Proposition (Homogenization on a periodic network [IM’14])

Assume (A0)-(A1). Consider a periodic network.
If uε ∈ R

d satisfies HJ equation on network,
then uε converges uniformly towards u0 when ε→ 0,
with u0 ∈ R

d solution of

∂tu
0 + H

(
Du0

)
= 0, t > 0, x ∈ R

d (27)

See [Imbert, Monneau ’14] [4]
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Numerical homogenization on a network

Numerical scheme adapted to the cell problem (d = 2)

T
ra

ff
ic

Traffic eH

γH

eV

γH

γV

γV

i = 0
i =

N

2
i = −

N

2
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First example

Proposition (Effective Hamiltonian for fixed coefficients [IM’14])

If (γH , γV ) are fixed, then the

(Hamiltonian) effective Hamiltonian H is given by

H (∂xuH , ∂xuV ) = max

{

L, max
i={H,V }

H (∂xui)

}

,

(traffic flow) effective flow Q is given by

F(ρH , ρV ) = min

{

−L,
F(ρH)

γH
,
F(ρV )

γV

}

.
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First example

Numerics: assume F(ρ) = 4ρ(1 − ρ) and L = −1.5,
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Second example

Two consecutive traffic signals on a 1D road

flow

l LL

x1 x2xE

E

xS

S

Homogenization theory by [Galise, Imbert, Monneau, ’14]
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Second example

Effective flux limiter −L (numerics only)
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Conclusions and perspectives

Outline

1 Introduction to traffic

2 Micro to macro in traffic models

3 Variational principle applied to GSOM models

4 HJ equations on a junction

5 Conclusions and perspectives
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Personal conclusions

Advantages Drawbacks

Micro-macro link Limited time delay
Homogeneous Explicit solutions Concavity of the FD

link Data assimilation
Exactness (2nd order)

Multilane

Uniqueness of the solution Fixed proportions
Junction Homogenization result

Multilane

G. Costeseque (Inria) HJ on networks Berkeley, Oct. 09 2015 75 / 79



Conclusions and perspectives

Perspectives

Some open questions:

Micro-macro: higher time delay?

Confront the results with real data (micro datasets)

Explicit Lax-Hopf formula for time/space dependent Hamiltonians?
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