Traffic Flow Modeling on Road Networks Using Hamilton-Jacobi Equations

Guillaume Costeseque

Inria Sophia-Antipolis Méditerranée

ITS seminar, UC Berkeley October 09, 2015

Traffic flows on a network

[Caltrans, Oct. 7, 2015]

G. Costeseque (Inria)

HJ on networks

Berkeley, Oct. 09 2015 2 / 79

(日) (圖) (E) (E) (E)

Traffic flows on a network

[Caltrans, Oct. 7, 2015]

Road network \equiv graph made of edges and vertices

G. Costeseque (Inria)

HJ on networks

Berkeley, Oct. 09 2015 2 / 79

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Breakthrough in traffic monitoring

Traffic monitoring

- "old": loop detectors at fixed locations (Eulerian)
- "new": GPS devices moving within the traffic (Lagrangian)

Data assimilation of Floating Car Data

[Mobile Millenium, 2008]

Outline

- Introduction to traffic
- 2 Micro to macro in traffic models
- 3 Variational principle applied to GSOM models
- 4 HJ equations on a junction
- 5 Conclusions and perspectives

(3)

Outline

Introduction to traffic

- 2) Micro to macro in traffic models
- 3 Variational principle applied to GSOM models
- 4 HJ equations on a junction
- 5 Conclusions and perspectives

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convention for vehicle labeling

G. Costeseque (Inria)

-

- ∢ 🗇 🕨

Three representations of traffic flow

Moskowitz' surface

See also [Makigami et al, 1971], [Laval and Leclercq, 2013]

7 / 79

Notations: macroscopic

• the stream speed (mean spatial speed) V(t,x).

G. Costeseque (Inria)

Macroscopic models

- Hydrodynamics analogy
- Two main categories: first and second order models
- Two common equations:

$$\begin{cases} \partial_t \rho(t, x) + \partial_x Q(t, x) = 0 & \text{conservation equation} \\ Q(t, x) = \rho(t, x) V(t, x) & \text{definition of flow speed} \end{cases}$$

(1)

First order: the LWR model

LWR model [Lighthill and Whitham, 1955], [Richards, 1956] Scalar one dimensional conservation law

$$\partial_t \rho(t,x) + \partial_x \mathfrak{F}(\rho(t,x)) = 0$$

with

$$\mathfrak{F}:
ho(t,x)\mapsto Q(t,x)=:\mathfrak{F}_{x}\left(
ho(t,x)
ight)$$

G. Costeseque (Inria)

(2)

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

		Eulerian	Lagrangian
_		t-x	t - n
	Variable	Density $ ho$	Spacing <i>r</i>
CL	Equation	$\partial_t \rho + \partial_x \mathfrak{F}(\rho) = 0$	$\partial_t r + \partial_n V(r) = 0$
	Variable	Label N	Position \mathcal{X}
HJ		$N(t,x) = \int_{x}^{+\infty} \rho(t,\xi) d\xi$	$\mathcal{X}(t,n) = \int_{n}^{+\infty} r(t,\eta) d\eta$
	Equation	$\partial_t N + H(\partial_x N) = 0$	$\partial_t \mathcal{X} + \mathcal{V}(\partial_n \mathcal{X}) = 0$
	Hamiltonian	$H(p)=-\mathfrak{F}(-p)$	$\mathcal{V}(p)=-V(-p)$

G. Costeseque (Inria)

Berkeley, Oct. 09 2015 11 / 79

- 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fundamental diagram (FD)

Flow-density fundamental diagram $\mathfrak F$

- Empirical function with
 - ρ_{\max} the maximal or jam density,
 - ρ_c the critical density
- Flux is increasing for $\rho \leq \rho_c$: free-flow phase
- Flux is decreasing for $\rho \ge \rho_c$: congestion phase

Motivation for higher order models

• Experimental evidences

• fundamental diagram: multi-valued in congested case

[S. Fan, U. Illinois], NGSIM dataset

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation for higher order models

• Experimental evidences

- fundamental diagram: multi-valued in congested case
- phenomena not accounted for: bounded acceleration, capacity drop...
- Need for models able to integrate measurements of different traffic quantities (acceleration, fuel consumption, noise)

GSOM family [Lebacque, Mammar, Haj-Salem 2007]

• Generic Second Order Models (GSOM) family

$$\begin{cases} \partial_t \rho + \partial_x(\rho \mathbf{v}) = \mathbf{0} \\ \partial_t(\rho \mathbf{I}) + \partial_x(\rho \mathbf{v} \mathbf{I}) = \rho \varphi(\mathbf{I}) \\ \mathbf{v} = \Im(\rho, \mathbf{I}) \end{cases}$$

Conservation of vehicles, Dynamics of the driver attribute *I*, Fundamental diagram,

- Specific driver attribute /
 - the driver aggressiveness,
 - the driver origin/destination or path,
 - the vehicle class,
 - ...
- Flow-density fundamental diagram

$$\mathfrak{F}: (\rho, \mathbf{I}) \mapsto \rho \mathfrak{I}(\rho, \mathbf{I}).$$

G. Costeseque (Inria)

HJ on networks

(3)

GSOM family [Lebacque, Mammar, Haj-Salem 2007]

• Generic Second Order Models (GSOM) family

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0\\ \partial_t I + v \partial_x I = \varphi(I)\\ v = \Im(\rho, I) \end{cases}$$

Conservation of vehicles, Dynamics of the driver attribute *I*, (3) Fundamental diagram,

- Specific driver attribute *I*
 - the driver aggressiveness,
 - the driver origin/destination or path,
 - the vehicle class,
 - ...
- Flow-density fundamental diagram

$$\mathfrak{F}: (\rho, \mathbf{I}) \mapsto \rho \mathfrak{I}(\rho, \mathbf{I}).$$

GSOM family [Lebacque, Mammar, Haj-Salem 2007]

• Generic Second Order Models (GSOM) family

$\int \partial_t \rho + \partial_x (\rho \mathbf{v}) = 0$	Conservation of vehicles,	
$\left\{ \partial_t I + v \partial_x I = 0 \right\}$	Dynamics of the driver attribute I ,	(3)
$v = \Im(\rho, I)$	Fundamental diagram,	

- Specific driver attribute /
 - the driver aggressiveness,
 - the driver origin/destination or path,
 - the vehicle class,
 - ...
- Flow-density fundamental diagram

$$\mathfrak{F}: (\rho, \mathbf{I}) \mapsto \rho \mathfrak{I}(\rho, \mathbf{I}).$$

Outline

2 Micro to macro in traffic models

- 3 Variational principle applied to GSOM models
- 4 HJ equations on a junction
- 5 Conclusions and perspectives

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setting

- $t \mapsto x_i(t)$ trajectory of vehicle i
- $i = \text{discrete position index } (i \in \mathbb{Z})$
- *n* = continuous (Lagrangian) variable

$$n = i\varepsilon$$
 and $t = \varepsilon s$

• $\varepsilon > 0$ a scale factor

G. Costeseque (Inria)

Setting

- $t \mapsto x_i(t)$ trajectory of vehicle i
- $i = \text{discrete position index } (i \in \mathbb{Z})$
- *n* = continuous (Lagrangian) variable

$$n = i\varepsilon$$
 and $t = \varepsilon s$

• $\varepsilon > 0$ a scale factor

Proposition (Rescaled positions)

Define

$$x_i(s) = rac{1}{arepsilon} X^{arepsilon}(arepsilon s, iarepsilon) \iff X^{arepsilon}(t, n) = arepsilon x_{\lfloor rac{n}{arepsilon}
floor} \left(rac{t}{arepsilon}
ight)$$

General result

Let consider

• the simplest microscopic model;

$$\dot{x}_{i}(t) = F(x_{i-1}(t) - x_{i}(t))$$
(4)

• the LWR macroscopic model (HJ equation in Lagrangian):

$$\partial_t X^0 = F(-\partial_n X^0) \tag{5}$$

3

General result

Let consider

• the simplest microscopic model;

$$\dot{x}_{i}(t) = F(x_{i-1}(t) - x_{i}(t))$$
(4)

• the LWR macroscopic model (HJ equation in Lagrangian):

$$\partial_t X^0 = F(-\partial_n X^0) \tag{5}$$

Theorem ((Monneau) Convergence to the viscosity solution)

If $X^{\varepsilon}(t, n) := \varepsilon x_{\lfloor \frac{n}{\varepsilon} \rfloor} \left(\frac{t}{\varepsilon} \right)$ with $(x_i)_{i \in \mathbb{Z}}$ solution of (4) and X^0 the unique solution of HJ (5), then under suitable assumptions,

$$|X^{\varepsilon} - X^{0}|_{L^{\infty}(\mathcal{K})} \underset{\varepsilon \to 0}{\longrightarrow} 0, \qquad \forall \mathcal{K} \text{ compact set.}$$

Toy model

- Vehicles consider $m \ge 1$ leaders
- First order multi-anticipative model

$$\dot{x}_i(t+\tau) = \max\left[0, V_{max} - \sum_{j=1}^m f(x_{i-j}(t) - x_i(t))\right]$$
 (6)

- f speed-spacing function
 - non-negative
 - non-increasing

(3)

Homogenization

Proposition ((Monneau) Convergence)

Assume $m \ge 1$ fixed. If τ is small enough, if $X^{\varepsilon}(t, n) := \varepsilon x_{\lfloor \frac{n}{\varepsilon} \rfloor} \left(\frac{t}{\varepsilon} \right)$ with $(x_i)_{i \in \mathbb{Z}}$ solution of (6) and if $X^0(n, t)$ solves

$$\partial_t X^0 = F\left(-\partial_n X^0, m\right)$$
 (7)

with

$$F(r,m) = \max\left[0, V_{max} - \sum_{j=1}^{m} f(jr)\right],$$

then under suitable assumptions,

$$|X^{\varepsilon} - X^{0}|_{L^{\infty}(\mathcal{K})} \underset{\varepsilon \to 0}{\longrightarrow} 0, \qquad orall \mathcal{K} \text{ compact set.}$$

20 / 79

Multi-anticipatory macroscopic model

- χ_j the fraction of *j*-anticipatory vehicles
- traffic flow \equiv mixture of traffic of *j*-anticipatory vehicles

$$\chi = (\chi_j)_{j=1,...,m}, \quad \text{with} \quad 0 \le \chi_j \le 1 \quad \text{and} \quad \sum_{j=1}^m \chi_j = 1$$

• GSOM model with driver attribute $I = \chi$

$$\begin{cases} \partial_t \rho + \partial_x \left(\rho \nu \right) = 0, \\ \partial_t (\rho \chi) + \partial_x (\rho \chi \nu) = 0, \\ \nu := \sum_{j=1}^m \chi_j F(1/\rho, j) = W(1/\rho, \chi). \end{cases}$$
(8)

21 / 79

m

Numerical resolution

- Godunov scheme in Eulerian t xwith $(\Delta t, \Delta x_k)$ steps \Rightarrow CFL condition
- Variational formulation and dynamic programming techniques [2]
- Particle methods in the Lagrangian framework t n

$$\begin{cases} x_n^{t+1} = x_n^t + \Delta t W\left(\frac{x_{n-1}^t - x_n^t}{\Delta n}, \chi_n^t\right) \\ \chi_n^{t+1} = \chi_n^t \end{cases}$$
(9)

G. Costeseque (Inria)

22 / 79

Numerical example

Numerical example: $(\chi_j)_j$

G. Costeseque (Inria)

Berkeley, Oct. 09 2015

24 / 79

Numerical example: Lagrangian trajectories

G. Costeseque (Inria)

HJ on networks

Berkeley, Oct. 09 2015

25 / 79

Numerical example: Eulerian trajectories

Outline

2) Micro to macro in traffic models

Output: Section 3 and a section of the section o

- 4 HJ equations on a junction
- 5 Conclusions and perspectives

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LWR in Eulerian (t, x)

• Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)

$${\cal Q}=\partial_t {\cal N}$$
 and $ho=-\partial_{
m x} {\cal N}$

• If density ρ satisfies the scalar (LWR) conservation law

$$\partial_t \rho + \partial_x \mathfrak{F}(\rho) = 0$$

• Then N satisfies the first order Hamilton-Jacobi equation

$$\partial_t N - \mathfrak{F}(-\partial_x N) = 0 \tag{10}$$

LWR in Eulerian (t, x)

• Legendre-Fenchel transform with \mathfrak{F} concave (relative capacity)

$$\mathcal{M}(q) = \sup_{
ho} \ \left[\mathfrak{F}(
ho) -
ho q
ight]$$

LWR in Eulerian (t, x) (continued)

• Lax-Hopf formula (representation formula) [Daganzo, 2006]

$$N(T, x_T) = \min_{\substack{u(.), (t_0, x_0)}} \int_{t_0}^T \mathcal{M}(u(\tau)) d\tau + N(t_0, x_0),$$

$$\begin{vmatrix} \dot{X} = u \\ u \in \mathcal{U} \\ X(t_0) = x_0, \quad X(T) = x_T \\ (t_0, x_0) \in \mathcal{J} \end{aligned}$$
(11)

• Viability theory [Claudel and Bayen, 2010]

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LWR in Eulerian (t, x)

(Historical note)

• Dynamic programming [Daganzo, 2006] for triangular FD (*u* and *w* free and congested speeds)

• Minimum principle [Newell, 1993]

$$N(t,x) = \min\left[N\left(t - \frac{x - x_u}{u}, x_u\right), \\ N\left(t - \frac{x - x_w}{w}, x_w\right) + \rho_{max}(x_w - x)\right],$$
(12)
LWR model

LWR in Lagrangian (n, t)

• Consider X(t, n) the location of vehicle n at time $t \ge 0$

$$v = \partial_t X$$
 and $r = -\partial_n X$

• If the spacing $r := 1/\rho$ satisfies the LWR model (Lagrangian coord.)

$$\partial_t r + \partial_n \mathcal{V}(r) = 0$$

• Then X satisfies the first order Hamilton-Jacobi equation

$$\partial_t X - \mathcal{V}(-\partial_n X) = 0.$$
 (13)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LWR model

LWR in Lagrangian (n, t) (continued)

• Dynamic programming for triangular FD

• Minimum principle \Rightarrow car following model [Newell, 2002]

$$X(t, n) = \min \left[X(t_0, n) + u(t - t_0), \\ X(t_0, n + w \rho_{max}(t - t_0)) + w(t - t_0) \right].$$
(14)

GSOM in Lagrangian (n, t)

• From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian

$$\begin{cases} \partial_t r + \partial_N v = 0 & \text{Conservation of vehicles,} \\ \partial_t I = 0 & \text{Dynamics of } I, \\ v = \mathcal{W}(N, r, t) := \mathcal{V}(r, I(N, t)) & \text{Fundamental diagram.} \end{cases}$$
(15)

• Position
$$\mathcal{X}(N, t) := \int_{-\infty}^{t} v(N, \tau) d\tau$$
 satisfies the HJ equation

$$\partial_t \mathcal{X} - \mathcal{W}(N, -\partial_N \mathcal{X}, t) = 0,$$
 (16)

• And I(N, t) solves the ODE

$$\begin{vmatrix} \partial_t I(N,t) = 0, \\ I(N,0) = i_0(N), & \text{for any } N. \end{vmatrix}$$

3

GSOM family

GSOM in Lagrangian (n, t) (continued)

• Legendre-Fenchel transform of $\mathcal W$ according to r

$$\mathcal{M}(N,c,t) = \sup_{r\in\mathbb{R}} \{\mathcal{W}(N,r,t) - cr\}$$

\sim		/i · `	
G. 1	Costeseque	(Inria)	

-

GSOM in Lagrangian (n, t) (continued)

• Lax-Hopf formula

$$\mathcal{X}(N_{T},T) = \min_{u(.),(N_{0},t_{0})} \int_{t_{0}}^{T} \mathcal{M}(N,u,t)dt + \mathbf{c}(N_{0},t_{0}),$$

$$\begin{vmatrix} \dot{N} = u \\ u \in \mathcal{U} \\ N(t_{0}) = N_{0}, \quad N(T) = N_{T} \\ (N_{0},t_{0}) \in \mathcal{K} \end{vmatrix}$$
(17)

G. Costeseque (Inria)

Berkeley, Oct. 09 2015 36 / 79

3

イロト イポト イヨト イヨト

GSOM in Lagrangian (n, t) (continued)

• Optimal trajectories = characteristics

$$\begin{cases} \dot{N} = \partial_r \mathcal{W}(N, r, t), \\ \dot{r} = -\partial_N \mathcal{W}(N, r, t), \end{cases}$$
(18)

- System of ODEs to solve
- Difficulty: not straight lines in the general case

3

イロト 人間ト イヨト イヨト

General ideas

First key element: Lax-Hopf formula

• Computations only for the characteristics

$$\mathcal{X}(N_{T},T) = \min_{(N_{0},r_{0},t_{0})} \int_{t_{0}}^{T} \mathcal{M}(N,\partial_{r}\mathcal{W}(N,r,t),t)dt + \mathbf{c}(N_{0},r_{0},t_{0}),$$

$$\begin{vmatrix} \dot{N}(t) = \partial_{r}\mathcal{W}(N,r,t) \\ \dot{r}(t) = -\partial_{N}\mathcal{W}(N,r,t) \\ N(t_{0}) = N_{0}, \quad r(t_{0}) = r_{0}, \quad N(T) = N_{T} \\ (N_{0},r_{0},t_{0}) \in \mathcal{K} \end{aligned}$$
(19)

• $\mathcal{K} := \mathsf{Dom}(\mathbf{c})$ is the set of initial/boundary values

General ideas (continued)

Second key element: inf-morphism prop. [Aubin et al, 2011]

• Consider a union of sets (initial and boundary conditions)

$$\mathcal{K} = \bigcup_{I} \mathcal{K}_{I},$$

• then the global minimum is

$$\mathcal{X}(N_T, T) = \min_{l} \mathcal{X}_l(N_T, T), \qquad (20)$$

• with \mathcal{X}_l partial solution to sub-problem \mathcal{K}_l .

\sim		/i · `	
G. 1	Costeseque	(Inria)	

4 2 5 4 2 5

Fundamental Diagram and Driver Attribute

-

40 / 79

Initial and Boundaries Conditions

Numerical result (Initial cond. + first traj.)

Numerical result (Initial cond. + first traj.)

Numerical result (Initial cond.+ 3 traj.)

Numerical result (Initial cond. + 3 traj.)

Numerical result (Initial cond. + 3 traj. + Eulerian data)

Outline

- Introduction to traffic
- 2) Micro to macro in traffic models
- 3 Variational principle applied to GSOM models
- 4 HJ equations on a junction
 - 5 Conclusions and perspectives

Image: Image:

Motivation

Classical approaches:

- Macroscopic modeling on (homogeneous) sections
- Coupling conditions at (pointwise) junction

For instance, consider

$$\begin{cases} \partial_t \rho + \partial_x Q(\rho) = 0, \\ \rho(., t = 0) = \rho_0(.), \\ \psi(\underbrace{\rho(x = 0^-, t)}_{\text{upstream}}, \underbrace{\rho(x = 0^+, t)}_{\text{downstream}}) = 0, \end{cases}$$

scalar conservation law, initial conditions, coupling condition. (21)

See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1]

48 / 79

Star-shaped junction

\sim	<u> </u>	/s - '
G. 1	Costeseque (Inria

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Junction model

Proposition (Junction model [IMZ, '13])

That leads to the following junction model (see [5])

$$\begin{cases} \partial_t u^{\alpha} + H_{\alpha} \left(\partial_x u^{\alpha} \right) = 0, & x > 0, \ \alpha = 1, \dots, N \\ u^{\alpha} = u^{\beta} =: u, & x = 0, \\ \partial_t u + \mathcal{H} \left(\partial_x u^1, \dots, \partial_x u^N \right) = 0, & x = 0 \end{cases}$$
(22)

with initial condition $u^{\alpha}(0,x) = u_0^{\alpha}(x)$ and

$$\mathcal{H}\left(\partial_{x}u^{1},\ldots,\partial_{x}u^{N}\right)=\max_{\substack{\alpha=1,\ldots,N\\ \text{from optimal control}}}\left\{ H_{\alpha}^{-}\left(\partial_{x}u^{\alpha}\right)\right\}.$$

Basic assumptions

For all $\alpha = 1, ..., N$, (A0) The initial condition u_0^{α} is Lipschitz continuous. (A1) The Hamiltonians H_{α} are $C^1(\mathbb{R})$ and convex such that:

\sim	<u> </u>		
G. 1	Costeseque (L	Inria

Presentation of the scheme

Proposition (Numerical Scheme)

Let us consider the discrete space and time derivatives:

$$p_i^{\alpha,n} := \frac{U_{i+1}^{\alpha,n} - U_i^{\alpha,n}}{\Delta x} \quad \text{and} \quad (D_t U)_i^{\alpha,n} := \frac{U_i^{\alpha,n+1} - U_i^{\alpha,n}}{\Delta t}$$

Then we have the following numerical scheme:

$$\begin{cases} (D_t U)_i^{\alpha,n} + \max\{H_{\alpha}^+(p_{i-1}^{\alpha,n}), H_{\alpha}^-(p_i^{\alpha,n})\} = 0, & i \ge 1\\ U_0^n := U_0^{\alpha,n}, & i = 0, \quad \alpha = 1, ..., N\\ (D_t U)_0^n + \max_{\alpha = 1, ..., N} H_{\alpha}^-(p_0^{\alpha,n}) = 0, & i = 0 \end{cases}$$

$$(23)$$

With the initial condition $U_i^{\alpha,0} := u_0^{\alpha}(i\Delta x)$.

 Δx and Δt = space and time steps satisfying a CFL condition

52 / 79

Stronger CFL condition

As for any $\alpha = 1, \ldots, N$, we have (gradient estimates)

$$\underline{p}_{\alpha} \leq p_{i}^{\alpha,n} \leq \overline{p}_{\alpha}$$
 for all $i, n \geq 0$

Then the CFL condition becomes:

$$\frac{\Delta x}{\Delta t} \ge \sup_{\substack{\alpha=1,\dots,N\\p_{\alpha}\in[\underline{p}_{\alpha},\overline{p}_{\alpha}]}} |H_{\alpha}'(p_{\alpha})|$$
(24)

Existence and uniqueness

Theorem (Existence and uniqueness [IMZ, '13]) Under (A0)-(A1), there exists a unique viscosity solution u of (22) on the junction, satisfying for some constant $C_T > 0$

$$|u(t,y)-u_0(y)| \leq C_T$$
 for all $(t,y) \in J_T$.

Moreover the function u is Lipschitz continuous with respect to (t, y).

Convergence

Theorem (Convergence from discrete to continuous [CML, '13]) Assume that (A0)-(A1) and the CFL condition (24) are satisfied. Then the numerical solution converges uniformly to u the unique viscosity solution of the junction model (22) when $\varepsilon := (\Delta t, \Delta x) \rightarrow 0$

$$\limsup_{\varepsilon \to 0} \sup_{(n\Delta t, i\Delta x) \in \mathcal{K}} |u^{\alpha}(n\Delta t, i\Delta x) - U_i^{\alpha, n}| = 0$$

▶ Proof

Setting

N_I incoming and N_O outgoing roads

	G.	Costeseque	(Inria)
--	----	------------	---------

크

Links with "classical" approach

Definition (Discrete car density)

The discrete vehicle density $\rho_i^{\alpha,n}$ with $n \ge 0$ and $i \in \mathbb{Z}$ is given by:

$$\rho_i^{\alpha,n} := \begin{cases} \gamma^{\alpha} p_{|i|-1}^{\alpha,n} & \text{for } \alpha = 1, ..., N_I, \quad i \le -1 \\ \\ -\gamma^{\alpha} p_i^{\alpha,n} & \text{for } \alpha = N_I + 1, ..., N_I + N_O, \quad i \ge 0 \end{cases}$$
(25)

Traffic interpretation

Proposition (Scheme for vehicles densities)

The scheme deduced from (23) for the discrete densities is given by:

$$\frac{\Delta x}{\Delta t} \{\rho_i^{\alpha,n+1} - \rho_i^{\alpha,n}\} = \begin{cases} F^{\alpha}(\rho_{i-1}^{\alpha,n}, \rho_i^{\alpha,n}) - F^{\alpha}(\rho_i^{\alpha,n}, \rho_{i+1}^{\alpha,n}) & \text{for } i \neq 0, -1 \\ F_0^{\alpha}(\rho_0^{\alpha,n}) - F^{\alpha}(\rho_i^{\alpha,n}, \rho_{i+1}^{\alpha,n}) & \text{for } i = 0 \\ F^{\alpha}(\rho_{i-1}^{\alpha,n}, \rho_i^{\alpha,n}) - F_0^{\alpha}(\rho_0^{\alpha,n}) & \text{for } i = -1 \end{cases}$$

With
$$\begin{cases} F^{\alpha}(\rho_{i-1}^{\alpha,n},\rho_{i}^{\alpha,n}) := \min\left\{Q_{D}^{\alpha}(\rho_{i-1}^{\alpha,n}), \ Q_{S}^{\alpha}(\rho_{i}^{\alpha,n})\right\}\\ F_{0}^{\alpha}(\rho_{0}^{\gamma,n}) := \gamma^{\alpha}\min\left\{\min_{\beta \leq N_{I}} \frac{1}{\gamma^{\beta}}Q_{D}^{\beta}(\rho_{0}^{\beta,n}), \ \min_{\lambda > N_{I}} \frac{1}{\gamma^{\lambda}}Q_{S}^{\lambda}(\rho_{0}^{\lambda,n})\right\}\end{cases}$$

Supply and demand functions

Remark

It recovers the seminal Godunov scheme with passing flow = minimum between upstream demand Q_D and downstream supply Q_S .

Example of a Diverge

An off-ramp:

with

$$\begin{cases} \gamma^{e} = 1, \\ \gamma^{\prime} = 0.75, \\ \gamma^{r} = 0.25 \end{cases}$$

G. Costeseque (Inria)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fundamental Diagrams

Initial conditions (t=0s)

Numerical solution: densities

G. Costeseque (Inria)

63 / 79

Numerical solution: Hamilton-Jacobi

Trajectories

New junction model

Proposition (Junction model [IM, '14]) From [4], we have

$$\begin{cases} \partial_t u^{\alpha} + H_{\alpha} (\partial_x u^{\alpha}) = 0, & x > 0, \ \alpha = 1, \dots, N \\ u^{\alpha} = u^{\beta} =: u, & x = 0, \\ \partial_t u + \mathcal{H} (\partial_x u^1, \dots, \partial_x u^N) = 0, & x = 0 \end{cases}$$
(26)

with initial condition $u^{\alpha}(0,x) = u_0^{\alpha}(x)$ and

$$\mathcal{H}\left(\partial_{x}u^{1},\ldots,\partial_{x}u^{N}\right) = \max\left[\mathcal{L}, \underbrace{\max_{\alpha=1,\ldots,N}\left\{H_{\alpha}^{-}\left(\partial_{x}u^{\alpha}\right)\right\}}_{\substack{\alpha=1,\ldots,N\\ \text{ demand and supply}}\right].$$

$$\mathbf{G}. Costeseque (Inria)$$
HJ on networks
Berkeley, Oct. 09 2015
66 / 7

Weaker assumptions on the Hamiltonians

For all $\alpha = 1, ..., N$, (A0) The initial condition u_0^{α} is Lipschitz continuous. (A1) The Hamiltonians H_{α} are continuous and quasi-convex i.e. there exists points p_0^{α} such that

$$\begin{cases} H_{\alpha} & \text{is non-increasing on} \quad (-\infty, p_0^{\alpha}], \\ \\ H_{\alpha} & \text{is non-decreasing on} \quad [p_0^{\alpha}, +\infty). \end{cases}$$

G. Costeseque (Inria)

67 / 79

イロト イポト イヨト イヨト 二日
Homogenization on a network

Proposition (Homogenization on a periodic network [IM'14])

Assume (A0)-(A1). Consider a periodic network. If $u^{\varepsilon} \in \mathbb{R}^d$ satisfies HJ equation on network, then u^{ε} converges uniformly towards u^0 when $\varepsilon \to 0$, with $u^0 \in \mathbb{R}^d$ solution of

$$\partial_t u^0 + \overline{H} \left(D u^0 \right) = 0, \quad t > 0, \ x \in \mathbb{R}^d$$

See [Imbert, Monneau '14] [4]

A B K A B K

Numerical homogenization on a network

Numerical scheme adapted to the cell problem (d = 2)

First example

Proposition (Effective Hamiltonian for fixed coefficients [IM'14]) If (γ^H, γ^V) are fixed, then the

• (Hamiltonian) effective Hamiltonian \overline{H} is given by

$$\overline{H}(\partial_{x}u_{H},\partial_{x}u_{V})=\max\left\{\mathcal{L},\max_{i=\{H,V\}}H(\partial_{x}u_{i})\right\},$$

• (traffic flow) effective flow \overline{Q} is given by

$$\overline{\mathfrak{F}}(\rho_H,\rho_V) = \min\left\{-\mathcal{L}, \frac{\mathfrak{F}(\rho_H)}{\gamma^H}, \frac{\mathfrak{F}(\rho_V)}{\gamma^V}\right\}.$$

G. Costeseque (Inria)

First example

<u>Numerics</u>: assume $\mathfrak{F}(
ho) = 4
ho(1ho)$ and $\mathcal{L} = -1.5$,

Second example

Two consecutive traffic signals on a 1D road

Homogenization theory by [Galise, Imbert, Monneau, '14]

G. Costeseque (Inria)

→

3

Second example

Effective flux limiter $-\overline{\mathcal{L}}$ (numerics only)

Outline

- Introduction to traffic
- Micro to macro in traffic models
- 3 Variational principle applied to GSOM models
- 4 HJ equations on a junction
- 5 Conclusions and perspectives

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Personal conclusions

	Advantages	Drawbacks
	Micro-macro link	Limited time delay
Homogeneous	Explicit solutions	Concavity of the FD
link	Data assimilation	
		Exactness (2nd order)
		Multilane
	Uniqueness of the solution	Fixed proportions
Junction	Homogenization result	
		Multilane

G. Costeseque (Inria)

Perspectives

Some open questions:

- Micro-macro: higher time delay?
- Confront the results with real data (micro datasets)
- Explicit Lax-Hopf formula for time/space dependent Hamiltonians?

Some references I

- A. BRESSAN, S. CANIC, M. GARAVELLO, M. HERTY, AND B. PICCOLI, Flows on networks: recent results and perspectives, EMS Surveys in Mathematical Sciences, (2014).
- G. COSTESEQUE AND J.-P. LEBACQUE, A variational formulation for higher order macroscopic traffic flow models: numerical investigation, Transp. Res. Part B: Methodological, (2014).
- M. GARAVELLO AND B. PICCOLI, *Traffic flow on networks*, American institute of mathematical sciences Springfield, MO, USA, 2006.
- C. IMBERT AND R. MONNEAU, Level-set convex Hamilton–Jacobi equations on networks, (2014).
- C. IMBERT, R. MONNEAU, AND H. ZIDANI, *A Hamilton–Jacobi approach to junction problems and application to traffic flows*, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), pp. 129–166.

・ロン ・四 ・ ・ ヨン

Some references II

J.-P. LEBACQUE AND M. M. KHOSHYARAN, *First-order macroscopic traffic flow models: Intersection modeling, network modeling,* in Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory, 2005.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THANKS FOR YOUR ATTENTION

Any question?

guillaume.costeseque@inria.fr

G. Costeseque (Inria)

HJ on networks

Berkeley, Oct. 09 2015 79 / 79

3

・ロン ・四 ・ ・ ヨン