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Abstract1

The aim of this paper is to propose a new event-based mesoscopic approach to model multi-class2

traffic flow on multi-lane road sections. The mesoscopic model was first proposed by Leclercq3

and Bécarie (2012) and turns out to be equivalent to the resolution of the seminal LWR model in4

Lagrangian-space coordinates n − x. It is fully consistent at a macroscopic scale with the LWR5

model while keeping track of individual vehicles. This is the reason why we talk about mesoscopic6

modeling since it combines both macroscopic and microscopic representations of traffic. It is not7

related to gas-kinetic models. Our model is built on Hamilton-Jacobi equations which have been8

proven to provide an efficient framework in traffic flow modeling for exact numerical methods at a9

low computational cost. The paper revisits the multi-class problem with a continuous moving bot-10

tleneck approach (instead of a sequential one), introducing a totally new capacity drop parameter11

for multi-lane sections. This capacity drop parameter, together with our multi-class modeling also12

overhauls the Daganzo diverge model with a relaxed FIFO assumption.13

Keywords: mesoscopic; multiclass; multilane; Hamilton-Jacobi; FIFO; diverge.14



Costeseque, Duret 3

Table of symbols1

Symbol Meaning

x spatial location

t time

n vehicle label, Lagrangian coordinate

q flow

k density

v speed

κ maximal density for one lane

C maximal flow for one lane

−w wave speed (with w > 0)

u free flow velocity

k 7→ Q(k) flow-density fundamental diagram

r 7→ H(r) headway-pace fundamental diagram

h
(

= 1
q

)

headway

r
(

= 1
v

)

pace

s
(

= 1
k

)

spacing

vB speed of the moving bottleneck

hB residual capacity up to the moving bottleneck

δ capacity drop parameter

N number of lanes

I vehicle class

TABLE 1 Table of symbols used along the paper.
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1 Introduction1

Motivation and quick literature review2

Dynamic traffic flow models are an essential building block for many applications including traffic3

flow monitoring, estimation and control. Previous works have already shown that simulation of4

traffic flow on a large scale network thanks to such dynamic models can be cumbersome, despite a5

lot of research effort made in that direction in the past decades. Classical dynamic models embed6

microscopic and macroscopic models. Microscopic traffic models allow a detailed representation7

of traffic thanks to an individual tracking of vehicles but at a high computational cost and with8

obvious calibration difficulties, depending on the number of vehicles that are simulated. Macro-9

scopic models and in particular the celebrated first order LWR model [1, 2] provide a robust and10

easy way to compute traffic flow on networks but they generally fail to recapture some meaningful11

phenomenon like for instance the capacity drop, the bounded acceleration of vehicles or the stop-12

and-go waves, without being specifically adapted. For a review of microscopic and macroscopic13

traffic models, the interested reader is referred to [3]. One interesting microscopic car-following14

model for us is Newell’s one [4].15

As underlined in [5], there exists a third class of traffic flow models that are well adapted for16

network applications. These models are called mesoscopic because while being consistent with17

macroscopic traffic flow rules, they also allow a vehicular description, say a microscopic descrip-18

tion. The mesoscopic version of the LWR model can be also interpreted into the Hamilton-Jacobi19

(HJ) framework as it was first properly established in [6]. See also references therein about the20

three dimensions representation of traffic (Eulerian for t− x framework, Lagrangian for t− n one21

and Lagrangian-space for n− x one) and the variational techniques that can be used to solve such22

models.23

To enrich the representation of macroscopic models, which basically use a one-lane aggregation, it24

is necessary, for real-world applications, to consider the variety of road users and of their behaviors.25

Some efforts have been made in that direction since the beginning of the 2000’s by introducing26

multiclass and multilane (MCML for short) features into classical models such as kinetic ones [7]27

or as the seminal LWR model in Eulerian [8] or Lagrangian coordinates [9]. For an accurate28

overview of these MCML models, the reader is referred to [9, 10].29

Another strategy to take into account the MCML features is to generalize the moving bottle-30

neck (MB) problem for which the users are classically divided into a fast class, say the “rabbits”,31

and a slower one, called the “slugs” (see [11] for the origin of these terms). The MB theory is now32

well structured since the pioneering works [12, 13]. See for instance [6] for one description of the33

MB problem in both mesoscopic and HJ framework.34

The aim of this paper is precisely to revisit the MCML problem on a network by gathering the main35

advantages of all the techniques that have been developed separately up to now. As an application,36

we are concerned with a diverge for which we introduced a relaxation parameter of the First-In-37

First-Out (FIFO) rule which is in some cases violated or not really realistic as pointed out in the38

literature [14, 15] but which is still widely assumed in traffic engineering works for the sake of39

simplicity. Our guiding example is a diverge whenever at most one exit branch is congested.40



Costeseque, Duret 5

Organization of the paper1

The remaining of the paper is structured as follows: in Section 2, some basic theoretical elements2

which serve us as building blocks for our model, are recalled. Then in Section 3, the new MLMC3

model is introduced and the adapted numerical scheme is presented in Section 4. In Section 5,4

some numerical examples are provided. Finally, in Section 6, the main results are wrapped up and5

some future directions of research are pointed out.6

2 Recap of some useful concepts7

2.1 Mesoscopic modeling8

The mesoscopic resolution of the well-known LWR model proposed in [5] allows to compute the9

passing times of vehicles at a certain number of specific points of the network (the intersections for10

instance): it is thus called an event-based model keeping track of vehicles. The name “mesoscopic”11

came from the fact that the approach combines vehicular description with macroscopic behavioral12

rules. It is noteworthy that this is not related to gas-kinetic models. This n − x representation is13

fully consistent with the macroscopic (Eulerian) framework, say the original LWR model, and with14

the microscopic (Lagrangian) framework, say microscopic car-following models. The mesoscopic15

resolution is able to track vehicles on the network, which is an advantage compared to previous16

Eulerian approach resolution (for instance for network application). The mesoscopic resolution17

presents a calculation time that only depends on the number of events during the simulation which18

is again an advantage compared to the previous microscopic resolution for which the calculation19

time increases when the network is congested.20

Following [6], let us introduce the headway h (time gap between two successive vehicles), the

pace r (travel time per space unit) and the spacing s (spatial gap between two successive vehicles).

One has the following relations

q =
1

h
, v =

1

r
, k =

1

s
, q = kv, and h = rs

where q, v and k denote respectively the flow, the speed and the density.21

We now define the Lagrangian variable as

n = N(t, x) :=

∫

∞

x

k(t, ξ)dξ

where N(t, x) gives us the label of the vehicle located at position x at time t. We are now ready to

introduce T (n, x) the passing time of vehicle n at location x as follows

T (n, x) :=

∫

∞

x

r(n, ξ)dξ.

One can verify that
{

∂tN = q, (flow)

∂xN = −k, (density)
, and

{

∂nT = h, (headway)

∂xT = r, (pace)
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We recall that the first order LWR model [1, 2] is given by the following scalar conservation law

∂tk + ∂xQ(k) = 0 (1)

with k(t, x) the density and Q : R → R the flow-density Fundamental Diagram (FD). One has

Q (k(t, x)) := k(t, x)V (k(t, x))

where V : R → R denotes the speed-spacing FD.1

Applying the above change of coordinates, (1) becomes in Lagrangian-space framework

∂nr − ∂xh = 0 (2)

where we assume that the headway is a function of the pace h = H(r).2

The variational theory, say the Hamilton-Jacobi (HJ) formulation of the conservation law (2),

teaches us that if r = ∂xT solves (2), then T satisfies the following Hamilton-Jacobi equation

∂nT −H (∂xT ) = 0, for (n, x) ∈ [0,+∞)× [0,+∞). (3)

Consider the following boundary conditions
{

T (n, 0) = ǧ(n), for any n ∈ [0,+∞),

T (0, x) = G(x), for any x ∈ [0,+∞).
(4)

For sake of simplicity, assume here that we consider a one-lane section (N = 1). If moreover we

consider a triangular Fundamental Diagram (also called Hamiltonian) H ,

H(r) =







1

κ
r +

1

wκ
, if r ≥

1

u
,

+∞, otherwise,
(5)

then the representation formula known as the Lax-Hopf formula, for the associated HJ equation (3)-

(4) for which T (n, 0) for any n (passing times of all vehicles at upstream position) and T (0, x) for

any x (passing times of the first vehicle) are known and piecewise constant,

T (n, x) = sup
{

(n0,x0,X(·)) s.t.

∣

∣

∣

∣

X(n0)=x0,
X(n)=x

}

{

T (n0, x0) +

∫ n

n0

H⊠

(

−Ẋ(ξ)
)

dξ

}

,

simply boils down to a maximization problem between two terms (see [6]):

T (n, x) = max
{

T (n, 0) +
x

u
, T (0, x+ nσ) + nτ

}

, (6)

with u denotes the free flow speed, σ :=
1

κ
the jam spacing (or minimal spacing) and τ :=

1

wκ
the wave trip time between two consecutive vehicles in congestion (recall that w > 0). Indeed, the

concave Fenchel transform H⊠ of H is given by

H⊠(s) := inf
p∈Dom(H)

{H(p)− ps}
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and if H is given by (5), then it follows

H⊠(s) =







1

κ

(

1

u
−

1

w

)

−
s

u
, if s ≥

1

κ
,

−∞, otherwise.

See also [16] for explicit (generalized) Lax-Hopf formula to compute the solution of (3) with1

the assumption of a piecewise affine Hamiltonian and under piecewise affine internal boundary2

conditions.3

2.2 Moving bottleneck theory4

Following [6, 12, 13], a moving bottleneck is defined as a vehicle (or a platoon of vehicles) defining5

by itself a class of vehicles, for instance trucks or buses, which has a maximal free flow speed6

which is lower than the free flow speed of its immediate following vehicle (or immediate following7

platoon of vehicles).8

A moving bottleneck is said to be active if and only if it generates queues at upstream positions9

with respect to the moving bottleneck and if the upstream state is different from the downstream10

state.11

We just recall the notations and the main steps for the computation of the passing rate (say the flow12

that can overtake the moving bottleneck) in the Eulerian framework (see Figure 1). Let us denote13

by:14

• ξN(t) the trajectory of the moving bottleneck in time-space plane t− x,15

• ξT (n) the location where the vehicle n crosses the bottleneck in Lagrangian-space plane16

n− x,17

• vB(t) := ξ̇N(t) the moving bottleneck speed which is upper bounded by vb,18

• kD := k (t, ξN(t)
+) the density downstream of the bottleneck,19

• qD := Q(kD) the flow downstream of the bottleneck,20

• R(vB, qD) the maximum bottleneck passing rate

R(vB, qD) := qD − kDvB.

Notice that

ξ̇T (n) =
vB

R(vB, qD)
.
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vB

−w

−w

vB

k

Q

(N − 1) lanes N lanes

R(vB, qD)

(D) (U)

ξN(t)

x

(U) (D)

vB

kD (N − 1)κ Nκ

qD

NC

Q∗(vB)

u

FIGURE 1 Moving bottleneck graphical solution in Eulerian coordinates, for a triangular

Hamiltonian or flow-density FD defined as Q(k) = min {uk, w(κ− k)}, with k the density.

(U) and (D) denote respectively the upstream and downstream traffic state with respect to

the moving bottleneck position.

In Eulerian framework, the mathematical problem reads as a coupled ODE-PDE problem for which

existence result holds (but uniqueness is still an open problem) [17]















∂tk + ∂x (Q(k)) = 0, for any t > 0, x ∈ R,

Q(k(t, ξN(t)))− ξ̇N(t)k(t, ξN(t)) ≤ αQ∗

(

ξ̇N(t)
)

, for any t > 0,

ξ̇N(t) = min {vb, V (k(t, ξN(t)
+))} , for any t > 0,

(7)

together with the following initial conditions

{

k(0, x) = k0(x), on R,

ξN(0) = ξ0.
(8)

In (7), the PDE leads the evolution of the density of vehicles while the ODE gives us the trajectory1

of the moving bottleneck. The coupling condition is the constraint imposed by the moving bot-2

tleneck on the traffic flow. For a complete presentation of the model in Eulerian coordinates, the3

reader is referred to [17] and references therein.4

The coefficient α ∈]0, 1[ in (7) gives the reduction rate of the road capacity due to the presence of

the moving bottleneck. It is indeed the ratio of available lanes for the overtaking maneuvers. If

N denotes the number of lanes on the road section and if the moving bottleneck is located on the
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rightmost lane, then

α =
N − 1

N
.

The upper bound on the passing rate in (7) is defined as a function of the moving bottleneck speed

vB(t) 7→ Q∗(vB(t)) and it matches the Legendre-Fenchel transform of the flow-density FD Q (for

the N lanes)

Q∗(v) := sup
ρ∈Dom(Q)

{Q(ρ)− vρ} .

The Eulerian model (7) can be easily extended to the Lagrangian-space framework. It will be pre-1

sented in the next section for our MCML application. The full solution details for the mesoscopic2

LWR model are given in Section 5.2 of [6]. However, it is noteworthy that in any case (say if the3

vehicle is constrained by the downstream traffic conditions –the moving bottleneck is inactive–4

or if the vehicle is constrained by the moving bottleneck –the moving bottleneck is active–), the5

passing time of a vehicle n at position x of the network is determined as the maximum between6

the passing time of vehicle n at upstream position (x − ∆x) plus the travel time obtained at free7

flow speed on the section [x−∆x, x] (or eventually reduced due to the active moving bottleneck)8

and the passing time of the leader vehicle (n− 1) at downstream position (x +∆x) translated by9

the jam speed.10

It is worth noticing that all the material of this Section 2 is extracted from existing works. These11

results will served as the fundamental background for our building blocks that are presented in12

next Section 3.13

3 Mesoscopic formulation of multiclass multilane models14

3.1 Choice of the modeling15

For tackling the multi-class and multi-lane modeling (whatever the network is), we can consider:16

• either generic multi-class models (see for instance [10]) that classically fall into the Generic17

Second Order Model (GSOM) family [18] with a class-dependent fundamental diagram. In18

this case, on can define the vehicular attribute as the class of the considered vehicle.19

• or the moving bottleneck theory thanks through a coupled system of conservation laws (or20

equivalently of Hamilton-Jacobi equations) extending what was previously done in the liter-21

ature (see for instance [17]).22

In the first case, we cannot use the strength of the mesoscopic formulation since we have to define23

the indices of the vehicles, once and for all, and it is not straightforward to deal with the re-labeling24

of the vehicles once we consider overtaking maneuvers between each class.25

In the second case, each class has its own labeling and by assuming that inside a class the vehicles26

respect the FIFO rule, they stay ordered at any time. Apart from this fundamental difference,27
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both approaches are quite close since we consider a fundamental diagram (or Hamiltonian) which1

depends on an “attribute” denoted by I and defined as the vehicle class and the lane (which is the2

case in the remaining of the paper) or the Origin-Destination pattern or a combination of both.3

3.2 Modeling assumptions4

Consider a stretch of road [x0, x1] composed by N separate lanes with traffic stream composed of5

fast and slow vehicles defining two classes of users called respectively “rabbits” (I = I1 = 1) and6

“slugs” (I = I2 = 2). In all that follows, notice that we will use indifferently the terms rabbits or7

fast vehicles and slugs or slow vehicles.8

It is assumed that one vehicle cannot belong simultaneously to more than one class but its class9

can evolve with respect to time (according to the traffic state or to the mental stress of the driver10

or to its path on the network for instance). In the remaining, the class attribute is assumed to not11

depend on time.12

Slugs cannot go to the passing lane(s) and are limited to the shoulder lane, while the fastest vehicles13

can use the passing lane(s) and the shoulder lane.14

Let us introduce the class-dependent headway-pace FD (or Hamiltonian)

H : (r, I) 7→ H(r, I)

for a given class attribute I ∈ {1, 2}.15

16

(A0) We assume that r 7→ H(r, ·) is convex.17

3.3 Capacity drop parameter18

One of the main drawback of the LWR model (whatever the chosen resolution is) is that the ca-19

pacity drop phenomenon is not represented. Capacity drop can be characterized as a reduction20

in discharge flow after queue formation that is observed at the downstream of an active (moving)21

bottleneck location. Basically this difference of flow is interpreted as a recovery flow from low22

speeds (vehicles stuck in a congestion) to free flow (vehicles accelerating). Below, we describe a23

strategy to take into account this well-known feature of traffic flows.24

3.3.1 Capacity drop and moving bottleneck25

Consider a parameter δ ∈ [0, 1] that tells us how much the traffic flow complies to the First-In-26

First-Out (FIFO) rule, with the two extreme cases:27

• If δ = 0, the traffic is strictly non-FIFO, say all the vehicles can overtake each other without28

any restriction, say they can use the entire residual headway hB of the passing lane(s).29
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• If δ = 1, the traffic is strictly FIFO, say the vehicles keep ordered at all time, independently1

of their origin and/or destination and even if there are some available passing lane(s). The2

vehicles behave as if the residual headway is equal to zero.3

An intermediate value δ ∈]0, 1[ can be interpreted as a penalty for overtaking maneuvers by reduc-

ing the residual headway of the passing lane(s) (say the available headway for vehicles arriving on

the closest moving bottleneck and that want to overtake it) to a modified residual headway (say the

real available headway for vehicles that are going to overtake)

h̃B :=
1

1− δ
hB.

(U)(D)

(U)
Case FIFOCase non−FIFO

(U) (D)

Flow

(MB)

vB
R(vB, qD)

δ = 1δ = 0

r

H
1

κ

1

u
rB =

1

vB

hB =
1

qD

1

R(vB, qD)

vB

1

C
1

wκ

FIGURE 2 Moving bottleneck graphical solution in Lagrangian-space coordinates, for a

triangular Hamiltonian or headway-pace FD H(r) defined in (5) with r the pace, and for dif-

ferent values of the capacity drop parameter δ. (U) and (D) denote respectively the upstream

and downstream traffic state with respect to the moving bottleneck position.

In Figure 2, one can notice that with a strict non-FIFO behavior, whenever the moving bottleneck4

is active, the upstream traffic state is different from the downstream traffic state. Conversely, if5

one assumes a strict FIFO behavior, all the vehicles upstream have to adopt the moving bottleneck6

speed vB .7

Interestingly, our approach finds a different application in a work by Laval [19] that deals with the8

modeling of two-lane rural roads. In this framework, the opposite traffic flow acts as a reduction9

of the ability of vehicles to overtake a moving bottleneck. This is very similar to our capacity drop10

parameter δ. Still in [19], Laval gives the analytical expression of the travel time as a function of11

the proportion of slow vehicles.12
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3.3.2 Relaxing the FIFO assumption at a diverge1

The parameter δ introduced in the previous subsection for road sections, can be extended to spatial2

discontinuities of the network. In this paper, we are particularly concerned with diverges. In such3

a case, introducing the parameter δ is equivalent to relax the FIFO assumption.4

Let us consider a diverge composed of one incoming road that divides into J outgoing branches5

(with J ≥ 2). The original model of Daganzo [20] (equivalent to the first diverge model used6

in [21] and also to the one in [22], see [23] for a detailed review of the literature on diverge7

models) relies on the FIFO assumption that is reasonable for the following traffic cases:8

• the traffic state is in free flow condition on all downstream branches,9

• the traffic state is congested on all downstream branches.10

Nonetheless, as soon as at least one downstream branch is in free flow condition while another11

downstream branch is congested, the FIFO assumption is no longer realistic.12

The idea is then to introduce a relaxation parameter δ ∈ [0, 1] that represents the percentage of13

vehicles that can go through the diverge in direction of the exiting branch, even if the node is14

congested. This parameter is exactly the same than the capacity drop parameter introduced in the15

previous section. In the case of a diverge, this parameter allows us to relax the FIFO assumption16

upstream to the diverge.17

Let us denote by18

• ∆0, the upstream demand,19

• ∆j , the proportion of the demand that wants to exit on downstream branch j,

∆j := γj ∆0, for any j,

• Σj , the downstream supply on branch j,20

• Cj , the capacity of branch j, say the maximal flux that can be passed on the road,21

• γj , the proportion of the flow that goes in direction of branch j. Note that one has
∑

j

γj = 122

and without loss of generality, we assume that γj > 0 for any j.23

• q0, the flow on the unique upstream branch and qj the flow on downstream branch j. We

have that for any j










qj = γj q0, (Flow distribution)

qj ≤ Σj ≤ Cj, (Supply constraint)

There are several cases to distinguish:24
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1. If no upstream demand exceeds its downstream supply, say ∆j ≤ Σj for any j or equivalently

∆0 ≤ min
j

{

Σj

γj

}

, then the solution is provided by the classical Daganzo model

{

q0 = ∆0,

qj = ∆j = γj∆0 = γj q0, for any j.

2. If all upstream demands exceed the downstream supplies, say ∆j > Σj for any j or equiv-

alently ∆0 > max
j

{

Σj

γj

}

, then the solution is (also) provided by the classical Daganzo

model






q0 =
∑

j

Σj <
∑

j

∆j = ∆0,

qj = Σj < ∆j , for any j.

3. If at least one upstream demand exceeds its downstream supply, but one of the downstream

branch is in free flow condition, say min
j

{

Σj

γj

}

< ∆0 < max
j

{

Σj

γj

}

, we denote by J∗ the

set of all downstream branches that are in free flow condition and we set

q̄ := min
k

{

Σk

γk

}

.

Then the solution is provided by the modified model (with the parameter δ ∈ [0, 1])


























q0 = δq̄ + (1− δ)





∑

j /∈J∗

Σj +
∑

j∈J∗

∆j



 ,

qj = δγj q̄ + (1− δ)Σj , for any j /∈ J∗,

qj = δγj q̄ + (1− δ)∆j , for any j ∈ J∗.

For a full-non FIFO model (δ = 0), we get


















q0 =
∑

j /∈J∗

Σj +
∑

j∈J∗

∆j <
∑

j

∆j = ∆0,

qj = Σj , for any j /∈ J∗,

qj = ∆j, for any j ∈ J∗,

while taking δ = 1 gives us the classical FIFO model







q0 = q̄ <
∑

j

∆j = ∆0,

qj = γj q̄ < ∆j, for any j.

All the details are given for flows for the reader convenience because that the Eulerian framework1

is the most well-known in the community up to now. However, notice that all the approach can be2

conversed to headway without any difficulty.3
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3.4 Expression of the MCML model1

In this subsection, we finally summarize the previous contributions (old –Section 2– and new2

–Section 3–) into a unique multiclass and multilane mesoscopic model, expressed in Lagrangian-3

space coordinates.4

Assume that each class satisfies to a LWR model with a specific fundamental diagram that depends5

on the attribute I . Consider two headway-pace fundamental diagrams H(·, I1) and H(·, I2). We6

assume that the vehicles belonging to class 1 are faster than the ones of class 2. Thus, one has7

u1 > u2 (where we recall that ui is the top speed of class i). In the discrete application presented8

in next Section, we consider that H are piecewise linear. See (11) for an example of the chosen9

Hamiltonians. In that setting, the maximal speeds of each class are different but the congestion10

wave and the jam density are conserved.11

Moreover, we define the concave Legendre-Fenchel transform of the class-specific Hamiltonian

H(·, ·) with respect to its first variable, as follows

H⊠(s, I) := inf
r∈Dom(H(·,I))

{H(r, I)− sr} , for any (s, I) ∈ R× R.

Let (n0, x0, x1) ∈ R
3 be fixed such that x0 < x1. The complete model in HJ framework writes as

a system of coupled PDEs


































∂nT1 −H (∂xT1, I1) = 0, for (n, x) ∈ [n0,+∞)× [x0, x1],

∂nT2 −H (∂xT2, I2) = 0, for (n, x) ∈ [n0,+∞)× [x0, x1],

H (∂xT1(n, ξ(n)), I1)− (1− δ)ξ̇ (n∗

2) ∂xT1(n, ξ(n))

≥
1

α
H⊠

(

(1− δ)ξ̇ (n∗

2) , I1

)

for n ∈ [n0,+∞),

T2 (n, ξ(n)) ≥ T1(n
∗

1, ξ(n)) +H (∂xT1(n
∗

1, ξ(n)), I2) , for n ∈ [n0,+∞),
(9)

where
{

n∗

2 := argmax T2(·, ξ(n)) and ξ(n) = ξ(n∗

2), for n ∈ [n0,+∞),

n∗

1 := argmax T1(·, ξ(n)) for n ∈ [n0,+∞),

and with the following mixed Neumann-Dirichlet boundary conditions










∂nTi(n, x0) = ǧi(n), on [n0,+∞),

∂nTi(n, x1) = ĝi(n), on [n0,+∞),

Ti(n0, x) = Gi(x), on [x0, x1],

for i ∈ {1, 2} . (10)

(A1) Assume that ǧi, ĝi ∈ C0(R) and Gi ∈ C1(R).12

In (9), the first two equations express the conservation of vehicles in Lagrangian-space coordinates13

and inside each vehicle class (independently of the other one).14

Assume that n∗

i (i ∈ {1, 2}) denotes the nearest leader from class i for vehicle n of class j 6= i15

(j ∈ {1, 2}). It is computed as the last vehicle that has passed through the current location of16

vehicle n.17
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The third equation is the coupling condition from the point of view of class 1, say the moving

bottleneck condition whenever a vehicle of class 1 catches a slower vehicle of class 2, whose label

is assumed to be n∗

2. This inequality gives a lower bound on the modified passing headway. Due to

the capacity drop parameter δ ∈ [0, 1[ (which also stands for the relaxation of the FIFO assumption

on a diverge), the modified passing headway H̃ is determined as follows

H̃ =
1

1− δ
hB −

ξ̇T (n∗

2)

u1

where hB =
1

(N − 1)C
is the residual headway available up to the moving bottleneck since there1

remains only (N − 1) passing lanes (see Figure 3). This bound is defined as the Legendre-Fenchel2

transform H⊠ of the Hamiltonian H(·, I1) applied to ξ̇T (n∗

2) the spacing imposed by the current3

moving bottleneck.4

1

u
r

1

(N − 1)κ

ξ̇(n∗
2
) ξ̇(n∗

2
)

N lanes

(N − 1) lanes

1

Nκ

hB =
1

(N − 1)C

rB

1

NC

1

Nwκ

H∗
(

ξ̇(n∗
2
)
)

hB −
ξ̇(n∗

2
)

u

H

FIGURE 3 Moving bottleneck treatment in Lagrangian-space coordinates for a triangular

Hamiltonian or headway-pace FD H(r) defined in (11) with r the pace. (U) and (D) denote

respectively the upstream and downstream traffic state with respect to the moving bottleneck

position. For the sake of readability, the capacity drop parameter δ is not represented here.

The fourth equation stands for the coupling condition from the point of view of class 2. We assume5

that if a vehicle of class 2 catches a vehicle of class 1, then it behaves according to a “follow-the-6

leader” rule. Indeed, class 2 is restricted to the shoulder lane and cannot go on the passing lane(s).7

Moreover, such a situation may happen if the nearest leader of class 1 is stuck in a congestion and it8

makes no sense that vehicle of class 2 can overtake. The coupling conditions are thus asymmetric9

between classes 1 and 2.10

Remark 3.1 (Multilanes modeling) The multilane behaviour of the model (9) is not straightfor-11

ward at this (continuous) stage. In reality, in the discrete approach, we will use the attribute as a12

vector in R
2 containing the information about the class of the vehicle and about the lane on which13

the vehicle is circulating. The lane is updated for each vehicle that can overtake. In a continuous14

model, it is actually not clear how to express this lane-changing behavior apart from saying that15

İ(n, x) = ϕ(x) for a given ϕ.16
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4 Numerical scheme1

4.1 Setting of the IBV Problem2

Let us introduce the finite steps ∆n, ∆x > 0.3

Assume that we consider a set of nmax vehicles which are divided into kmax platoons of ∆n4

vehicles (obviously nmax = n0 + kmax∆n). It is noteworthy that for the sake of clarity, we5

consider that the label step ∆n is the same whatever the vehicle class is. These vehicles are6

moving on a link [x0, x1] divided into lmax sections which length is denoted by ∆x (obviously7

x1 = x0 + lmax∆x).8

We adopt the following notation

{

nk := n0 + k∆n, for any k ∈ {1, . . . , kmax} ,

xl := x0 + l∆x, for any l ∈ {1, . . . , lmax} .

Consider the IBV problem (9)-(10) on the computational domain [n0, nmax]× [x0, L]. Assume that

the class-specific Hamiltonians H are triangular, say for any i ∈ {1, 2},

H(r, Ii) =







1

κ N(Ii)

(

r +
1

w

)

, if r ≥
1

ui

,

+∞, otherwise,
(11)

where ui := u(Ii) denotes the free-flow speed of the class i and N(Ii) stands for the number of

lanes that are accessible for the class i

N(Ii) :=

{

N, for i = 1,

1, for i = 2.

Below, we make precise the definitions of the initial and boundary values ǧi, ĝi, Gi for i ∈ {1, 2}.9

Definition 4.1 (PWA Eulerian upstream boundary condition) Assume that one can measure the10

flow values {qi,k}k∈[1,kmax]
for each group of ∆n vehicles of class i ∈ {1, 2}, at a fixed (and given)11

location x0 (thanks to a loop detector for instance).12

We define the piecewise affine (Eulerian) upstream boundary condition for the Hamilton-Jacobi

equation (9) as follows

Ti(nK , x0) = Ti(n0, x0) +
K
∑

k=1

hi,k∆n, for any i ∈ {1, 2}

with the headway values

hi,k =
1

qi,k
for any k ∈ [1, kmax] and i ∈ {1, 2} .
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We assume moreover that for any k ∈ [1, k′

max] and i ∈ {1, 2}

hi,k =
1

∆n

∫ nk

nk−1

ǧi (η) dη

holds true.1

Definition 4.2 (PWA Eulerian downstream boundary condition) Assume that one can measure2

the flow values {q̂i,k′}k′∈[1,k′max]
for each group of ∆n vehicles of class i ∈ {1, 2}, at a fixed (and3

given) location x1 (thanks to a loop detector for instance).4

We define the piecewise affine (Eulerian) downstream boundary condition for the Hamilton-Jacobi

equation (9) as follows

Ti(nK ′, x1) = Ti(n0, x1) +

K ′

∑

k=1

ĥi,k∆n, for any i ∈ {1, 2}

with the headway values

ĥi,k =
1

q̂i,k
, for any k ∈ [1, k′

max] and i ∈ {1, 2} .

We assume moreover that for any k ∈ [1, k′

max] and i ∈ {1, 2}

ĥi,k =
1

∆n

∫ nk

nk−1

ĝi (η) dη

holds true.5

Definition 4.3 (PWA Lagrangian boundary condition) Assume that one can measure the speed6

values {vi,l}l∈[1,lmax]
for each discrete position distant of ∆x, for a given leader vehicle n0 of the7

class i ∈ {1, 2}.8

We define the piecewise affine (Lagrangian) boundary condition for the Hamilton-Jacobi equa-

tion (9) as follows

Ti(n0, xL) = Ti(n0, x0) +

L
∑

l=1

ri,l∆x, for any i ∈ {1, 2}

with the pace values

ri,l =
1

vi,l
for any l ∈ [1, lmax] and i ∈ {1, 2} .

We assume moreover that for any l ∈ [1, lmax] and i ∈ {1, 2}

ri,l =
1

∆x

∫ xl

xl−1

G′

i (ξ) dξ

holds true.9
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4.2 Lax-Hopf formulæ for the MCML model1

Representation formulæ for PDEs [24] such as the Lax-Hopf formula for the Hamilton-Jacobi2

equation [25, 26], enable a fast and exact computation of solutions for the associated PDE.3

For instance, Lax-Hopf formula for the LWR model in traffic flow has been used in the Eule-4

rian framework in [27, 28, 29], in the Lagrangian framework in [30] and in the Lagrangian-space5

framework in [16]. For a synthetic review of these formulæ, the interested reader is referred to [6].6

Then for any (n, x) ∈ [n0, nmax] × [x0, x1], consider the following Lax-Hopf like formulæ (so to

speak, here we use a Bellman dynamic programming principle)

T1(n, x) = max
{

T1(n, x−∆x) +
∆x

u1
, T1(n−∆n, x+∆x) +

∆x

w
,

T2(n
∗

2, x) +
1

1− δ
hB

}

with n∗

2 := argmax T2(·, x)

(12)

and

T2(n, x) = max

{

T2(n, x−∆x) +
∆x

u2
, T2(n−∆n, x+∆x) +

∆x

w
,

T1(n
∗

1, x) +H

(

T1(n
∗

1, x)− T1(n
∗

1, x−∆x)

∆x
, I2

)

}

with n∗

1 := argmax T1(·, x)

(13)

with the condition

∆x =
∆n

κ
.

We recall that w > 0 denotes the wave speed, n∗

i is the label of the last vehicle of type I = Ii7

which has passed through position x and hB is the residual headway available on the remaining8

lanes, when crossing the moving bottleneck.9

4.3 Some mathematical results10

By generalizing the methodology proposed in [17] for the moving bottleneck problem (7) in Eule-11

rian coordinates, one can show that12

Proposition 4.4 (Existence of a continuous solution to (9)-(10)) Assume that r 7→ H (r, Ii) is13

convex for any i ∈ {1, 2}. Then, the IBV problem (9)-(10) admits a solution (T1, T2) continuous14

on [n0,+∞]× [x0, x1].15

The proof is out of the scope here. We only assume that this result holds true.16

We are now interested in showing the following result:17
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Proposition 4.5 (Convergence) Assume that r 7→ H (r, Ii) is convex for any i ∈ {1, 2}. Then the1

numerical solution (T ε
1 , T

ε
2 ) of the scheme (12) and (13) converges towards a continuous solution2

(T1, T2) of the IBV problem (9)-(10) when ε := (∆n,∆x) goes toward zero.3

Proof For the sake of space, we only give the sketch of the proof.4

It is worth noticing that the first two terms in the maximum in (12) and (13) are strictly similar to the5

classical case, say the Lax-Hopf formula (6) for solving the Hamilton-Jacobi equation (3). Indeed,6

these two terms stand for the usual mesoscopic resolution of the LWR model. The convergence7

of these two terms is of no concern for us, as the Lax-Hopf formula (6) has already been proved8

to give an explicit solution to the Hamilton-Jacobi equation (3). The interested reader is referred9

to [6].10

The novelty is the third term that appears in the max in (12) and (13). In each case, we have to

ensure that these terms satisfy the coupling conditions between both mesoscopic LWR models. If

the coupling conditions are fulfilled, then the inf-morphism property (see for instance [27, 16] and

references therein) allows us to conclude. Indeed, for each class point of view, the coupling can be

seen as an external constraint. The global solution is thus given by the maximum between all the

partial solutions obtained for each condition (initial and boundary ones).

The result is straightforward for (13).

For (12), let us fix (n, x) and assume that

T1(n, x) = T2(n
∗

2, x) +
1

1− δ
hB.

Moreover, we assume that at a given location x there is no vehicle between the vehicle of class 1
denoted n1 and its nearest leader of class 2, say n∗

2. This means in particular that

T1(n1 −∆n, x) ≤ T2(n
∗

2, x).

Thus, we have that for any s < 0

H

(

T1(n1, x)− T1(n1 −∆n, x)

∆n
, I1

)

− (1− δ)s
T1(n1, x)− T1(n1 −∆n, x)

∆n

≥ H

(

T1(n1, x)− T2(n
∗

2, x)

∆n
, I1

)

− (1− δ)s
T1(n1, x)− T2(n

∗

2, x)

∆n

≥ hB − (1− δ)
s

u1

≥
N − 1

N
hB − (1− δ)

s

u1

≥ H⊠ ((1− δ)s, I1) .

Taking the limit ∆n going to zero and setting s = ξ̇(n∗

2), we get the result. This ends the proof. �11
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5 Numerical examples1

5.1 Impact of a single “slow vehicle”2

The numerical scheme (12)-(13) has been applied to a link composed of two lanes located imme-3

diately upstream a diverge (at x = x1) with two output branches. The incoming link length is set4

to L = x1 − x0 = 1000m. The demand at x = x0 is set to q = 1 vps (vehicle per second) for5

class 1. A single vehicle from class 2 drives through the link with a maximum speed u2 = 10m/s,6

while vehicles from class 1 have a maximum speed u1 = 25m/s. The congested parameters are7

set to w = 5m/s and kx = 0.14veh/m for both classes. The simulation duration is set to 200s8

with δ = 0.9

In the remaining of the section, “fast vehicles” (resp. “slow vehicles”) designate vehicles from10

class 1 (resp. 2).11
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FIGURE 4 Impact of single slow vehicle (class 2) on fast vehicles (class 1)
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Figure 4 depicts T (n, x) in the time-space plan, for vehicle from class 1 (black lines) and class 21

(red line). The consistency of the result with the well-established moving bottleneck theory is2

verified. The flow upstream the slow vehicle exceeds the maximum flow that can overtake. The3

MB is said to be active and separates two traffic states: (i) a free flow state downstream the MB4

with h = hB and (ii) a congested state upstream the MB.5

Here it has been assumed that no capacity drop occurs, δ = 0. Then four levels of capacity drop6

have been tested: δ = {0.2, 0.4, 0.6, 1}. The results are presented in Figure 5.7
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(d) δ = 0.2

FIGURE 5 Impact of δ on traffic states surrounding an active MB

Obviously the slow vehicle surrounding conditions highly depend on the capacity drop parameters,8

which drives the maximum flow that overtakes. Comparing Figures 5(a), 5(b), 5(c) and 5(d), it is9

worth noticing that δ can also be interpreted as a parameter that relaxes the FIFO rule. When10

δ = 1, fast vehicles cannot overtake slow vehicles and the traffic flow is FIFO. Vehicle upstream11

the diverge share the same delay independent of the destination (class). When δ 6= 0, the FIFO12

rule is relaxed and vehicles from “fast class” are more and more inclined to overtake vehicles from13

“slow class”.14

5.2 Simulation with a mixed traffic15

Finally, an advanced simulation scenario has been implemented with the same link characteristics,16

where the vehicle classes have the same characteristics as above. The demand at x = x0 is set to17

q = 1 vps with the following distribution per class: class 1 = 95% and class 2 = 5%. The simulation18

results are illustrated in Figure 6.19
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Here again, slow vehicles act as active moving bottlenecks. The flow downstream slow vehicles is1

bounded and fast vehicles accumulate behind.2
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FIGURE 7 Simulation results

It can also be seen from figure 7 that travel times experienced by fast vehicles oscillate around 60s.3

This mean travel time is a trade-off between 40s (when no interaction occurs between classes) and4

100s (when class 1 and 2 strictly respect the FIFO rule). It is directly related to the simulation5

parameters, and first of all δ which drives the level of relaxation of the FIFO rule. We conclude6

from this scenario that the proposed multiclass model:7

• provides a more realistic framework to simulate traffic condition upstream diverge. It allows8

for relaxing the FIFO rule while considering the interactions between vehicle classes.9

• the calibration of δ is of paramount importance for practical application. Further research is10

needed to propose accurate methodology to calibrate δ accurately and to identify factors that11

impact δ (lane ratio, class distribution, speed difference, etc.).12

6 Conclusion and perspectives13

We have introduced a new event-based mesoscopic model for multi-class traffic flow modeling on14

multi-lane sections. The basis model was first introduced by Leclercq and Bécarie [5] and deals15

with traffic flow on mono-pipe links, even if it can take into account simple junction models and16

two-flows representation thanks to the theory of moving bottlenecks. The model has been proven17
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to be very attractive to simulate traffic flow on wide networks since it only keeps track of individual1

passing times at the boundaries of the network.2

Among the perspectives, we would be interested in dealing with real traffic data to validate the3

continuous model, even if we are aware that these data need to be precise enough such that one can4

make the distinction between vehicle classes for example cars and trucks. A step further would5

be data assimilation for real-time applications such as traffic state estimation and forecast. We are6

also looking forward coupling our approach with lane flow distribution as proposed for instance7

in [31] where the authors proposed a mechanism to show how variable speed limits help to delay8

the congestion onset.9

In a quite different fashion, another extension of this work would be to consider the mesoscopic10

formulation of the GSOM family (as discussed in Section 3.1) and to assume that the moving bot-11

tlenecks are (known) internal boundary conditions. A numerical solution could be obtained by ex-12

tending the algorithm described in [32], when assuming a triangular fundamental diagram H(·, I).13
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