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Motivation
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Nice network [Google maps, Jul. 3, 2017]

G. Costeseque Second order models on junctions Valbonne, July 04, 2017 2 / 46



Motivation

Traffic flows on a network

Road network ≡ graph made of edges and vertices
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Introduction

ARZ model on a junction

(i)

(j)

(ρi, wi)

(ρj, wj)
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Introduction

ARZ model on a junction
(continued)

ARZ model [1, 10] on each branch (i)







∂tρi + ∂x (ρivi) = 0,

∂t (ρiwi ) + ∂x (ρiviwi ) = 0,

wi := vi + pi (ρi )

(1)

Coupling conditions needed to ensure conservation of

Mass flow q = ρv

Momentum flow qw = ρvw

through the junction
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Introduction

Problem statement

Why ARZ model?
To reproduce the capacity drop phenomenon
(+ control thanks to variable speed limits and/or ramp metering)

What are we looking for?
Well-posedness of Riemann solvers at the junction
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Some background Basics

Common assumptions

(A1) Conservation of the fluxes:

n∑

i=1

ρivi
︸︷︷︸

=:qi

=

n+m∑

j=n+1

ρjvj
︸︷︷︸

=:qj

(A2) Fixed assignment coefficients:

∃ (αji)i ,j ∈ [0, 1], s.t.

n+m∑

j=n+1

αji = 1 and qj =

n∑

i=1

αjiqi

(A3) Bounds on the fluxes

{

0 ≤ qi ≤ ∆i , i = 1, . . . , n,

0 ≤ qj ≤ Σj , j = n+ 1, . . . , n +m,

∆i demand and Σj supply

G. Costeseque Second order models on junctions Valbonne, July 04, 2017 9 / 46



Some background Basics

Common assumptions

(A4) Maximization of the total incoming fluxes:

max
n∑

i=1

qi
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Some background Basics

Common assumptions

(A4) Maximization of the total incoming fluxes:

max
n∑

i=1

qi

Literature:
ARZ model

Garavello-Piccoli [4]
Herty-Rascle [7]
Herty-Moutari-Rascle [6]
Haut-Bastin [5]

Phase Transition model

Colombo, Goatin, Piccoli [2]
Garavello, Marcellini [3]

Engineering community: Lebacque’s works [9, 8]
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Some background Basics

Common assumptions

(A4) Multi-objective optimization of the incoming fluxes:

max (q1, . . . , qn)

and for any fixed P = (P1, . . . ,Pn) such that Pi ∈]0, 1[ and
∑n

i=1 Pi = 1, the ratio
ql

∑n
i=1 qi

is the closest to Pl
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Some background Computation of the supply for second order models

Demand and supply

ρ

ρ 7→ ρ(w − pi(ρ))

Di(ρ, w)

Si(ρ, w)

ρv

ρv

ρ
σi(w)

ρv

ρ
σi(w)

σi(w)

G. Costeseque Second order models on junctions Valbonne, July 04, 2017 11 / 46



Some background Computation of the supply for second order models

Downstream density perceived by upstream traffic

= wl − pr(ρ̃r)

ρv

{w = wl}

ρ

{w = wr}

ρrρ̃r

(ρr, wr)

vr = wr − pr(ρr)

(ρl, wl)

x

The velocity is conserved through a contact discontinuity!

G. Costeseque Second order models on junctions Valbonne, July 04, 2017 12 / 46



Riemann solver

Outline

1 Introduction

2 Some background

3 Riemann solver

General 1-to-m diverge

2-to-1 merge
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Riemann solver General 1-to-m diverge

RS for a 1-to-m diverge (m ≥ 1)

qm+1

q1

q2

(1)

(2)

(m+ 1)
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Riemann solver General 1-to-m diverge

RS for a 1-to-m diverge (m ≥ 1)

Initial states ((ρ1,0, v1,0), (ρ2,0, v2,0) . . . , (ρm+1,0, vm+1,0))

Multi-optimization ≡ optimization of the total through-flow

max
Ω1×m

q1

Set of admissible states

Ω1×m :=

{

q1 ∈ R

∣
∣
∣
∣

0 ≤ q1 ≤ ∆1

0 ≤ qj = αj1q1 ≤ Σj , ∀j

}
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Riemann solver General 1-to-m diverge

RS for a 1-to-m diverge (m ≥ 1)

Solution for a 1-to-m diverge

q1 = min

{

∆1, min
j=2,...,m+1

1

αj1
Σj

}

,

qj = αj1q1, ∀j = 2, . . . ,m + 1

with

∆1 = D1 (ρ1,0,w1)

Σj = Sj

(

p−1
j (max{0,w1 − v2,0}),w1

)

, ∀j = 2, . . . ,m + 1
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Riemann solver General 1-to-m diverge

Example of a 1× 1 junction

(1) (2)

(ρ1, w1) (ρ2, w2)

q1 = q2 = min {D1(ρ1,0,w1) , S2(ρ̃2,w1)}

where
ρ̃2 = p−1

2 (max{0,w1 − v2,0})
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Riemann solver 2-to-1 merge

Case of a 2× 1 merge

(2)

(3)

q3

q1

(1)

q2

q3 = q1 + q2

+ initial conditions

((ρ1,0, v1,0), (ρ2,0, v2,0), (ρ3,0, v3,0))
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Riemann solver 2-to-1 merge

Example of a 2× 1 merge
(continued)

Multi-objective optimization problem

max
Ω2×1

(q1, q2)

with

Ω2×1 =






(q1, q2) ∈ R

2

∣
∣
∣
∣
∣
∣

0 ≤ q1 ≤ ∆1,

0 ≤ q2 ≤ ∆2,

0 ≤ q3 = q1 + q2 ≤ Σ3(q1, q2)







∆i = Di (ρi ,0,wi ), i = 1, 2

Σ3(q1, q2) = S3 (ρ̃3, w̃)
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Riemann solver 2-to-1 merge

Example of a 2× 1 merge
(continued)

Multi-objective optimization problem

max
Ω2×1

(q1, q2)

with

Ω2×1 =






(q1, q2) ∈ R

2

∣
∣
∣
∣
∣
∣

0 ≤ q1 ≤ ∆1,

0 ≤ q2 ≤ ∆2,

0 ≤ q3 = q1 + q2 ≤ Σ3(q1, q2)







∆i = Di (ρi ,0,wi ), i = 1, 2

Σ3(q1, q2) = S3 (ρ̃3, w̃)

w̃ =
q1

q1 + q2
w1 +

q2

q1 + q2
w2

ρ̃3 = p−1
3 (max{0, w̃ − v3,0})
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Riemann solver 2-to-1 merge

First property

Proposition (Convexity of the feasible set)

The set of admissible states Ω2×1 is non-empty and convex.
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Riemann solver 2-to-1 merge

First property

Proposition (Convexity of the feasible set)

The set of admissible states Ω2×1 is non-empty and convex.

Sketch of the proof:

(0, 0) ∈ Ω2×1

Classical convexity proof: take two points on the boundary of Ω2×1

and show that a convex combination of these two points still belongs
to the set
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Riemann solver 2-to-1 merge

Analysis of the supply

Assume ∃z ∈ [0, 1] such that

{

q1 = z(q1 + q2)

q2 = (1− z)(q1 + q2)

Define
Σ̃3(z) = Σ3 (q1, q2)

and set
∆w = w1 − w2
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Riemann solver 2-to-1 merge

Σ̃3(z)

q2(z)

q1(z)
q1

0 Σ̃3(z)

1− z

z

q2

Σ̃3 − q1 − q2 = 0

−1
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Riemann solver 2-to-1 merge

Local optima

Σ̃3 − q1 − q2 = 0

q1
0

q2

1− P ∗

P ∗∗

If ∆w > 0

P∗ local minimum for
z 7→ q1(z) = zΣ̃3(z)
P∗∗ local maximum for
z 7→ q2(z) = (1− z)Σ̃3(z)

If ∆w < 0

P∗ is a local maximum for
z 7→ q1(z) = zΣ̃3(z)
P∗∗ is a local minimum for
p 7→ q2(z) = (1 − z)Σ̃3(z)
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Riemann solver 2-to-1 merge

Riemann solver for the 2-to-1 merge

Algorithm

Consider given pressure functions pi (ρ) and initial conditions.

1 Fix a priority ratio P ∈]0, 1[

2 Compute

F (P) = min

{
∆1

P
,

∆2

1− P
, Σ̃3(P)

}

with
Σ̃3(P) = S3(ρP , w̃P)

and w̃P = Pw1 + (1− P)w2 and ρP = p−1
3 (max{0, w̃P − v3,0})

3 Distinguish the different cases
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Riemann solver 2-to-1 merge

Set

q̃1 = PΣ̃3(P) and q̃2 = (1− P)Σ̃3(P)

q∗1 = P∗Σ̃3(P
∗) and q∗2 = (1− P∗)Σ̃3(P

∗)

1 If
∆w = 0, or

∆w < 0 and P ≤ P∗, or

∆w > 0 and P ≥ P∗∗,

(2)

we choose

q1 = min {∆1,max {q̃1,Σ3(q1, q2)− q2}} ,

q2 = min {∆2,max {q̃2,Σ3(q1, q2)− q1}} .
(3)
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Riemann solver 2-to-1 merge

2 If
∆w < 0 and P ≥ P∗,

then
q2 = min {∆2,max {q∗2 ,Σ3(q1, q2)− q1}} . (4)

Computation of q1:
1 If

F (P) = Σ̃3(P) and q∗2 ≤ ∆2,

we apply
q1 = min{q∗1 ,∆1}. (5)

2 Otherwise

q1 = min {∆1,max {q̃1,Σ3(q1, q2)− q2}} . (6)

3 The case ∆w > 0 and P ≤ P∗∗ treated analogously to case 2.
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Riemann solver 2-to-1 merge

Easy case ∆w = 0

Σ3 is a constant

q2

q1

q1 = Σ3 − q2
Σ3 −∆2

∆1

Σ3 −∆1 ∆2

(1− P )Σ3

P

1− P

PΣ3
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Riemann solver 2-to-1 merge

Subcase 1: F (P) =
∆1

P

∆1

∆2

∆2

1− P

P

0

q2

q1

Σ3 = q1 + q2
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Riemann solver 2-to-1 merge

Subcase 1: F (P) =
∆1

P

{

q1 = ∆1

q2 = min
{

∆2,max
[

(1− P)Σ̃3(P),Σ3(∆1, q2)−∆1

]}

∆1

∆2

∆2

1− P

P

0

q2

q1

Σ3 = q1 + q2
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Riemann solver 2-to-1 merge

Subcase 2: F (P) =
∆2

1− P

1− P

P

∆2

∆1
0

q2

q1

Σ3 = q1 + q2

∆1
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Riemann solver 2-to-1 merge

Subcase 2: F (P) =
∆2

1− P

{

q1 = min
{

∆1,max
[

PΣ̃3(P),Σ3(q1,∆2)−∆2

]}

q2 = ∆2

1− P

P

∆2

∆1
0

q2

q1

Σ3 = q1 + q2

∆1
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Riemann solver 2-to-1 merge

Subcase 3: F (P) = Σ̃3(P) and P ≤ P
∗

0 ∆1

∆2

q2

q1

Σ3 = q1 + q2

P Σ̃3(P )

(1− P )Σ̃3(P )

1− P

P

1− P ∗

P ∗

Pareto front
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Riemann solver 2-to-1 merge

Subcase 3: F (P) = Σ̃3(P) and P ≤ P
∗

{

q1 = PΣ̃3(P)

q2 = (1− P)Σ̃3(P)

0 ∆1

∆2

q2

q1

Σ3 = q1 + q2

P Σ̃3(P )

(1− P )Σ̃3(P )

1− P

P

1− P ∗

P ∗

Pareto front
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(a) If q∗1 ≤ ∆1 and q∗2 ≤ ∆2

∆2

Pareto front

0

q2

q1

Σ3 = q1 + q2

(1− P ∗)Σ̃3(P
∗)

P ∗Σ̃3(P
∗)∆1

1− P

P

1− P ∗

P ∗
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(a) If q∗1 ≤ ∆1 and q∗2 ≤ ∆2

{

q1 = q∗1 = P∗Σ̃3(P
∗)

q2 = q∗2 = (1− P∗)Σ̃3(P
∗)

∆2

Pareto front

0

q2

q1

Σ3 = q1 + q2

(1− P ∗)Σ̃3(P
∗)

P ∗Σ̃3(P
∗)∆1

1− P

P

1− P ∗

P ∗
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(b) If q∗1 ≤ ∆1 and q∗2 > ∆2

1− P ∗

P ∗

∆2

0

q2

q1

Σ3 = q1 + q2

∆1

1− P

P
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(b) If q∗1 ≤ ∆1 and q∗2 > ∆2

{

q1 = Σ3(q1,∆2)−∆2

q2 = ∆2

1− P ∗

P ∗

∆2

0

q2

q1

Σ3 = q1 + q2

∆1

1− P

P
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(c) If q∗1 > ∆1 and q̄2 ≤ ∆2

∆2

∆10

q2

q1

Σ3 = q1 + q2

1− P

P

1− P ∗

P ∗

Pareto front
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(c) If q∗1 > ∆1 and q̄2 ≤ ∆2

{

q1 = ∆1

q2 = q̄2 solution of q2 = Σ3(∆1, q2)−∆1 and q2 ≥ q∗2

∆2

∆10

q2

q1

Σ3 = q1 + q2

1− P

P

1− P ∗

P ∗

Pareto front
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(d) If q∗1 > ∆1 and q̄2 ≥ ∆2 ≥ q
2

∆1

∆2

0

q2

q1

Σ3 = q1 + q2

1− P

P

1− P ∗

P ∗
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(d) If q∗1 > ∆1 and q̄2 ≥ ∆2 ≥ q
2

{

q1 = ∆1

q2 = ∆2

∆1

∆2

0

q2

q1

Σ3 = q1 + q2

1− P

P

1− P ∗

P ∗
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(e) If q∗1 > ∆1 and ∆2 < q
2

Σ3 = q1 + q2

∆2

0

q2

q11− P

P

1− P ∗

P ∗

∆1
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Riemann solver 2-to-1 merge

Subcase 4: F (P) = Σ̃3(P) and P ≥ P
∗

(e) If q∗1 > ∆1 and ∆2 < q
2

{

q1 = Σ3(q1,∆2)−∆2

q2 = ∆2

Σ3 = q1 + q2

∆2

0

q2

q11− P

P

1− P ∗

P ∗

∆1
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