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Traffic flows on a network
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Traffic flows on a network

Road network = graph made of edges and vertices
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Introduction

ARZ model on a junction
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Introduction

ARZ model on a junction

(continued)

@ ARZ model [1, 10] on each branch (/)

Opi + Ox (pivi) = 0,
Ot (piw;) + Ox (piviw;) = 0, (1)
w; == v; + pi(pi)

@ Coupling conditions needed to ensure conservation of

@ Mass flow g = pv
@ Momentum flow gw = pvw

through the junction
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Introduction

Problem statement

@ Why ARZ model?
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Introduction

Problem statement

@ Why ARZ model?
To reproduce the capacity drop phenomenon
(4 control thanks to variable speed limits and/or ramp metering)

@ What are we looking for?
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Introduction

Problem statement

@ Why ARZ model?
To reproduce the capacity drop phenomenon
(4 control thanks to variable speed limits and/or ramp metering)

@ What are we looking for?
Well-posedness of Riemann solvers at the junction
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Outline

© Some background
@ Basics

@ Computation of the supply for second order models
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Some background Basics

Common assumptions

n+m

(A1) Conservation of the fluxes: Z pivi = Z pjvj
i= 1 =g j= n+1

=q;
(A2) Fixed assignment coefficients:
n+m n
= (Oz_,';),-’j € [0, 1], s.t. Z Qji = 1 and qj = Zaj;q;
j=n+1 i=1

(A3) Bounds on the fluxes

0<qgi <A, i=1...,n,
0<q <%, j=n+1....,n4+ m,

A; demand and % ; supply
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Some background Basics

Common assumptions

(A4) Maximization of the total incoming fluxes:

n
max E qgi
i=1
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Some background Basics

Common assumptions

(A4) Maximization of the total incoming fluxes:

n
max E qgi
i=1

Literature:
@ ARZ model
@ Garavello-Piccoli [4]

Herty-Rascle [7]

o Herty-Moutari-Rascle [6]

@ Haut-Bastin [5]
@ Phase Transition model

@ Colombo, Goatin, Piccoli [2]

o Garavello, Marcellini [3]

©

o Engineering community: Lebacque’s works [9, 8]
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Some background Basics

Common assumptions

(A4) Multi-objective optimization of the incoming fluxes:

max (qi,---,qn)

and for any fixed P = (P1,..., P,) such that P; €]0,1[ and

7 . P; =1, the ratio _a
2= P 21 i

is the closest to P,
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Some background Computation of the supply for second order models
Demand and supply

pv
A
o i Di(p,w)
4 |
|
|
,,,,,, |
| |
| p= p(w —pi(p)) ‘ 0
! oi(w)
|
| pu
| - 4
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Some background Computation of the supply for second order models

Downstream density perceived by upstream traffic

(prwn) (pr,wr)

ﬁ" Pr

The velocity is conserved through a contact discontinuity!
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Outline

© Riemann solver
@ General 1-to-m diverge

@ 2-to-1 merge
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General L-to-m diverge
RS for a 1-to-m diverge (m > 1)

1,’ 5\\
\ 1
q2
PASERRN q1 (2)
' \
\ /'
- () (m+1)
qm+1
1, \\
\ 1
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General L-to-m diverge
RS for a 1-to-m diverge (m > 1)

o Initial states ((p1,0,v1,0), (P2,0:v20) - - - (Pm+1,0, Vm+1,0))
@ Multi-optimization = optimization of the total through-flow

max g1
1xm
@ Set of admissible states
0<q1 <Ay }
Q = eR )
Lxm {ql ‘ 0<q=0apq <%, Vj
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General L-to-m diverge
RS for a 1-to-m diverge (m > 1)

Solution for a 1-to-m diverge

=min< A —Z
o mn{an | oow)
qj = @141, Vi=2,....m+1
with
Ay = Dy (p1,0,w1)
Z—S( Y(max{0,w; — va}), Wl) Vi=2,...,m+1
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Riemann solver General 1-to-m diverge

Example of a 1 x 1 junction

\ 4
v

(p1,w1) (P2, w2)

q1 = g2 = min {D1(p1,0,w1) , S2(f2, w1)}

where

P2 = p5 ' (max{0, w1 — va0})
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[NEWEULEE VI  2-to-1 merge

Case of a 2 X 1 merge

R L5
(1)
q3 ‘,"\\
(3)
q2
)
g3 =q1+q2

+ initial conditions

((01,07 V1,o)7 (Pz,o, V2,o), (/)3,07 V3,o))

Second order models on junctions Valbonne, July 04, 2017

18 / 46



[NEWEULEE VI  2-to-1 merge

Example of a 2 x 1 merge

(continued)

Multi-objective optimization problem

gﬁaX(ql, q2)

2x1
with
0 < a1 < Alv

Qox1 =< (q1,q2) € R? 0 < g2 < Ay,
0<qg3=q1+ g < 23(q1,92)

Aj = Di(pio,wi), i=1,2
Y3(q1,92) = S3(p3, W)
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[NEWEULEE VI  2-to-1 merge

Example of a 2 x 1 merge

(continued)

Multi-objective optimization problem

gﬁaX(ql, q2)

2x1
with
O S qi S A17
Qox1 = { (q1, q2) € R? 0 < g2 < Ay,
0<g3=0q1+q < X3(q1,92)
] = a1 W
A; = Di(pi o, Wi)l = 1,2 at+tae g+
23(q1, 92) = S3(f3, W) p3 = p3t (max{0, W — v3o})
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izl T
First property

Proposition (Convexity of the feasible set)
The set of admissible states Q2«1 is non-empty and convex. J
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[NEWEULEE VI  2-to-1 merge

First property

Proposition (Convexity of the feasible set)

The set of admissible states Q2«1 is non-empty and convex.

Sketch of the proof:

] (0,0) € Q2><1

@ Classical convexity proof: take two points on the boundary of 541

and show that a convex combination of these two points still belongs
to the set
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[NEWEULEE VI  2-to-1 merge

Analysis of the supply

Assume 3z € [0, 1] such that

{ql = z(q1 + q2)
2= (1—-2)(q1+q2)

Define
23(z) = 3(q1, q2)
and set
Aw =w; — wy
Second order models on junctions
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[NEWEULEE VI  2-to-1 merge

v
0 ne) Ss(2)

q1
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[NEWEULEE VI  2-to-1 merge

Local optima

o lfAw>0
» @ P* local minimum for
z qi1(z) = z2X3(2)
o P** local maximum for
0 z— q(z)=(1- z)i3(z)

o If Aw <0
@ P*is a local maximum for
z— qi1(z) = zX3(2)
e P is a local minimum for
p q2(z) = (1 - 2)x3(2)
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[NEWEULEE VI  2-to-1 merge

Riemann solver for the 2-to-1 merge

Algorithm

Consider given pressure functions p;(p) and initial conditions.
© Fix a priority ratio P €]0, 1]
@ Compute

F(P) = min{%, 1f2p,i3(P)}
with
23(P) = S3(pp, ip)
and Wp = Pwy + (1 — P)w, and pp = p3* (max{0, wp — v30})
© Distinguish the different cases
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[NEWEULEE VI  2-to-1 merge

Set
G = P¥3(P) and & =(1—P)xs(P)
gi = P*S3(P*) and g3 = (1— P*)Z3(P*)
QIf
Aw =0, or
Aw <0 and P <P, or
Aw >0 and P> P,
we choose

g1 = min{A1, max{§1,23(q1,q2) — q2}},
g2 = min{Az, max{g2, X3(q1,92) — q1}}.
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[NEWEULEE VI  2-to-1 merge

QIf
Aw <0 and P> P*,

then

g2 = min {A2, max {g3,¥3(q1,92) — q1}} .

Computation of gi:

o If 5
F(P)=x3(P) and  q; < Ao,
we apply
q1 = min{qy, Ar}.
@ Otherwise

g1 = min {Ag, max{G1, X3(q1,92) — g2} } .

© Thecase Aw >0 and P < P** treated analogously to case 2.
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Caligies
Easy case Aw =0

2 3 is a constant

q1
A

Ay

PZg - ------"-"=---53--=
2y — A

7,
I
1
1
a-

&
I
g
|“4.-----
e
v
5

—~
—_
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[NEWEULEE VI  2-to-1 merge

A
Subcase 1: F(P) = ?1

q2

A

N: G+ Q2
Ay -

>
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[NEWEULEE VI  2-to-1 merge

g1 = A

A
Subcase 1: F(P) = —

P

@2 = min { Ag,max |(1 - P)E3(P). T3(A1.q2) ~ Ay }

q2
A
Y3=q1+ ¢
A2 \I\ x"‘
A'2 PR
¢"’
L. ‘1-P
.’ P
- > q
0 A

G. Costeseque
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AV
1_P

Subcase 2: F(P) =

q2 .
A !
]
1
\:\ Y3=q1+ ¢
1
AQ '- \
1
L]
]
]
1
]
1
1
1
1—PF
. L
P
]
|
> g
Ay
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AV
1_P

Subcase 2: F(P)
qi — min {Al, max |:Pi3(P), 23((]1, AQ) — A2:| }

{Clz = Ao

q2 '
A .
)
n
\"\ Ma=q1+ 2
1
AZ B
1)
)
1)
)
1)
)
L
1
NIy
B |
' P
r
]
> q
0 A A
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Subcase 3: F(P) = ¥3(P) and P < P*

g2
A
'\—:,'), = ({1 f q2 PRe
Ay .
(1 — P)s(P) Pareto front
¢" l
JT.»"‘I'—P* |
‘ > q

0 PS4(P)A

G. Costeseque
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Subcase 3: F(P) = ¥3(P) and P < P*

q1 =

a2

G. Costeseque

.
.
.

-
o
|
.
.
.
.
.

Pareto front
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Subcase 4: F(P) = ¥3(P) and P > P*

(a) If g <Ajand g3 < Ao

q2

A

Pareto front

v

(l *P*) :;(P*> ________ _
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N Ll >to-t merge
Subcase 4: F(P) = ¥3(P) and P > P*

(a) If g <Ajand g3 < Ao

= gi = P*E5(P*)
G2 = q3 = (1 P*)E3(P")

Pareto front
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Subcase 4: F(P) = ¥3(P) and P > P*

(b) If gf <Ay and g5 > Ay

q2

A,
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Subcase 4: F(P) = ¥3(P) and P > P*

(b) If g7 < Aj and g5 > Ay

g1 = 23(q1,A2) — Ay
@ =Ar

q2

Ay
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Subcase 4: F(P) = ¥3(P) and P > P*

(c) If gf > Ar and g2 < A

q2

t

S

Yig = q1+ Q2

Pareto fr
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Subcase 4: F(P) = ¥3(P) and P > P*

(c) If gf > Ar and g2 < A

q =14
go = go solution of q» = X3(A1,q2) — A1

and g2 > q;
q2
A
Ay
Yy =q1+q
Pareto fr¢nt
o V...
______
ideent
== T—pP > q
0 — Ay
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Subcase 4: F(P) = ¥3(P) and P > P*

(d) If qf > A1 and g2 > A > g,

q2
A

A,
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Subcase 4: F(P) = ¥3(P) and P > P*

(d) If gf > Ay and g2 > Ao > g,

g =4
g = Ar

q2

Ay
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Subcase 4: F(P) = ¥3(P) and P > P*

(e) If g7 > Ay and Az < g,

q2
A

Y3 =q1+q

Ay pp——
e mmm -————m == e
TP N >0
0 T 1
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Subcase 4: F(P) = ¥3(P) and P > P*

(e) If gf > A1 and Ay < 9,

g1 = 23(q1,A2) — Ay
g = Ao

q2

Ay

0
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