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HJ & Lax-Hopf formula

Hamilton-Jacobi equations: why and what for?

@ Smoothness of the solution (no shocks)

@ Physically meaningful quantity
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HJ & Lax-Hopf formula

Hamilton-Jacobi equations: why and what for?

Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution

Efficient computational methods

e © 6 ¢ ¢

Easy integration of GPS data

[MAZARE ET AL, 2012]
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HJ & Lax-Hopf formula

Hamilton-Jacobi equations: why and what for?

Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution N

Efficient computational methods

e © 6 ¢ ¢

Easy integration of GPS data

[MAZARE ET AL, 2012]

Everything broken for network applications?
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Motivation

Network model

Simple case study: generalized three-detector problem (NEWELL (1993))

A
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Motivation

A special network = junction
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Motivation

A special network = junction

HJy

HJ3

Junction J
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Outline

@ Notations from traffic flow modeling
© Basic recalls on Lax-Hopf formula(s)
© Hamilton-Jacobi on networks

O New approach
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Notations from traffic flow modeling
Outline

@ Notations from traffic flow modeling
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Notations from traffic flow modeling

Convention for vehicle labeling

Flow

v
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Notations from traffic flow modeling

Three representations of traffic flow

Moskowitz' surface

Flow

See also [MAKIGAMI ET AL, 1971], [LAVAL AND LECLERCQ, 2013]
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Notations from traffic flow modeling

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangian
t—Xx t—n
Variable Density p Spacing r
CL
Equation ‘ Oep + 0xQ(p) =0 ‘ ‘ Oer + 0 V(r) =0 ‘
Variable Label N Position X
+00 +oo
Mex) = [ pleode | X = [ (e
HJ x n
Equation | |9:N + H (0,N) = 0] [0:X +V (0,X) = 0|

Hamiltonian
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Basic recalls on Lax-Hopf formula(s)

Outline

© Basic recalls on Lax-Hopf formula(s)
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulae

Basic idea

First order Hamilton-Jacobi equation

us + H(Du) =0, in R" x (0,+400) (1)
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us + H(Du) =0, in R" x (0,+400) (1)

Family of simple linear solutions

uP(t,x) = ax — H(a)t + 3, forany aeR", BeR
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulae

Basic idea

First order Hamilton-Jacobi equation

us + H(Du) =0, in R" x (0,+400) (1)

Family of simple linear solutions

uP(t,x) = ax — H(a)t + 3, forany aeR", BeR

Idea: envelope of elementary solutions (E. HoPF 1965 [5])
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulae

Lax-Hopf formulae

Consider Cauchy problem

{ut + H(Du) =0, in R"x (0,+00), )

u(.,0) = wo(.), on R".

Two formulas according to the smoothness of
@ the Hamiltonian H

@ the initial data ug
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulae

Lax-Hopf formulae

Assumptions: case 1
(A1) H:R" — R is convex
(A2) ug : R"™ — R is uniformly Lipschitz

Theorem (First Lax-Hopf formula)
If (A1)-(A2) hold true, then

u(x, t) == Zigﬂgnysgﬂgn [uo(z) + y.(x — 2) — tH(y)] (3)

is the unique uniformly continuous viscosity solution of (2).
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulae

Lax-Hopf formulae
(Continued)

Assumptions: case 2
(A3) H:R" — R is continuous
(A4) ug: R™ — R is uniformly Lipschitz and convex

Theorem (Second Lax-Hopf formula)
If (A3)-(A4) hold true, then

u(x, t) := sup inﬂgn [uo(2) + y.(x — 2) — tH(y)] (4)
yeRnZE

is the unique uniformly continuous viscosity solution of (2).
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulae

Legendre-Fenchel transform

First Lax-Hopf formula (3) can be recast as

u(x,t) == inf [Uo(z) i <X—z)]

zERN t

thanks to Legendre-Fenchel transform

L(z) = H*(z) := sup (y.z = H(y)).

yER?
Proposition (Bi-conjugate)
) ) . . Hlp)
If H is strictly convex, 1-coercive i.e. lim ———= = 400,
_ lpl—oo [Pl
then H* is also convex and
(H*)* = H.
HJ equations & traffic IPAM, Oct. 01, 2015 15 / 49
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Basic recalls on Lax-Hopf formula(s) [MAYETN=0S¢EN]

LWR in Eulerian (t, x)

@ Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)
g=0:N and p=—-0«N
@ If density p satisfies the scalar (LWR) conservation law
dtp + 0:Q(p) =0
@ Then N satisfies the first order Hamilton-Jacobi equation

DN — Q(—dxN) =0 (5)
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Basic recalls on Lax-Hopf formula(s) [MAYETN=0S¢EN]

LWR in Eulerian (t, x)

@ Legendre-Fenchel transform with Q concave (relative capacity)
M(q) = sup [Q(p) — pal
p

Transform M
A

Flow §

A

N —WPmax

1 Density p w u
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Basic recalls on Lax-Hopf formula(s) [MAYETN=0S¢EN]

LWR in Eulerian (t, x)

(continued)

@ Lax-Hopf formula (representation formula) [DAGANZO, 2006]

4+ Space
N(T XT mltn / M dT + N(to,Xo)
(to,0)
X(r (T.x7)
ue Z/{
X(to) =x, X(T)=xr (15,0)
(to,x0) € T
(6) J Time

@ Viability theory [CLAUDEL AND BAYEN, 2010]
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Basic recalls on Lax-Hopf formula(s) [MAYETN=0S¢EN]

LWR in Eulerian (t, x)

(Historical note)

@ Dynamic programming [DAGANZO, 2006] for triangular FD
(u and w free and congested speeds)

Space

Flow, §

Density. p

T
0 Prmax

@ Minimum principle [NEWELL, 1993]

N(t,x) = min [N <t— X_Xu,xu>,

u

X — X
N <t - TW,XW> +pmax(Xw _X) )
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Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian

LWR in Lagrangian (n, t)

o Consider X(t, n) the location of vehicle n at time t > 0
v=0:X and r=-0,X
@ If the spacing r := 1/p satisfies the LWR model (Lagrangian coord.)
Orr +0,V(r) =0

with the speed-spacing FD V : r +— J(1/r),

@ Then X satisfies the first order Hamilton-Jacobi equation

BeX — V(—8,X) = 0. (8)
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Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian

LWR in Lagrangian (n, t)

(continued)

@ Legendre-Fenchel transform with )V concave
M(u) =sup [V(r)— ru].
r

@ Lax-Hopf formula

X(T,nT)— m|n /M (1))dT + X(to, no),

,(to,no)
N —u
9
uel ©)
N(to) = nop, N(T) =nr
(to,mo) € J
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Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian

LWR in Lagrangian (n, t)

(continued)

@ Dynamic programming for triangular FD

Label

Speed,V 4

Spacing,

1/ Pmax 1/ pesie

@ Minimum principle = car following model [NEWELL, 2002]
X(t,n) = min [X(to, n) + u(t — to),

(10)
X(to, n+ wpmax(t — to)) + w(t — t)].
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Hamilton-Jacobi on networks
Outline

© Hamilton-Jacobi on networks
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Hamilton-Jacobi on networks

Space dependent Hamiltonian

Consider HJ equation posed on a junction J

{Ut + H(X7 UX) =0, on Jx (07 +OO)’ (11)

u(t =0,x) = g(x), on J

Extension of Lax-Hopf formula(s)?
@ No simple linear solutions for (11)

@ No definition of convexity for discontinuous functions
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Hamilton-Jacobi on networks Literature for HJ equations

Hamilton-Jacobi on networks
(IMBERT-MONNEAU, 2014)

H Hy
uf + H; (ul) =0, for x¢c Jj, x#0,
ur + F (X, Usys ..oy Uyy) =0, for x= m
Hl,
continuous
Hamiltonians H;: quasi-convex
coercive

Junction functions F: continuous and non-increasing

Comments:
@ Discontinuous HJ equations

@ Can be seen as systems of HJ equations
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Hamilton-Jacobi on networks Literature for HJ equations

Junction condition of optimal control type
(IMBERT-MONNEAU, 2014)

Fa(p) = max { A, max H(p;)}
with H;” the non-increasing envelope of H;

A

G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015
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Hamilton-Jacobi on networks Literature for HJ equations

Any junction model reduces to a F4 solution
(IMBERT-MONNEAU, 2014)

Theorem (Equivalence between junction models (IMBERT-MONNEAU [6]))

For any function G : RN — R that is continuous and non-increasing,
solving the following equation

ul 4+ H;(ul) =0, for xeJi, x#0,
us + G(Du) = 0, for x=0,

is strictly equivalent to solve

ul + H; (u;) =0, for x € Ji, x#0,
ur + Fa(Us, ... Uxy) =0, for x=0

for an appropriate F where A depends on G.
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Hamilton-Jacobi on networks Lax-Hopf formula

Optimal control in J
(IMBERT-MONNEAU-ZIDANI, 2013)

If p— H(x, p) convex,
Then

u(t,x) = {X(O):)i/?f;((t):x} {uo(y) + /Ot L (X(T),X(T)) dT}

L,-(q) if xeJ,
where L(x,q) = min ( —A, rlninN L,-(q)), if x=0.

solves the Cauchy problem

Oru+ H(x,0xu) =0, if xedJ, x#0,
Oru + Fp (0xu) =0, if x=0,
u(0,x) = up(x)
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Hamilton-Jacobi on networks Lax-Hopf formula

Dirichlet boundary conditions
(IMBERT-MONNEAU, 2014)

Oru~+ 0y (H(u)) =0, if x>0,
u(t,0) = up, at x=0.

Bardos, LeRoux, Nédélec boundary condition
H(u;) = max {H (u;), H* (up)}

where u. = u(t,0).

G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015

29 / 49



Hamilton-Jacobi on networks Lax-Hopf formula

Link with literature
(IMBERT-MONNEAU, 2014)

@ Optimal control

o N = 2: Adimurthi-Gowda-Mishra (2005)
o N> 3:

o Achdou-Camilli-Cutri-Tchou (2012)
@ Imbert-Monneau-Zidani (2013)

@ Constrained scalar conservation laws

o Colombo-Goatin (2007)
@ Andreianov-Goatin-Seguin (2010)

@ BLN condition

o Lebacque condition (1996) if N =1 and A= H"(up)
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Hamilton-Jacobi on networks Lax-Hopf formula

Link with literature

(continued)

@ HJ and state constraints

o Soner, Capuzzo-Dolcetta — Lions, Blanc
@ Frankowska — Plaskacz
@ HJ on networks
@ Schieborn (PhD thesis 2006)
o Achdou — Camilli — Cutri — Tchou (NoDEA 2012)
o Camilli — Schieborn (2013)
Imbert — Monneau — Zidani (COCV 2013)

@ Regional optimal control and ramified spaces
Bressan — Hong (2007)
o Barles — Briani — Chasseigne (2013, 2014)
o Rao — Zidani (2013), Rao — Siconolfi — Zidani (2014)
@ Barles — Chasseigne (2015)
@ HJ equations with discontinuous source terms
o Giga — Hamamuki (CPDE 2013)
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Hamilton-Jacobi on networks Literature with application to traffic

Junction models

Classical approaches for CL:
@ Macroscopic modeling on (homogeneous) sections

@ Coupling conditions at (pointwise) junction

For instance, consider

pe +(Q(p)), =0, scalar conservation law,
p(,,t=0)=po(.), initial conditions, (12)
P(p(x =07,t),p(x =07,t)) =0, coupling condition.

See Garavello, Piccoli [4], Lebacque, Khoshyaran [8] and Bressan et al. [1]
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Hamilton-Jacobi on networks Literature with application to traffic

Examples of junction models

@ Model with internal state (= buffer(s))
BRrESSAN & NGUYEN (NHM 2015) [2]

@ p— Q(p) strictly concave

@ advection of ;;(t, x) turning ratios from (i) to (§)
(GSOM model with passive attribute)

@ internal dynamics of the buffers (ODEs): queue lengths

@ Extended Link Transmission Model
Jin (TR-B 2015) [7]
@ Link Transmission Model (LTM) YPERMAN (2005, 2007)
@ Triangular diagram

Q(p) = min{up, w(pmax —p)} forany p € [0, pmax]

o Commodity = turning ratios ~;i(t)
o Definition of boundary supply and demand functions
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Outline

O New approach
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New approach Settings

First remarks

If N solves
N+ H(Ny) =0

then N = N + ¢ for any ¢ € R is also a solution
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New approach Settings

First remarks

If N solves
N+ H(Ny) =0
then N = N + ¢ for any ¢ € R is also a solution
Ni(t, x) @ No a priori relationship between initial
conditions

Ni(e.x) @ N¥(t,x) consistent along the same
branch J, and

O:NO(t) = Z ON' (t,x=107)

=Y 0N (t,x=07)

NO(t) J
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S
Key idea

Assume that H is piecewise linear (triangular FD)
Ne + H (Ny) = 0
with
H(p) = max{H"(p) , H™(p)}
——

——
supply demand

G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 36 / 49



S
Key idea

Assume that H is piecewise linear (triangular FD)

Ne + H(Ny) =0
with
H(p) = max{H"(p) , H™(p)}
—— ~——
supply demand

Partial solutions N* and N~ that solve resp.

N+ HE (NS) =0,
such that N =min{N~,NT}
Ny +H (N;)=0

@ Upstream demand advected by waves moving forward
@ Downstream supply transported by waves moving backward
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New approach Mathematical expression

Junction model

Optimization junction model (Lebacque’s talk)

LEBACQUE, KHOSHYARAN (2005) [8]

max Z ¢i(qi) + Z ¥i(r)

s.t.

0<gqi
qi <9;
0<r
< 0j
0=rj =27

where ¢;, 1); are concave, non-decreasing

G. Costeseque (Inria SAM)
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New approach Mathematical expression

Example of optimization junction models

@ Herty and Klar (2003)

@ Holden and Risebro (1995)

o Coclite, Garavello, Piccoli (2005)
@ Daganzo's merge model (1995) [3]

q?
i(Gi) = Nmax ( Gi — 5——
¢(q) 2 (q 2piqi,max>
Y=0

where p; is the priority of flow coming from road i and Npax = ¢/(0)
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New approach Mathematical expression

Solution of the optimization model
LEBACQUE, KHOSHYARAN (2005)

Karush-Kuhn-Tucker optimality conditions:

@ For any incoming road /

Qb:‘(qi)‘i‘zsk')/ik_)\i =0, AN>0, g <96 and X\(gi—0d;)=0,
K

@ and for any outgoing road j
Ui() =5 —=A=0, X>0, r<o; and Xj(r—0;)=0,

where (sj, \j) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers)
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New approach Mathematical expression

Solution of the optimization model
LEBACQUE, KHOSHYARAN (2005)

[05]< ( Z%ksk)) for any i,
(14)

=T (¥1)7H(s) » forany J,

Ik is the projection operator on the set

Jj I
Zi Vi
Z,‘ qi ’ \‘ !
‘ > Sj
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New approach Mathematical expression

Model equations

NI + H;(N.) =0, for any x #£0,

at x=0,

8tNi(tvx_) = qi(t)7
ath(t,X+) = rj(t)v

Ni(t = 0,x) = Nj(x),

atNi(t,X = f,) = A,’(I‘),

LN (t, x = x;j) = Z;(t)
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SEE i G
Algorithm

Inf-morphism property: compute partial solutions for
@ initial conditions
@ upstream boundary conditions
@ downstream boundary conditions

@ internal boundary conditions

© Propagate demands forward

@ through a junction, assume that the downstream supplies are maximal
© Propagate supplies backward

@ through a junction, assume that the upstream demands are maximal
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New approach Application to simple junctions

Spatial discontinuity

Time
A

Upstream condition

Downstream condition
\ . /

Space

Initial condition
Flow

@ (u)

Density
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New approach Application to simple junctions
Diverge
Junction model

. / max | ¢(q) + Z ¥i(r)

—>

0<g<9é
st. |0< <o vj

O=r—nq Vi

whose solution is

g =g < @)~ ( Z’YM))

= F[o,aj] ((wJ’-)_l(sj)) , for any
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New approach Application to simple junctions

Merge

Junction model

N, max [Z i(qi) +¥(r)
' i
0<q <9 Vi
/ st. | 0<r<go

0=r—2qi

Q

whose solution is

=Ts) ((0) " (=s)),  forany i,

r="Tpo ((¥)71(s))
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Conclusion and perspectives

Final remarks

In a nutshell:
@ Importance of the supply/demand functions
@ General optimization problem at the junction

@ No explicit solution right now

Perspectives:
@ Estimation on networks
@ Stability states (Jin's talk)
@ Nash equilibria (Bressan's talk)
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