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Hamilton-Jacobi equations: why and what for?

Smoothness of the solution (no shocks)

Physically meaningful quantity

Analytical expression of the solution

Efficient computational methods

Easy integration of GPS data

[Mazaré et al, 2012]

Everything broken for network applications?
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Motivation

Network model

Simple case study: generalized three-detector problem (Newell (1993))

N(t, x)
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Motivation
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Notations from traffic flow modeling

Convention for vehicle labeling

N
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Notations from traffic flow modeling

Three representations of traffic flow

Moskowitz’ surface
F
lo
w x

t

N

x

See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
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Notations from traffic flow modeling

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangian
t − x t − n

CL
Variable Density ρ Spacing r

Equation ∂tρ+ ∂xQ(ρ) = 0 ∂t r + ∂xV (r) = 0

HJ

Variable Label N Position X

N(t, x) =

∫ +∞

x

ρ(t, ξ)dξ X (t, n) =

∫ +∞

n

r(t, η)dη

Equation ∂tN + H (∂xN) = 0 ∂tX + V (∂xX ) = 0

Hamiltonian H(p) = −Q(−p) V(p) = −V (−p)

G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 9 / 49
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ

Basic idea

First order Hamilton-Jacobi equation

ut + H(Du) = 0, in R
n × (0,+∞) (1)
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ

Basic idea

First order Hamilton-Jacobi equation

ut + H(Du) = 0, in R
n × (0,+∞) (1)

Family of simple linear solutions

uα,β(t, x) = αx − H(α)t + β, for any α ∈ R
n, β ∈ R

Idea: envelope of elementary solutions (E. Hopf 1965 [5])
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ

Lax-Hopf formulæ

Consider Cauchy problem

{

ut + H(Du) = 0, in R
n × (0,+∞),

u(., 0) = u0(.), on R
n.

(2)

Two formulas according to the smoothness of

the Hamiltonian H

the initial data u0
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ

Lax-Hopf formulæ

Assumptions: case 1

(A1) H : Rn → R is convex

(A2) u0 : R
n → R is uniformly Lipschitz

Theorem (First Lax-Hopf formula)

If (A1)-(A2) hold true, then

u(x , t) := inf
z∈Rn

sup
y∈Rn

[u0(z) + y .(x − z)− tH(y)] (3)

is the unique uniformly continuous viscosity solution of (2).

G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 13 / 49



Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ

Lax-Hopf formulæ
(Continued)

Assumptions: case 2

(A3) H : Rn → R is continuous

(A4) u0 : R
n → R is uniformly Lipschitz and convex

Theorem (Second Lax-Hopf formula)

If (A3)-(A4) hold true, then

u(x , t) := sup
y∈Rn

inf
z∈Rn

[u0(z) + y .(x − z)− tH(y)] (4)

is the unique uniformly continuous viscosity solution of (2).
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Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ

Legendre-Fenchel transform

First Lax-Hopf formula (3) can be recast as

u(x , t) := inf
z∈Rn

[

u0(z)− tH∗

(
x − z

t

)]

thanks to Legendre-Fenchel transform

L(z) = H∗(z) := sup
y∈Rn

(y .z − H(y)) .

Proposition (Bi-conjugate)

If H is strictly convex, 1-coercive i.e. lim
|p|→∞

H(p)

|p|
= +∞,

then H∗ is also convex and

(H∗)∗ = H.
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Basic recalls on Lax-Hopf formula(s) LWR in Eulerian

LWR in Eulerian (t, x)

Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)

q = ∂tN and ρ = −∂xN

If density ρ satisfies the scalar (LWR) conservation law

∂tρ+ ∂xQ(ρ) = 0

Then N satisfies the first order Hamilton-Jacobi equation

∂tN − Q(−∂xN) = 0 (5)

G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 16 / 49



Basic recalls on Lax-Hopf formula(s) LWR in Eulerian

LWR in Eulerian (t, x)

Legendre-Fenchel transform with Q concave (relative capacity)

M(q) = sup
ρ

[Q(ρ)− ρq]

M(q)

u

w

Density ρ

q

q

Flow F

w u

q

Transform M

−wρmax
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Basic recalls on Lax-Hopf formula(s) LWR in Eulerian

LWR in Eulerian (t, x)
(continued)

Lax-Hopf formula (representation formula) [Daganzo, 2006]

N(T , xT ) = min
u(.),(t0,x0)

∫ T

t0

M(u(τ))dτ + N(t0, x0),

∣
∣
∣
∣
∣
∣
∣
∣

Ẋ = u
u ∈ U
X (t0) = x0, X (T ) = xT
(t0, x0) ∈ J

(6) Time

Space

J

(T , xT )Ẋ (τ )

(t0, x0)

Viability theory [Claudel and Bayen, 2010]
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Basic recalls on Lax-Hopf formula(s) LWR in Eulerian

LWR in Eulerian (t, x)
(Historical note)

Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)

Flow ,F

w

u

0 ρmax

Density , ρ

u

x

w

t

Time

Space

(t, x)

Minimum principle [Newell, 1993]

N(t, x) = min
[

N

(

t −
x − xu

u
, xu

)

,

N

(

t −
x − xw

w
, xw

)

+ ρmax(xw − x)
]

,

(7)
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Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian

LWR in Lagrangian (n, t)

Consider X (t, n) the location of vehicle n at time t ≥ 0

v = ∂tX and r = −∂nX

If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.)

∂tr + ∂nV(r) = 0

with the speed-spacing FD V : r 7→ I (1/r) ,

Then X satisfies the first order Hamilton-Jacobi equation

∂tX − V(−∂nX ) = 0. (8)
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Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian

LWR in Lagrangian (n, t)
(continued)

Legendre-Fenchel transform with V concave

M(u) = sup
r

[V(r)− ru] .

Lax-Hopf formula

X (T , nT ) = min
u(.),(t0,n0)

∫ T

t0

M(u(τ))dτ + X (t0, n0),

∣
∣
∣
∣
∣
∣
∣
∣

Ṅ = u
u ∈ U
N(t0) = n0, N(T ) = nT
(t0, n0) ∈ J

(9)
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Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian

LWR in Lagrangian (n, t)
(continued)

Dynamic programming for triangular FD

1/ρcrit

Speed ,V

u

−wρmax

Spacing , r

1/ρmax

−wρmax

n

t

(t, n)

Time

Label

Minimum principle ⇒ car following model [Newell, 2002]

X (t, n) = min
[

X (t0, n) + u(t − t0),

X (t0, n + wρmax(t − t0)) + w(t − t0)
]

.
(10)
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Hamilton-Jacobi on networks

Outline

1 Notations from traffic flow modeling

2 Basic recalls on Lax-Hopf formula(s)

3 Hamilton-Jacobi on networks

4 New approach
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Hamilton-Jacobi on networks

Space dependent Hamiltonian

Consider HJ equation posed on a junction J

{

ut + H(x , ux) = 0, on J × (0,+∞),

u(t = 0, x) = g(x), on J
(11)

Extension of Lax-Hopf formula(s)?

No simple linear solutions for (11)

No definition of convexity for discontinuous functions
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Hamilton-Jacobi on networks Literature for HJ equations

Hamilton-Jacobi on networks
(Imbert-Monneau, 2014)

{

uit + Hi

(
uix
)
= 0, for x ∈ Ji , x 6= 0,

ut + F (x , ux1 , . . . , uxN ) = 0, for x = 0

HJ4

HJ2

HJ1

HJ3

Hamiltonians Hi :







continuous
quasi-convex
coercive

Junction functions F : continuous and non-increasing

Comments:

Discontinuous HJ equations

Can be seen as systems of HJ equations
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Hamilton-Jacobi on networks Literature for HJ equations

Junction condition of optimal control type
(Imbert-Monneau, 2014)

FA(p) = max
{

A, max
i=1,...,N

H−
i (pi )

}

with H−
i the non-increasing envelope of Hi

pi

Hi

H−
i

G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 26 / 49



Hamilton-Jacobi on networks Literature for HJ equations

Any junction model reduces to a FA solution
(Imbert-Monneau, 2014)

Theorem (Equivalence between junction models (Imbert-Monneau [6]))

For any function G : RN → R that is continuous and non-increasing,
solving the following equation

{

uit + Hi (u
i
x) = 0, for x ∈ Ji , x 6= 0,

ut + G (Du) = 0, for x = 0,

is strictly equivalent to solve

{

uit + Hi

(
uix
)
= 0, for x ∈ Ji , x 6= 0,

ut + FA (ux1 , . . . , uxN ) = 0, for x = 0

for an appropriate FA where A depends on G.
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Hamilton-Jacobi on networks Lax-Hopf formula

Optimal control in J
(Imbert-Monneau-Zidani, 2013)

If p 7→ H(x , p) convex,
Then

u(t, x) = inf
{X (0)=y , X (t)=x}

{

u0(y) +

∫ t

0
L
(

X (τ), Ẋ (τ)
)

dτ

}

where L(x , q) =







Li(q) if x ∈ Ji ,

min
(

− A, min
i=1,...,N

Li (q)
)

, if x = 0.

solves the Cauchy problem







∂tu + H (x , ∂xu) = 0, if x ∈ J, x 6= 0,

∂tu + FA (∂xu) = 0, if x = 0,

u(0, x) = u0(x)
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Hamilton-Jacobi on networks Lax-Hopf formula

Dirichlet boundary conditions
(Imbert-Monneau, 2014)

{

∂tu + ∂x (H(u)) = 0, if x > 0,

u(t, 0) = ub, at x = 0.

Bardos, LeRoux, Nédélec boundary condition

H(uτ ) = max
{
H−(uτ ),H

+(ub)
}

where uτ = u(t, 0).
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Hamilton-Jacobi on networks Lax-Hopf formula

Link with literature
(Imbert-Monneau, 2014)

Optimal control

N = 2: Adimurthi-Gowda-Mishra (2005)
N ≥ 3:

Achdou-Camilli-Cutŕı-Tchou (2012)
Imbert-Monneau-Zidani (2013)

Constrained scalar conservation laws

Colombo-Goatin (2007)
Andreianov-Goatin-Seguin (2010)

BLN condition

Lebacque condition (1996) if N = 1 and A = H+(ub)
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Hamilton-Jacobi on networks Lax-Hopf formula

Link with literature
(continued)

HJ and state constraints
Soner, Capuzzo-Dolcetta – Lions, Blanc
Frankowska – Plaskacz

HJ on networks
Schieborn (PhD thesis 2006)
Achdou – Camilli – Cutŕı – Tchou (NoDEA 2012)
Camilli – Schieborn (2013)
Imbert – Monneau – Zidani (COCV 2013)

Regional optimal control and ramified spaces

Bressan – Hong (2007)
Barles – Briani – Chasseigne (2013, 2014)
Rao – Zidani (2013), Rao – Siconolfi – Zidani (2014)
Barles – Chasseigne (2015)

HJ equations with discontinuous source terms
Giga – Hamamuki (CPDE 2013)
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Hamilton-Jacobi on networks Literature with application to traffic

Junction models

Classical approaches for CL:

Macroscopic modeling on (homogeneous) sections

Coupling conditions at (pointwise) junction

For instance, consider







ρt + (Q(ρ))x = 0, scalar conservation law,

ρ(., t = 0) = ρ0(.), initial conditions,

ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition.

(12)

See Garavello, Piccoli [4], Lebacque, Khoshyaran [8] and Bressan et al. [1]
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Hamilton-Jacobi on networks Literature with application to traffic

Examples of junction models

Model with internal state (= buffer(s))
Bressan & Nguyen (NHM 2015) [2]

ρ 7→ Q(ρ) strictly concave
advection of γij(t, x) turning ratios from (i) to (j)
(GSOM model with passive attribute)
internal dynamics of the buffers (ODEs): queue lengths

Extended Link Transmission Model
Jin (TR-B 2015) [7]

Link Transmission Model (LTM) Yperman (2005, 2007)
Triangular diagram

Q(ρ) = min {uρ, w(ρmax − ρ)} for any ρ ∈ [0, ρmax ]

Commodity = turning ratios γij(t)
Definition of boundary supply and demand functions
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New approach

Outline

1 Notations from traffic flow modeling

2 Basic recalls on Lax-Hopf formula(s)

3 Hamilton-Jacobi on networks

4 New approach
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New approach Settings

First remarks

If N solves
Nt + H (Nx) = 0

then N̄ = N + c for any c ∈ R is also a solution

G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 35 / 49



New approach Settings

First remarks

If N solves
Nt + H (Nx) = 0

then N̄ = N + c for any c ∈ R is also a solution

N i(t, x)

N0(t)

N j(t, x)

(j)

(i)

No a priori relationship between initial
conditions

Nk(t, x) consistent along the same
branch Jk and

∂tN
0(t) =

∑

i

∂tN
i
(
t, x = 0−

)

=
∑

j

∂tN
j
(
t, x = 0+

)
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New approach Settings

Key idea

Assume that H is piecewise linear (triangular FD)

Nt + H (Nx) = 0

with
H(p) = max{H+(p)

︸ ︷︷ ︸

supply

, H−(p)
︸ ︷︷ ︸

demand

}
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New approach Settings

Key idea

Assume that H is piecewise linear (triangular FD)

Nt + H (Nx) = 0

with
H(p) = max{H+(p)

︸ ︷︷ ︸

supply

, H−(p)
︸ ︷︷ ︸

demand

}

Partial solutions N+ and N− that solve resp.







N+
t + H+ (N+

x ) = 0,

N−
t + H− (N−

x ) = 0

such that N = min
{
N−,N+

}

Upstream demand advected by waves moving forward

Downstream supply transported by waves moving backward
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New approach Mathematical expression

Junction model

Optimization junction model (Lebacque’s talk)
Lebacque, Khoshyaran (2005) [8]

max




∑

i

φi(qi ) +
∑

j

ψj(rj )





s.t.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 ≤ qi ∀i
qi ≤ δi ∀i
0 ≤ rj ∀j
rj ≤ σj ∀j
0 = rj −

∑

i γijqi ∀j

(13)

where φi , ψj are concave, non-decreasing
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New approach Mathematical expression

Example of optimization junction models

Herty and Klar (2003)

Holden and Risebro (1995)

Coclite, Garavello, Piccoli (2005)

Daganzo’s merge model (1995) [3]







φi (qi ) = Nmax

(

qi −
q2i

2piqi ,max

)

ψ = 0

where pi is the priority of flow coming from road i and Nmax = φ′i (0)
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New approach Mathematical expression

Solution of the optimization model
Lebacque, Khoshyaran (2005)

Karush-Kuhn-Tucker optimality conditions:

For any incoming road i

φ′i(qi )+
∑

k

skγik −λi = 0, λi ≥ 0, qi ≤ δi and λi(qi −δi) = 0,

and for any outgoing road j

ψ′
j (rj)− sj − λj = 0, λj ≥ 0, ri ≤ σj and λj(rj − σj) = 0,

where (sj , λj ) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers)
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New approach Mathematical expression

Solution of the optimization model
Lebacque, Khoshyaran (2005)







qi = Γ[0,δi ]

(

(φ′i )
−1

(

−
∑

k

γiksk

))

, for any i ,

rj = Γ[0,σj ]

(
(ψ′

j )
−1(sj)

)
, for any j ,

(14)

ΓK is the projection operator on the set K

∑

i qi

∑

i γijδi

σj rj

sj
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New approach Mathematical expression

Model equations







N i
t + Hi (N

i
x ) = 0, for any x 6= 0,

{

∂tN
i (t, x−) = qi (t),

∂tN
j (t, x+) = rj(t),

at x = 0,

N i (t = 0, x) = N i
0(x),

∂tN
i (t, x = ξi) = ∆i (t),

∂tN
j(t, x = χj) = Σj(t)
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New approach Mathematical expression

Algorithm

Inf-morphism property: compute partial solutions for

initial conditions

upstream boundary conditions

downstream boundary conditions

internal boundary conditions

1 Propagate demands forward

through a junction, assume that the downstream supplies are maximal

2 Propagate supplies backward

through a junction, assume that the upstream demands are maximal
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New approach Application to simple junctions

Spatial discontinuity

Time

Space

Density

Flow

Downstream condition

(u)
(d)

Upstream condition

Initial condition
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Diverge

q rj

Junction model

max



φ(q) +
∑

j

ψj(rj)





s.t.

∣
∣
∣
∣
∣
∣

0 ≤ q ≤ δ
0 ≤ rj ≤ σj ∀j
0 = rj − γjq ∀j

whose solution is






q = Γ[0,δ]

(

(φ′)−1

(

−
∑

k

γksk

))

,

rj = Γ[0,σj ]

(
(ψ′

j )
−1(sj )

)
, for any j
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Merge

rqi

Junction model

max

[
∑

i

φi (qi ) + ψ(r)

]

s.t.

∣
∣
∣
∣
∣
∣

0 ≤ qi ≤ δi ∀i
0 ≤ r ≤ σ
0 = r −

∑

i qi
whose solution is







qi = Γ[0,δi ]
(
(φ′i )

−1 (−s)
)
, for any i ,

r = Γ[0,σ]
(
(ψ′)−1(s)

)
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Conclusion and perspectives

Final remarks

In a nutshell:

Importance of the supply/demand functions

General optimization problem at the junction

No explicit solution right now

Perspectives:

Estimation on networks

Stability states (Jin’s talk)

Nash equilibria (Bressan’s talk)
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