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1 Introduction

1.1 Motivation and objectives

Real-time accurate estimation of traffic state on networks is a major issue for efficient traffic

management schemes. It is particularly the case for signalized intersections where the

majority of responsive management schemes rely on the estimation of the queue lengths.

In this work, we are concerned with Hamilton-Jacobi partial differential equations (HJ

PDE) derived from a modified LWR traffic flow model able to reproduce the boundedness

of the vehicles acceleration. We intend to develop an optimization framework in order to

estimate queue lengths on arterial traffic road networks, taking into account data from

conventional sensors and from GPS-enabled sensors. We also aim at comparing our results

on real data coming from the NGSIM Lankershim Boulevard dataset, using the LWRmodel

with and without the bounded acceleration.

1.2 Quick review of the literature

A first optimization-based method has been developed and tested in Anderson et al. (2014).

The optimal control framework relies on the one proposed in Claudel and Bayen (2011)

and explicitly established in Canepa and Claudel (2012) for triangular Hamiltonian and

piecewise affine conditions. However, the work of Anderson and co-authors consider the
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seminal first order LWR model (Lighthill and Whitham, 1955; Richards, 1956)

∂ρ

∂t
+
∂ψ(ρ)

∂x
= 0, on (0,+∞)× R, (1)

where ρ ∈ [0, km] and q = ψ(ρ) denote respectively the density and the flow. While being

simple and robust, the LWR model doesn’t take into account the boundedness of the

vehicles acceleration. This feature can have a significant impact on the dynamics of traffic

flow, especially on arterials when a traffic light turns green.

1.3 Recalls on the LWR model with bounded acceleration

Assume a triangular fundamental diagram (FD) ψ : ρ 7→ ψ(ρ) = min {vfρ , w(ρ− km)}

where vf > 0 stands for the maximal speed and w < 0 is the congestion wave speed.

Under this assumption, the macroscopic traffic flow models taking into account a bounded

acceleration proposed in (Lebacque, 2002, 2003) and (Leclercq, 2007) are equivalent to:

∂ρ

∂t
+

∂

∂x
(ρv) = 0 with

∂v

∂t
+ v

∂v

∂x







< A, if v = Ve(ρ),

= A, if v 6= Ve(ρ),
(2)

where A is the maximal acceleration assumed to be identical for all the vehicles. Ve :

ρ 7→ Ve(ρ) denotes the equilibrium speed-density FD such that ψ(ρ) = ρVe(ρ) for any

ρ ∈ [0, km]. It is noteworthy that the vehicle trajectories in the bounded acceleration

(BA) areas, say when v 6= Ve(ρ), can be explicitly computed as parabolas. This BA phase

constitutes the single difference with the original LWR model (1).

1.4 Setting of the optimization framework

Consider a road section [ξ, χ]. TheMoskowitz function or cumulative vehicle count M(t, x)

at position x ∈ [ξ, χ] and time t > 0, is defined such that
∂M(t, x)

∂x
= −ρ(t, x). It follows

that if ρ solves (2), then M satisfies the following homogeneous HJ equation











∂M(t, x)

∂t
− ψ

(

−
∂M(t, x)

∂x

)

= 0, on (0,+∞)× [ξ, χ],

M(t, x) ≤ c(t, x), on Dom(c),

(3)

where c := min
i∈J

ci denotes the constraints. If one can define partial solutions Mci
for any

constraint ci, i ∈ J , then the global solution of (3) is given by

M(t, x) = min
i∈J

Mci
(t, x) on (0,+∞) × [ξ, χ]. (4)

Assume now that the constraints (ci)i∈J are linear functions for a decision variable y

correctly defined. Then, the model constraints which ensure that (4) holds true, can be

rewritten as linear constraints for y (see Claudel and Bayen (2011); Canepa and Claudel



(2012)), say Cmodel y ≤ bmodel. Thus, the optimal control problem (following Anderson

et al. (2014)) writes as a Mixed Integer Linear Program (MILP)

Maximize g(y)

such that







Cmodel y ≤ bmodel, (model constraints),

Cdata y ≤ bdata, (data constraints),

(5)

where g denotes the cost function (maximization of the outflows for instance). The data

constraints (Cdata, bdata) could come from (i) estimations of error on the sensors or (ii)

travel times estimates on [ξ, χ].

Thanks to the explicit solutions for the HJ PDE (3) given in Qiu et al. (2013), one

can compute the traffic states M(t, x) (or ρ(t, x)). This method is exact and it allows fast

computations in time. Notice that the boundary flows and the initial conditions are given

by y∗ := argmaxyg(y). The queues are finally deduced by delimiting the zones where the

maximal density km is computed.

2 Results and Discussions

2.1 Numerical example

The sample we use (NGSIM, 2006) was collected on a 1,600-foot stretch of the Lankershim

Boulevard in Los Angeles, CA, encompassing 4 intersections equipped with traffic signals.

The detailed trajectory data of more than 2,440 vehicles were recorded from 08:30 a.m.

to 09:00 a.m. on June 16, 2005.

On the Figure 1 below, we compare the vehicle trajectories and position of queues (in

red) with the LWR model with bounded acceleration (top), with the real trajectories data

(bottom). All lanes of the link are summed up. We have considered 10 initial condition and

360 boundary condition blocks. The estimates correspond to the scenario that minimizes

the total number of vehicles at the initial time, subject to sensor measurement data and

model constraints.

2.2 Discussion

The LWR model with bounded acceleration is of great interest for queue estimation on

arterials. The optimization-based method we develop here allow to take into account

this modified LWR model for computing queue lengths on urban networks. However, the

NGSIM dataset we use is not totally well suited to highlight the benefit of introducing the

bounded acceleration since one can notice that the trajectories of cars at the entry of the

section do not seem to be slow down by the upstream traffic light (while one can expect

that in reality this is the case for re-starting traffic).
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Figure 1: Traffic state estimation using the LWR model with bounded acceleration.
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