Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			00000	000	

Shape Statistics for Image Segmentation with Prior

Guillaume Charpiat

PhD Defense - 2006, December 13

PhD Supervisor: Olivier Faugeras

Odyssée Team - ENS INRIA ENPC

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000	000	

Image Segmentation

- Find a contour in a given image
- The best curve for a given segmentation criterion
- Criterion based on color homogeneity, texture, edge detectors, etc.

Image

Segmentation

Guillaume Charpiat

PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			00000	000	

Image Segmentation

Find the best contour for a given criterion

Variational Method

- Energy E to minimize with respect to a curve C
- Compute the derivative of the energy
- Gradient descent: $\partial_t C = -\nabla E(C)$
- Initialization \rightarrow local minimum
- Other methods: graph cuts (suitable for few energies)

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	

Image Segmentation

Find the best contour for a given criterion

Variational Method

- Minimize criterion by gradient descent with respect to the contour
- Most criteria: no shape information

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000	000	

Image Segmentation

Find the best contour for a given criterion

Variational Method

Minimize criterion by gradient descent with respect to the contour

Shape Statistics

- Sample set of contours from already segmented images
- Shape variability ?
- Shape prior ?

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

Introduction Shapes and Shape Metrics Set of Shapes Topological equivalence Variational Shape Warping Gradient Descent Generalized Gradients Approximation of the Hausdorff distance **Statistics** Mean and Modes of Variation Examples Images Segmentation with prior Shape prior (shape probability) Starfish example Boletus example

Guillaume Charpiat

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	• 0 0		0 000 00000	000 000 000	

Set of Shapes

I - Shapes and Shape Metrics Set of Shapes

- A shape: a smooth set of points in \mathbb{R}^n
- ▶ C^2 : seen as a function from its parameterization into \mathbb{R}^n
- $\mathcal{F}(h_0)$: distance to its skeleton $\geq h_0$ [D&Z]
 - curvature $\leqslant \kappa_0 = 1/h_0$
 - ▶ no double point: distance between two different parts $\ge h_0$

[D&Z]: M.C. Delfour & J.-P. Zolésio, Shapes and Geometries, 2000

Guillaume Charpiat

PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	○ ● ○	00 00 0	0 000 00000	000 000 000	

Set of Shapes

Shape Metrics

Explicit

$$d_{\mathcal{H}}(\Gamma_{1},\Gamma_{2}) = \max\left\{\sup_{\mathbf{x}\in\Gamma_{1}}d_{\Gamma_{2}}(\mathbf{x}), \sup_{\mathbf{x}\in\Gamma_{2}}d_{\Gamma_{1}}(\mathbf{x})\right\}$$

with
$$d_{\Gamma_{1}}(\mathbf{x}) = \inf_{\mathbf{y}\in\Gamma_{1}}d(\mathbf{x},\mathbf{y})$$

PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	0 • 0	00 00 0	0 000 00000	000 000 000	

Set of Shapes

Shape Metrics

Explicit - Implicit

$$d_{W^{1,2}}(\Gamma_1,\Gamma_2)^2 = \left\| \tilde{d}_{\Gamma_1} - \tilde{d}_{\Gamma_2} \right\|_{L^2(\Omega,\mathbb{R})}^2 + \left\| \nabla \tilde{d}_{\Gamma_1} - \nabla \tilde{d}_{\Gamma_2} \right\|_{L^2(\Omega,\mathbb{R}^n)}^2$$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
Set of Shapes					

Shape Metrics

Explicit - Implicit - Path-based [T&Y]

$$\underset{v, v(0,\cdot) = \Gamma_{1}}{\operatorname{arg\,min}} \int_{t} \left\| \frac{\partial}{\partial t} v(t,\cdot) \right\|_{H^{1}(\Omega,\mathbb{R}^{n})}^{2} dt$$

[T&Y]: All work by A. Trouvé & L. Younes

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00 00 0	0 000 00000	000 000 000	

Topological equivalence

Topological equivalence

On the previous set of smooth shapes:

- Hausdorff distance
- > L^2 or $W^{1,2}$ norm between the signed distance functions
- area of the symmetric difference

These metrics are topologically equivalent !

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00 00 0	0 000 00000	000 000 000	

Topological equivalence

Topological equivalence

On the previous set of smooth shapes:

- Hausdorff distance
- > L^2 or $W^{1,2}$ norm between the signed distance functions
- area of the symmetric difference

These metrics are topologically equivalent !

- Same notion of convergence
- Qualitatively different behaviour at greater scales
- Hausdorff distance: more geometrical sense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		• • • • • • • • • • • • • • • • • • •	0 000 00000	000 000 000	

II - Variational Shape Warping Shape Gradient

Directional derivative: $\mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) = \lim_{\varepsilon \to 0} \frac{E(\Gamma + \varepsilon \mathbf{v}) - E(\Gamma)}{\varepsilon}$

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
			0 000 00000	000 000 000	

II - Variational Shape Warping Shape Gradient

Directional derivative: $\mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) = \lim_{\varepsilon \to 0} \frac{E(\Gamma + \varepsilon \mathbf{v}) - E(\Gamma)}{\varepsilon}$

Gradient: field ∇E , $\forall \mathbf{v} \in F$, $\mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) = \langle \nabla E | \mathbf{v} \rangle_{F}$

Usual tangent space: $F = L^2$:

$$\langle f | \boldsymbol{g} \rangle_{L^2} = \int_{\Gamma} f(\mathbf{x}) \cdot \boldsymbol{g}(\mathbf{x}) \, d\Gamma(\mathbf{x})$$

00 00 000 000 0 00 000 000 0 00000 000	Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
			00 00 0	0 000 00000	000 000 000	

Gradient Descent Scheme

Build minimizing path:

 $\Gamma(0) = \Gamma_1$

 $\frac{\partial \Gamma}{\partial t} = -\nabla_{\Gamma}^{F} E(\Gamma)$

Introduction Shapes and Shape Me	trics Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00 00 0	0 000 00000	000 000 000	

Gradient Descent Scheme

- Build minimizing path: $\Gamma(0) = \Gamma_1$ $\frac{\partial \Gamma}{\partial t} = -\nabla_{\Gamma}^{F} E(\Gamma)$

[C&P]: G. Charpiat, J.-P. Pons, R. Keriven & O. Faugeras, ICCV 2005 [SYM]: G. Sundaramoorthi, A.J. Yezzi & A. Mennucci, VLSM 2005 [T98]: A. Trouvé, IJCV 1998!

Guillaume Charpiat

PhD Defense

Introduction Shapes and Shape Me	trics Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00 00 0	0 000 00000	000 000 000	

Gradient Descent Scheme

- Build minimizing path:
 - $\Gamma(0) = \Gamma_1$
 - $\frac{\partial \Gamma}{\partial t} = -\nabla_{\Gamma}^{F} E(\Gamma)$

► F as a prior on the minimizing flow

Guillaume Charpiat

PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
		00	000	000	

Generalized Gradients: Spatially Coherent Flows

 \blacktriangleright L^2 inner product

$$\langle f | g \rangle_{L^2} = \int_{\Gamma} f(x) \cdot g(x) d\Gamma(x)$$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
		0	000	000	

Generalized Gradients: Spatially Coherent Flows

- \blacktriangleright L^2 inner product
- H¹ inner product

$$\langle f | g \rangle_{L^{2}} = \int_{\Gamma} f(x) \cdot g(x) \, d\Gamma(x)$$

$$\langle f | g \rangle_{H^{1}} = \langle f | g \rangle_{L^{2}} + \langle \partial_{x} f | \partial_{x} g \rangle_{L^{2}}$$

$$\nabla^{H^{1}} E = \arg \inf_{u} \left\| u - \nabla^{L^{2}} E \right\|_{L^{2}}^{2} + \left\| \partial_{x} u \right\|_{L^{2}}^{2}$$

Guillaume Charpiat

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
		0	000	000	

Generalized Gradients: Spatially Coherent Flows

- L² inner product
- H¹ inner product
- Set S of prefered transformations (e.g. rigid motion)
 Projection on S: P
 Projection orthogonal to S: Q (P + Q = Id)

 $\langle f | g \rangle_{S} = \langle P(f) | P(g) \rangle_{L^{2}} + \alpha \langle Q(f) | Q(g) \rangle_{L^{2}}$

Guillaume Charpiat

PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
		0	000	000	

Generalized Gradients: Spatially Coherent Flows

- L² inner product
- ▶ *H*¹ inner product
- Set of prefered transformations (e.g. rigid motion)

Example: two different warpings for the Hausdorff distance

$$\frac{\partial \mathsf{I}}{\partial t} = -\nabla_{\mathsf{\Gamma}} d_{\mathsf{H}}(\mathsf{\Gamma},\mathsf{\Gamma}_2)$$

usual

rigidified

Guillaume Charpiat

PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
		0	000	000	

Generalized Gradients: Spatially Coherent Flows

- L² inner product
- ▶ *H*¹ inner product
- Set of prefered transformations (e.g. rigid motion)
- Example: two different warpings for the Hausdorff distance
- Change an inner product for another one: linear symmetric positive definite transformation of the gradient

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
		0	000	000	

Generalized Gradients: Spatially Coherent Flows

- L² inner product
- ▶ *H*¹ inner product
- Set of prefered transformations (e.g. rigid motion)
- Example: two different warpings for the Hausdorff distance
- Change an inner product for another one: linear symmetric positive definite transformation of the gradient
- Gaussian smoothing of the L² gradient: symmetric positive definite

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 0●	0 000	000 000	
			00000	000	

Extension to non-linear criteria

$$\blacktriangleright -\nabla_{\Gamma}^{F} E(\Gamma) = \operatorname*{arg\,min}_{\mathbf{v}} \left\{ \mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) + \frac{1}{2} \|\mathbf{v}\|_{F}^{2} \right\}$$

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	000	000	
		õ	00000	000	

Extension to non-linear criteria $-\nabla_{\Gamma}^{F} E(\Gamma) = \arg\min_{\mathbf{v}} \left\{ \mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) + \frac{1}{2} \|\mathbf{v}\|_{F}^{2} \right\}$ $-\nabla_{\Gamma}^{F} E(\Gamma) = \arg\min_{\mathbf{v}} \left\{ \mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) + R_{F}(\mathbf{v}) \right\}$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	000	000	
		õ	00000	000	

Extension to non-linear criteria

- $-\nabla_{\Gamma}^{F} E(\Gamma) = \arg\min_{\mathbf{v}} \left\{ \mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) + \frac{1}{2} \|\mathbf{v}\|_{F}^{2} \right\}$ $-\nabla_{\Gamma}^{F} E(\Gamma) = \arg\min\left\{ \mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) + \mathcal{R}_{F}(\mathbf{v}) \right\}$
- Example: semi-local rigidification

$$w_{x}: y \in \Omega \quad \mapsto \quad A(x)(y - C(x))^{\perp} + T(x)$$
$$v(x) = w_{x}(x)$$
$$R(T, A, C) = \|v\|_{L^{2}}^{2} + \|\|D_{x}w_{x}(\cdot)\|_{L^{2}(\Omega)}\|_{L^{2}(\Gamma)}^{2}$$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			00000	000	

Differentiable approximation of the Hausdorff distance

► Hausdorff distance: $d_{H}(\Gamma_{1},\Gamma_{2}) = \max \left\{ \sup_{\mathbf{x}\in\Gamma_{1}} d_{\Gamma_{2}}(\mathbf{x}), \sup_{\mathbf{x}\in\Gamma_{2}} d_{\Gamma_{1}}(\mathbf{x}) \right\}$ with $d_{\Gamma_{1}}(\mathbf{x}) = \inf_{\mathbf{y}\in\Gamma_{1}} d(\mathbf{x},\mathbf{y}).$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00	0	000	
		•	00000	000	

Differentiable approximation of the Hausdorff distance

 Hausdorff distance: d_H(Γ₁, Γ₂) = max { sup d_{Γ2}(**x**), sup d_{Γ1}(**x**) } with d_{Γ1}(**x**) = inf d(**x**, **y**).

 max, sup and inf : not differentiable

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 ●	0 000 00000	000 000 000	

Differentiable approximation of the Hausdorff distance

Hausdorff distance: d_H(Γ₁, Γ₂) = max { sup d_{Γ2}(**x**), sup d_{Γ1}(**x**) } with d_{Γ1}(**x**) = inf d(**x**, **y**).
max, sup and inf : not differentiable
Replace sup f(**x**) by Ψ⁻¹ (1/|Γ| ∫_ΓΨ(f(**x**)) d**x**) with Ψ: differentiable, increasing function

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	000	000	
			00000	000	

Differentiable approximation of the Hausdorff distance

- Hausdorff distance: $d_{\mathcal{H}}(\Gamma_1,\Gamma_2) = \max\left\{\sup_{\mathbf{x}\in\Gamma_1} d_{\Gamma_2}(\mathbf{x}), \sup_{\mathbf{x}\in\Gamma_2} d_{\Gamma_1}(\mathbf{x})\right\}$ with $d_{\Gamma_1}(\mathbf{x}) = \inf_{\mathbf{y} \in \Gamma_1} d(\mathbf{x}, \mathbf{y}).$ max, sup and inf : not differentiable Replace $\sup_{\mathbf{x}\in\Gamma} f(\mathbf{x})$ by $\Psi^{-1}\left(\frac{1}{|\Gamma|}\int_{\Gamma}\Psi(f(\mathbf{x})) d\mathbf{x}\right)$ with Ψ : differentiable, increasing function
- ln practice: $\Psi(a) = a^{\alpha}$. Similar trick for inf and max.

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 ●	0 000 00000	000 000 000	

Differentiable approximation of the Hausdorff distance

- ► Hausdorff distance: $d_{H}(\Gamma_{1},\Gamma_{2}) = \max \left\{ \sup_{\mathbf{x}\in\Gamma_{1}} d_{\Gamma_{2}}(\mathbf{x}), \sup_{\mathbf{x}\in\Gamma_{2}} d_{\Gamma_{1}}(\mathbf{x}) \right\}$ with $d_{\Gamma_{1}}(\mathbf{x}) = \inf_{\mathbf{y}\in\Gamma_{1}} d(\mathbf{x},\mathbf{y}).$
- max, sup and inf : not differentiable
- Replace $\sup_{\mathbf{x}\in\Gamma} f(\mathbf{x})$ by $\Psi^{-1}\left(\frac{1}{|\Gamma|}\int_{\Gamma}\Psi(f(\mathbf{x})) d\mathbf{x}\right)$ with Ψ : differentiable, increasing function
- ▶ In practice: $\Psi(a) = a^{\alpha}$. Similar trick for inf and max.
- The approximation tends to the Hausdorff distance.
- The approximation error can be expressed as an analytic function of the parameters.

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	000	000	
			00000	000	

Mean and Modes of Variation

III - Mean and Modes of Variation

- Previous framework: to warp a shape onto another one
- Given a set $(\Gamma_i)_{1 \le i \le N}$ of shapes: their mean M ?
- center of mass: M minimizes $\sum_{i=1,\dots,N} d_H(M, \Gamma_i)^2$
- *N* fields $\beta_i = \nabla_M (d_H(M, \Gamma_i)^2)$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
			•		
		00	000	000	
			00000	000	

Mean and Modes of Variation

III - Mean and Modes of Variation

- Previous framework: to warp a shape onto another one
- Given a set $(\Gamma_i)_{1 \le i \le N}$ of shapes: their mean M ?
- center of mass: M minimizes $\sum_{i=1,\dots,N} d_H(M,\Gamma_i)^2$
- $\blacktriangleright N \text{ fields } \beta_i = \nabla_M \left(d_H(M, \Gamma_i)^2 \right)$
- Covariance matrix $\Lambda_{i,j} = \langle \beta_i | \beta_j \rangle_M$
- ► PCA on instantaneous deformation fields β_i: diagonalize Λ ⇒ characteristical modes m_k

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000	000	

Examples

Mean of eight fish.

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

Examples

Example: set of 2D corpi callosi contours

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000		
			00000	000	

Examples

First modes of deformation:

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		
Images					

- Same approach for a sample of images (instead of contours)
- Compute the mean and then statistics on deformation
- To each image I_i , associate a diffeomorphism h_i
- Warped images: $I_i \circ h_i$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics ○ ○○○ ●○○○○	Segmentation with prior	Summary
Images					

- Same approach for a sample of images (instead of contours)
- Compute the mean and then statistics on deformation
- To each image I_i , associate a diffeomorphism h_i
- Warped images: $I_i \circ h_i$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00	0 000	000 000	
			00000	000	

Similarity between two images: $LCC(I_i \circ h_i, I_j \circ h_j)$ where: $LCC(A, B) = \int_{\Omega} \frac{v_{A,B}(\mathbf{x})^2}{v_A(\mathbf{x}) v_B(\mathbf{x})} d\mathbf{x}$

with

 $v_A(\mathbf{x})$: local variance of A in a gaussian neighborhood of \mathbf{x} .

Guillaume Charpiat

PhD Defense

Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 0●000	000 000 000	

Similarity between two images: $LCC(I_i \circ h_i, I_j \circ h_j)$ where: $LCC(A, B) = \int_{\Omega} \frac{v_{A,B}(\mathbf{x})^2}{v_A(\mathbf{x}) v_B(\mathbf{x})} d\mathbf{x}$

with

 $v_A(\mathbf{x})$: local variance of A in a gaussian neighborhood of \mathbf{x} .

Find (multi-scale !) best diffeomorphisms which minimize $\frac{1}{n-1}\sum_{i\neq i} LCC(I_i \circ h_i, I_j \circ h_j) + \sum_k R(h_k)$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			00000	000	

The first 5 images I_i .

The first 5 warped images $I_i \circ h_i$.

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		

The last 5 images.

The last 5 warped images.

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	0000	000	
			000000	000	

Raw mean (pixel by pixel) of the previous ten faces

Mean of the previous warped ten faces

One of the ten faces

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		

Characteristic modes of deformation:

- spatial modes (statistics on h_i)
- intensity modes (statistics on $I_i \circ h_i$)
- combined modes (both)

Introdu	ıction	Shapes and Sha 00 0	pe Metrics	Variationa 00 00 0	I Shape Wa	rping	Statistics ○ ○ ○ ○ ○ ○ ○ ○	Segmentation	with prior	Summary
Images										
++	60		B	B	-	FU	G	Ð	-	03
+	60	9	P	T	T	100	G	9	27	10

Characteristic modes of deformation (a column = a mode)

Guillaume Charpiat

PhD Defense

Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000	000	

Each column represents a mode, applied to their mean image with amplitude $\alpha = \{\sigma_k, -\sigma_k\}$.

Animations for the first two modes:

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		

Expression recognition task

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		
Images					

Support vector machine (SVM) on diffeomorphisms from the computed mean to a new image with expression

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		
Images					

Support vector machine (SVM) on diffeomorphisms from the computed mean to a new image with expression

 cross-validation error: 24 on 65 (random would give 52)

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		
Images					

Support vector machine (SVM) on diffeomorphisms from the computed mean to a new image with expression

- cross-validation error: 24 on 65 (random would give 52)
- comparison: SVM on raw images: 27 errors

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		
Images					

- Support vector machine (SVM) on diffeomorphisms from the computed mean to a new image with expression
 - cross-validation error: 24 on 65 (random would give 52)
 - comparison: SVM on raw images: 27 errors
- SVM on diffeomorphisms from a new normal face to the same new face with expression (after alignment on the mean)

PhD Defense

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000		
Images					

- Support vector machine (SVM) on diffeomorphisms from the computed mean to a new image with expression
 - cross-validation error: 24 on 65 (random would give 52)
 - comparison: SVM on raw images: 27 errors
- SVM on diffeomorphisms from a new normal face to the same new face with expression (after alignment on the mean)

 cross-validation error: 12 on 65

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics ○ ○○○ ○○○○	Segmentation with prior	Summary
Images					

- Support vector machine (SVM) on diffeomorphisms from the computed mean to a new image with expression
 - cross-validation error: 24 on 65 (random would give 52)
 - comparison: SVM on raw images: 27 errors

 SVM on diffeomorphisms from a new normal face to the same new face with expression (after alignment on the mean)

 cross-validation error: 12 on 65

 comparison: SVM on intensity variations between normal and expressive faces (without alignment): 17 errors

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

Expression recognition mistakes are labeled.

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	• 00 000 000	

IV - Image segmentation

Shape priors

Rigid registration of the mean: no shape variability.

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	• 00 000 000	

IV - Image segmentation

Shape priors

- Rigid registration of the mean: no shape variability.
- PCA on signed distance function
 [LGF]: M. Leventon, E. Grimson & O. Faugeras, ICCV 2000
 [R&P]: M. Rousson & N. Paragios, ECCV 2002

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	• 00 000 000	

IV - Image segmentation

Shape priors

Rigid registration of the mean: no shape variability.

► Parzen method: $P(C) = \sum_{i} exp(-d(C, C_i)^2/2\sigma^2)$ [CRE]: D. Cremers, T. Kohlberger & C. Schnörr, PR 2003

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	• 00 000 000	

IV - Image segmentation

Shape priors

Rigid registration of the mean: no shape variability.

► Parzen method on the fields $\alpha_i = -\nabla_M E^2(M, C_i)$ $P(C) = P(\alpha) = \sum_i exp(-\|\alpha - \alpha_i\|_{L^2}^2/2\sigma^2)$

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	• 00 000 000	

IV - Image segmentation

Shape priors

Rigid registration of the mean: no shape variability.

► PCA on fields α_i : gaussian eigenmodes β_k $P(C) = P(\alpha) =$ $\prod_k \exp\left(-\langle \alpha | \beta_k \rangle^2 / 2\sigma_k^2\right) \times \exp\left(-\|N(\alpha)\|^2 / 2\sigma_n^2\right)$

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			00000	000	
Shape prior (s	hape probability)				

 Invariance to rigid motion: Maximization with respect to shape C and rigid motion R P(R(C))

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			00000	000	
Shape prior (s	hape probability)				

- Invariance to rigid motion:
 Maximization with respect to shape C and rigid motion R
 P(R(C))
- Field priors require the computation of the second cross-derivative of the distance:

 $\nabla_C \nabla_M E^2(C,M)$

Guillaume Charpiat

Shape Statistics for Image Segmentation with Prior

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	000	000	
			00000	000	

Learning set of 12 starfish

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	

The mean of the set of starfish with its first six eigenmodes.

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	

Segmentation without prior (intensity region histogram criterion).

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	

Rigid registration of the mean (same criterion).

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000	000	

without shape prior (for two different initializations)

with the mean (without and with noise)

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000	000	

Mean (+ noise)

Guillaume Charpiat

PhD Defense

Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
			00000	000	

Mean + eigenmodes.

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00	0 000	000 000	
			00000	000	

Boletus example

Boletus example

Some of the 14 mushrooms

Automatic alignment while computing the mean

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			00000	000	

Boletus example

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	00	00		000	
			000	000	
				000	

Boletus example

Segmentation task (color region histogram criterion)

Initialization

Result:

without

with shape prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
	õo	00	0	000	
		0	0000	000	

- Set of shapes and shape metrics
 - Topological equivalence of usual metrics

References:

Approximations of shape metrics and application to shape warping and empirical shape statistics, in Foundations of Computational Mathematics, Feb. 2005.

PhD Defense

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	000	000	

- Set of shapes and shape metrics
 - Topological equivalence of usual metrics
- Warping via a gradient descent
 - Importance of the inner product (priors on minimizing flows)
 - Extension to non-linear priors

References:

Approximations of shape metrics and application to shape warping and empirical shape statistics, in Foundations of Computational Mathematics, Feb. 2005.

PhD Defense

Generalized Gradients: Priors on Minimization Flows, in IJCV (already online).

Guillaume Charpiat Shape Statistics for Image Segmentation with Prior

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	000	000	

- Set of shapes and shape metrics
 - Topological equivalence of usual metrics
- Warping via a gradient descent
 - Importance of the inner product (priors on minimizing flows)
 - Extension to non-linear priors
- Mean and characteristic modes of deformation
 - first and second order statistics for shapes and images

References:

- Approximations of shape metrics and application to shape warping and empirical shape statistics, in Foundations of Computational Mathematics, Feb. 2005.
- Generalized Gradients: Priors on Minimization Flows, in IJCV (already online).
- Image Statistics based on Diffeomorphic Matching, in ICCV 2005.

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00	000	000	

- Set of shapes and shape metrics
 - Topological equivalence of usual metrics
- Warping via a gradient descent
 - Importance of the inner product (priors on minimizing flows)
 - Extension to non-linear priors
- Mean and characteristic modes of deformation
 - first and second order statistics for shapes and images
- Segmentation with shape prior

References:

- Approximations of shape metrics and application to shape warping and empirical shape statistics, in Foundations of Computational Mathematics, Feb. 2005.
- Generalized Gradients: Priors on Minimization Flows, in IJCV (already online).
- Image Statistics based on Diffeomorphic Matching, in ICCV 2005.

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

Gradient of the approximation of the Hausdorff distance vs. "gradient" of the distance itself

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

- Gradient of the approximation of the Hausdorff distance vs. "gradient" of the distance itself
- Hausdorff distance vs. kernel distances

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

- Gradient of the approximation of the Hausdorff distance vs. "gradient" of the distance itself
- Hausdorff distance vs. kernel distances
- Local shape descriptors

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

- Gradient of the approximation of the Hausdorff distance vs. "gradient" of the distance itself
- Hausdorff distance vs. kernel distances
- Local shape descriptors
- Path-based distances vs. gradient of a distance with special inner products

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

- Gradient of the approximation of the Hausdorff distance vs. "gradient" of the distance itself
- Hausdorff distance vs. kernel distances
- Local shape descriptors
- Path-based distances vs. gradient of a distance with special inner products
- New criterion or minimization method for locally rigid motion

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

- Gradient of the approximation of the Hausdorff distance vs. "gradient" of the distance itself
- Hausdorff distance vs. kernel distances
- Local shape descriptors
- Path-based distances vs. gradient of a distance with special inner products
- New criterion or minimization method for locally rigid motion
- Shape prior for segmentation vs. object detection

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

- Gradient of the approximation of the Hausdorff distance vs. "gradient" of the distance itself
- Hausdorff distance vs. kernel distances
- Local shape descriptors
- Path-based distances vs. gradient of a distance with special inner products
- New criterion or minimization method for locally rigid motion
- Shape prior for segmentation vs. object detection
- Image classification vs. shape classification and image segmentation

Introduction	Shapes and Shape Metrics	Variational Shape Warping	Statistics	Segmentation with prior	Summary
		00 00 0	0 000 00000	000 000 000	

Thank you for your attention !

References:

- G. Charpiat, O. Faugeras & R. Keriven, Approximations of shape metrics and application to shape warping and empirical shape statistics, in Foundations of Computational Mathematics, Feb. 2005.
- G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven & O. Faugeras, Generalized Gradients: Priors on Minimization Flows, in IJCV (already online).
- G. Charpiat, O. Faugeras & R. Keriven (& J.-Y. Audibert), Image Statistics based on Diffeomorphic Matching, in ICCV 2005.

Guillaume Charpiat

PhD Defense

Shape Statistics for Image Segmentation with Prior