
Reinforcement Learning

Guillaume Charpiat

Course at CentraleSupelec 2016-2018

Contents

1 Introduction 5
1.1 Overview of the contents of this course 5
1.2 Overview of this document . 5

2 Bandits 7
2.1 Reinforcement learning framework . 7

2.1.1 General setting . 7
2.1.2 The particular case of bandits 7
2.1.3 Example . 7

2.2 Strategies . 8
2.2.1 Exploration vs. exploitation . 8
2.2.2 Examples of strategies . 8

2.3 Modeling and optimization criterion . 8
2.4 Example of an optimal strategy: UCB 9

2.4.1 UCB algorithm . 9
2.4.2 UCB Bound . 10

2.5 Performance Bounds . 12
2.5.1 How good can a strategy be? 12
2.5.2 KL-UCB . 12

2.6 Softmax strategy and Time . 13
2.6.1 Variation on the Softmax strategy 13
2.6.2 Combining experts’ advice for time series prediction 13

3 Learning dynamics 15
3.1 Definitions . 15

3.1.1 Markov Decision Process (MDP) 16
3.1.2 Value functions: V and Q . 16
3.1.3 Optimal Policies . 17

3.2 Monte Carlo (MC) methods . 19
3.2.1 On-Policy MC-control . 19
3.2.2 Off-Policy evaluation . 19
3.2.3 Temporal difference . 20
3.2.4 On-policy TD control: SARSA 21

3

4 CONTENTS

3.2.5 Off-policy TD control: Q-learning 21

4 Eligibility traces 23
4.1 n-step prediction . 23
4.2 n-step backup . 24
4.3 λ-return algorithm . 24
4.4 TD(λ) Backward view . 24
4.5 SARSA-λ . 25
4.6 Q(λ) . 25
4.7 Parametrized familly Vθ(s) . 25

5 Policy Gradient 29
5.1 New framework: Optimize policy directly 29
5.2 Policy Gradient Theorem . 29
5.3 REINFORCE algorithm . 30
5.4 Actor Critic . 30
5.5 Version with eligibility traces . 31

5.5.1 Different Goal . 31
5.6 An example from the literature: DeepMind’s DQN (Deep Q-Network):

Atari Games . 31

6 Robotics 33
6.1 Continuity . 33
6.2 Time . 34
6.3 Virtual world . 34
6.4 Goal specification . 35
6.5 Examples of approaches . 35
6.6 Links . 35

7 Monte Carlo Tree Search (MCTS) 37
7.1 Adversarial games and classical approaches 37
7.2 Upper confidence Tree . 37
7.3 MOGO: Monte Carlo Tree Search (MCTS) 38
7.4 Alpha-GO . 38

Appendix 39
Acknowledgments . 39
Links and references . 39

Chapter 1

Introduction

1.1 Overview of the contents of this course

This course comprises lessons as well as exercises. All information, content and refer-
ences are available online at https://www.lri.fr/~gcharpia/machinelearningcourse/.
This document is the summary of (a part of) the lessons only.

1.2 Overview of this document

We first present, in chapters 3-4, classical reinforcement learning in the discrete setting,
to introduce basic concepts. We extend them to the continuous domain in chapter 5,
and have a quick word about the particular case of robotics in chapter 6. Reinforcement
problems in robotics are indeed particulary complex, due to the continuous nature of
most state variables, to the large number of possible actions, and, consequently, to
the size of the domain of possible stategies to explore. Chapter 7 is about 2-player
adversarial games, such as chess or go.

Before that, let us study the simplistic yet insightful case of bandits, where actions
do not modify the environment, in order to explain the dilemma between exploration
and exploitation.

5

https://www.lri.fr/~gcharpia/machinelearningcourse/

6 CHAPTER 1. INTRODUCTION

Chapter 2

Bandits

2.1 Reinforcement learning framework

2.1.1 General setting

The Agent performs an action on the Environment and gets a reward that depends on
the Environment. This action leads to a new state. The set of possible actions may
depend on the state, and their consequences as well. Rewards and new states may be
stochastic.

2.1.2 The particular case of bandits

In the restricted case of bandits, the environment is static (no environment basically),
e.g . there is only one state.

2.1.3 Example

Ex: Medicine trial. One would like to make statistics on medicines A, B, C to know
which one is the best. You also want to minimize the number of people dying in the
process.

Possible actions: choose A, B or C
Rewards: -1 if people died, +0.5 if they survived with after-effects, +1 if they healed
Goal: maximize sum of rewards
Issue: you do not know yet which medecine is the best, and have to make trials for this

7

8 CHAPTER 2. BANDITS

2.2 Strategies

2.2.1 Exploration vs. exploitation

There is a dilemna between exploration and exploitation. Exploring means testing each
possibility (bandit arm) many times, to make sure that our estimation of the average
reward for that arm is precise enough. On the opposite, exploiting means picking always
the arm that seems to be the best. One cannot fully explore and fully exploit at the
same time.

2.2.2 Examples of strategies

� Greedy: you would try a few times each of them (same number each) and then
you say: ”I am done exploring” then you exploit (you take always the best arm
in the previous step). Issues: How many times is ”a few times” ?

� To be better you need to keep exploring all the time: ε-greedy: At each time-step
you flip a coin. With probability ε you pick randomly uniformly any arm, other-
wise (probability 1− ε) you take the best arm so far. At initialization you either
chose a high or low estimate for each arm (high if you want to force exploration
at the beginning). Issue: this never stops exploring even when estimates have
converged.

� Softmax: Denote by Q(a) the average reward for the action a. Consider proba-
bilities of taking action a:

p(a) =
exp(Q(a)

τ
)∑

a′ exp(Q(a′)
τ

)

If τ is close to 0, it tends to be close to the greedy strategy.
If τ tends to infinity: you pick every arm with equi-probability.
Issue: for a given reasonable fixed τ : same issue as ε-greedy.

2.3 Modeling and optimization criterion

Denote by K the number of arms to pull (number of possible actions). Each time you
pull one arm k, there is a distribution of possible rewards Dk with its value in [0, 1] (or
any other bounded space). At time t we chose an arm It ∈ {1, .., K} and get the reward
xt which follows the distribution DIt (xt are iid [independent, identically distributed]).

We define µk, the average reward for arm k, and µ∗, the average reward of the best
arm:

µk = E[xk] and µ∗ = max
k

(µk)

2.4. EXAMPLE OF AN OPTIMAL STRATEGY: UCB 9

The expectation E is here taken over the stochasticity of the environment. The
regret for T trials is defined as:

RT = Tµ∗ −
T∑
t=1

xt

=
∑
t

(best-reward-on-average− current-reward)

It expresses how far a strategy is from the optimal choice (consisting in picking always
the best arm, from the beginning).

We have, for a given strategy, on average over the stochasticity of the environment
and of the strategy if it is stochastic as well:

E[RT] = Tµ∗ −
∑
t

E
It

[µIt]

=
∑
k

E [Tk] (µ∗ − µk)

=
∑
k

E [Tk] δk

where Tk is the number of times you have selected arm k, and δk = µ∗ − µk > 0.

2.4 Example of an optimal strategy: UCB

Multi-armed bandits are one of the only setups in reinforcement learning where one can
obtain mathematical guarantees about the training results for some algorithms, such
as UCB.

2.4.1 UCB algorithm

UCB (Upper Confidence Bound) consists in the following stragegy: at each time step
t, for each arm k, compute:

B(k) = µ̂k +

√
2 log t

tk

with tk the number of times you have picked arm k until now, and µ̂k the average
reward so far for arm k. Now, select:

It = argmaxkB(t)(k)

This selects the arm with the highest optimistic average (estimation of the average
reward + possible error margin due to the fact that empirical averages can differ from
real expectations because of sampling effects).

10 CHAPTER 2. BANDITS

2.4.2 UCB Bound

You can skip this section if you’re not fond of maths.

The strange-looking error bound
√

2 log t
tk

comes from the Chernoff-Hoeffding inequality,

which reads, for any ε > 0:

p (µ̂k − µk ≥ ε) = p

 1

tk

∑
t for which

arm k
was chosen

xt − µk ≥ ε

 6 exp(−2tkε
2)

For the suitable choice of ε =
√

2 log t
tk

, we get

p

(
µ̂k +

√
2 log t

tk
6 µk

)
6 exp(−4 log(t)) =

1

t4

which states that the probability of mistaking tends to 0 very fast with the total number
t of trials.

Lemma For a arm k which is not optimal:

E[Tk] 6 8
log T

δ2k
+
π2

3

[proof next page] This means that the number of times one mistakenly chooses arm k
instead of the best arm is bounded linearly by log T , which is a pretty low amount of
errors. In particular, this means that the error rate, E[Tk]

T
, tends to 0 with increasing T .

Concerning the regret, we thus obtain:

E[RT] =
∑
k

δk E[Tk]

6
∑
k 6=k∗

8
log T

δk
+K

π2

3

So, the regret is also similarly bounded. One could argue that δk could be very small
and make this quantity high. This is actually not a problem because Cauchy-Schwartz

2.4. EXAMPLE OF AN OPTIMAL STRATEGY: UCB 11

yields:

E[RT] =
∑
k

δk E[Tk]

6
∑
k

√
δ2k E[Tk]

√
E[Tk]

6

√∑
k

δ2k E[Tk]

√∑
k

E[Tk]

6

√
8KT (log T +

π2

3
)

Proof of the lemma Suppose at time t, for all arms k:

µk −
√

2 log t

tk
6 µ̂k 6 µk +

√
2 log t

tk

Consider an arm k not optimal, while k∗ would be the best one. If, at time t, arm k is
picked, then :

Bt(k) > Bt(k∗)

µ̂k +

√
2 log t

tk
> µ̂k∗ +

√
2 log t

t∗

µk + 2

√
2 log t

tk
> µ̂k +

√
2 log t

tk
> µ̂k∗ +

√
2 log t

t∗
> µ∗

2

√
2 log t

tk
> µ∗ − µk

tk 6 8
log t

δ2k

Now we need to sum over times t from 1 to T . ∀u ∈ N,

Tk 6 u+
T∑

t=u+1

1It=k ∧ Tk(t)>u

6 u+
T∑

t=u+1

1∃s,s∗, s.t. u<s6t ∧ 16s∗6t ∧ Bt,s(k)>Bt,s∗ (k∗)

Finally, consider u = 8 log T
δ2k

:

E[Tk] 6
8 log T

δ2k
+

T∑
t=u+1

(
t∑

s=u+1

t−4 +
t∑

s=1

t−4)

6
8 log T

δ2k
+
π2

3

12 CHAPTER 2. BANDITS

This last summation of 1
t4

is the reason why we needed an error probability decreasing
to 0 as fast as 1

t4
. A slower asymptotic rate would prevent convergence of the sum.

Hence the choice of ε =
√

2 log t
tk

for Chernoff-Hoeffding inequality.

2.5 Performance Bounds

2.5.1 How good can a strategy be?

One can prove infimum bounds on optimal strategies, that is, there exists no strategy
that on average can perform better than such bound. Thanks to such studies [Lai
et Robbins 1985], one can know whether a given strategy is optimal, i.e. one cannot
expect better regret. The bound is based on the difference between the distribution Dk

of rewards for arm k and the one D∗ for the best arm:

lim supT
E[Tk]

log T
>

1

KL(Dk||D∗)
E[Tk] = Ω(log T)

E[RT] = Ω(log T)

which means that one can expect neither to do fewer than log T mistakes, nor to obtain
a regret less than log T (up to constant factors).

At the higher level of considering not just one particular bandit task but all possible
bandit tasks: for any algorithm, there exists a bandit task on which the regret will be
at least

√
KT [Cesa-Bianchi and Lugos 2006]:

inf
algo

sup
task

E[RT] = Ω(
√
KT)

2.5.2 KL-UCB

This is a variant of UCB exploiting the information theory bounds above. Consider:

Bt(k) = sup
D

{
E[D], (µ̂k − E[D])2 6

f(t)

Tk(t)

}

for some appropriate function f(t) such as 2 log t, and where D is any distribution
modeling the true reward distribution of arm k, consequently supposed to be close to
the distribution Dk of observed rewards. The term (µ̂k − E[D])2 is better replaced with
KL(Dk||D).

2.6. SOFTMAX STRATEGY AND TIME 13

2.6 Softmax strategy and Time

2.6.1 Variation on the Softmax strategy

Let Qt(k) be the total reward of arm k until now (not the average, but the sum!). Set:

pt(k) ∝ exp (Qt(k)) =
exp (Qt(k))∑
k′ exp (Qt(k′))

This can be seen as considering a variable rate τ = 1
t
. It progressively moves from ex-

ploration to exploitation. It also has a Bayesian interpretation as p(k|all past rewards).
Consider also the ε-soft variant, with a small additive uniform noise:

p(k) = (1− γ)pt(k) + γ
1

K

If choosing γ = K logK
(e−1)T , then we have the following guarantee:

E[RT] 6 O
(√

KT logK
)

2.6.2 Combining experts’ advice for time series prediction

A bit farther from reinforcement learning, let’s consider the task of time series predic-
tion. We suppose we are given a panel of “experts” (i.e., algorithms), each of which
emits predictions at each time step, under the form of a probability distribution over
possibilities.

A first goal would be to find the best expert (based on experience, which one yields
the most accurate predictions?).

However a linear combination of all experts’ predicted distributions can do better
than listening to the best single expert only. Regret is then redefined with respect to
the new maximum expected gain.

Among classical solutions lies an adaptation of the softmax strategy above (based
on total reward).

14 CHAPTER 2. BANDITS

Chapter 3

Learning dynamics

3.1 Definitions

An Agent interacts with an Environment. The State is given both by the internal
configuration of the agent and the environment. Generally speaking a state is a compact
description of the world. You can say it is an a-priori where you put all information
available for the decision to be taken. You can also put history in that. The difference
between the agent and the environment is usually defined by what you can control and
what you cannot.

At each step, the agent takes an action, go to a new state and gain a reward.
When you are in a particular state you choose an action based on a policy. We try

to find the best policy to get maximum reward.

Example 1 Let us consider a Robot with an arm. The position of the arm represents
the state of the robot.

An agent may not know the full state of the world. It may have only a partial view.

Example 2 Let us consider a Robot moving. The agent is the controller, the part
making decision. It is not the hardware.

Example 3 Let us consider a chess game. If you specify sub-goals, for example
gaining points when taking adverse pieces, you might end up taking the queen and
losing the game: subgoals are dangerous.

The goal is to maximize rewards on the long run.
Let us consider a finite horizon T (finite number of turns in a game). At time t you

want to maximize:

E
e,π

[
T∑

i=t+1

ri

]
where π is the policy, at, st, rt are respectively action, state and reward at time t and
e is the environment.

15

16 CHAPTER 3. LEARNING DYNAMICS

In practice there might not be a specified finite number of turns but there usually
exist terminal states (states that end the game).

You might want to put less weight on rewards you will gain in a very far future:

E
e,π

[
∞∑
k=0

γkrt+1+k

]
where γ, the discount rate, is such that 0 6 γ 6 1.

We define the return R by:

R =
∞∑
k=0

γkrt+1+k

3.1.1 Markov Decision Process (MDP)

To chose an action you might want to evaluate the quantity:

p = p(st+1, rt+1|st, at, rt, st−1, at−1, rt−1, ...)

We make the hypothesis of a Markovian environment (a way to do that is to
include all history in the state s′t = (st, st−1, rt−1, st−2, . . .)) so that we have p =
p(st+1, rt+1|st, at).

In a Markov Decision Process, everything is described by only two quantities:

� p(st+1|st, at): this describes the dynamics (how we are moving in the space of
states)

� Ee[rt+1|st, at, st+1]: the average reward (full distribution not required)

This can be described as a graph (like a Markov chain).

3.1.2 Value functions: V and Q

Let us suppose that an environment follows a Markov Decision Process and that we
know all the state and reward graph.

Policy π is a function such that π(state, action) is the probability of taking that

action when in that state. Of course
∑

possible
actions a

π(state, a) = 1.

Let us assume you are in the state st, you chose action at according to the policy
distribution, and a new state and reward is sampled from the environment.

A state value function V is a function such that V (state) is the expected return
when you start from that state, and follow a fixed policy π:

V π(s) = E
π,e

[Rt|st = s] = E
e,π

[
∞∑
k=0

γkrt+1+k|st = s

]

3.1. DEFINITIONS 17

with sT the terminal state. We have V π(sT) = 0.
A state-action value function Q is a function such that Q(state, action) is the ex-

pected return when you are in that state and you take that action:

Qπ(s, a) = E
π,e

[Rt|st, at]

Consider any policy π and any state s. At each time step we choose an action at
which depends on the policy π and the current state st. Depending on the action at
the current state st and the environment e, we get a new state st+1 and a reward rt+1.
We denote Ee,π the expectation taken on all possible actions, states and rewards.

V π(s) = E
π,e

[Rt|st = s]

= E
e,π

[
∞∑
k=0

γkrt+1+k|st = s

]

= E
e,π

[
rt+1 +

∞∑
k=0

γkrt+2+k|st = s

]
= E

at∼π,st+1∼e
[rt+1 + γV π(st+1)]

3.1.3 Optimal Policies

Let us suppose we have a Markov decision process. There is a partial order over policies:
we say π > π′ ⇐⇒ ∀s, V π(s) > V π′(s).

Properties

� Existence of Optimal policy:

∃π∗,∀π, π∗ > π

� All possible π∗ have the same value functions:

∀s,Q∗(s, a) = max
π

Qπ(s, a)

Bellman optimality equation

V ∗(s) = max
a

∑
s′

p(s′|s, a)(Ra
s,s′ + γV ∗(s′))

Ra
s,s′ is the average reward when taking action a in state s and arriving in s’ and

p(s′|s, a) depends only on the environment.
Similarly:

Q∗(s, a) =
∑
s′

p(s′|s, a)(Ra
s,s′ + γmax

a′
Q∗(s′, a′))

18 CHAPTER 3. LEARNING DYNAMICS

Optimizing the policy When you have a policy π you want to find the value function
V π (this is called policy evaluation)

First step: Estimating the value function An iterative approach works as follow.
Let us start with any value function Vk.

Vk+1(s) = E
π,e

[rt+1 + γVk(st+1)|st = s]

=
∑
a

π(s, a)
∑
s′

p(s′|s, a)(Ra
s,s′ + γVk(s

′))

I am in state st. I need to take an action at. I arrive in a new state (st+1, rt+1) with
some probabilities. My estimation of rt+1 is exact but the estimation of Vk(st+1) is the
one I assumed before (at iteration k). This converges to the real value function since
γ < 1. Making use of Vk(st+1) to re-estimate Vk+1(st) is named bootstrapping.

The proof of convergence is given using

|(Vk+1 − V π)(s)| = |
∑
a

π(s, a)
∑
s′

p(s′|s, a)
[
Ra
s,s′ + γVk(s

′))−Ra
s,s′ − γV π(s′)

]
|

6
∑
a

π(s, a)
∑
s′

p(s′|s, a)γ|Vk(s′)− V π(s′)|

6
∑
a

π(s, a)
∑
s′

p(s′|s, a)γ‖Vk − V π‖∞

6 γ‖Vk − V π‖∞

We define the infinite norm by ‖Vk+1 − V π‖∞ = maxs |(Vk+1 − V π)(s)| and we find

||Vk+1 − V π||∞ 6 γ||Vk − V π||∞

which gives convergence at an exponential rate:

||Vk − V π||∞ 6 γk||V0 − V π||∞.

There exists an in-place version where updates for s are done in series rather than
in parallel.

Policy improvement We have some policy π, we describe how good it is with V π

and Qπ. Define greedy policy π′ which consists in taking the best action according to
the previous value function:

π′(s) = argmaxaQ
π(s, a)

Then π′(s) > π(s).

3.2. MONTE CARLO (MC) METHODS 19

If no improvement the policy is optimal already. Doing policy evaluation and
policy improvement repetitively is called policy iteration.

Let us introduce T the Bellman operator such that T (π) = π′ is the result of the
policy improvement algorithm on π.

The optimal policy π∗′ satisfies Tπ∗ = π∗ which we can write Bπ′ = 0 with B =
T − Id.

The optimization we do is equivalent to a Newton Method-like step to find a 0 of
B:

πk+1 = πk −
(
dB

dπ

)−1
B (πk)

A method called truncated policy evaluation works as follow. You don’t wait
for convergence, you just apply one step of policy evaluation before doing policy im-
provement. Still same guaranties of convergence. The proof is the same.

This can be generalized to any number of steps, the same guaranties always apply.
With this dynamic programming algorithm, finding optimal policy is polynomial in the
number of actions m and states s. Without this trick (naive evaluation of all policies)
we would get exponential complexity O(mn).

3.2 Monte Carlo (MC) methods

The value function V π(s) is the average return in state s.
When running simulations, we are playing episodes = runs of the game. Averaging

the empirical value function for a particular state seen during many episodes (one
episode = one sample) might be a good evaluation of the value function.

Whether you consider only the first visit or every visit to the state, your estimate
is always going to converge to V π(s) with precision 1√

nsamples
.

We have a fixed policy π you sample using Monte Carlo Q and you update your
policy using the greedy policy improvement presented in last section.

3.2.1 On-Policy MC-control

We sample according to the policy we want to use. An additional hypothesis is that you
have ε-soft policy with ε > 0, to be sure exploration is done. This means ∀s, a π(s, a) >
ε (ε-greedy is one example of such policy).

3.2.2 Off-Policy evaluation

We consider 2 policies simultaneously, for different purposes: one for exploration and
one for exploitation. We can evaluate a policy π based on experiments with another
one π′. It requires that π(s, a) > 0 =⇒ π′(s, a) > 0. Consider the first visit to a state

20 CHAPTER 3. LEARNING DYNAMICS

s. Let us denote pi the likelihood of future state, reward and action for policy π and
let us denote p′i the likelihood of future state, reward and action for policy π′.

pi(s) =
T−1∏
k=t

π(sk, ak)p(st+1|ak, sk)

p′i(s) =
T−1∏
k=t

π′(sk, ak)p(st+1|ak, sk)

Instead of averaging like V (s) = 1/n
∑

iRi(s), we consider

V (s) =
1

Z

∑
i

pi(s)

p′i(s)
Ri(s)

=
1

Z

∑
i

π(sk, ak)

π′(sk, ak)
Ri(s)

The behaviour policy is different than the estimation policy. The behaviour policy
is used for sampling (running experiments). The estimation policy is the policy you
really want to use in the end (the one you want to improve).

∀s, a
Q(s, a)← random()
N(s, a)← 0
D(s, a)← 0
π ← random()
repeat

generate an episode s0, a0, r0, s1, a1, r1, ... with any soft policy π′

take the tail (t > τ) so that all at>τ follows π(st)
∀(s, a) in that tail
w ←

∏T−1
k=1

1
π′(sk,ak)

N(s, a)+ = wRt

D(s, a)+ = w
Q(s, a) = N

D
(s, a)

∀s, π(s) = argmaxaQ(s, a)
until enough iteration are made

On the good size of MC methods, there is no need to estimate environment bootstrap
or probabilities. However, many explorations might be needed.

3.2.3 Temporal difference

Immediate MC on reward (not returns).

V (st)+ = α ([rt+1 + γV (st+1)]− V (st))

3.2. MONTE CARLO (MC) METHODS 21

with α ∈ [0, 1]
This is bootstraping (using V (st+1)).
Proved to converge to V π if α is small enough or αt → 0 and

∑
αt →∞

You can also do this in batch mode: You run a number of episodes, average, and
then update (faster convergence).

3.2.4 On-policy TD control: SARSA

We have a policy π we want to estimate the value Q(s, a) (same as before replacing V
with Q)

Q(st, at)+ = α ([rt+1 + γQ(st+1, at+1)]−Q(st, at))

Update for each 5-uple (st, at, rt+1, st+1, at+1) hence the name SARSA.
π derived from Q needs to be soft e. g. ε-greedy.

3.2.5 Off-policy TD control: Q-learning

[Watkins, 1989] Breakthrough at that time because it is working better than other
approaches.

� Exploitation

Qt(st, at)+ = α
([
rt+1 + γmax

a
Q(st+1, a)

]
−Q(st, at)

)
� Exploration: Choose an action a using a soft policy derived from Q e.g ε-greedy

(for softness).

Distinguishing the exploitation policy from the exploration one solves the cliff ex-
ample issue that on-policy methods (such as SARSA) suffer from.

22 CHAPTER 3. LEARNING DYNAMICS

Chapter 4

Eligibility traces

4.1 n-step prediction

We have different ways of estimating the return:

� Monte Carlo (run a full episode and get the sum of all rewards):

Rt = rt+1 + γrt+2 + ...+ γT−t−1rT

� Temporal difference TD(0) (bootstrapping at t+1):

R
(1)
t = rt+1 + γVt(st+1)

We can interpolate between these two methods (start running an episode and bootstrap
at time t+n):

� n-step return

R
(n)
t = rt+1 + γrt+2 + ...+ γn−1rt+n + γnVt(st+n)

How to choose the right value of n? Don’t chose, mix all possibilities:

� Temporal difference TD(λ) (λ with λ ∈ [0, 1])

Rλ
t = (1− λ)

∞∑
n=1

λn−1R
(n)
t

� Note, if terminal state reached in finite time: Temporal difference (λ with λ ∈ [0, 1]
and T 6∞)

Rλ
t = (1− λ)

T−t−1∑
n=1

λn−1R
(n)
t + λT−t−1Rt

with Rt the complete return. When λ goes to 1, Rλ
t goes to Rt. When λ goes to

0, Rλ
t goes to R

(0)
t which corresponds to Temporal difference (0)

23

24 CHAPTER 4. ELIGIBILITY TRACES

4.2 n-step backup

Update of the value function for state st:

δ(Vt(st)) = α[R
(n)
t − Vt(st)]

Vt+1(st) = Vs(st) + α[R
(n)
t − Vt(st)]

4.3 λ-return algorithm

δ(Vt(st)) = α[Rλ
t − Vt(st)]

only for one st.
Rλ
t is the target.

4.4 TD(λ) Backward view

Eligibility trace et(s) > 0 depends on the state and the time defined by:

et(s) := γλet−1(s) if s 6= st

:= γλet−1(s) + 1 otherwise

γλ < 1 so it goes to 0 if you stay in the same state st 6= s.
For each particular state: it ”jumps” by +1 if the state comes, and otherwise decreases
exponentially. The eligibility et(s) is the accumulation of fading traces. λ is the de-
creasing speed of the trace (i.e. of the influence from the past).

TD (temporal difference) TD for prediction given the policy π:

δt := [rt+1 + γVt(st+1)]− Vt(st)

Defined only for the current state st.
For any state s,

∆Vt(s) := αδtet(s)

α is the update speed,
δt is the quantity update I want to add,
et is the trace. The trace is the credit to state s for what happens now at st.

One can show that this algorithm computes the right total update:∑
t

∆Vt(s) = α(Ralpha
t (s)− Vt(s))

Proof Very easy (TODO).

4.5. SARSA-λ 25

Particular case TD(λ = 1) is the same as MonteCarlo method but with updates at
each time for all states instead of waiting for the end of the game.

4.5 SARSA-λ

On-policy TD-control using Q

For all states s and action a:

� Define et(s, a)

� update of Qt+1(s, a) = Qt(s, a) + αδtet(s, a)

δt = [rt+1 + γQt(st+1, at+1)]−Qt(st, at)

et(s, a) =

{
γλet−1(s, a) if (s, a) 6= (st, at)

γλet−1(s, a) + 1 otherwise

On-policy: you update the policy according to an ε-soft policy based on Q (i.e
ε-greedy).

4.6 Q(λ)

Update is the following:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a)

with δt = [rt+1 + γmaxaQt(st+1, a
′)]−Qt(st, at)

and et(s, a) = 1s=st∧a=at + 1Qt−1(st,at)=maxaQt−1(st,a)γλet−1(s, a).
Transmission only if optimal action is chosen.

Until now we have estimated only a value for a state V (s) one value for each state
s. It is a huge vector in R|S| with |S| the number of states. This can lead to huge
dimensions problem. You might want to consider a much smaller set of states using a
parameterization of the problem.

4.7 Parametrized familly Vθ(s)

You compute fθ(s) with fθ a function depending on parameters θ (like a neural network)
and you do the learning on fθ(s), i.e. by learning the right value of θ.

An update δθ of the vector of parameters θ leads to an update of the value function:

Vθ+δθ(s) = Vθ(s) +
dV (s)

dθ
δθ.

26 CHAPTER 4. ELIGIBILITY TRACES

Reciprocally, given a desired target value δV , if dV (s)
dθ

is invertible, the parameters θ

should be updated as: δθ = (dV (s)
dθ

)−1(δV (s)).

The target values δV can be:

� DP : Eπ,e [rt+1 + γVt(st+1)|st = s]

� MC : Rt

� TD(0) : rt+1 + γVt(st+1)

� TD(λ): see above

Policy evaluation π 7→ V π

Vθt(s) does not cover the full space of states so we cannot always find a θ such that
Vθ would be exactly V π for all s.

How can we say that a θ is better than another one ? You can define a criterion (i.e
Mean Square Error):

MSE(θt) =
∑
s

p(s)[V π(s)− Vθt(s)]2

= E
π,e

[
(V π − Vθt)2

]
We can estimate θ using gradient descent:

θ −= τ∇θMSE(Vθ)

which yields:
θt+1 = θt + 2τ (V π(st)− Vθt(st)) ∇θVθt(st)

θt+1 is a vector, the new values of the parameters.
∇θVθt(st) is a vector of same dimension as θt.
V π(st) is the target (a real number) (see possible target values above), and Vθt(st) is
the current value. The value of the target V π(st) might be unknown, in which case one
can replace it with an approximation vt of it.

If the approximation vt of the target V π(st) is an unbiased estimator, i.e. if Eπ,e[vt] =
V π(st), then θt converges to a local optimum provided αt goes to 0 and

∑
t αt goes to

infinity when t goes to infinity.

If vt = Rλ
t it is bootstraping (this is biased).

Approximation vt = Rλ
t :

θt+1 = θt + α [(rt+1 + γVθt(st+1))− Vθt(st+1)] et

4.7. PARAMETRIZED FAMILLY Vθ(S) 27

where
et = γλet +∇θVθt(st)
e0 = 0

Example of a parameterized family: the linear case

Vθt(s) = < θt|φ(s) > =
∑
i

θitφi(s)

where φ(s) is a representation of state s (features). Note that φ(s) and θ are vectors
(of same dimension). Vθt(s) is a linear combination of the features φi(s) with weights θi.

Gradient descent on θ: ∇θVθt = φ(s)

In the case of a convex problem (such as MSE) with an unbiased estimate of V π(s):
we will reach the globally optimum parameters.

In the TD(λ) case, the estimate is biased, and we get only the following convergence
guarantee:

MSE(θ∞) 6
1− γλ
1− γ

MSE(θ∗).

Which features φ(s)?

� Best case: Modeling.

� Rich enough features (kernels, neural networks)

Control with function approximation:

Gradient descent on parameters:

θt+1 = θt + α(vt −Qθt(st, at))∇θtQθt(st, at),

where vt is a real number, it is the target. Many choices are possible, for example
rt+1 + γQθt(st+1, at+1) (bootstrap).
∇θQθt(st, at) is the gradient vector.
We can also use traces: et = γλet−1 +∇θQθt(st, at).
With these particular settings and with an ε-soft policy derived from Qθt , one gets the
“function approximation” version of SARSA(λ).
Without bootstrap: one obtains a real gradient descent on an energy (so you have good
properties).

28 CHAPTER 4. ELIGIBILITY TRACES

With bootstrap: one gets only near-optimal guaranties. If on-policy: not an issue, if
off-policy it can even diverge.

The Mean Square Error as a criterion to optimize is also a matter of choice. Example
of alternative to MSE:∑

s

p(s) E
π,e

[
((rt+1 + γVθt(st+1))− Vθt(s))

2] .
The difference is that θt appears twice (and both occurrences will appear in the com-
putation of the gradient).

Chapter 5

Policy Gradient

5.1 New framework: Optimize policy directly

We estimate directly the policy π(a|s, θ) itself. θ is our parametrization of the problem.

Example: Softmax:

π(a|s, θ) =
exp(h(s, a, θ))∑
b exp(h(s, b, θ))

with h any pre-defined reasonable function expressing how good it is to take action a
when in state s, depending on parameters θ. This softmax trick is a generic way of
turning any function into a probability distribution.

5.2 Policy Gradient Theorem

The goal is to maximize some criterion E (for Energy):

E(θ) = vπθ(s0)

For example: vπθ(s0) can be the expected return when starting in state s0 under
policy πθ, or the average reward over time (if infinite duration).

Let us state the policy gradient theorem:

∇θE =
∑
s

dπ(s)

(∑
a

Qπθ(s, a)∇θπ(a|s, θ)

)
where dπ(s) is the probability to be in state s when following πθ for a long while

(stationary distribution hypothesis).

If an action-independent quantity q(s) is added to Qπθ(s, a), it does not change
∇θE.

Proof: it would add, for each s, a term q(s)
∑

a∇θπ(a|s, θ), with
∑

a∇θπ(a|s, θ) =
∇θ

∑
a π(a|s, θ) = ∇θ1 = 0.

29

30 CHAPTER 5. POLICY GRADIENT

5.3 REINFORCE algorithm

REINFORCE is a Monte Carlo policy gradient.

We have

∇θE = E
st∼πθ,e

[
γt
∑
at

Qπθ(st, at)∇θπ(at|st, θ)

]

= E
at,st∼πθ,e

[
γtQπθ(st, at)

∇θπ(at|θ, st)
π(at|st, θ)

]
= E

s,a,R∼πθ,e

[
γtRt∇θ log π(at|st, θ)

]
Rt is the return from time t. The algorithm is simply the following:

θt+1 = θt + αγtRt∇θ log πθ(at|st, θ).

Note that it does not require the estimation of a value function V or Q, but only
directly the parameters of the policy πθ.

5.4 Actor Critic

As said before we can any quantity to R as long as it does not depend on the action.
So we can replace Rt by Rt − V (st) which balances the amplitudes and reduces the
variance. In this case we need to estimate V , and for this we can parameterize V = Vθ2
with an other parameter θ2 and perform this optimization with respect to θ2 as in the
previous courses.

Actor-critic is this process of comparing the return (or expected return, or reward
depending on the settings) to the ones you would get performing another action in the
same state (subtracting the average is actually such a comparison).

If you use Actor-critic and bootstrap you get:

θt+1 = θt + α
([
rt+1 + γV (st+1,θ2)

]
− V (st, θ2)

)
∇θ log π(at|st, θ).[

rt+1 + γV (st+1,θ2)
]

is the (Monte Carlo) estimate of the return Rt and V (st, θ2) is
the actor-critic comparison.

The parameters θ2 of the value function V also need to be estimated, as follows (as
in the previous lesson):

θ2 := θ2 + α2

(
rt+1 + γV (st+1,θ2)− V (st, θ2)

)
∇θ2V.

Note the term between parentheses is the same. Let’s name it δt.

5.5. VERSION WITH ELIGIBILITY TRACES 31

5.5 Version with eligibility traces

Set
et+1 = λet + I∇θ log πθ(a|s)

with I defined such as {
I = 1 if t = 0
It+1 = γIt otherwise.

Then, implement the parameter evolution:

θt+1 = θt + αδtet

with δt defined as

δt =
(
rt+1 + γV (st+1,θ2)− V (st, θ2)

)
.

For the value function, updates are defined similarily as :

e2 = λe2 + I∇θ2Vθ2(s)

and
θ2 = θ2 + α2δte2.

5.5.1 Different Goal

In case of a very long game you might prefer to estimate the average reward E(θ) is
the average reward.

It is the same reasoning but subtracting at each time step the average reward r:

δ = [(rt+1 − r) + Vθ2(st+1)]− Vθ2(st)

which corresponds to considering the return R−Tr in order to avoid divergence issues.

5.6 An example from the literature: DeepMind’s

DQN (Deep Q-Network): Atari Games

This is an example for the previous lesson, not of policy gradient.

Qθt is a neural network with parameters θt. The target value for Qθt at time t + 1
is E[r + γmaxaQθt]. The loss to minimize is:

L(θt+1) = E
[(

target−Qθt+1

)2]
using gradient descent.

Qθt : Neural network with 3 layers:

32 CHAPTER 5. POLICY GRADIENT

� conv

� conv

� fully connected

Input: 4 frames of size 84× 84 pixels
Output: 18 actions.

θt+1 = θt + α[rt+1 + γmax
a
Qθ(st+1, a)−Qθ(st, at)] ∇θQθ(st, at)

Chapter 6

Robotics

6.1 Continuity

In robotics, states and actions are usually continuous.
For instance for a robotic arm, a state is typically of the form s = (θ, θ̇), where θ is a
list of angles, and θ̇ = dθ

dt
the associated angular velocities.

Actions are then typically forces that can be applied, i.e. θ̈.

High dimensional space =⇒ too huge space to explore (curse of dimensionality). Func-
tion approximation is required, in order not to learn independently for every possible
state, but transfer knowledge between similar states. Yet it is generally not sufficient
alone to tackle high dimensional spaces.

Good representation can help to decrease the dimension of the space ; a relevant rep-
resentation makes the problem easier.

Hierarchical representation: of trajectories, e.g., or of the task, decomposed in sub-tasks
(each of which is easy to solve).

Examples:

� hand-designed discretization of the state space in regions of interest

� or learned (regions)

� meta-actions: one meta-action = a given sequence of movements (ex: move 5m
ahead)

� combining action primitives

� considering clusters sharing properties

� local models (different models for different state space regions)

33

34 CHAPTER 6. ROBOTICS

Get help from:

� imitation learning: show a few examples of correct trajectories to the robot, for a
few cases. Use them as an exploration basis, e.g . linear combinations of primitives
+ noise

� good policy initialization =⇒ faster to learn

� or make use of pre-programmed policies

� incorporate physical constraints in the policy =⇒ smaller space to explore

� hierachical RL: decompose in sub-tasks

� or increase task difficulty progressively

� encourage to explore new promising tracks: reward for novelty, curiosity, etc. (but
useful ones only, i.e. that bring the most information)

6.2 Time

Algorithm should run real-time, and time needs to be discretized.

Sensing and motor delays =⇒ better be taken into account (by learning, e.g.)

Examples:

� pre-structured policy, with motor primitives using physics equations

6.3 Virtual world

Learning in a virtual world : much faster than real robot movements (+ all hardware
issues, experiment setting...)

=⇒ reality gap : needs to adjust the virtual world model to the real one

Examples: temperature impacts robot dynamics; light conditions; sensing uncertainty...;
small i.i.d. errors explode when taking derivatives...

=⇒ loop : planning in the virtual world / testing it the real world
+ need to adapt / be robust (e.g., notice temperature is wrong, and adapt)

To help to be robust:

� model the distribution of possible worlds, or consider stochastic virtual worlds

6.4. GOAL SPECIFICATION 35

� model the uncertainty (about the space / action / dynamics) and consider it when
updating policies

To better compare policies:

� run them on the exact same example (with same random seed)

6.4 Goal specification

Sparse reward =⇒ difficult optimization (especially in a such huge space)

=⇒ more informative rewards (and more frequent), while making sure they will not
lead to undesirable behaviors (as in the boat race game with too high side bonuses).

Example: reward the proximity to the solution. For instance, for a bilboquet, distance
to the target ; or θ̈2 + ‖desired location− actual location‖2.

6.5 Examples of approaches

Continuous =⇒ function approximation =⇒ policy gradient (with actor-critic), or
deep Q-learning

In combination with a learned model of the world,
and with examples of solutions in a few cases.

6.6 Links

Reinforcement Learning in Robotics: A Survey, by Kober, Bagnell & Peters,
http://www.ias.tu-darmstadt.de/uploads/Publications/Kober_IJRR_2013.pdf

Playground (virtual environments for RL training): OpenAI Gym
https://gym.openai.com/

To go further: state of the art: workshop at NeurIPS 2019
http://www.robot-learning.ml/2019/

http://www.ias.tu-darmstadt.de/uploads/Publications/Kober_IJRR_2013.pdf
https://gym.openai.com/
http://www.robot-learning.ml/2019/

36 CHAPTER 6. ROBOTICS

Chapter 7

Monte Carlo Tree Search (MCTS)

7.1 Adversarial games and classical approaches

Setting: adversarial game where each one plays in turn.
Question: best strategy, to maximize chances of winning (or score)?

Minimax approach You alternate the best action that you can take and the best
action the adversary can take (which is the worst for you).

In practice you cannot go very far in the tree (of possible future actions) with that
approach. When you have to stop (descending the tree, i.e. at leaves of the tree), you
have to rely on a hand-made estimate of your probability to win.

α − β pruning Branch and bound to discard branches that cannot lead to a better
score.

7.2 Upper confidence Tree

Use bandits, one bandit per action. This was done in CrazyStone (a go player). We
take the arm i that maximizes the following quantity:

ri +

√
log n

Ti(n)
Fi

where Fi = min(1/4, σ2
i +

√
2 logn
Ti(n)

) is an optimistic estimation of the variance of the

rewards for arm i, after n time steps including Ti(n) times pulling that arm.

At some point you reach the end of the game. The good thing is that bandits give
you a policy without having to estimate the probability to win.

37

38 CHAPTER 7. MONTE CARLO TREE SEARCH (MCTS)

7.3 MOGO: Monte Carlo Tree Search (MCTS)

Bandits each time yo play. But instead of developing the full tree (of future actions),
when I am in a new state (never visited before, i.e. without a bandit already there to
tell which action to take), I play many random games and take the average score. Thus
you get an estimate of the state, action value and create a new bandit node for that
action. You remember only the nodes seen more than twice.

7.4 Alpha-GO

See the Alpha-Go paper in Nature: https://storage.googleapis.com/deepmind-media/
alphago/AlphaGoNaturePaper.pdf mixing MCTS with neural netwoks, and see Alpha-
Zero, a different approach learning everything from scratch (and not pre-trained to
mimick experts).

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf

Appendix

Acknowledgments

This LATEX document is initially based on Hugo Richard’s notes of my course at Cen-
traleSupelec in 2018.

Links and references

The web version of this course (including videos and references) is available at:

� https://www.lri.fr/~gcharpia/machinelearningcourse/.

The main reference of the field is the book:

� Reinforcement Learning: An Introduction by Richard S. Sutton & Andrew G.
Barto.

More references, in particular for more advanced mathematics on the topic:

� the book Statistical Learning and Sequential Prediction by Alexander Rakhlin &
Karthik Sridharan,

� the course Reinforcement Learning by Rémi Munos.

Research articles and review papers for specific topics are indicated for each chapter on
the web page.

39

https://www.lri.fr/~gcharpia/machinelearningcourse/

	Introduction
	Overview of the contents of this course
	Overview of this document

	Bandits
	Reinforcement learning framework
	General setting
	The particular case of bandits
	Example

	Strategies
	Exploration vs. exploitation
	Examples of strategies

	Modeling and optimization criterion
	Example of an optimal strategy: UCB
	UCB algorithm
	UCB Bound

	Performance Bounds
	How good can a strategy be?
	KL-UCB

	Softmax strategy and Time
	Variation on the Softmax strategy
	Combining experts' advice for time series prediction

	Learning dynamics
	Definitions
	Markov Decision Process (MDP)
	Value functions: V and Q
	Optimal Policies

	Monte Carlo (MC) methods
	On-Policy MC-control
	Off-Policy evaluation
	Temporal difference
	On-policy TD control: SARSA
	Off-policy TD control: Q-learning

	Eligibility traces
	n-step prediction
	n-step backup
	-return algorithm
	TD() Backward view
	SARSA-
	Q()
	Parametrized familly V(s)

	Policy Gradient
	New framework: Optimize policy directly
	Policy Gradient Theorem
	REINFORCE algorithm
	Actor Critic
	Version with eligibility traces
	Different Goal

	An example from the literature: DeepMind's DQN (Deep Q-Network): Atari Games

	Robotics
	Continuity
	Time
	Virtual world
	Goal specification
	Examples of approaches
	Links

	Monte Carlo Tree Search (MCTS)
	Adversarial games and classical approaches
	Upper confidence Tree
	MOGO: Monte Carlo Tree Search (MCTS)
	Alpha-GO

	Appendix
	Acknowledgments
	Links and references

