
Image Statistics

based on

Diffeomorphic Matching



We consider a set of several images: Ii.

We want to define and compute:

↪→ their mean image: M

↪→ their characteristical ways of changing shape or colors



Mean image M :

supposed to look like each one of the images Ii.

↪→ What does “look like” mean ?

⇒ We have to consider first the image matching problem.



Image matching

Let A and B be two images.

We think of them as positive real functions functions defined in

a rectangular subset Ω of the plane R2.

A, B : R2 → R

We search for a deformation field f such that the warped image

A ◦ f resembles B.

? f , A ◦ f ' B



The field f should be smooth enough and invertible:

⇒ take into account a regularizing term R(f).

Examples:

↪→ ‖f − Id‖H1

Ω

(where ‖a‖H1

Ω =
∫

x∈Ω
‖a(x)‖2 + ‖Da(x)‖2 dx)

↪→ ‖f − Id‖H1

Ω + ‖f−1 − Id‖H1

Ω .



Now, what does A ' B mean ?

↪→ criterium C(A, B) which expresses the similarity between the

two images A and B.

Example:

↪→ ‖A−B‖L2

Ω =
∫

x∈Ω
(A(x)−B(x))2 dx

↪→ Local Cross-Correlation.



Local Cross-Correlation

Given a scale σ, the cross-correlation of two images A and B at
point x is defined by:

CC(A, B, x) =
vAB(x)2

vA(x) vB(x)

where vA(x) is the local spatial variance of A in a gaussian neigh-
borhood of size σ centered on x, and vAB(x) the local covariance
of A and B on the same neighborhood, i.e. we define:

g(x, y) = e
‖x−y‖2

2σ2

µ(x) =
∫

y∈Ω
g(x, y) dy

Ā(x) =
1

µ(x)

∫

y∈Ω
A(y) g(x, y) dy



vA(x) = ε +
1

µ(x)

∫

y∈Ω
(A(y)− Ā(x))2 g(x, y) dy

vAB(x) =
1

µ(x)

∫

Ω
(A(y)− Ā(x))(B(y)− B̄(x)) g(x, y) dy

LCC(A, B) =
∫

x∈Ω
CC(A, B, x) dx



The Image Matching Algorithm

Minimize with respect to the deformation field f (initialized to

the identity) through a multi-scale gradient descent the following

energy:

E(A, B, f) = LCC(A ◦ f , B) + R(f)

Ref: O. Faugeras and G. Hermosillo, Well-posedness of two

non-rigid multimodal image registration methods, Siam Journal

of Applied Mathematics, 2004.



The mean of a set of images

An intuitive algorithm: find the mean

Introduce n diffeomorphisms fi in order to warp an image Ai on

the mean M .

? M, (fi)1≤i≤n, min
∑

i

E(Ai ◦ fi, M, fi)

Problem: a gradient descent with respect to an image (M) leads

to bad results

↪→ prevents the fields fi from any evolution.



Another intuitive algorithm

Choose M = 1
n

∑
i Ai ◦ fi.

? fi, min
∑

i

E(Ai ◦ fi,
1

n

∑

k

Ak ◦ fk, fi)

New problem: we have at each step for each i, Ai◦fi ' 1
n

∑
i Ai◦fi

⇒ immediatly stuck in a local minimum.



The final word: eliminating the mean

? fi, min
1

n− 1

∑

i 6=j

LCC(Ai ◦ fi, Aj ◦ fj) +
∑

k

R(fk)

At the end of the evolution:

↪→ each Ai ◦ fi is supposed to look like each of the others

⇒ the mean is naturally computed as M = 1
n

∑
i Ai ◦ fi.

We add the condition
∑

i fi = 0 at each time step.



Example

Face database from Yale∗.
↪→ mean face out of photographs of ten different people with

similar expressions, approximatively the same illumination and

position conditions, and the same size (195 * 231 pixels).

∗http://cvc.yale.edu/projects/yalefaces/yalefaces.html



The first 5 images.

The first 5 warped images.



The last 5 images Ai.

The last 5 warped images Ai ◦ fi.



The mean of the previous ten faces.



Second order statistics of a set of images

Information about shape variations: in the diffeomorphisms hi

⇒ compute statistics on these warping fields.

Diffeomorphisms fi: functions from a subset Ω of the plane R2

to itself
⇒ correlation between two fields a and b:

〈a |b〉L2(Ω→R2) =
1

|Ω|
∫

Ω
a(x) · b(x) dx

Mean field f̄ = 1
n

∑
i fi is 0

⇒ (shape-)correlation matrix:

SCMi,j =
〈
fi − f̄

∣∣∣fj − f̄
〉
L2(Ω→R2)

=
〈
fi

∣∣∣fj
〉
L2(Ω→R2)



↪→ diagonalize the shape-correlation matrix SCM

↪→ extract its eigenvalues σk and normalized eigenvectors vk

↪→ modes of deformation: mk =
∑

i (vk)i fi

In order to “draw” a mode: continuously apply a mode mk to

the mean image M with an amplitude α (∈ R) by computing the

image M ◦ (Id + α(mk − Id))

⇒ make animations



Example

Each column represents a mode and is divided in five images: the

mode is applied with five different amplitudes (α = {2σk, σk,0,−σk,−2σk}).





Intensity variations

Shape variations: statistics on diffeomorphisms fi.

Intensity variations: statistics on Ii = Ai ◦ fi−M for the L2(R2 →
R) scalar product.

↪→ intensity-correlation matrix ICM with ICMi,j =
〈
Ii

∣∣∣Ij

〉
.

Standard deviations of shapes and intensities: σ2
S = 1

n

∑
i ‖fi‖2

and σ2
I = 1

n

∑
i ‖Ii‖2

⇒ combined correlation matrix CCM = 1/σ2
SSCM + 1/σ2

I ICM

↪→ proceed as before, compute and display principal modes of

variations.



Each column represents a mode, applied to their mean image

with amplitude α = {σk,−σk}.



Classification: Expression Recognition

Associate with any new face its expression (out of happy, sad,

sleepy, surprised and winking).

From the mean image

Match the mean image to the new image.

Use a Support Vector Machine with gaussian kernel on these

deformations.

Cross-validation error: 24 upon 65 faces.



With knowledge of the face without expression

Match the image with normal expression to the image with un-

known expression.

Align the computed deformation on the mean face of the whole

set of images.

SVM on these aligned deformations: 12 errors on 65.





Summary and Conclusions

↪→ Definition and computation of first and second order statis-

tics of a set of images with a diffeomorphic matching approach

(without landmarks).

↪→ use them in a classification task.

Methods not specific to faces and without any prior on the kind

of images.


