Deep Learning in Practice

Guillaume Charpiat Wenzhuo Liu & Nilo Schwencke

TAU team, LRI, Paris-Sud / INRIA Saclay

... and guests!

G. Charpiat Deep Learning in Practice

Overview

- Course summary and organization
- Chapters overview

G. Charpiat Deep Learning in Practice

Context

- Deep learning: impressive results in the machine learning literature
- yet difficult to train, and still poorly understood; results = black-boxes missing explanations.
- Huge societal impact of ML today (assistance in medicine, hiring process, bank loans...)
 - \implies explain their decisions, offer guarantees?
- Real world problems: usually do not fit standard academic assumptions (data quantity and quality, expert knowledge availability...).
- This course: aims at providing insights and tools to address these practical aspects, based on mathematical concepts and practical exercises.

Introduction	
00000000000000	
Overview	

Organisation and evaluation

- Most courses: a lesson + practical exercises (evaluated, to hand in within 2 weeks)
- Extras: a few guest talks

Schedule

8 classes of 3 hours, most often on Tuesday mornings (9h - 12h15 with a break), online (not every week, check the webpage for details).

Webpage & mailing-list: https://www.lri.fr/~gcharpia/deeppractice/

Prerequisite

- The introduction to Deep Learning course by Vincent Lepetit (1st semester)
- Notions in information theory, Bayesian statistics, analysis, differential calculus

Overview

Links with other Deep Learning courses

- Introduction to Deep Learning (V. Lepetit) : prerequisite
- Fondements Théoriques du deep learning (F. Malgouyres & al)
- Modélisation en neurosciences et ailleurs (J-P Nadal)
- Apprentissage Profond pour la Restauration et la Synthese d'Images (A. Almansa & al)
- Deep learning for medical imaging (O. Colliot & M. Vakalopoulou)
- Object recognition and computer vision (Willow team & al)
- etc. (NLP, graphes...)
- Our course: understanding and tools to make NN work in practice with a focus on architecture design, explainability, societal impact, real datasets and tasks (e.g. small data, limited computational power vs. scaling up, RL...). pregligible overlap

Introduction		
Overview		

Outline

TAU team, INRIA Saclay / LRI - Paris-Sud

G. Charpiat Deep Learning in Practice

Deep learning vs. classical ML and optimization

- January 5th

- Going Deep or not?
 - Examples of successes and failures of deep learning vs. classical techniques (random forests)
 - Approximation theorems vs. generalization [3, 4]
 - Why deep: ex. of <u>depth</u> vs. <u>layer size</u> compromises (explicit bounds)
- Gap between classical Machine Learning and Deep Learning
 - Forgotten Machine Learning basics (Minimum Description Length principle, regularizers, objective function different from evaluation criterion) and incidental palliatives (drop-out, early stopping, noise)
- Hyper-parameters and training basics
 - + list of practical tricks

TAU team, INRIA Saclay / LRI - Paris-Sud

G. Charpiat Deep Learning in Practice

Interpretability

– January 12th

At stake: the example of medical diagnosis, and societal issues with black-box algorithms [5] Right for the Right Right for the Wrong Right for the Right Wrong Reserve Research Reserve

- Interpretability of neural networks
 - Analyzing the black-box
 - at the neuron level: filter visualisation, impact analysis
 - at the layer level: layer statistics...
 - at the net level: low-dimensional representation (t-SNE) + IB
 - by sub-task design: "explainable AI"
 - Adversarial examples & remedies
- Issues with datasets
 - Biases in datasets : 4 definitions of fairness
 - Getting invariant to undesirable dataset biases (e.g. gender in CVs / job offers matching)
 - Ensuring errors are uniform over the dataset
 - Differential privacy (database client protection)
- Visualization tools: grad-CAM

TAU team, INRIA Saclay / LRI - Paris-Sud

Our Model A man sitting at a desk with A woman sitting in front of a a lanton computer

Baseline A man holding a tennis

A man holding a tennis racquet on a tennis court

leptop computer

Introduction 0000000000000000

Overview

Architectures

- January 19th

- Architectures as priors on function space
 - Change of design paradigm
 - Random initialization
- Architecture zoo
 - Reminder (CNN, auto-encoder, LSTM, adversarial...)
 - Dealing with scale & resolution (fully-convolutional, U-nets, pyramidal approaches...)
 - Dealing with depth (ResNet, auxiliary losses) and mixing blocks (Inception)
 - Attention mechanisms
 - GraphCNN

Problem modeling: molecular dataset using graph-NN

TAU team, INRIA Saclay / LRI - Paris-Sud

G. Charpiat Deep Learning in Practice

Introduction

Overview

Small data, weak supervision and robustness

- Small data
 - Data augmentation / synthetic data
 - Multi-tasking
 - Transfer learning
- ► Few labeled examples: forms of weak supervision
 - Semi-supervision
 - Weak supervision
 - Self-supervision
 - Active learning
- Noisy data
 - Denoising auto-encoder
 - Classification with noisy labels
 - Regression with noisy labels
- Exploiting known invariances or priors
 - Permutation invariance: "deep sets" [8], applied to people genetics
 - Choosing physically meaningful metrics, e.g. optimal transport (Sinkhorn approximation)[9]
- Active learning

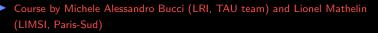
Guest talks

- Monday, February 22nd

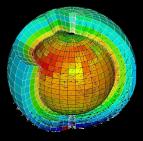
- Deep Reinforcement Learning by Olivier Teytaud (Facebook FAIR)
 - Crash-course about deep RL...
 - ... until alpha-0!
 - and more topics (evolutionary optimization...)

- Presentation of Therapixel by Yaroslav Nikulin
 - start-up in medical imaging (DL to detect breast cancer in scans)

Incorporating physical knowledge / Learning physics



- Data assimilation
- Learning a PDE (equation not known)
- Incorporating invariances/symmetries of the problem
- Knowing an equation that the solution has to satisfy: solving PDEs!
- Deep for physic dynamics : learning and controlling the dynamics



Learning a dynamical system

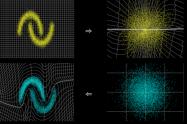
G. Charpiat Deep Learning in Practice

- February 23rd

Generative models + Auto-DL

- March 2nd

- Auto-DeepLearning by Isabelle Guyon's group
 - Overview of recent approaches for automatic hyper-parameter tuning (architecture, learning rate, etc.): classical blackbox optimisation, Reinforcement Learning approaches, constrained computational time budget, self-adaptive architectures...
 - Presentation of the Auto-ML & Auto-DL challenges
- Generative models
 - GAN, VAE (Variational Auto-Encoder), and Normalizing Flows
- GAN vs. VAE vs. NF



Guarantees? Generalization (NTK) and formal proofs

G. Charpiat Deep Learning in Practice

To attend the course

- go see the website and subscribe to the mailing-list https://www.lri.fr/~gcharpia/deeppractice/
- install PyTorch, Jupyter and matplotlib
- See you... on last Tuesday (recording available)
 ... online (info on the mailing list)

Biographies

- Guillaume Charpiat is an INRIA researcher in the TAU team (INRIA Saclay/LRI/Paris-Sud). He has worked mainly in computer vision, optimization and machine learning, and now focuses on deep learning. He conducts studies on neural networks both in theory (self-adaptive architectures, formal proofs) and in applications (remote sensing, people genetics, molecular dynamics simulation, brain imagery, weather forecast...).
- Wenzhuo Liu and Nilo Schwencke are PhD students in the TAU team, working on deep learning for physical systems and for computational social sciences.

Introduction

Overview

Bibl	lography
rpiat	TAU team, INRIA Saclay / LRI - Paris-Sud

G. Charpiat

Deep Learning in Practice