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All you need to smartly succeed in this TP.



Observability
Jacobian

State

measure matrix

measure

The system is observable in X if

for Rossler m = 3 and r = 1 
observing one coordinate



Observability in Rossler



Observability in Rossler

● Generate the data (time series) with a = b = 0.2, c = 5.7
● Learn the discrete or continuous dynamical system from the time series

● 70% of the note: recover statistics
○ PDF
○ Time Correlations
○ Spectral density
○ ...

● 30% of the note: recover dynamics
○ Equilibrium point (at least one)
○ Lyapunov exponents (the largest one)

These analysis are enough to 
reach the 70% of the note but 
more analyses can make the 

difference!



Differences:

Discrete Continuous

Jacobian

Linearized system

Dynamical system

Note that:

Equilibrium state



Constraints

If you use temporal embedding or architectures with memory: you can use just 
ONE coordinate (y of course!)

memory in RNN

Without temporal embedding, discrete or continuous systems: use the whole state

One approach is enough



Be smart

To find the equilibrium point and to evaluate the Lyapunov exponent, the Jacobian 
has to be computed. Introduce a penalization onto the sensibility of your model wrt 
the inputs!

Attention: with a RNN the total Jacobian needs to be computed!
Appendix D in: “Backpropagation Algorithms and Reservoir Computing in Recurrent Neural 
Networks for the Forecasting of Complex Spatiotemporal Dynamics”  

There is not a unique way to 
proceed! If you use a purely 

data driven approach (without 
explicitly introducing the true 
Jacobian in the loss function) 

will be appreciated.



Be Zen 1/2

Before start take some time to study the problem, read the papers. Take care to 
re-formulate the problem according to your choice. For instance, given                     
the equilibrium point, if you choose:

1) temporal embedding 
the new equilibrium point is 

2) derivative embedding 
the new equilibrium point is 

With temporal embedding the Lyapunov exponent might change but still positive. 
The reconstructed phase space is a diffeomorphism wrt the original phase space 
(Takens’s theorem): one-to-one mapping between original and reconstructed phase 
space but the geometry might change!



Be Zen 2/2

Try to recover a pure data driven model. If you choose to recover a continuous 
system, time derivatives can be evaluated from the observed trajectory through 
finite differentiation.

Another possibility is to use ODE Net which solves the variational problem under 
continuous-in-time constraint [Chen, Ricky TQ, et al. "Neural ordinary differential equations." 
arXiv:1806.07366 (2018)]. ODE Net available at: https://github.com/rtqichen/torchdiffeq

The Jacobian can be computed through automatic differentiation librairies. 
Straightforward to use in Tensorflow or PyTorch. If you don’t want to use automatic 
differentiation to recover the Jacobian, finite differentiation can do the job.

GOOGLE IS YOUR FRIEND 



Deliver

1. small report (~4 pages max, 5 figures max)
a. Justify the loss function
b. Justify the regularization (if any)
c. Justify the analysis you carried out to validate the model

2. codes to reproduce the pictures in your report (+ trained NN)
3. code to generate a new time series with your trained model, please complete 

the script time_series.py. I will choose a new initial condition with the SHELL 
command:

                         $   python time_series.py --init  a  b  c

where a b c are float numbers used as initial condition. Please follow the 
comment in the script without change the output file shape/name.



Appendix

Lyapunov exponent:

where



Appendix

Initial guess with unitary energy

w = np.eye(n)

Lyapunov exponent:

where



Appendix

Initial guess with unitary energy

w = np.eye(n)

Evolution of the initial guess following the tangent trajectory

w_next = np.dot(expm(jacob * delta_t),w)

Lyapunov exponent:

where



Appendix

Evaluate the stretching and the new orthonormal base

w_next, r_next = qr(w_next)

Lyapunov exponent:

where



Appendix

Evaluate the stretching and the new orthonormal base

w_next, r_next = qr(w_next)

Lyapunov exponent:

where



Appendix

Evaluate the stretching and the new orthonormal base

w_next, r_next = qr(w_next)

Store the amplification factors

rs.append(r_next)

Lyapunov exponent:

where



Appendix

Evaluate the mean amplification

mean(rs)

mean(log(rs))/t

Lyapunov exponent:

where



Personal considerations

Training a RNN for a discrete system using just y coordinate is fast and safe. On the other 
hand recover the Jacobian is not straightforward.

Training a Neural Network to emulate the discrete Rossler system without temporal 
embedding is fast but you need to accurately design the loss function and the penalization. 
Recover the Jacobian is easy with automatic differentiation.

Training a Neural Network to recover the continuous Rossler system is hard. Exponentially 
more complicated (               ), an error on A￼ is amplified in the solution propagation by 
￼J. Moreover in the continuous space, cross trajectories are not allowed. BUT, if you are 
able to got it, the Jacobian is for free and almost exact.


