Deep Learning in Practice - MVA 2019-2020





# Automated Deep Learning

### LIU Zhengying

#### Laboratoire en Recherche Informatique (LRI) U. Paris-Sud / Inria / U. Paris Saclay

9 Mar 2020

### Contents

• AutoML: an intro

• AutoML methods with application to Deep Learning

AutoDL challenges

# AutoML: an intro





#### Machine Learning

#### Machine Learning algorithm: Decision Tree, CNN, SVM, etc

Dogs vs Cats dataset



 $P(\alpha_{\theta})$ 

performance (e.g. accuracy)

IN (for another A)

nother A)

encoded by: hyperparameters  $\lambda \in \Lambda$ hand-crafted by <u>ML experts</u>

## The typical process...



Normal spirals





**zero** hyperparameters no hand-crafting at all! actually defines a beta:  $\beta_{\pi}(D) := \pi(D)(D)$ can be learned too  $\implies$  meta-learning



can be combined with Hyperparameter Optimization we can also have  $\mathfrak{D} = \{D_j, \beta_j, \alpha_j, P_j\}$ with trained  $\alpha_j \implies$  transfer learning



#### The AutoML problem: definition



### Exercise: a toy example



neural network with one hidden layer  $\theta? \ \lambda?$  hard-coding approach? ML? AutoML?

## AutoML: what's exciting?

- 100% autonomous
- Beat "no free lunch"
- Any time
- Any resource





## AutoML: already a hot topic



Google's AutoML









Traditional Machine Learning Workflow



AutoML Workflow





## AutoML methods with application to Deep Learning

We'll focus on the simplest case

 $\mathfrak{D}_{tr} = \emptyset$  (initially) and  $\mathfrak{D}_{te} = \{(D_{tr}, D_{te})\}$  (single dataset)

Hyperparameter Optimization

 $\longrightarrow$  single fixed training dataset:  $D_{tr}$ 

we only need to focus on  $\beta_{\lambda}, \lambda \in \Lambda$ 

#### Reminder:

$$\max_{\gamma} \sum_{\substack{D_{tr}, D_{te} \\ \in \mathfrak{D}_{te}}} P(\hat{\hat{\alpha}}; D_{te}) \qquad \text{where } \hat{\hat{\alpha}} = \hat{\beta}(D_{tr}) \text{ and } \hat{\beta} = \gamma(\mathfrak{D}_{tr})$$

## Search Space

#### How do we describe (encode) a learning algorithm?



in <u>natural language</u>:

"a feed-forward neural network with one hidden layer of p=10 neurons, using ReLU as activation and Adam as optimizer, with learning rate lr=0.001, ..."

formally:

 $\beta_{\lambda}, \lambda \in \Lambda$  ??

## Search Space (for DL)

 $\beta_{\lambda}, \lambda \in \Lambda \,:$  architecture, optimizer, regularization, etc



Automated Machine Learning - Methods, Systems, Challenges, Frank Hutter et. al, (2018) Springer.

## Search Space (for DL)



#### "NASNet search space" only uses two building blocks

Zoph B, Vasudevan V, Shlens J, Le QV. Learning Transferable Architectures for Scalable Image Recognition. CVPR2018

Softmax

#### Hyperparameter Optimization: a reformulation

an HPO algorithm aims to solve:  $\max_{\lambda \in \Lambda} P(\hat{\alpha}; D_{te})$  where  $\hat{\alpha} = \beta_{\lambda}(D_{tr})$ 

unknown test score:  $P(\hat{\alpha}; D_{te}) \implies$  use an estimation (e.g. CV):  $\hat{P}(\lambda)$ 

so usually the problem becomes



 $\hat{P}: \Lambda \to \mathbb{R}$ 

black-box optimization

expensive to compute

where

surrogate model (not discussed)

$$\lambda \mapsto s = \hat{P}(\lambda) \approx P(\beta_{\lambda}(D_{tr}), D_{te})$$

is an estimation of the test score

Remark: some approaches optimize  $\lambda$  and  $\theta$  at the same time

**bi-level** optimization (to be discussed later with DARTS)

## Search Strategy

- Heuristic search
  - Grid Search
  - Random Search
  - Evolutionary Algorithms
- Bayesian Optimization
- Reinforcement Learning methods
- Differentiable methods

 $\Lambda = \Lambda_1 \times \Lambda_2$  with  $\Lambda_1 = \{1, 2, 3, 4\}$  and  $\Lambda_2 = \{0.001, 0.001, 0.1, 1\}$ 

# neurons in hidden layer

learning rate

try every possible combination in

$$\Lambda = \Lambda_1 \times \Lambda_2$$

evaluate it and return argmax in the end

curse of dimensionality!



## Random Search

$$\Lambda = \Lambda_1 \times \Lambda_2$$
 with  $\Lambda_1 = \{1, 2, 3, 4\}$  and  $\Lambda_2 = \{0.001, 0.001, 0.1, 1\}$ 

*#* neurons in hidden layer

learning rate

Randomly sample certain number of combinations in

$$\Lambda = \Lambda_1 \times \Lambda_2$$

evaluate it and return argmax in the end



#### Grid Search and Random Search

two model-free black-box optimization methods



RS tends to perform better than GS when some HP are more important than others Random Search provides already a strong HPO baseline (surprisingly...?)

Bergstra J, Bengio Y. Random Search for Hyper-Parameter Optimization. JMLR. 2012

## **Evolutionary Algorithms**

Population-based derivative-free optimization methods



similar to: genetic algorithms, evolutionary strategies, particle swarm optimization

Optimize w.r.t a population (a set of points) or a distribution instead of one single point

Often encode an individual by "chromosome"

Explore new points by mutation or crossover

Select individuals by fitness

Just some vocabulary...but the idea is simple

Easy to parallelize

#### Evolutionary Algorithm: an example

Real E, Moore S, Selle A, et al. Large-Scale Evolution of Image Classifiers. ICML2017

1000 individuals

fitness: accuracy on validation dataset

pair-wise competition (select two individuals and kill the weaker one)

the winner gets to reproduce and mutate

massively-parallel (due to huge computation cost)

chromosome (DNA): tensor graph

begins from single layer individuals

possible mutations:

- ALTER-LEARNING-RATE
- IDENTITY
- RESET-WEIGHTS
- INSERT-CONVOLUTION
- REMOVE-CONVOLUTION.
- ALTER-STRIDE
- ALTER-NUMBER-OF-CHANNELS
- FILTER-SIZE
- INSERT-ONE-TO-ONE
- ADD-SKIP
- REMOVE-SKIP

#### Evolutionary Algorithm: an example



Real E, Moore S, Selle A, et al. Large-Scale Evolution of Image Classifiers. ICML2017

## **Bayesian Optimization**

$$\max_{\lambda \in \Lambda} \hat{P}(\lambda) \quad \text{with } \hat{P} : \Lambda \to \mathbb{R} \\ \lambda \mapsto s$$

Original idea:  $\lambda$  and  $s = \hat{P}(\lambda)$  follow prior distributions  $p(\lambda), p(s | \lambda)$ 

we choose next point to evaluate by maximizing an **acquisition function** (active learning-like)

we gain more information and update  $p(\lambda)$  and  $p(s|\lambda)$  (or  $p(s,\lambda)$ )

repeat until convergence



29

## Bayesian Optimization (cont'd)

$$\max_{\lambda \in \Lambda} \hat{P}(\lambda) \quad \text{with } \hat{P} : \Lambda \to \mathbb{R} \\ \lambda \mapsto s$$

usual acquisition function: Expected Improvement (EI)

 $a_{EI}(\lambda | D_n) = \mathbb{E}[\max(\hat{P}(\lambda) - s_{\max}, 0)]$ 

usual prior model: Gaussian Process (GP)

but state-of-the-art tends to use tree-based classifier such as **Random Forest** to model

 $\hat{P}(\lambda)$  (or  $p(s \,|\, \lambda)$  )

(thus not so Bayesian anymore...), see Auto-sklearn



#### Bayesian Optimization: an example

Bergstra JS, Bardenet R, Bengio Y, Kégl B. Algorithms for Hyper-Parameter Optimization. NIPS2011

Tree Parzen Estimator (TPE) -> Hyperopt model  $p(\lambda | s < \alpha)$  and  $p(\lambda | s > \alpha)$  instead of  $p(s | \lambda)$ use notation  $f : x \mapsto y$  instead of  $\hat{P} : \lambda \mapsto s$ 

$$p(x|y) = \begin{cases} \ell(x) & \text{if } y < y^* \\ g(x) & \text{if } y \ge y^*, \end{cases}$$

$$\mathrm{EI}_{y^*}(x) = \int_{-\infty}^{y^*} (y^* - y) p(y|x) dy = \int_{-\infty}^{y^*} (y^* - y) \frac{p(x|y)p(y)}{p(x)} dy$$

$$EI_{y^*}(x) = \frac{\gamma y^* \ell(x) - \ell(x) \int_{-\infty}^{y^*} p(y) dy}{\gamma \ell(x) + (1 - \gamma)g(x)} \propto \left(\gamma + \frac{g(x)}{\ell(x)} (1 - \gamma)\right)^{-1}$$

## **Reinforcement Learning**

A reminder:



State space: STransition model:  $\mathscr{P}^{a}_{ss'} = p(s'|s, a) : S \times A \times S \rightarrow [0,1]$ Action space: AReward:  $\mathscr{R}^{a}_{ss'} : S \times A \times S \rightarrow \mathbb{R}$ 

**Goal:** Learn a policy:  $\pi(s, a) = p(a | s) : S \times A \rightarrow [0, 1]$ 

that maximizes the (discounted) expected return

$$\mathbb{E}_{\pi}\left[\sum_{t=1}^{T}\gamma^{t}r_{t}\right]$$

with  $T \in [0, +\infty], \gamma \in [0,1]$  and  $s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, ...$  the agent's trajectory

#### Reinforcement Learning: an example

Zoph B, Le QV. Neural Architecture Search with Reinforcement Learning. ICLR 2017



### **Differentiable Methods**

Liu H, Simonyan K, Yang Y. DARTS: Differentiable Architecture Search. ICLR2019

Idea: relaxation of "hard" choice of operations (convolution, max-pooling, zero) to "soft" choice (linear combination of these operations)

$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$



## Differentiable Methods

Liu H, Simonyan K, Yang Y. DARTS: Differentiable Architecture Search. ICLR2019

algorithm parametrized by architecture:  $\alpha$  weights: W



**Bi-level** optimization:

- 1. update W on training set
- 2. update  $\alpha$  on validation set

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
s.t.  $w^*(\alpha) = \operatorname{argmin}_{w} \quad \mathcal{L}_{train}(w, \alpha)$ 

Inner step is very expensive => approximate full training by on step:

$$\nabla_{\alpha} \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
  
$$\approx \nabla_{\alpha} \mathcal{L}_{val}(w - \xi \nabla_w \mathcal{L}_{train}(w, \alpha), \alpha)$$

Results:

Close to state-of-the-art (SotA) on image (CIFAR10, ImageNet) but much faster SotA on language modeling (Penn Treebank, WikiText-2)

Can be considered as having one single big architecture but with different training method => Lottery Ticket Hypothesis?

## Summary

| Method                                                       | Туре                         | How to take next<br>action                   | Update/Learn                                  |  |  |  |  |
|--------------------------------------------------------------|------------------------------|----------------------------------------------|-----------------------------------------------|--|--|--|--|
| Grid Search                                                  | model-free                   | loop over all choices<br>(Cartesian product) | take max                                      |  |  |  |  |
| Random Search                                                | model-free                   | totally random                               | take max                                      |  |  |  |  |
| Bayesian<br>Optimization                                     | sequential-based             | maximizes acquisition<br>function            | update surrogate<br>model                     |  |  |  |  |
| Evolutionary<br>Algorithms                                   | population-based             | each individual<br>randomly mutates          | eliminate the weakest<br>(with least fitness) |  |  |  |  |
| Reinforcement<br>Learning                                    | mixed/can be<br>very general | according to learned policy                  | policy gradient method                        |  |  |  |  |
| Differentiable<br>Methods                                    | gradient-based               | follow (negative)<br>gradient                | gradient descent                              |  |  |  |  |
| There is learning in EVERY method                            |                              |                                              |                                               |  |  |  |  |
| Is there exploration-exploitation trade-off in each method?  |                              |                                              |                                               |  |  |  |  |
| How do we do benchmarking and fairly evaluate these methods? |                              |                                              |                                               |  |  |  |  |
|                                                              |                              |                                              |                                               |  |  |  |  |
| AutoDL challenge!!!                                          |                              |                                              |                                               |  |  |  |  |

## Some other AutoML methods

**Transfer Learning** 

Meta-learning

Ensemble methods (competition winners)

embedded methods\*: bi-level optimization methods (related to transfer learning)

filter methods\*: narrowing down the model space, without training the learning machine (related to meta-learning)

\* Guyon I, Bennett K, Cawley G, et al. Design of the 2015 ChaLearn AutoML challenge. IJCNN 2015

AutoDL challenges



Competition track @ NeurIPS 2019

# AutoDL challenges

#### **Zhengying Liu**

Inria / LRI, France - zhengying.liu@inria.fr







14 Dec 2019 - Vancouver, Canada

# Thanks

Olivier Bousquet (Google, Switzerland) André Elisseeff (Google, Switzerland) Isabelle Guyon (U. Paris-Saclay; UPSud/INRIA, France; ChaLearn, USA) Hugo Jair Escalante (IANOE, Mexico; ChaLearn, USA) Sergio Escalera (University of Barcelona; ChaLearn, USA) Wei-Wei Tu (4paradigm, China)













# And many more...

Stephane Ayache (AMU, France), Hubert Jacob Banville (INRIA, France), Mahsa Behzadi (Google, Switzerland), Kristin Bennett (RPI, New York, USA), Sergio Escalera (U. Barcelona, Spain and ChaLearn, USA), Gavin Cawley (U. East Anglia, UK), Baiyu Chen (UC Berkeley, USA), Albert Clapes i Sintes (U. Barcelona, Spain), Alexandre Gramfort (U. Paris-Saclay; INRIA, France), Yi-Qi Hu (4paradigm, China), Julio Jacques Jr. (U. Barcelona, Spain), Meysam Madani (U. Barcelona, Spain), Tatiana Merkulova (Google, Switzerland), Adrien Pavao (U. Paris-Saclay; INRIA, France and ChaLearn, USA), Shangeth Rajaa (BITS Pilani, India), Herilalaina Rakotoarison (U. Paris-Saclay, INRIA, France), Mehreen Saeed (FAST Nat. U. Lahore, Pakistan), Marc Schoenauer (U. Paris-Saclay, INRIA, France), Michele Sebag (U. Paris-Saclay; CNRS, France), Danny Silver (Acadia University, Canada), Lisheng Sun (U. Paris-Saclay; UPSud, France), Sebastien Treger (La Pallaisse, France), Fengfu Li (4paradigm, China), Lichuan Xiang (4paradigm, China), Jun Wan (Chinese Academy of Sciences, China), Mengshuo Wang (4paradigm, China), Jingsong Wang (4paradigm, China), Ju Xu (4paradigm, China), Zhen Xu (Ecole Polytechnique and U. Paris-Saclay; INRIA, France), Eric Carmichael (CKCollab, USA), Tyler Thomas (CKCollab, USA)



# AutoML challenges

the origin - 2015-2018



# AutoDL challenges

Towards fully automated multi-label classification for

image, video, text, speech, tabular



AutoML challenges





# **New Features**

compared to AutoML challenges







**Any-time learning** 

**Raw data** 

Large scale

#### What is the goal of AutoDL?

### **Three-level formulation of AutoML**

algorithm in each level is characterized uniquely by their input and output



Z. Liu et al, "Overview and unifying conceptualization of Automated Machine Learning"

# Data





#### **15** image + **10** video + **15** speech + **15** text + **50** tabular

|    |            |           |          |               | Class  | Sample number |        | · ·  | Tensor dimension |     |         |
|----|------------|-----------|----------|---------------|--------|---------------|--------|------|------------------|-----|---------|
| #  | Dataset    | Challenge | Phase    | Domain        | number | train         | test   | time | row              | col | channel |
| 1  | Munster    | AutoCV    | public   | hand-writing  | 10     | 60000         | 10000  | 1    | 28               | 28  | 1       |
| 2  | Chucky     | AutoCV    | public   | objects       | 100    | 48061         | 11939  | 1    | 32               | 32  | 3       |
| 3  | Pedro      | AutoCV    | public   | people        | 26     | 80095         | 19905  | 1    | var              | var | 3       |
| 4  | Decal      | AutoCV    | public   | aerial        | 11     | 634           | 166    | 1    | var              | var | 3       |
| 5  | Hammer     | AutoCV    | public   | medical       | 7      | 8050          | 1965   | 1    | 600              | 450 | 3       |
| 6  | Ukulele    | AutoCV    | feedback | hand-writing  | 3      | 6979          | 1719   | 1    | var              | var | 3       |
| 7  | Caucase    | AutoCV    | feedback | objects       | 257    | 24518         | 6089   | 1    | var              | var | 3       |
| 8  | Beatriz    | AutoCV    | feedback | people        | 15     | 4406          | 1094   | 1    | 350              | 350 | 3       |
| 9  | Saturn     | AutoCV    | feedback | aerial        | 3      | 324000        | 81000  | 1    | 28               | 28  | 4       |
| 10 | Hippocrate | AutoCV    | feedback | medical       | 2      | 175917        | 44108  | 1    | 96               | 96  | 3       |
| 11 | Loukoum    | AutoCV    | final    | hand-writing  | 3      | 27938         | 6939   | 1    | var              | var | 3       |
| 12 | Tim        | AutoCV    | final    | objects       | 200    | 80000         | 20000  | 1    | 32               | 32  | 3       |
| 13 | Apollon    | AutoCV    | final    | people        | 100    | 6077          | 1514   | 1    | var              | var | 3       |
| 14 | Ideal      | AutoCV    | final    | aerial        | 45     | 25231         | 6269   | 1    | 256              | 256 | 3       |
| 15 | Ray        | AutoCV    | final    | medical       | 7      | 4492          | 1114   | 1    | 976              | 976 | 3       |
| 16 | Kraut      | AutoCV2   | public   | action        | 4      | 1528          | 863    | var  | 120              | 160 | 1       |
| 17 | Katze      | AutoCV2   | public   | action        | 6      | 1528          | 863    | var  | 120              | 160 | 1       |
| 18 | Kreatur    | AutoCV2   | public   | action        | 4      | 1528          | 863    | var  | 60               | 80  | 1       |
| 19 | Ideal      | AutoCV2   | feedback | aerial        | 45     | 25231         | 6269   | 1    | 256              | 256 | 3       |
| 20 | Freddy     | AutoCV2   | feedback | hand-writing  | 2      | 546055        | 136371 | var  | var              | var | 3       |
| 21 | Homer      | AutoCV2   | feedback | action        | 12     | 1354          | 353    | var  | var              | var | 3       |
| 22 | Isaac2     | AutoCV2   | feedback | action        | 249    | 38372         | 9561   | var  | 102              | 78  | 1       |
| 23 | Formula    | AutoCV2   | feedback | miscellaneous | 4      | 32994         | 8203   | var  | 80               | 80  | 3       |
| 24 | Apollon    | AutoCV2   | final    | people        | 100    | 6077          | 1514   | 1    | var              | var | 3       |
| 25 | Loukoum    | AutoCV2   | final    | hand-writing  | 3      | 27938         | 6939   | 1    | var              | var | 3       |
| 26 | Fiona      | AutoCV2   | final    | action        | 6      | 8038          | 1962   | var  | var              | var | 3       |
| 27 | Monica1    | AutoCV2   | final    | action        | 20     | 10380         | 2565   | var  | 168              | 168 | 3       |
| 28 | Kitsune    | AutoCV2   | final    | action        | 25     | 18602         | 4963   | var  | 46               | 82  | 3       |

#### dataset formatting toolkit available at: https://github.com/zhengying-liu/autodl-contrib

Liu Z, Xu Z, Escalera S, Guyon I, Treguer S, Tu W-W. Towards Automated Computer Vision: Analysis of the AutoCV Challenges 2019. :7.

# **Evaluation**

- Multiple predictions to make
- ROC AUC
- Area under Learning Curve (ALC)
- Average rank



## **Evaluation**



# Participation

| challenge<br>name | Collocated<br>with | #participants | #submission<br>s | begin date<br>(2019) | end date<br>(2019) |
|-------------------|--------------------|---------------|------------------|----------------------|--------------------|
| AutoCV            | IJCNN              | 102           | 938              | May 1                | Jun 29             |
| AutoCV2           | ECML PKDD          | 34            | 336              | July 2               | Aug 20             |
| AutoNLP           | WAIC               | 66            | 420              | Aug 2                | Aug 31             |
| AutoSpeech        | ACML               | 33            | 234              | Sep 16               | Oct 16             |
| AutoWSL           | ACML               | 26            | 439              | Sep 24               | Oct 29             |

# Winners

| Challenge  | 1st place             | 2rd place             | 3nd place                  |
|------------|-----------------------|-----------------------|----------------------------|
|            | (\$2000)              | (\$1500)              | (\$500)                    |
| AutoCV     | <b>kakaobrain</b>     | <b>DKKimHCLee</b>     | <b>base_1</b>              |
|            | (Kakao Brain)         | (Hana. Tech. Inst.)   | (Hanyang University)       |
| AutoCV2    | <b>kakaobrain</b>     | <b>tanglang</b>       | <b>kvr</b>                 |
|            | (Kakao Brain)         | (Xiamen University)   | (-)                        |
| AutoNLP    | <b>DeepBlueAl</b>     | <b>upwind_flys</b>    | <b>txta</b>                |
|            | (DeepBlue Technology) | (Lenovo)              | (gsdata.cn)                |
| AutoSpeech | <b>PASA_NJU</b>       | <b>DeepWisdom</b>     | Kon                        |
|            | (Nanjing University)  | (fuzhi.ai)            | (NS Solutions Corporation) |
| AutoWSL    | <b>DeepWisdom</b>     | <b>Meta_Learners</b>  | <b>lhg1992</b>             |
|            | (fuzhi.ai)            | (Tsinghua University) | (inspur.com)               |

All winners' code is now open-sourced on GitHub

URLs can be found on: autodl.chalearn.org

# Leaderboard overfitting

Average rank - feedback vs final



No leaderboard overfitting => universal AutoML solutions

# **Dataset difficulty**



# Any-time learning problem



Some teams have good final performance but bad any-time performace => any-time learning aspect to be studied further

# Conclusion

Exploration-exploitation trade-off: keep it in mind!

Domain specific AutoML solution generalizes

Hand-crafted gamma-level learning => Cross-domain meta-learning yet to be studied

Any-time learning aspect to be studied further

AutoDL challenge still on-going!

#### Theoretical possibility of AutoML

Can we beat "No Free Lunch"? Why? How?

#### Computational considerations

Statistical vs Computational trade-off: what's the limit?

#### Theoretical guarantee of ensemble methods

Rigorous mathematical proof of the effectiveness of ensemble methods



# Automated Deep Learning

LIU Zhengying U. Paris-Sud / Inria / U. Paris Saclay

### Thank you! Questions?

Internship opportunities:

1. AutoDL Benchmark with extensive GPU usage

2. Meta-learning challenge design and implementation Contact: <u>zhengying.liu@inria.fr</u>