
December 17, 2010 10:20 WSPC/S0218-1274 02785

International Journal of Bifurcation and Chaos, Vol. 20, No. 11 (2010) 3585–3616
c© World Scientific Publishing Company
DOI: 10.1142/S0218127410027854

INFLUENCES ON OTTO E. RÖSSLER’S
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Dedicated to Otto E. Rössler for his 70th birthday

Otto E. Rössler is well-known in “chaos theory” for having published one of the most often used
benchmark systems producing chaotic attractors. His contribution is mostly reduced to this sim-
ple chaotic system published in 1976. Our aim is to show that a slightly earlier paper contains,
in fact, much more and reveals a deep topological understanding of how chaotic attractors are
organized in phase space. Moreover it is shown that Otto had three main influences: Andronov,
Khaikin and Vitt’s textbook, the 1963 Lorenz paper and Li and Yorke’s theorem “period-three
implies chaos”. In this paper, these three contributions are clearly identified as the main influ-
ences on Rössler’s earliest paper on chaos. The content of the latter is briefly compared to other
works that appeared (or were available as reprints) before its own publication.
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1. Introduction

Chaos theory corresponds to the tool box according
to which solutions to nonlinear dynamical systems
that are sensitive to initial conditions are investi-
gated. Like most scientific theories, the history of
chaos as perceived by a broad audience has its lead-
ing contributors: Henri Poincaré (1854–1912) and
Edward Lorenz (1913–2008) are commonly identi-
fied with such a status. The names of additional
contributors depend on the sociological context:
American mathematicians would quote Stephen
Smale but Russian ones would honor Andreii Kol-
mogorov (1903–1987) or Yakov Sinai, French math-
ematicians would invoke David Ruelle, ecologists
would mention Robert May, chemists would refer to
Boris Belousov (1893–1970) and Anatol Zhabotin-
skii (1938–2008). The recognition of major contri-
butions is mainly orientated by the point of view
or the field invoked. Nevertheless, it is commonly
admitted that Poincaré’s seminal works [Poincaré,
1890, 1899] are considered as the foundation of

chaos theory. If he did not exactly observe chaotic
solutions, he emphasized the great sensitivity to ini-
tial conditions around homoclinic orbits which he
discovered [Poincaré, 1899]. Since his early works,
Poincaré introduced the phase space, the four types
of fixed points in two-dimensional space — he did
that a few years after Nikoläı E. Joukovsky (1847–
1921) [Joukovsky, 1876] as shown by [Dobrovolsky,
1972] —, the Poincaré cross-section, the first-return
map and bifurcations [Poincaré, 1881, 1885].

Most of these concepts were used by
Lorenz while investigating a set of three ordi-
nary differential equations producing a beau-
tiful chaotic attractor [Lorenz, 1963] resulting
from a severe truncation of the Navier–Stokes
equations describing Rayleigh–Bénard convec-
tion. Lorenz applied to his dissipative system
the techniques developed by his teacher David
Birkhoff (1884–1944) in the context of conserva-
tive systems. A key point in Lorenz’s 1963 paper
is that a digital electronic computer was used
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to calculate the solutions to his set of differential
equations representing the evolution of the system
as a trajectory in the phase space. He thus pro-
vided for the first time a phase portrait of a chaotic
attractor. A second example of aperiodic behav-
ior investigated in the sixties should be mentioned:
this is the galactic motion reduced to a dynami-
cal systems with two degrees of freedom — close to
the three-body problem — investigated by Michel
Hénon and Carl Heiles using numerical simulations
[Hénon & Heiles, 1964]. Their system was conser-
vative and four dimensional. They did not show
a trajectory in the phase space but investigated
the solution by means of a cross-section. In par-
ticular, they observed “ergodic trajectories [that
were] dense everywhere in the [chaotic] sea between
[quasi-periodic] islands.” This means that for some
parameter values, the phase portrait is mainly filled
by chaotic trajectories with but a few domains asso-
ciated with quasi-periodic or periodic regimes. To
our knowledge Lorenz thus remains the only one
who published in the sixties a chaotic attractor in a
plane projection of the phase space. Yoshisuke Ueda
plotted one but did not publish it before the end of
the seventies (see Appendix A).

As soon as difference or differential equations
are considered, computers are necessary to figure
out the structure underlying nontrivial solutions,
that is, aperiodic solutions. Few scientists possibly
faced up to aperiodic solutions before computers
were used: Poincaré in his third volume of New
Methods in Celestial Mechanics [Poincaré, 1899],
Balthazar van der Pol (1889–1959) and van der
Mark while investigating the triode [van der Pol &
van der Mark, 1927], Mary Lucy Cartwright (1900–
1998) and John Edensor Littlewood (1885–1977)
while studying properties of the aperiodic solution
to the forced “van der Pol equation” [Cartwright &
Littlewood, 1947]. But they had no possibility to
obtain a global — and accurate — view of the
trajectory in phase space, thus missing the struc-
ture underlying aperiodic solutions. Only Poincaré
started to have a clue about the complexity of
such a structure by focusing his attention on the
(unstable) periodic orbits as first used by George
William Hill (1838–1914) in his Lunar theory
[Hill, 1878].

Introduced by Poincaré due to their simplicity
compared to the difficulty presented by differential
equations, David Birkhoff studied diffeomorphisms
of the cross-section associated with differential
equations [Birkhoff, 1927] and Smale studied the

global orbit structure of some diffeomorphisms of
the cross-section [Smale, 1967]. Strongly influenced
by Smale’s ideas, David Ruelle and Floris Tak-
ens pushed the idea that “strange” as used in
the 1970s — behavior may arise from relatively
simple systems [Ruelle & Takens, 1971]: in other
words, it was no longer necessarily required to
invoke high dimensional systems to explain com-
plex behaviors. But in spite of their crucial contri-
bution in the development of “chaos theory”, their
abstract mathematical language and the lack of
beautiful pictures did not let them have an obvi-
ous impact on a broad audience as chaos theory
has today. In fact, Ruelle became popular for speak-
ing about the Lorenz attractor and the “Japanese
attractor” discovered by Ueda [Ruelle, 1980]. Nev-
ertheless, for scientists, and especially for mathe-
maticians [Aubin & Dalmedico, 2002], Ruelle (and
in a less visible way, Takens) is an important con-
tributor to the early development of chaos theory.
But Ruelle and Takens did not have a school case
(or even a picture) until they became aware of the
Lorenz paper [Ruelle, 1976].

The first paper by Rössler was about a the-
oretical system for “Biogenesis” [Rössler, 1971].
Most of his following papers were about some
kinds of chemical reactions interpreted by elec-
tronic circuits [Rössler & Seelig, 1972; Rössler,
1972a, 1974b]. The multivibrator [Rössler, 1972b,
1975] and the Bonhoeffer–van der Pol oscillator
[Rössler, 1972a; Rössler & Hoffmann, 1972] were
very often invoked. Rössler started to publish about
chaos in 1976. He then flooded the “chaos mar-
ket” with various types of chaos with suggestive
names like “spiral chaos [Rössler, 1976a], “screw
type chaos” and “funnel chaos” [Rössler, 1977c],
“sandwich chaos” [Rössler, 1976d], “walking-stick
map” [Rössler, 1977e], “folded-towel map” [Rössler,
1979b], “superfat attractor” [Kube et al., 1993]
among others. We choose to focus our attention, not
on the most often quoted paper [Rössler, 1976c] but
on Rössler’s earliest paper on chaos [Rössler, 1976a],
not so widely known but far richer. With this latter
paper, Rössler published the second chaotic attrac-
tor displayed in the phase space. Due to his use
of informal (nontechnical) terms and very sugges-
tive pictures — he even demonstrated “the sound
of chaos” in a lecture by connecting a loudspeaker
to his computer, Otto E. Rössler quickly attracted
a broad audience and he remains today as the one
who introduced one of the two most investigated
chaotic flows.
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But his use of seemingly inadequate terms for
a scientific paper led him to be not so widely recog-
nized by his peers. Using a too elliptical way of writ-
ing, Rössler never spent time to introduce the firm
background he used. As a consequence, what is com-
monly retained from his contribution to chaos the-
ory reduces to the so-called Rössler attractor and,
to a more restricted extent, to the first example of
a hyperchaotic attractor. Our aim in the present
paper is to detail what influenced the structure of
this paper and to revisit its implicit content.

2. Short Biography up to 1980

Otto E. Rössler was born in 1940. His father,
Otto Rössler (1907–1991), was a linguist recognized
for having introduced a new system of Egypto–
Semitic consonant correspondences and the term
“Afro-semitic” languages [Rössler, 1971]. Strongly
impressed by the “open mind” of his father and his
religious mother, he tried to find his own way. As an
adolescent, he built his own radio-transmitter and
thus got acquainted with electronics while still in
highschool at Tübingen. In 1957, he got an indi-
vidual licence (DL9 KF) from the Deutscher Ama-
teur Radio Club. He then studied medicine up to
1966 at the University of Tübingen. In 1966, he
defended his inaugural dissertation — supervised
by Erich Letterer (1895–1982) — for getting his
grade of doctor in medicine [Rössler, 1966]. Deeply
interested how Life could come from a “chemical
soup”, he exchanged letters with Carl-Friedrich von
Weizsäcker (1912–2007) and met him. Under his
recommendation, he spent one year (1966–1967)
at the Max-Planck Institute for the Physiology of
Behavior (Seewiesen) supervised by Konrad Lorenz
(1903–1989) and Erich von Holst (1908–1962). Otto
then spent two years at the University of Marburg
where he was a medical assistant under the super-
vision of Reimara Waible who became his wife one
year later. During that period, Otto wrote — in
German — a first paper entitled “Contributions
to the theory of spontaneously evolving systems I:
a simple model class” to the J. Theoretical Biol-
ogy. The editor, Robert Rosen (1934–1998), who
was reading German, accepted the paper for pub-
lication but required a translation in English. Not
yet fluent in English, Otto never made it and the
paper remained unpublished. Interested enough by
this first paper, Rosen honored Otto’s application
for a one-year position at the Center of Theoretical
Biology (State University of New York at Buffalo).

At this center, a very stimulating atmosphere was
present, as Vahe Bedian reported from one of his
stays (slightly after Rössler visited) [Bedian, 2001]:

In the early 1970s, the temporary Ridge
Lea campus of SUNY/Buffalo was home to
the Center for Theoretical Biology and the
Department of Biophysical Sciences, where I
was a graduate student. It was a stimulating
and supportive place to think and learn from
some of the best in the field: Robert Rosen,
Fred Snell, Robert Spangler, Robert Rein
and Howard Pattee. In front of chalkboards
and in the hallways, we discussed everything
from the uncertainty principle, to von Neu-
mann’s automata, to neural networks, to
Stuart Kauffman’s binary switch networks,
to the complexity of quantum mechanical
computations.

Bedian also mentioned that Spangler was the one to
go “beyond iterative simulations [to] formalize the
model as a nonlinear dynamical system.” This is
exactly what Spangler and Snell did with the oscil-
lating chemical reation they simulated in 1961 with
a digital computer [Spangler & Snell, 1961] and in
1967 with an analog computer [Spangler & Snell,
1967]. In the latter, they showed a few periodic
oscillations and a phase portrait of a limit cycle,
which they identified with the synonymous concept
in the textbook Nonlinear Oscillations published in
1962 by Nicholas Minorski (1885–1970) [Minorski,
1962]. Although Rössler did not meet Spangler and
Snell during his stay, he later quoted their 1967
paper in [Rössler, 1975]. Rössler started to inves-
tigate some differential equations during his stay at
Buffalo.

Friedrich-Franz Seelig who had a chair
(“Lehrstuhl”) for Theoretical Chemistry at the Uni-
versity of Tübingen offered Otto to join his new
group with a stipend from the Deutsche Forschungs-
gemeinschaft (DFG). In the early 60s, Seelig had
done his diploma work with Hans Kuhn and
Fritz-Peter Schäfer to build an analog computer
consisting of a network of electrical oscillators, con-
nected to capacitors to solve the two-dimensional
Schrödinger equation [Seelig et al., 1962]. This sys-
tem was excited by means of a radio frequency
generator. In 1965, Seelig solved a two-dimensional
Schrödinger equation with a digital computer (IBM
7090) [Seelig, 1965]. Rössler had met Seelig via
Hans Kuhn who was working on the origin of
Life, Otto’s first research topic. Kuhn handed down
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Rössler to Seelig as it were. Sharing an inter-
est for the origin of Life, in differential equations
and electronics (computers), they agreed that non-
linear systems like Otto’s evolutionary soup and
electronic systems (without self-induction and with-
out coupling condensers) were virtually isomor-
phic [Rössler, 2010]. This triggered a cooperation
project between Seelig — a quantum chemist —
and Rössler — a medical physiologist — to look for
reaction-kinetic analogs to electronic circuits.

Rössler joined Seelig at Tübingen returning
from Buffalo in 1970. After being sent by the Divi-
sion of Theoretical Chemistry to attend an EAI
(Enterprise Application Integration) course on ana-
log computing, he had to teach that topic, for
which his radio-amateur past was useful. With the
founding money obtained with his new position at
Tübingen, Seelig bought (with 80 000 DM) an ana-
log computer — a Dornier DO 240 (Fig. 1) —
equipped with digital potentiometers, a digital clock
and two function generators. With this computer,
Seelig obtained limit cycles — plotted in phase
space — with computer simulation of a linear chem-
ical model [Seelig, 1971] and of a model for a
spike oscillator [Karfunkel & Seelig, 1972]. As a
“Stipend-holder” of the DFG, Rössler was free in
his research and, started to study few-variable sys-
tems with Seelig. He started by investigating a
chemical multivibrator [Rössler, 1972a]. To learn
about the dynamics of such an electronic circuit,

Fig. 1. Analog computer Dornier DO 240 as bought by
Seelig in 1970.

he read the textbook by Aleksandr Andronov, S. E.
Khaikin and Aleksandr Vitt in its 1966 English edi-
tion [Andronov et al., 1966], that is, in a deeply
revised version by N. A. Sjelstov since it con-
tains more than 400 additional pages compared
to the original version edited by Mandel’shtam
(see [Pechenkin, 2002]).

Inspired by a little book entitled Measuring-
signal generators, Frequency Measuring Devices and
Multivibrators from the Radio-Amateur Library
[Sutaner, 1966], Rössler and Seelig began to “trans-
late” electronic systems into nonlinear chemical
reaction systems (among them the RC-oscillator of
Fig. 44 of that book as shown in Fig. 2). Morpho-
genetic reaction systems, devised by [Rashevsky,
1940] and [Turing, 1952], fitted in, enabling the
design of a chemical oscillator based on a chemi-
cal flip-flop, that is, a bistable multivibrator that
has two stable states in a subsystem and hence
can be used as one bit of memory. The latter
had been invented by William Henry Eccles (1875–
1966) and Franck Wilfred Jordan [Eccles & Jor-
dan, 1918, 1919]. Rössler remained fascinated by
the multivibrator [Rössler, 1975] and the electronic
Eccles–Jordan trigger as he called it in [Rössler,
1974b]. This had led to the “flip-flop” studied
with Seelig [Seelig & Rössler, 1971; Rössler &
Seelig, 1972]. Rössler necessarily associated the
multivibrator with the universal circuit introduced
by [Khaikin, 1930] and its description in phase
space as in [Andronov et al., 1966] (see Sec. 3.1).
Most of Rössler’s early papers — say between 1972
and 1975 — were devoted to chemical reactions
that reproduce the dynamics underlying some elec-
tronic circuits, and many of them explicitly dis-
cussed the multivibrator [Seelig & Rössler, 1972;
Rössler & Seelig, 1972; Rössler, 1972a, 1972b, 1975].
In 1972, with Dietrich Hoffmann, Rössler provided
“a first evidence that the Belousov–Zhabotinsky
reaction is a Bonhoeffer oscillator, i.e. a special
type of chemical hysteresis oscillators” [Rössler &
Hoffmann, 1972]. A link was explicitly made with
relaxation oscillations as done by Bonhoeffer when
he investigated a model for the excitation of
nerves [Bonhoeffer, 1948]. The model proposed by
Bonhoeffer has all characteristics of the so-called
van der Pol equations, and the limit cycle drawn in
the phase space by Bonhoeffer is very similar to the
one published in [van der Pol, 1926]. This is why
biologists sometimes speak about the “Bonhoeffer–
van der Pol” oscillator. Rössler was exactly in the
spirit of Bonhoeffer’s works, trying out analogies
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(a) (b)

Fig. 2. (a) Cover and (b) Fig. 44 with Rössler’s handwriting regarding Hans Sutaner’s book published in 1966.

between physiological or chemical problems and
electronic circuits.

In this vein, Rössler and Seelig proposed
a two-cellular homogeneous chemical multivibra-
tor [Seelig & Rössler, 1971; Rössler & Seelig, 1972].
An example of a homogeneous system involving a
two-variable bistable system (switch) found on the
analog computer by Otto was



Ȧ = −k2A − k3B
A

K + A
+ k1 + k6C

Ḃ = −k2B − k3A
B

K + B
+ k1 + βB

Ċ = k4B − k5C.

(1)

This system is still quoted as one of the very first
chemical reaction systems designed to implement
logic circuits [Zauner, 2005]. Computer output of
this abtract chemical reaction (Fig. 2 in [Rössler,
1975]) was compared to an electronic multivibrating
device in [Chrilian, 1971]. Then starting to inves-
tigate the subsystem A–B by replacing the term
k6C in the first equation with a constant term
βA, Rössler commented in the paper submitted in
1971 [Rössler, 1975]:

The equations of this partial system are
well-known in electronics where they apply
to the usual symmetrical RS flip-flop: the so-
called Eccles–Jordan trigger [Eccles & Jor-
dan, 1919]; only the nonlinear terms [. . .] are
normally replaced by a more generally for-
mulated class of functions (see [Andronov
et al., 1966, p. 309, Equation (5.61)].

However, the very system [A–B] is obtained,
even in the electronic case, if n-channel field-
effect transistors are employed as the active
elements [Rössler, 1974a].

If the standard analytical techniques
used in electronics [Andronov et al., 1966,
p. 310]) are applied to the present spe-
cial case, it is again found (a) that either
equation, when set equal to zero, yields a
curved nullcline; (b) that both nullclines
intersect each other in either 1 or 3 steady
states; (c) that the intermediate steady state
is a saddle-point and the other ones (or
the remaining one, respectively) are stable
nodes; and (d) that the presence of addi-
tional limit sets (limit cycles) is excluded.

It is thus clear that Rössler was deeply influenced
by the contribution of Andronov’s group. This not
only framed his early studies on chemical reactions
but also his first studies on chaos as we will show
in this paper.

Rössler thus started to design some three-
variable oscillator based on a two-variable bistable
system coupled to a slowly moving third-variable.
The resulting three-dimensional system was only
producing limit cycles at the time. In this period,
Rössler also introduced dynamical automata as
components for the building up of complex chem-
ical reaction systems: in other words, he had in
mind to build chemical reaction systems as com-
plex as electronic circuits are [Rössler, 1972a]. At
an international congress on Rhythmic Functions in
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Biological Systems held on September 8–12, 1975 in
Vienna, he met Art Winfree (1942–2002) again —
a theoretical biologist who started his career as
an engineering physicist and studied chemical
waves [Winfree, 1972], circadian rhythm [Winfree,
1980] and cardiac arrhythmia [Winfree, 1989]. Win-
free — also an expert in computers — was regularly
exchanging letters with Rössler about oscillating
chemical reactions or dynamical systems. Winfree
was looking for a “kinetics with a source and no
limit cycle” (Letter from Art to Otto, May 25,
1975). The concepts invoked in these letters were
nullclines and bistability (Otto to Art, June 23,
1975), Lorenz equations (Art to Otto, September
17, 1975) with the comment “Guckenheimer, Li
and Yorke are doing a long job on this Eq. now;
not yet ready for press”, differential systems, sad-
dle and stable foci, damped oscillations, chemi-
cal monoflop, limit cycles, self-oscillations with the
comment “I had already seen such a behavior of
monoflops on the analog computer: when a chemi-
cal monoflop was just above the threshold of being
self-oscillating, irregular spikes of differing ampli-
tudes occurred” (Otto to Art, September 30, 1975).
At this conference in Vienna, Winfree challenged
Rössler in 1975 to find a biochemical reaction repro-
ducing the Lorenz attractor. To stimulate Otto
to the task, Art sent a collection of reprints and
preprints with a letter dated October 7, 1975. The
paper sent were:

(1) Lorenz, E. N. [1963] “Deterministic nonperiodic
flow,” J. Atmospheric Sciences 20, 130–141.

(2) May, R. & Oster, G. F. “Bifurcations and
dynamic complexity in simple ecological mod-
els” (preprint later published [May & Oster,
1976]).

(3) Hoppensteadt, F. C. & Hyman, J. M. “Peri-
odic solutions of a logistic difference equation”
(preprint later published [Hoppensteadt &
Hyman, 1977]).

(4) Li, T. Y. & Yorke, J. A. “Period-three implies
chaos” (preprint later published [Li & Yorke,
1975]).

(5) Guckenheimer, J., Oster G. F. & Ipaktchi, A.
“Dynamics of density-dependent population
models (preprint later published
[Guckenheimer et al., 1976]).

Otto was strongly impressed by Lorenz’s paper:
he thus proposed Winfree to write a “joint paper,

1This Khaikin’s paper is erroneously dated by Rössler as 1935, and not as 1930 as it should have been.

entitled Chemical Nonperiodic Flow, 3 examples”
in a letter dated October 15, 1975 (Winfree denied
this offer, Art to Otto, October 22, 1975). Lorenz’s
paper influence is confirmed by the explicit quota-
tion in the abstract of [Rössler, 1976a]. As it will
be shown, Li and Yorke’s paper [1975] also had a
strong influence on Rössler’s mind and was crucial
for providing a numerical proof of chaos. During
these times, Rössler failed to find a chemical or bio-
chemical reaction producing the Lorenz attractor
but he instead found a simpler type of chaos in
a paper he wrote during the 1975 Christmas holi-
days [Rössler, 1976a]. This paper will be the core of
the present work and we will carefully investigate its
contents as well as the style in which it was written.
It is only much later that Otto discovered jointly
with Peter Ortoleva a biochemical reaction scheme
producing a Lorenz-like dynamics [Rössler & Ortol-
eva, 1978]. The obtained attractor does not have the
rotation symmetry of the Lorenz attractor, but it is
characterized by a map equivalent to the one pub-
lished by Lorenz [1963]. This type of chaos was later
designated as “unimodal cut chaos” in [Letellier
et al., 2006]. Between 76 and 82, there were many
other different types of chaos that were also pro-
posed by Rössler (see [Letellier et al., 2006] for a
review).

3. Otto E. Rössler’s Main Influences

We will briefly review the three main infuences on
Rössler while discovering his first chaotic system.
According to an abstract submitted on 1 Decem-
ber 1975 for the 1976 Biological Society Meeting
(Fig. 3), these influences are (i) Lorenz’ 63 paper,
(ii) Li–Yorke theorem and (iii) the universal circuit
for which a paper by S. E. Khaikin — whose con-
tent is discussed in [Andronov et al., 1966] — is
quoted (see [Khaikin, 1930]).1 But let us follow the
chronology.

3.1. The multivibrator by
Andronov, Khaikin and Vitt

As mentioned in the short biography, Rössler was
quite acquainted with electronics. Since he was also
attracted by dynamical systems, the textbook by
Andronov, Khaikin and Vitt [Andronov et al., 1966]
became one of his favorite books in the early 70s.
Indeed as soon as he realized that equations for
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Fig. 3. Abstract submitted by Otto E. Rössler on 1 December 1975 for the Biological Society Meeting planned for 1976.

describing life would be too complicated as an exclu-
sive object of research, he concentrated his inter-
est on the basic chemical elements that could be
used to build complex chemical reactions. The very
first elementary circuit he investigated was a two-
variable multivibrator [Rössler, 1972b]. The lat-
ter corresponds to an electronic circuit investigated
by Henri Abraham (1868–1943) and Eugène Bloch
(1880–1944) [Abraham & Bloch, 1919a, 1919b].
This circuit was then studied by Stephen But-
terworth (1885–1958) [Butterworth, 1920], Edward
Victor Appleton (1892–1965) and his pupil Balt-
hazar van der Pol [Appleton & van der Pol, 1921;
Appleton, 1922]. In fact, according to Andronov
himself, the Russian scientist and his co-workers
started to investigate the multivibrator in 1929 (see
Appendix 5). They quickly focussed their interest
on an intermediary circuit between a double RC
circuit and a multivibrator [Andronov et al., 1966].
This so-called universal circuit — a circuit as simple
as possible with a wide variety of behaviors — was
described by three differential equations [Andronov
et al., 1966]:



µu̇ = Ea − Ria(u) −
(

1 +
R

βr

)
u

+ (1 − β)
R

βr
z − v1

v̇1 = z

ż =
C1

β(1 − β)C2
n −

(
1 +

C1

βC2

)
z

1 − β

(2)

where ia(u) describes the characteristic equation
of the circuit. This set of equations is three-
dimensional, thus requiring three variables to
describe the motion in a phase space (Fig. 4). This
is one of the most important methodological break-
throughs introduced by Andronov and co-workers.
They thus described the trajectory drawn in the
three-dimensional space spanned by two poten-
tials measured on the circuit, potential u mea-
sured at one of the two triodes and potential v1

measured at a condenser located between the two

Slow motion

Slow motion

Rapid jumps

Fig. 4. Sketch used by Andronov and his co-workers to
describe the trajectory produced by the universal circuit.
What is noticeable is that they used a qualitative description
in a three-dimensional phase space. The trajectory is orga-
nized around the “S”-shaped surface F where slow and fast
motions are distinguished. (Adapted from [Andronov et al.,
1966].)
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triodes, and the derivative v̇1 = z of the second
potential.

Oscillations were described as follows
[Andronov et al., 1966]:

[. . .] the phase paths of “rapid” motion
(jump) in the u, z, v1 phase space recede
away from the region |u| ≤ u∗ of the sur-
face F [. . .]. For |u| ≤ u∗ only jumps of the
voltage u are possible [. . .]. On the remain-
ing part of the surface F (for |u| > u∗) [. . .]
the paths of “rapid” motion approach the
surface F [. . .]. On the portion F+ of F
where |u| ≤ u∗ there are “slow” motions
along paths [. . .]. Outside F+ u → ∞, for
µ → +0 but ż and v̇1 remain finite, there-
fore there are “rapid” motions along the
paths z = const., v1 = const. which lead to
the surface F+ where they pass into paths
of “slow” motions. In due course all paths
of “slow” motion pass into discontinuous
jumps at u = +u∗ or at u = −u∗. It can
easily be shown that all phase paths tend to
a unique and stable limit cycle for t → +∞.
Thus [. . .], whatever the initial conditions,
discontinuous oscillations build up in the
system.

In this description, Andronov and co-workers used
a three-dimensional space to clearly distinguish
“slow” and “fast” motions. They also explained why
“jumps of the voltage” cannot be avoided. This
therefore represents a dynamical analysis of the uni-
versal circuit.

The description provided by Andronov com-
bines analytical computations and qualitative
properties of the trajectory in the phase space. The
figure drawn was thus deeply used to reach the con-
clusion that a stable limit cycle must exist. The
unusual character of the description lies in com-
bining physical properties of the system on the
one hand and a representation of its evolution in
the abstract phase space on the other. Strictly
speaking, they should have been led to observe
oscillations more complicated than periodic ones.
But only periodic behaviors were discussed in the
literature.

This contribution was impressive enough to
frame Otto E. Rössler’s mind in two ways: (i) it
kept his attention focussed on the multivibrator
and (ii) it introduced an S-shaped two-dimensional
surface to explain how to produce nontrivial oscil-
lating solutions. By “trivial” it is here meant a

limit cycle with a nearly constant speed. From
a dynamical point of view, the background pro-
vided by Andronov and his co-workers was the most
important influence on Rössler’s mind before 1975.

3.2. The Lorenz paper

3.2.1. Phase space

Lorenz’s paper also strongly influenced the way
in which Rössler’s first paper on a chaotic system
was written. The best testimony to this influence
is provided by the structure of the paper. Edward
Lorenz started his paper [Lorenz, 1963] by an intro-
duction on tuburlent flows and weather forecast-
ing. Focusing on “deterministic equations which are
idealizations of hydrodynamical systems”, Lorenz
concentrated on “solutions which never repeat their
past history exactly”. The second section was
devoted to general definitions about trajectories in
phase space. One clear breakthrough in the study of
dynamical systems reintroduced by Lorenz was the
use of projection of phase space. Not in an empiri-
cal way, but he stated rather clearly that a system
governed by the set of equations

Ẋi = Fi(X1,X2, . . . ,XM ), (i = 1, . . . ,M) (3)

“may be studied by means of phase space — an M -
dimensional Euklidean space Γ whose coordinates
are X1, . . . ,XM”. Lorenz then was very clear about
what was represented here and who introduced the
concept:

Each point in phase space represents a pos-
sible instantaneous state of the system. A
state which is varying in accordance with (3)
is represented by a moving particle in phase
space, traveling along a trajectory in phase
space. For completeness, the position of a
stationary particle, representing a steady
state, is included as a trajectory.

Phase space has been a useful concept
in treating finite systems, and has been used
by such mathematicians as Gibbs [1902]
in his development of statistical mechan-
ics, Poincaré [1881] in his treatment of
the solutions of differential equations, and
Birkhoff [1927] in his treatise on dynamical
systems.

No doubt that Lorenz was acquainted to such
background through Birkhoff’s work. Birkhoff was
Dean of the Faculty of Arts and Science at Har-
vard University where he taught since 1912. Lorenz
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got his MA in mathematics from Harvard Univer-
sity in 1940 and, he attended Birkhoff’s lectures.
Birkhoff is well known to be one of the continuators
of Poincaré’s work as told by Veblen [2001]:

As remarked by Marston Morse “Poincaré
was Birkhoff’s true teacher”. I remember
well how frequently, in the walks we used to
take together during his sojourn in Prince-
ton, Birkhoff used to refer to his reading
in Poincaré’s Les Méthodes Nouvelles de la
Mécanique Céleste, and I know that he was
intensively studying all of Poincaré’s work
on dynamics. In a very literal sense Birkhoff
took up the leadership in this field at the
point where Poincaré laid it down.

There is therefore a clear bridge between Poincaré
and Lorenz.

The use of phase space was one of the very key
points in Lorenz’s paper. In contrast to this, many
other contributions using electronic or analog com-
puters published around the 60’s did not use that
concept. Those we identified were

(1) Tsuneji Rikitake (1921–2004) in investigating
earth magnetic field reversals in 1958 [Rikitake,
1958];

(2) Arkadii Grasiuck and Anatoly Oraevsky who
investigated the dynamics of a laser system in
1964 [Grasiuk & Oraevsky, 1964];

(3) Derek Moore and Edward Spiegel who stud-
ied a simple model for pulsating stars in
1966 [Moore & Spiegel, 1966].

But these other three contributions only showed
excerpts from time series as reported in Fig. 5. Note
that all these systems are quadratic — including lin-
ear and nonlinear terms up to the second degree —
with a symmetry property. Rikitake’s model is a
set of three ordinary differential equations with a
rotation symmetry — as also the Lorenz system
has — and the Moore and Spiegel system is a
set of three differential equations with an inversion
symmetry. The Grasiuk and Oraevsky’s model is
four-dimensional with a rotation symmetry. All of
them produce very similar time series. At first sight,
one could conclude that the underlying dynam-
ics are equivalent but a topological analysis — in
phase space — reveals that only the attractor solu-
tion to the Rikitake model is topologically equiva-
lent to that of the Lorenz system. The Moore and
Spiegel attractor has a much more complex topol-
ogy, and the attractor produced by the Grasiuk and

150 200 250

(a)

0 10 20 30 40

(b)

t

(c)

0 10 20 30 40

(d)

Fig. 5. Time series observed around the 60s by numerical
integration of ordinary differential equations modeling the
respective systems investigated. (a) Rikitake [1958]: Earth
magnetic field reversals. (b) Lorenz [1963]: Rayleigh–Bénard
convection. (c) Grasiuk and Oraevsky [1964]: laser system.
(d) Moore and Spiegel [1966]: pulsating star.

Oraevsky model looks like a Lorenz attractor rotat-
ing around its rotation axis [Letellier & Ginoux,
2009]. Another system is discussed separately (see
Appendix 6) since it was discovered in the early 60s
but only published by the end of the 70s.

3.2.2. The stability of periodic solutions

The third section of Lorenz’ paper introduced some
definitions about the stability of “nonperiodic flow.”
This was the mathematical background inherited
from Birkhoff since Lorenz wrote explicitly that his
work was “influenced by the work of Birkhoff [1927]
on dynamical systems, but differs in that Birkhoff
was concerned mainly with conservative systems.”
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Nemytsky and Stepanov’s book [1960] was also
quoted but Lorenz himself wrote that this quotation
was added because it was required by one of the ref-
erees of his paper [Lorenz, 1993]. Some definitions
about stable and unstable points, periodic, quasi-
periodic and nonperiodic solutions were provided.
He also stated that “two states differing by imper-
ceptible amounts may eventually evolve into two
considerably different states.” As a consequence,
“an acceptable prediction of an instantaneous state
in the distant future may well be impossible.” Such
sensitivity to initial conditions was one of the rele-
vant points highlighted by David Ruelle by the mid
70s to distinguish chaos from other qualitative types
of dynamical behavior [Ruelle, 1976].

3.2.3. Numerical integration and
application of linear theory

The procedure for integrating numerically noncon-
servative systems was then discussed in Section IV
of Lorenz’s paper and, Section V was devoted to
the convection equations for the Rayleigh–Bénard
convection introduced by Saltzman [1962]. Lorenz
reduced them to the set of three ordinary differen-
tial equations 


ẋ = −σx + σY

ẏ = −xz + Rx − y

ż = xy − bz.

(4)

Then Lorenz applied linear theory to these equa-
tions in Section VI. It was shown that the trajec-
tory was always bounded, and that “each small vol-
ume shrinks to zero” as the time goes to infinity,

that is, that the system was dissipative (noncon-
servative). The stability of the fixed points was
then studied and Lorenz showed that the solution
oscillates around the two fixed points defined by
x± = y± = ±√

b(R − 1) and z = R−1. Section VII
was devoted to the numerical integration of differ-
ential equations (4) with parameter values R = 28,
σ = 10 and b = 8/3. Computations were performed
on a Royal McBee LGP-30 electronic computer.
Lorenz provided 6000 iterations. Since one second
was required per iteration, each run took roughly
one hour and forty minutes. Lorenz showed a short
portion of the trajectory, typically 500 iterations,
chosen after the first 1400 iterations from the initial
conditions x0 = 0, y0 = 0.1 and z0 = 0.0. A recom-
puted trajectory with a modern computer and the
same parameters leads to the trajectory shown in
Fig. 6.

3.2.4. Topological analysis

To provide an idea of how the trajectory was orga-
nized in three-dimensional phase space R

3(x, y, z),
Lorenz introduced “isopleths” that return the value
of x as a smooth single-valued function of y and
z. Isopleths allow to represent the “surface” on
which the trajectory evolves [Fig. 7(a)]. Lorenz
was thus able to show that the trajectory “passes
back and forth from one spiral to the other with-
out intersecting itself.” This surface was topologi-
cally equivalent to what is now called a branched
manifold — or a template — on which all trajec-
tories can be drawn [Fig. 7(b)]. Such a manifold
was used since the mid 1970s by Franck Williams

-20 -10 0 10 20
y

0
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20

30

40

50

z

-20 -10 0 10 20
y

-20

-10

0

10

20

x

Fig. 6. Numerical solution to the Lorenz equations (4). Projections on the x–y and the y–z planes in phase space of the
segment of the trajectory extending from iteration 1400 to 1900. These segments slighlty differ from those obtained by Lorenz
in 1963.
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(a) Isopleths plotted by Lorenz (b) Birman’s branched manifold

Fig. 7. (a) Isopleths of x as a function of y and z (thin solid curves). Where two values of x exist, the dashed lines are
isopleths of the lower value. Heavy solid curve, and extensions as dotted curves, indicate natural boundaries of surfaces. (b)
Representation of the associated branched manifold drawn by Williams. The two-component Poincaré section associated with
the maxima of variable z is also drawn.

for describing the Lorenz attractor [Williams, 1977,
1979] as “a picture already present in Lorenz’
paper (compare Figs. 7(a) and 7(b)). As Williams
wrote [Williams, 1977], “a computer gives the same
picture up to a smooth deformation when pro-
grammed to find the attractor of the system”.
The branched manifold was important as a knot
holder, that is, to synthetize the relative organiza-
tion of unstable periodic orbits embedded within
the attractor, as later shown by Birman and
Williams [1983].

3.2.5. First-return map to maxima

Then Lorenz proposed a first-return map to max-
ima of variable z in order to identify the possible
periodic sequences that can be produced. It helped
him to conclude that

the periodic trajectories, whose sequences
of maxima form a denumerable set, are
unstable, and only exceptional trajectories,
having the same sequences of maxima, can
approach them asymptotically. The remain-
ing trajectories, whose sequences of maxima
form a nondenumerable set, therefore repre-
sent deterministic nonperiodic flow.

This argument was used to show that trajectories
were actually nonperiodic since unstable periodic

orbits were “exceptional”, that is, the probability
to have a trajectory remaining in the neighborhood
of a periodic orbit was nearly zero.

Lorenz then used a first-return map to describe
the dynamics governing the transitions from one
spiral to the other:

. . . the trajectory apparently leaves one spi-
ral only after exceeding some critical dis-
tance from the center. Moreover, the extent
to which this distance is exceeded appears to
determine the point at which the next spiral
is entered; this in turn seems to determine
the number of circuits to be executed before
changing spirals again.

In order to investigate that feature carefully, Lorenz
used the successive maximum values of z. He thus
plotted the value of the (n + 1)th maximum value
of z versus the nth maximum (Fig. 8). This is what
is now called a first-return map to a Poincaré sec-
tion. Lorenz introduced that tool for having “an
empirical prediction scheme” allowing to predict
the number of “circuits” (oscillations around one of
the focus fixed points) described by the trajectory
between two successive transitions from one spiral
to the other. With such a map, it is possible to fol-
low through how the trajectory visits the attractor
using a simple geometric construction (Fig. 8). The
increasing branch (left part of the map) corresponds
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Fig. 8. Successive values of relative maximum plotted as
zn+1 versus zn as shown in [Lorenz, 1963]. The bisecting line
has been added to make explicit the geometric construction
(dashed line) that allows to track the evolution of the trajec-
tory within the attractor.

to the successive oscillations around the same focus
and the decreasing branch (right part) is associated
with a transition from one spiral to the other. For
instance, as shown in Fig. 8, starting from point 1,
there are thus two oscillations in the initial spiral
(points 2 and 3), then one transition in the other
spiral (point 4) and, finally, a return to the ini-
tial spiral (point 5) before new oscillations in the
initial spiral, and so on.

To conclude, the most important points used
by Lorenz were (i) plotting the trajectory in plane
projections of the phase space, (ii) showing that the
trajectory can be described as evolving on a surface
and (iii) using a first-return map (or a Poincaré
map) to show that the trajectory is nonperiodic
with the help of periodic sequences.

3.3. Main results of Li and Yorke’s
paper

The paper published in 1975 by Li and Yorke [1975]
remains highly reputed for (i) having introduced
the term chaos and (ii) providing a theorem that
can be understood as follows: as soon as a sys-
tem has a period-3 orbit for solution, then there
is chaos. The term chaos was introduced for desig-
nating “complicated phenomena [that] may some-
times be understood in terms of simple model” [Li &
Yorke, 1975]. In that sense, chaos was used in a
quite adequate way since it traditionally designates

the “indescribable state of Earth before creation”. A
simple difference equation (a second-order polyno-
mial) may have surprisingly complicated dynamic
behavior”, complicated meaning here: not actually
understood. Similar conclusions could be obtained
from the adverb “chaotically” used once in Ruelle
and Takens’ paper published in 1971 [Ruelle & Tak-
ens, 1971]. James Yorke himself recently conceded
that defining clearly what is chaos remains an open
problem, particularly because it depends on the
context in which it is used [Yorke, 2009]. It has
to be noted that the word “chaos” also appeared
in the title of a paper published by May in 1974
in which he quotes Li and Yorke’s preprint, and in
the subsequent paper by Guckenheimer, Oster and
Ipaktchi [Guckenheimer et al., 1976], all of them in
the collection sent by Winfree to Rössler.

Second, the most important theorem proved by
Li and Yorke was

Let J be an interval and let F : J �→ J be
continuous. Assume there is a point a ∈ J
for which the points b = F (a), c = F 2(a)
and d = F 3(a), satisfy

d ≤ a < b < c (or d ≥ a > b > c).

Then

(1) For every k = 1, 2, . . . there is a periodic
point in J having period k.

(2) Furthermore, there is an uncountable
set S ⊂ J (containing no periodic
points), which satisfies the following
conditions:
(a) for every p, q ∈ S, with p �= q,

lim
n �→∞ sup|Fn(p) − Fn(q)| > 0

and

lim
n �→∞ inf|Fn(p) − Fn(q)| = 0.

(b) for every p ∈ S and periodic point
q ∈ J ,

lim
n �→∞ sup|Fn(p) − Fn(q)| > 0.

Consequently, when q = a, that is, there is a peri-
odic point with period 3, there is period-k point for
any k = 1, 2, . . . Furthermore, there is an uncount-
able subset of points x in J which are not even
asymptotically periodic. This only means that there
is an uncountable subset of unstable periodic orbits.
This is a proof of the argument previously quoted
from [Lorenz, 1963] as the letter by Winfree to
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Rössler dated on September 17, 1975 seems to con-
firm. On the other hand, it has to be noted that
the Li–Yorke theorem is in fact included in the
Sharkovsky’s theorem [Sharkovsky, 1964].

Chaotic behaviors will be only encountered
when there is no stable periodic point. This last
property is quite hard to prove and, for instance,
a computer assisted proof for the chaoticity of the
Lorenz attractor was only obtained in 1999 [Tucker,
1999]. On the other hand, the Lozi map [Lozi, 1978]{

ẋn+1 = yn + 1 − a|xn|
ẏn+1 = bxn

(5)

widely known for providing a two-dimensional
chaotic attractor was recently proved as only hav-
ing “giga-periodic orbits” when iterated with finite
precision [Lozi, 2006]. For instance, for parame-
ter values (a = 1.7 and b = 0.5) for which
a chaotic attractor was proved as corresponding
to a chaotic solution [Misiurewicz, 1980], a giga-
periodic limit cycle of period 436 170 188 959 was
obtained after 19 hours of computation. Two dif-
ferent limit cycles were obtained for the Hénon
map (a = 1.4 and b = 1.3) with period equal to
3 800 716 788 and 310 946 608, respectively. These
two limit cycles were obtained from different initial
conditions. It is nearly impossible to actually obtain
an aperiodic orbit using numerical simulation. Con-
sequently, when a map of the interval has a period-3
orbit, one can conclude that there is at least one
orbit of each period and these orbits are nonde-
numerable. But it remains to prove that there is
no stable periodic point embedded, something that
remains nontrivial to be shown in most cases.

Strictly speaking, showing that there is a
period-3 orbit in a uni-dimensional map is not
enough to prove that the behavior is chaotic. But
it is sufficient to show that you have an infinite
number of periodic orbits and that any periodic-
ity is realized as a periodic orbit. In addition to
that, if a proof for the underlying determinism is
obtained (trivial when the trajectory results from
iterations of a set of deterministic equations) as
well as a proof of the boundedness of the behav-
ior (numerically, it is a rather good approximation
to wait for a long time and to check whether there is
a bounded surface that is never crossed again once
the trajectory is inside) and a proof for the sensi-
tivity to initial conditions, it may quite confidently
be concluded that the behavior under investigation
is chaotic. (But remember that the Lozi map is a
good counter-example.) For scientists working with

an experimental data set or with “computer exper-
iments”, there is no rigorous way to distinguish an
arbitrarily long periodic orbit from a chaotic solu-
tion. Thus, numerical experimentalists often used
the existence of a period-3 orbit as a proof for
an uncountable subset of nonperiodic points and
implicitly assumed that the studied solution was
chaotic.

4. Earliest Rössler’s Paper on Chaos

4.1. Phase space and chaotic
attractor

One of the most surprising points made at the
beginning of first Rössler’s paper about chaotic sys-
tems is that he claimed that “chaos is known for
a long time”, referring to Poincaré’s work on two
coupled oscillators, Arnold’s map, Smale’s Horse-
shoe map and Ruelle and Takens’ strange attractor
introduced in the context of the route to turbu-
lence. As far as we know, Poincaré did not inves-
tigate explicitly two coupled oscillators but made
his important contribution on complex behavior
with a sensitivity to initial conditions while working
on the three-body problem [Poincaré, 1899] (which
involves two conservative oscillators, as explained
below). Indeed, Poincaré investigated in the first
volume of his New Methods for Celestial Mechanics
a problem corresponding to a simplified case of a
three-body problem — A, B and C — interacting
according to a gravitation law [Poincaré, 1892]:

The simplicity is yet larger if we assume that
the mass of C is much larger than the mass
of A and that the distance AC is very large
(this is the case in the Lunar theory). If we
assume AC infinitely large and the mass of
C infinitely large, in such way that the angu-
lar velocity of C on its orbit remains finite;
if at the same time, mass B is related to
two moving axes, that is, to an axis Aξ cor-
responding to AC and an axis Aη perpen-
dicular to the first, the equations of motion
become, as M. Hill showed:




d2ξ

dt2
− 2n

dη

dt
+

( µ

r3
− 3n2

)
ξ = 0

d2η

dt2
+ 2n

dξ

dt
+

µ

r3
η = 0

(6)

[where] n designates the angular velocity
of C.
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Using ξ = x, ẋ = y, η = u and η̇ = v, these equa-
tions take the form



ẋ = y

ẏ = 2n v −
( µ

r3
− 3n2

)
x

u̇ = v

v̇ = −2n y − µ

r3
u

(7)

that may be decomposed into two oscillators


ẋ = y

ẏ =
( µ

r3
− 3n2

)
x

and




u̇ = v

v̇ = − µ

r3
u.

(8)

Poincaré never considered explicitly that problem
as a two coupled oscillator problem. In fact, May —
who was quoted by Rössler when referring to
Poincaré’s problem with two coupled oscillators —
just mentioned as a “simple mechanical example, a
double pendulum” that is “capable of extraordinar-
ily bizarre motions if the springs are nonlinear, a
fact well known to Poincaré” (see Fig. 9) [May &
Oster, 1976]. To the best of our knowledge, there is
no such problem investigated in Poincaré’s collected
works.

Arnold as well as Smale investigated the
global structure of periodic orbits. Ruelle and Tak-
ens [1971] were mainly concerned with showing that
a torus T 4 — that is, a torus resulting from four
different oscillators — was enough, under nonlin-
ear coupling, to have a “strange attractor which
is locally the product of a Cantor set and a piece
of two-dimensional manifold” [Ruelle & Takens,

Fig. 9. Schematic illustration of a double pendulum with
nonlinear springs and consequently, an apparent chaotic
strip-chart record of its motion. (After [May & Oster, 1976].)

1971]. From a practical point of view, this cor-
responds to a behavior that can be decomposed
into an infinite number of frequencies. All these
examples dealt with nonperiodic solutions. In that
sense, for sure, chaos was known before but it
was certainly not very broadly known although the
papers by May [1974] and Li and Yorke [1975]
were already published with that word in the
title. This term was also used by Guckenheimer,
Oster and Ipaktchi in the preprint Rössler received
and later published [Guckenheimer et al., 1976].
The preprint was mentioned in a letter written
by Rössler: “There is much enchantment (and
solid results) in the Oster–May–Guckenheim (sic)
analysis” (Otto to Art, October 15, 1975). In
their paper, Guckenheimer and co-workers also
wrote

Several authors have pointed out recently
that even simple deterministic models can
exhibit apparently chaotic behavior which is
essentially indistinguishable from a random
process [Li & Yorke, 1975; May, 1974, 1975].
This blurs the distinction between deter-
ministic and stochastic effects in models.
The capacity of familiar dynamical systems
to display complicated behavior has been
known since Poincaré’s discussion of “homo-
clinic points” in Hamiltonian systems. Dur-
ing the last decade, significant progress
has been made toward understanding the
nature of such complex behavior.

Here Guckenheimer and co-workers did not only
quote papers by scientists already mentioned above,
but also two others far less often quoted. The old-
est paper is the one published in 1968 by Penny-
cuick, Compton and Beckingham [Pennycuick et al.,
1968]. They investigated the growth of a population
divided into age-groups, with the aid of a “com-
puter model”, and observed irregular oscillations
[Fig. 10(a)] which they just described as “alternat-
ing peaks of large and small amplitude.” The second
paper was published in [Beddington et al., 1975].
In it the word “chaos” was used for “cycles of any
integral period or complete aperiodicity, depending
on the initial conditions” [Beddington et al., 1975].
In this paper, many further works [Lorenz, 1963;
May, 1974; Li & Yorke, 1975] about “chaos” were
quoted, justifying not only the use of the term
“chaos” but also giving a representation in phase
space [Fig. 10(b)] to reveal the structure underly-
ing the aperiodic solution described. Their chaotic
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(a)

(b) (c)

Fig. 10. Chaotic behaviors obtained by computer simulations in (a) Chaotic time series observed by Pennycuick et al. [1968],
(b) Beddington and co-workers [Beddington et al., 1975] and (c) Guckenheimer and co-workers [Guckenheimer et al., 1976] (but
only published in 1977, the manuscript was received by the editor on September 3, 1976). Rössler only knew the presentation
given by Guckenheimer and his co-workers.

attractor was a solution to a two-dimensional map
modeling a host-parasite system.

At that time, the word chaos designated ape-
riodic solutions that could not be described more
accurately. The terms “strange” or “chaotic” were
used equivalently at least up to 1984, that is, up to
the article “strange attractors that are not chaotic”
by Celso Grebogi, Edward Ott, Steve Pelikan and
James Yorke [Grebogi et al., 1984]. These scientists
chose to use these two words as follows:

Chaotic refers to the dynamics on the
attractor, while strange refers to the geomet-
rical structure of the attractor. [. . .]
Definition. A chaotic attractor is one for
which typical orbits on the attractor have
a positive Lyapunov exponent.2

Chaotic means “sensitive to initial conditions” and
strange is associated with the property announced
in [Ruelle & Takens, 1971], that is, an “attractor

2From this single definition, many wrong conclusions were published about “chaotic” experimental time series since such a
positive Lyapunov exponent is not sufficient to ensure the chaoticity of the dynamics underlying a given data set.

which is locally the product of a Cantor set and a
piece of two-dimensional manifold”. Thus, although
Guckenheimer and co-workers used strange, the
formal definition can be taken for chaotic. It
was [Guckenheimer et al., 1976]:

By a “strange attractor”, for a map f(·) we
mean an infinite set Λ with the following
properties:

(1) Λ is invariant under f(·), i.e. f(Λ) = Λ.
(2) Λ has an orbit which is dense in Λ.
(3) Λ has a neighborhood a consisting of

points whose orbits tend asymptotically
to Λ : limt→∞ f (t)(a) ⊂ Λ.

The requirement that Λ be infinite guaran-
tees that Λ consists of more than one single
periodic orbit.

The central — and startling — fact
about strange attractors is that orbits on
or near them may behave in an essentially
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chaotic and unpredictable fashion. Thus,
despite the fact that the model is com-
pletely deterministic, the dynamical behav-
ior of trajectories can only be predicted
statistically!

Although having one clear definition, Guckenheimer
and his co-workers confessed that only statistical
predictions were possible. Anyway they performed
an analysis in different steps:

(1) argue that the map has a strange attractor,
(2) examine the topology of the attractor,
(3) examine the nature of orbits in the attractor,
(4) discuss the “statistical mechanics” of the

attractor,
(5) etc.

For the first item, the problem consists in determin-
ing whether the map in question has an orbit that
is dense in Λ, that is, that there is no limit cycle
present. But, as recently shown by Lozi [2006], this
is an illusory task, and Guckenheimer et al. were
forced to conclude “from our simulations, it does
not appear to have one. If there are stable periodic
orbits their domains of attraction are quite small
and their periods very long. On a reasonable time
scale the dynamics are very similar to that expected
in a strange attractor.” At a second step, they used
the Horeshoe map onto the square introduced by
Smale [1967] to conclude that “at each iterate of
f the square is stretched, twisted and folded onto
itself. [. . . Λ] is a one-dimensional set composed of
a Cantor set of segments which run longitudinally
on the square. These segments fold and join in a
pairwise manner. As they fold they must cross, so
some of the points of Λ lie at the intersection of
two segments.” They were thus able to show that
the Cantor set introduced by Ruelle and Takens is
an ingredient of a strange attractor. Rössler was
deeply interested in this part of the paper: “I will
have to study the folding trick in detail” (Otto to
Art, October 15, 1975).

As Guckenheimer and co-workers had to admit,
“the topological structure of Λ is enormously com-
plicated; moreover, the details of the topology
are quite fragile (structurally unstable).” Since it
appeared hopeless to fully describe the topology of
Λ, they switched to item # 3, that is, to describe
the orbits. In order to do so, they used a symbolic
dynamics and a Markov transition matrix to detail
how a point is mapped into its image under f . In the
end, they also investigated the statistical mechanics

of the attractor using a measure µ, that is, the pro-
portion of time (or the fraction of phase points) that
the orbit spends in different regions of Λ. Then they
computed the Markov transition matrix between
these different regions.

As can be seen from the example of the paper
by Guckenheimer and his co-workers, investigating
the topology of chaos was not an easy task. Fac-
ing the complicated structure of chaotic attractors,
they switched to the study of periodic orbits, the
“sole keyhole, so to speak, that we can try to pen-
etrate into a place that had been impossible to
enter up to the present”, to quote Poincaré [1892] at
this point. Chaotic behavior was more or less well
defined but its characterization remained a difficult
task. As Poincaré, Birkhoff, Lorenz, Smale, Li and
Yorke, Guckenheimer, Oster and Ipaktchi showed,
periodic orbits do open up a possibility to attack the
problem.

Thus — as can be seen by now — to use the
word “chaos” as a well known concept was a lit-
tle bit too strong, but it enabled Rössler to avoid
writing too much about it, by just quoting previous
works. In spite of the appearances, he was right with
this. By this time, only few scientists were already
able to figure which type of solution was invoked by
this word. He nevertheless assumed that it was not
necessary to (re)write more about it, being afraid to
write “trivial” things, trying not to bore his readers.
In a certain sense, Otto thus implemented the com-
mon syndrome that what he understood was surely
trivial. As a result, we can show that his writing is
full of implicit contents, neither trivial nor (widely)
understood before him.

From the previously quoted works, it has now
become clear that the most relevant ingredient for
investigating nonperiodic solutions is the concept
of phase space. While Lorenz spent a full section on
this requirement, Rössler in the context of chaotic
behaviors continued to consider phase space as a
natural concept associated with differential equa-
tions and just used it as an obvious concept. Lorenz,
Andronov and co-workers, Guckenheimer and co-
workers had already used it. So it was therefore well
known!

When Rössler considered two coupled oscilla-
tors, this meant for him to use a space spanned
by “four state variables.” For him, the trajectory
thus evolves on “a non-Euklidean metric”. Note
that he wrote “Euklidean” in the unusual spelling
used in [Lorenz, 1963]. Rössler pointed out the fact
that “a 2-torus can be re-embedded in Euklidean
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3-space was somehow not exploited”. This remark
later became a task completed with a set of three
ordinary differential equations producing a trajec-
tory inscribed within a torus T 2 embedded in R

3

[Rössler, 1977a]. In fact his 77-model only produces
quasiperiodic motion inscribed within a torus T 2. He
thereby failed to obtainwhat is today called “toroidal
chaos.” Such behavior remains an open problem from
the flow point of view (many papers were devoted
to toroidal chaos only from the Poincaré section
point of view [Curry & Yorke, 1978; Afraimovich &
Shilnikov, 1983; Anishchenko et al., 1993]), mainly
so because toroidal chaos is quite rarely observed in
three-dimensional phase space [Arnéodo et al., 1983;
Deng, 1994; Li, 2008; Letellier & Gilmore, 2009]).
All these remarks by Rössler indicate that he was
used to thinking in terms of a structure embedded
in phase space. No doubt that he was re-encouraged
using phase space by his reading of [Lorenz, 1963]
and [Andronov et al., 1966].

4.2. First-return map to a
Poincaré section

Much as Lorenz did [1963], Rössler understood that
a Poincaré map was a most useful tool to investigate
dynamical systems. At first sight, one could be sur-
prised to see a quotation of Hirsch and Smale [1974]
to specify that Poincaré maps can be considered as
a “transition law from one amplitude to the next”
since it was exactly what Lorenz did with his own
map. But there is a deep departure occurring at
this point; Hirsch and Smale were referring to a sur-
face of section transverse to the flow. For a rigorous
viewpoint, a return-map to a Poincaré section is
not built with the maxima of a given state variable
only, but rather is obtained using the trajectorial
intersections with a surface of section transverse to
the flow. Indeed, some examples can be constructed
in which maximum values of a variable do not pro-
vide a safe Poincaré map [Letellier, 1994]. Moreover,
there is an underlying problem due to the rotation
symmetry observed in the Lorenz system. Rössler
did not refer to these differences other than say-
ing “the mode of action of this system [. . .] was
apparently too complicated” [Rössler, 1976a]. But
he questioned the equivalence between the Lorenz
map (Fig. 8) and a Poincaré map. This can be moti-
vated by the fact that retaining the maxima of vari-
able z corresponds to a two-component Poincaré
section [Letellier, 1994], with one surface of section
in each spiral [Fig. 7(b)]. This led Rössler to write

[1976c] that:

Unexpectedly, the qualitative behavior of
[the Lorenz equations] is still insufficiently
understood, mainly because the usual tech-
nique for analyzing oscillations — to find
a (Poincaré) cross-section through the flow
which is a (auto-) diffeomorphism [Smale,
1967] is not applicable. A trick which
exploits the inherent (although imperfect)
symmetry between the two leaves of the
[Lorenz] flow, so that in effect only a sin-
gle leaf needs to be considered, has yet to
be found.

This sentence is a sign that he had already set
out to find a flow “with a single leaf” (or spiral)
and associated with a “Lorenz map”. Indeed this
desire motivated Otto to later find a system with
a Lorenz map but without symmetry, that is, with
a single “leaf” [Rössler & Ortoleva, 1978]. It was
shown much later that the symmetry can indeed be
removed using the so-called image system obtained
by a coordinate transformation [Miranda & Stone,
1993], and that in the case of an order-n symme-
try, an n-component Poincaré section has to be
used [Letellier et al., 1994; Tsankov & Gilmore,
2004]. The question asked by Rössler as

“Lorenz map (return map to maxima)
?= Poincaré map”

was therefore very welcome but was not made
explicit enough to capture sufficient attention from
dynamicists. In a similar manner, Rössler touched
on the difference between a global Poincaré section,
that is, a surface of section transverse to the whole
flow, and a local Poincaré map in the neighborhood
of a limit cycle as it was used by mathematicians
like Poincaré in his early works [Poincaré, 1881].
The main departure is that the latter can be com-
puted everywhere along the trajectory, unlike the
former since regions where folding occurs need to
be avoided [Letellier, 1994].

In spite of this theoretical question left open
in 1976, Rössler understood that an important role
has to be played by the so-called “cap-shaped”
map. “Cap” meaning “a soft, flat hat without a rim
and usually with a peak.” Such flowering vocab-
ulary is quite typical of Rössler’s style. He could
have used a “parabola”, as often employed to des-
ignate the “bell-shaped” curve. But Rössler was
still hung-up by mathematics. He always claimed
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that he was not a mathematician — and he was
right in the sense that he never acquired a formal
background in mathematics — but was always fas-
cinated by mathematics, from his first self-posed
task (to write down the differential equation for
Life), or as revealed by the main influences in his
first paper on chaos, namely that of Lorenz (who
graduated in mathematics), of Smale, of Li and
Yorke and of Andronov and co-workers. . . Being
afraid of misrepresenting his mathematical con-
cepts, he avoided mistakes by using words like
“cap-shaped” and many others, as can be found
in all of his papers on chaos. This undoubtedly
prevented his writing from being considered too
seriously by other active workers and consequently,
to be investigated further from a conceptual point
of view. The side-effect was that his fuzzy (he
would say “geometric”) way of writing prevented
his work from obtaining an even wider recogni-
tion. Today his contributions to chaos are mostly
identified with his “simple equation for continuous
chaos” [Rössler, 1976c] and his (four-dimensional)
equation for hyperchaos [Rössler, 1979a]. When sci-
entists are pushed about their opinion on Rössler’s
contributions, they sometimes confess that they are
at a loss on what to say about his works.

In his main paper, Lorenz first plotted the tra-
jectory of his system in the corresponding phase
space R

3(x, y, z), and then computed a first-return
map built on the maximum values of variable z.
This is the natural way for investigating a sys-
tem. But Rössler understood that reversing the
Lorenz procedure, that is, starting from a given
map to obtain a flow — this was designated by
Smale [1967] as getting a suspension of a map —
would be useful to design various types of chaos.
It is important to note that Rössler had already
in mind the tools to look for different types of
chaos as done in [Rössler, 1976d, 1977c, 1977d],
for instance. There is no rigorous — analytical —
general way to obtain a suspension from a given
map, and Rössler did that by trial and error, that
is, on a long journey spent in front of his com-
puter. For instance, the hyperchaotic attractor was
found after three months, day and night, spent in
front of his digital computer (HP 9845B) [Rössler,
2010]. In his first paper, as he commented him-
self, “the particular three-dimensional flow [. . .]
was not found in this way” [Rössler, 1976a], that
is, he did not start out from an expected map
but rather from the S-shaped surface shown in
Fig. 11(d).

s.m.
u.f.

l.c.

(a) (b)

l.n.t.

f.s.t.

rev.fl.

(c) (d)

Fig. 11. Main trajectorial flow of a universal circuit. s.m. = slow manifold, u.f. = unstable focus, l.c. = limit cycle, the
intermediate part of slow manifold in (b) and (d) is unstable, f.s.t. “first switched trajectory”, l.n.t. = “last nonswitched tra-
jectory”, rev.fl. = reversed direction of flow “downstairs.” (a) Nearly linear mode (= limit cycle). (b) Relaxation mode (= limit
cycle). (c) Analogous “Soft Watch” (after Salvador Dali’s synonymous painting, 1933). (d) Chaos-producing mode (see text).
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4.3. Qualitative properties of the
expected dynamics

In the second section of his paper, Rössler explained
the way in which he came to his first set of
equations. He revealed how he was influenced by
[Andronov et al., 1966]. He started out with the
Khaikin’s universal circuit [Khaikin, 1930] and the
corresponding S-shaped surface (Fig. 4) which he
then modified [Fig. 11(d)] to get a dynamics differ-
ent from the one investigated in [Andronov et al.,
1966]. The key was to modify (bend-over more and
more) the S-shaped surface in order to have an addi-
tional “orientation of flowing” on the other half,
that is, eventually a motion with a “twist” would
form. Again, the way in which this was expressed
was not so clear [Rössler, 1976a]:

. . . a slight modification is sufficient to turn
the device into chaos generating machine: by
simply introducing a different orientation of
flowing on the other [lower] stable branch
of the slow manifold (with the consequence
of a “reinjection” of part of the flow after
its having passed through a twisted round-
about loop).

The original picture he added [Fig. 11(d)] showed a
“reversed direction of flow” reinjecting the trajec-
tory (upstair) in a nonlinear way, thereby allowing
for an aperiodic trajectory [see Fig. 11(d) with its
original caption] [Rössler, 1976a].

With this collection of figures, Rössler certainly
reached the paroxysm of his way of presenting
things since he introduced in one of the panels the
“soft watch” painted by Salvador Dali. The single
objectively existing connection is the analogy with
the S-shaped surface. We asked Otto many times for
a justification of this inclusion of the soft watch in

the original paper. Among the answers we got:

• he did not want to be taken too seriously!
(He was possibly impressed by his strict mother
and promised himself not to emulate this trait
[Rössler, 2007]).

• “it was the same shape of a surface as I had just
drawn under the influence of Andronov, remem-
bering having seen that before in art” [Rössler,
2010].

• “I had a knack for watches ever since I disman-
tled my grandmother’s big table watch, with its
S-shaped curves to the left and right on the top,
at age three. And never being punished for not
having been able to reassemble it from the little
cogwheels and springs that I had retrieved from
it” [Rössler, 2010].

For Dali, the “soft watch” is a representation of the
perception of time and space, and of the behav-
ior of the memory, acquiring soft forms that adjust
themselves to the circumstances [Dali, 1952], but
Otto said “the distortion of memory did not come
to my mind” [Rössler, 2010]. Dali’s soft watch could
serve to speak to a broad audience, to stimulate the
reader. Indeed, as René Descartes (1596–1650) —
one of Otto’s preferred scientists — wrote in the
beginning of his Discours de la Méthode (1637), he
wanted to speak to everybody using familiar vocab-
ulary. But if Dali’s soft watch can provoke smiles
during a talk for a broad audience, it would surely
leave strict scientists perplexed.

Returning to the way in which equations were
obtained, Rössler introduced them as resulting from
an oscillating Turing cell [Turing, 1952] and an
Edelstein switch [Edelstein, 1970]. Note that Edel-
stein quoted Spangler and Snell [1961, 1967]. In a
graphical way, this could be expressed as

Two variables were required to obtain a peri-
odic oscillator and a third one to introduce
the switching mechanism. This was equivalent to
Andronov and co-workers’ description of the uni-
versal circuit where they decomposed these behav-
iors into a two-dimensional slow motion surface

F (Fig. 4) that can be described by the two
equations in u and z and, “rapid jumps” made
in the third dimension. The S-shape surface can
only be described in a three-dimensional phase
space.
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4.4. The equations and their
chaotic solution

Now there is a gap between the S-shaped surface
proposed in Fig. 11(d) and the obtained equations.
The intermediary step consists in a reaction scheme
(Fig. 12) where each arrow stands for a source or
a sink of the concentration of the substances A, B
or C. Arrows directed toward other arrows indicate
catalytic rate control. This scheme results from a
two-dimensional chemical multivibrator published
in 1972 [Rössler, 1972b] and a third variable, the
so-called Edelstein switch. Rössler described it as
follows [Rössler, 1976a]:

The following reaction scheme (Fig. 12) con-
stitutes one possible way to realize the
principle by chemical means. It combines
a 2-variable chemical oscillator (variables
a, b) with a single-variable chemical hystere-
sis system (c), as prescribed by the recipe.
The system obeys, under the usual assump-
tions of well-stirredness and isothermy as
well as an appropriate concentration range,
the following set of rate equations:



ȧ = k1 + k2a − (k3b + k4c)a
a + K

ḃ = k5a − k6b

µċ = k7a + k8c − k9c
2 − k10c

c + K ′

(9)

where a denotes the concentration of sub-
stance A, etc., ˙ = d/dt, k10 = k′

10e0, e0 =
const., and K, K ′ are Michaelis constants.

As René Lozi remarked [Lozi, 2010], this set of rate
equations is not “exact” in the sense that it does not

E0

A

C

B

E

T

Fig. 12. Combination of an Edelstein switch with a Turing
oscillator in a reaction system producing chaos. E = switch-
ing subsystem, T = oscillating subsystem; constant pools
(sources and sinks) have been omitted from the scheme as
usual. (Adapted from [Rössler, 1976a].)

correspond exactly to the scheme shown in Fig. 12.
It rather should be [Lozi, 2010]:


ȧ = k1 + k2a − (k3b + k4c)a
a + K

ḃ = k5a − k6b − k3ab

a + K

µċ = k7a + k8c − k9c
2 − k10c

c + K ′ − µ
k4ac

a + K
.

(10)

In fact, once the “ideal” reaction scheme — which
only represents “a possible way” — is drawn, there
is a lot of intuition and time spent on the ana-
log and/or digital computer varying the coefficients
to get the result. This is confirmed by the sys-
tem which was proposed in the abstract sent on
1 December, 1975 (Fig. 3), here rewritten with the
symbols as used in (10) for simplifying the compar-
ison 



ȧ = k2a − k3ab

a + K
+ c

ḃ = k5a − k6b

ċ = µ

(
1 − k8c − k9c

2 − k′
4ac

c + K

)
.

(11)

Thus, term k4ac/(a + K) in the first equation was
reduced to a linear term k4c, the term k3ab/(a+K)
was removed from the second equation, and the lin-
ear term k7a was removed from the third equation
where the two nonlinear terms were mixed together.
This system is a variant of the exact form (10) pro-
posed by Lozi and of the system actually published
in [Rössler, 1976a].

The S-shaped surface therefore served to design
the general structure of the equations and then the
parameters were determined by a manual “maieu-
tic” technique. In other words, the “principle for
generating chaos” can be summed up into a proce-
dure to predefine some qualitative properties of the
expected behavior and to then use different com-
ponents introduced as chemical automata [Rössler,
1972a] to design roughly the structure of the equa-
tions (or exactly in a limit). The final part of the
work is just. . . time and patience in the front of a
computer (Fig. 13).

This means that many parameters were tried
and only those leading to the expected dynami-
cal behavior were retained. In other words, dur-
ing his search for appropriate parameter values, a
few terms were set to zero. In the present case, the
two rational terms recovered by Lozi were in fact
removed. Such empirical step was not described in
the original paper.
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Fig. 13. Otto E. Rössler in the front of his computer in 1979.

The first chaotic system thus obtained by
Rössler corresponds to the parameter values as fol-
lows: k1 = 37.8, k2 = 1.4, k3 = 2.8, k4 = 2.8,
k5 = 2, k6 = 1, k7 = 8, k8 = 1.84, k9 = 0.0616, k10 =
100,K = 0.05,K ′ = 0.02, µ = 1/500; a0 = 7, b0 =
12, c0 = 0.2, t0 = 0 and tend = 43.51. The value
of parameter µ was changed here compared to the
one published (1/25) to recover the picture printed.
Such misprint is quite rare in Rössler’s papers.

Few years ago, Otto claimed that his simple
equations for continuous chaos were derived from
the first chemical reaction scheme (Fig. 12). As
usual, this fact was implicitly expressed in [Rössler,
1976c]:

Therefore, a simpler equation which directly
generates a similar flow and forms only a
single spiral may be of interest, even if this
equation has, as a “model of a model”, no
longer an immediate physical interpretation.

Equation (9) incidentally illustrates a
more general principle for the generation of
“spiral type” chaos [Rössler, 1977c]: com-
bining a two-variable oscillator (in this case
x and y) with a switching-type subsystem
(z) in such a way that the latter is being
switched by the first while the flow of the
first is dependent on the switching state of
the latter. Equation (9) has in fact been
derived from a more complicated equation
for which this “building-block principle”
has been shown to apply strictly [Rössler,
1976a].

The simpler system was obtained after nights and
days spent in front of his computer. His objec-
tive was actually to simplify his set of original
equations (9) to obtain a set of simpler equations
that “contains just one (second-order) nonlinear-
ity in one variable” as mentioned in the abstract
in [Rössler, 1976c]. If one starts from model (9),
it is impossible to reach the simpler equations by
removing some terms. But if one starts from the
“exact” equations (10) as those proposed by Lozi,
then it is possible to obtain the so-called Rössler
equations. Setting




k1 = k2 = K = 0 and k3 = k4 = 1
k5 = 0, k5 = 1 and k6 = −a

k9 = k10 = 0, k4 = k8 = −1, k7 = c,

K = µ = 1

(12)

and removing a from the denominator of the last
term, then applying the coordinate transformation
(a, b, c) �→ (x, y, z), one gets




ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c)
(13)

where the constant term b seems to be added. But
this system can easily be rewritten in such a way
that the third equation is replaced with

ż = b̃x + z(x − c̃), (14)

that is, setting k7 = b̃ and k8 = −c̃.
The reaction scheme (Fig. 12) was thus used

by Rössler as a starting point to predefine the alge-
braic structure of the set of differential equations
he wanted to stimulate on his computer. Switching
from the general model (10) to the reduced one is
actually obtained in an empirical way. What was
lost with this empirical stage? This is explained by
Lozi [2010]:

In the case of singular perturbation, the last
equation of system (9), leads to

µ = 0 ⇒ µċ = k7a + k8c − k9c
2 − k10c

c + K ′ .

(15)

Hence the slow manifold is given by

ċ =
1
k7

[
−k8c + k9c

2 +
k10c

c + K ′

]
(16)
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which is an homographic function possess-
ing one singularity for c = −K ′. This
function is a coarse approximation of the
S-shaped (or double-folded) manifold used
in Fig. 11 in order to obtain the “chaos-
generating machine” of Andronov.

But when the numerical simulations are performed
to plot the trajectory with the slow manifold
(Fig. 15), only the lower half of the S-shaped surface
is obtained. This was in some sense pointed out by
Rössler who wrote: “It may be noted that due to
the asymmetry of the slow manifold, only one of its
two thresholds is effective at the assumed, relatively
low value of µ [Rössler, 1976a].

Once he got a chaotic solution to his equation
(Fig. 14), Rössler came to the conclusion that “qual-
itative properties cannot be deduced from simula-
tion alone” and, as Lorenz had done, the dynamics
would be better understood by using a Poincaré
map. In contrast to what Lorenz did, Rössler did
not compute the Poincaré map he had provided.
He rather drew them after many visual inspections
of the dynamics using stereoscopic projections as
used in many of his papers (to verify the analyti-
cal limiting result he had obtained first). Thus, and
in agreement with his combining an oscillating cir-
cuit with a switch, the map was made up from two
branches. One branch was associated with the relax-
ation process induced by the switching nonlinear
mechanism. At a certain threshold value, the lin-
ear process was interrupted by the switch, thereby
limiting the diverging spiral. The crucial point in
this part of the paper is that Rössler drew the map
with a qualitatively correct curvature (Fig. 16). For
instance, he could have idealized his map by a tent

5 6 7 8 9 10 11 12 13
a

12,5

15

17,5

20

b

Fig. 14. Numerical simulations of Eq. (9).

Fig. 15. Chaotic trajectory solution to system (9) plotted
with the slow manifold (courtesy of Jean-Marc Ginoux).

map as Lorenz did at the end of his paper. The gen-
eral shape of the map was checked by computing a
first-return map to a Poincaré section (Fig. 17). It
reveals that Otto’s ability to read phase space was
accurate.

He thus used the opportunity to show that the
trajectory was bounded in phase space by show-
ing that the “cut”, that is, the threshold at which
the relaxation mechanism cuts the linear expansion,
induces a “quadratic box” — the term “quadratic
box” has no clear meaning and was replaced by

nP

n+1P

1
3

2

b.l.n.t.

b.f.r.t.

Fig. 16. Poincaré map of a universal circuit in the chaotic
mode [see Fig. 11(d)], supposed that µ → 0. b.f.r.t. = border-
line determined by first reinjected trajectory; b.l.n.t. = bor-
derline determined by last nonreinjected trajectory; 1, 2,
3 = steps proving chaos.

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

0.
20

:3
58

5-
36

16
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 o
n 

10
/1

7/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



December 17, 2010 10:20 WSPC/S0218-1274 02785
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66,577,58
a

n

6

6,5

7

7,5

8

a
n+1

Fig. 17. First-return map to Poincaré section P for sys-
tem (9) with the same parameter values as reported in
Fig. 14. The box within which the period-3 orbit is observed
is drawn with a thin dashed line. The three periodic points
are linked by thick dashed lines.

“Li–Yorke box” in [Rössler, 1977c] — whose edges
bound the behavior. This results from a common
geometric construction for first-return map. Such
a proof can be considered as a numerical proof
for a bounded trajectory although drawn by hand.
Slightly later, Rössler clarified his interpretation of
the Li–Yorke theorem by stating: this “path [is]
proving that period-3, and hence chaos, is possi-
ble within the box” [Rössler, 1977c]. Rössler then
showed that there is a period-3 orbit within his map
(Fig. 16). Using the Li and Yorke theorem, he was
thus able to deduce the “existence of an uncount-
able set of repelling periodic attractors of measure
zero”. The conclusion was nearly the same as Li and
Yorke’s one.

Rössler here used the surprising terminology
“repelling periodic attractors.” This is to compare
with the concept of “semi-attractor” introduced by
Kantz and Grassberger [1985]. “Repelling periodic
attractors” correspond in fact to periodic orbits of
saddle type. An attractor was used for the sta-
ble manifold W s and “repelling” for the unstable
manifold W u (Fig. 18). At first sight, the terminol-
ogy is confusing (but no more nor less than using
“semi-attractor”). It does result from the under-
standing of the actual property of unstable periodic
orbits. Thus a fuzzy terminology hides here a good
understanding of the underlying concepts. Unstable
periodic orbits were not explicitly described in the

Fig. 18. The map xn+1 = µxn(1 − xn) folds the interval
[0,1] onto itself (µ = 3.832) as shown in [Guckenheimer et al.,
1976].

Lorenz paper, either. They had been called “doubly
asymptotic orbits” in Poincaré’s works [Poincaré,
1891].

Thus in agreement with what Lorenz wrote,
Rössler led to the conclusion that “all solutions in
between [periodic orbits] are nonperiodic” [Rössler,
1976a]. The ingredients injected in the proof for
chaos were thus quite similar to those introduced by
Lorenz, that is, the trajectory had to be bounded
and to live in the neighborhood of an infinite num-
ber of unstable periodic orbits. For Rössler, show-
ing that the trajectory was bounded and that a
period-3 orbit was identified within the first-return
map was sufficient to prove the existence of chaos
(according to Li and Yorke’s theorem). It actu-
ally remains to be proven that there is no attract-
ing (very long) periodic orbit — as pointed out
by Guckenheimer and co-workers [Guckenheimer
et al., 1976], an utopian task as recently revealed
by Lozi [2006].

Unstable
periodic

orbit

Wu

Ws

Wu

Fig. 19. Periodic orbits of saddle type (today called “unsta-
ble periodic orbits”) are at the intersection of a stable
(attracting) manifold W s and an unstable (repelling) mani-
fold W u.
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4.5. Topological analysis

To complete his study, much as Lorenz had with
“isopleths” (Fig. 7), Rössler drew a surface, but
he did that without any quantitative argument. He
just drew it by interpreting his stereoscopic repre-
sentation of the trajectory. The sketch of the flow
(Fig. 20(a) adapted from [Rössler, 1976a]) had a
finite thickness in order to be easily interpreted in
terms of a Smale’s horseshoe map as the latter is
usually represented [Fig. 20(b)]. It contained a lot
of details — not clearly explained — that reveal
(once they are understood) how deep was Rössler’s
understanding. This was justified as

the “folded pancake” does not display the
trajectories themselves, but only an “enve-
lope” (made up of surfaces without contact,
cf. [Andronov et al., 1966]) which is entered
by trajectories (as depicted), but never
left. The picture is directly derived from
Figs. 11(d) (turned upside down) and 14,
respectively, displaying the principal prop-
erties only. The rectangular cross-section on
the left-hand side is seen to be mapped dif-
feomorphically onto a subset of itself, as
required from a two-dimensional map. The
“horseshoe” which is formed upon reinjec-
tion is also clearly visible.

First, Lorenz’ “isopleths” became a “folded pan-
cake” in Otto’s paper. This has to be com-
pared to the “branched manifold” introduced by
Williams [1977] that became Otto’s “envelope” for
the chaotic trajectory. Envelope only means that
it contains and frames the trajectory in phase
space. Williams explicitly wrote that “the study
of the attractor can be reduced to the study
of the branched manifold with a semiflow on
it” [Williams, 1977]. Rössler implicitly (and cor-
rectly) used his “envelope” for characterizing dif-
ferent types of chaotic attractor he observed (see
for instance [Rössler, 1979b]).

The relation to the Horseshoe map was impor-
tant in order to make a strong connection with
periodic orbits and symbolic dynamics, as done by
Guckenheimer and his co-workers [Guckenheimer
et al., 1976]. But this was not used here. What
Rössler wanted to highlight was how the attrac-
tor can be split up into two parts as usually done
in the Horseshoe map. Typically, when the latter
is investigated, everything is done in the original
square (top of Fig. 20(b)), that is, the curved part
is cut to avoid mathematical complications. Prac-
tically speaking, this means that the two parts of
the original square can be split and labeled by “1”
and “2”, respectively. This leads to the “allowed
slit” that Rössler introduced to guarantee that “no

2
cut

1

a. sl.

2
re

1

21

1 2

2

1

(a) (b)

Fig. 20. The “three-dimensional blender.” [cf. Fig. 14(a)] → = trajectories entering the structure from the outside; 1, 2 = half
cross-section (demonstrating the “mixing transformation” that occurs), e = entry point of some arbitrary chosen trajectory,
r = reentry point of the same trajectory after one cycle. ↑ =“horseshoe map”, a.sl. = allowed slit (see text). In (b), do not
forget that the folding is associated with a rotation by π around the central fixed point •, thus sending the folding at right and
not at left, as symbols “1” and “2” would have suggested otherwise. This right-hand sketch of an iteration of the Horseshoe
map was not published in [Rössler, 1976a]. (a) Sketch of the flow. (b) Horseshoe map.
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trajectories are damaged”. He thus used a simi-
lar cutting process as used by Smale. Such a slit
was required to obtain the next figure shown by
Rössler whose purpose was to exhibit its two differ-
ent domains having different topological properties.
These two domains were needed to make explicit the
mechanism responsible for producing chaos. Rössler
thus split his “blender” into two strips as shown
in Fig. 21. This was definitely a significant step,
because the “blender” was not only an “envelope”
to describe the structure of the attractor, but was
also used to exhibit a possible partition of the
attractor, based on topological properties. A par-
tition was also used, for example, by Guckenheimer
and his co-workers to introduce a symbolic dynam-
ics to encode trajectories [Guckenheimer et al.,
1976].

Unfortunately, in this first paper, Rössler did
not detail this too much. In the main text, he
stressed the relevant role played by the “central
core.” It is important because it contains the two
required ingredients for producing chaotic behavior.
The “allowed slit” was a metaphor for the “split-
ting chart” responsible for the stretching as later
introduced by Gilmore [l998]. And the uppper part
of the central core contains the “squeezing mech-
anism” where the two strips are “glued” together.
Stretching and squeezing are the two relevant mech-
anisms for producing chaos. In Fig. 21, he clearly
showed one strip corresponding to a “normal loop”
and a second one associated with a “Möbius loop”.

h.a.u.f.

a. sl.

M
o

N
o

..

Fig. 21. A structure equivalent to that shown in Fig. 20(a).
Mö = Möbius loop, No = normal loop; h.a.u.f. = hole around
the unstable focus in Fig. 20(a); a.sl. = boundaries of the
allowed slit in Fig. 20. The two arrows — added by the
authors — show the direction of the flow.

The only difference between normal and Möbius
loop is a “twist”. There is thus a connection with
the “twist” mentioned at the beginning of his paper
while describing Fig. 11(d). But this was not done
explicitly.

5. Conclusion

With his first paper on chaos, Otto E. Rössler con-
tinued the “tour de force” — already achieved by
Lorenz in an uncompleted form — to provide a
rather extended analysis of his system. For sure,
among the list of papers (or preprints) available
when Rössler did his work, the paper by Gucken-
heimer, Oster and Ipaktchi [Guckenheimer et al.,
1976] was the most complete. From a content point
of view, the departure between Lorenz’s paper and
Rössler’s is not too wide. We showed compara-
tively which points were actually addressed in the
two papers. The main results obtained by Rössler
were: (i) a second dissipative continuous systems
investigated in the phase space. It was also the
second example (after Lorenz) where the underly-
ing structure of the phase portrait was interpreted
using a topological analysis. By distinguishing two
topologically inequivalent domains, no doubt that
Rössler provided a more advanced understanding
of his chaotic attractor. Hénon and Heiles were not
able to push the topological analysis of their system
due to two main reasons: (i) the system was four-
dimensional — it is still an open problem to perform
topological analysis in four dimensional spaces —
and (ii) conservative, that is, not relaxing on a
branched manifold.

But the reason why Rössler’s paper does not
always leave the reader with a positive feeling is for
sure the writing style. With his mathematical pre-
sentation, Lorenz left the reader with the impres-
sion that most of the concepts he introduced —
inherited from Birkhoff — to investigate his chaotic
system were well under control. Rössler, with his
use of a flowery style, seemingly left the impression
that he was not too conversant with the concepts.
We believe that the detailed analysis that we pro-
vided shows that the concepts were rather deeply
understood and that he touched on the remaining
key points some of which he later completed him-
self: like distinguishing between different types of
chaos from the topological point of view by the
use of paper models, providing suspension of dif-
ferent Poincaré maps, laying the ground of hyper-
chaos . . . But his fascination for mathematics and
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his displayed lack of self-confidence while writing
mathematics pushed him toward a writing style
quite rarely found — not to say unusual — in math-
ematical papers. It should be mentioned that such
a way of writing was not so pregnant in his earlier
papers where he combined chemical reactions and
electronic circuits, two fields where he had a strong
background.

The inclusion of Dali’s soft watch strikes us as
an advertisement to say “dear reader I am not com-
fortable with writing mathematics, consequently,
please, forgive me if I am not rigorous”. As we
showed above, Rössler’s use of the mathematical
concepts was quite correct. But his presentation,
full of implicit allusions combined with a too infor-
mal vocabulary, contributed to leave a mixed feeling
in some of his scientific readers. As a consequence,

Rössler was successful according to one of his aims:
not to be too seriously considered by less pictorially
oriented colleagues but, at the same time he thereby
was not able to attract enough scientists to stimu-
late deep investigation into his own contributions so
far. This was already pointed out in a letter from
Winfree to Rössler (April 1976) (Fig. 22):

“Many thanks for your marvelous preprint
on chaos which is too compact; you need
to expand, spell out more explicitly. Dia-
grams especially are a wonder of richness,
but few will take time to study with the
needed care. [. . .] I love the sense of humor
latent in your writing. But wish you would
write more explicitly, more detail so I can
fully understand”.

Fig. 22. Scan of the letter sent by Art Winfree to Otto Rössler on April 1976.
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As a consequence, his most often quoted papers
are the two published in Physics Letters A, which
is, the paper titled “a simple equation for conti-
nous chaos” [Rössler, 1976c] and the paper “An
equation for hyperchaos” [Rössler, 1979a], respec-
tively. Unfortunately, these papers were clearly less
rich than the first paper investigated here, includ-
ing others published in the Zeitschrift für Natur-
forschung A. Thus, Rössler’s contribution is often
reduced to these two sets of differential equations.
The large set of systems he proposed — recently
systematically collected along with the correspond-
ing branched manifolds [Letellier et al., 2006] — still
remains widely unknown.

Rössler wanted to be reachable, so as to speak
to everybody. As a side effect always encountered in
vulgarization, many points had to remain implicit
including key details. Another problem is that he
often jumped too quickly from one idea to the next,
which renders the actual content of his papers very
dense. His writings are therefore sometimes quite
difficult to read and a “decoder” is required — as
we did in this paper regarding his first contribution
to chaos theory.

Rössler did not provide enough detail to be
fully understood by nonspecialist readers and per-
haps by numerous specialists not yet focussing on
his type of questions. Most likely, his pictorial writ-
ing style came from his unsystematic mathemat-
ical background — remember that his education
was in medicine and his PhD thesis in physiol-
ogy. He had the advantage of not being intimidated
by mathematical difficulties but, unfortunately,
Rössler was not rigorous enough in introducing
a new terminology: Rather than using Greek or
Latin roots for his new notions as recommended by
Louis Guyton de Morveau (1737–1816) [Guyton de
Morveau, 1782] for neologisms, Rössler used infor-
mal terms from daily life — like “pancake”, “cap-
shaped”, “veined pattern”, “blender”, “walking
stick”, “folded towel”, . . . The same ideas dressed
with a more mathematical clothing and with clear
statements of the concepts used would have led to
a reference paper for many years already.

In spite of this, this first paper on chaos
triggered at least two important contributions.
One paper comes from biochemistry and was
devoted to an enzyme reaction. A chaotic behav-
ior was identified based on the Li–Yorke theorem
as used by Rössler [Olsen & Deng, 1977]. The
second important result triggered by Otto’s first
paper was the chaotic behavior observed in the

Belousov–Zhabotinsky reaction by the John Hud-
son’s group [Schmitz et al., 1977]. The chaotic
nature of their experimental data was explained
“taking the geometric representation used in a
paper by Rössler”, then reproducing pictures much
inspired by Otto’s original drawings (Fig. 11) but
omitting the soft watch!
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Rössler, O. E. [1972b] “A principle for chemical multivi-
bration, J. Theoret. Biol. 36, 413–417.
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Appendix A

Equations for the Multivibrator

In the third edition of the textbook Theory of
Oscillations [Andronov et al., 1966], Andronov,
Khaikin and Vitt investigated an example of
multivibrator with one RC circuit but with an
inductive anode load, whose ohmic resistance was
neglected (Fig. 23). As reported in [Pechenkin,
2002], Andronov started to investigate Abraham
and Bloch’s multivibrator in 1929 [Abraham &
Bloch, 1919b] but was quickly led to the conclu-
sion that it had no continous periodic solution even
though experimental realization of the multivibra-
tor produced self-oscillations. Andronov discussed
this problem with his old professor, Leonid Man-
delstam (1879–1944), who replied “If it has been
proved that there is no cycle, this is something.
Since the system executes oscillations, either your
idealized scheme is unsuitable, or you dont know
how to work with it” [Pechenkin, 2002]. Thus,
he concluded that his first model was “defective.”
Andronov together with Vitt came then to the com-
plete equations




L
di

dt
= Eα − (u + v)

i = iα(u) + C
dv

dt
+ Cα

d(u + v)
dt

C
dv

dt
=

u − Eg

R

(A.1)

by taking into account the parasitic inductance of
the anode circuit but neglecting the small capaci-
tance Cα in the expression C +Cα. Introducing the

Fig. 23. Building block scheme of the multivibrator inves-
tigated in the textbook written by Andronov, Khaikin and
Vitt (from [Andronov et al., 1966]).

dimensionless variables

x =
u − Eg

u0
, y = β

v − v0

u0
,

z =
R

u0
(i − i0α) (A.2)

where 2u0 is the width of the descending section of
the characteristic (Fig. 23), and using the dimen-
sionless time

tnew =
1√
LC

, (A.3)

Andronov and Vitt obtained the set of three ordi-
nary differential equations


µẋ = −x + z − kϕ(x)
ẏ = x

ż = −2hx − y

(A.4)

where µ = (RCα/
√

LC) is a small positive param-
eter characterizing the stray capacitance Cα. The
dimensionless characteristic

ϕ(x) =

∣∣∣∣∣∣∣
+1 x < −1
−x for |x| ≤ 1
−1 x > +1

(A.5)

was thus approximated by a piecewise linear
function. Such a procedure was later used by
Takashi Matsumoto, Leon Chua and Matomasa
Komuro [Matsumoto et al., 1985] to obtain the
so-called Chua system producing a two-scroll
attractor.

Appendix B

The Ueda Chaotic Attractor

In fact, Yoshisuke Ueda (born in 1936) worked at
the beginning of the 1960s under the supervision
of Chihiro Hayashi (1911–1987) in the department
of electrical engineering at the University of Tokyo.
Hayashi published in 1953 a reputed textbook on
nonlinear (periodic) oscillations [Hayashi, 1953].
Framed in this context, Hayashi always considered
nonperiodic oscillations as non-interesting transient
regimes “that finally always end up — after a time
that could be very long — by converging to a regu-
lar behavior” as reported in [Ueda, 1992a]. He thus
disregarded all the results of Ueda showing nonpe-
riodic behavior. These types of behavior were not
mentioned in Ueda’s papers before the 1970’s only
as “irregular and complicated” motions [Hayashi
et al., 1970] while describing some points in a stro-
boscopic section. But no representation in the phase
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space was yet included in this paper. It was only
much later that Ueda published his first chaotic
attractor represented in a projection of the phase
space [Ueda, 1992a]. Ueda ensured us that, by
November 27, 1961, he drew a trajectory in a plane
projection of the phase space associated with the
driven van der Pol equation

v̈ − µ(1 − γv2)v̇ + v3 = B cos νt (B.1)

(Fig. 24). This is attested to by an old sheet of paper
with a chaotic trajectory as shown in Fig. 24 and
with the date hand written [Ueda, 1992b]. He later
related that “it was nothing like the smooth oval
closed curves in Fig. 24, but was more like a broken
egg with jagged edges.” Ueda mainly investigated
the “irregular” behaviors using a Poincaré section
and realized that the points were not distributed
at random. He spent a long part of his PhD the-
sis to described how (unstable) periodic orbits were
organized in the Poincaré section [Ueda, 1965]. In
his thesis, there were few plane projections of phase
space, they always showed periodic orbits or limit
cycles. No chaotic attractor was shown in phase
space.

In 1978, Ueda published a Poincaré section of
the Duffing equation

ẍ + kẋ + x3 = B cos t (B.2)

that led to what is now called chaos, or the
“Japanese attractor” by Ruelle [1980]. But by this

-1 -0,5 0 0,5 1
x

-1

-0,5

0

0,5

1

y

Fig. 24. Projection in the v–v̇ plane of the phase space asso-
ciated with the driven van der Pol equation (B.1) similar to
the one obtained by Ueda on November 27, 1961. A continu-
ous trajectory was drawn in light grey in the v–v̇ plane and
points in the Poincaré section at phase zero were plotted as
heavy dots. Parameter values: µ = 0.2, γ = 8 and B = 0.35.
The original figure was reproduced in [Ueda, 1992b].

2,25 2,5 2,75 3 3,25 3,5 3,75 4
xn
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0
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Fig. 25. The “Japanese attractor” as named by Ruelle
[1980]. Poincaré section of the Duffing oscillator, as calcu-
lated by Ueda in 1978. Parameter values: ω = 1, µ = 0, 1 and
B = 12 as used in the original work [Ueda, 1978].

time, Ueda was speaking about “random oscilla-
tions”, introducing them as follows [Ueda, 1978].

Simulation and/or calculation errors are
unavoidable in the computer solutions for
the differential equation. Therefore, ran-
dom quantities are not introduced inten-
tionally but these errors are regarded as
uncertainties acting on the system. There
errors seems to be sufficiently small com-
pared with noises in the actual circuit. [. . .]
Figure 25 shows a long-term orbit (a real-
ization) of a random oscillation. The move-
ment of images under iterations of fλ is not
uniquely determined even for the same ini-
tial point, but the general aspect (location,
shape and size) of the orbit is reproducible,
and further it seems stable in the Poisson
sense. Therefore, a set of points as shown
in Fig. 25 should be regarded as an outline
of an attractor M representing the random
oscillation.

It was only in 1980 that Ueda plotted a plane pro-
jection in the x–ẋ plane associated with the Duff-
ing system [Ueda, 1980]. If the resulting behavior
was presented as an “orbitally stable, chaotic phe-
nomenon”, Ueda still believed that it was caused
by the “uncertain factors in the real system.”
In fact, Ueda was still asking the question “Are
computer solutions valid?” Lozi recently answererd
“No” [Lozi, 2006], but for reasons that are exactly
opposed to what Ueda was expecting!
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