
Rössler attractor
continuous deterministic chaos

Rössler system
·x = − y − z
·y = x + ay
·z = b + z(x − c)

 system state

 parameters

{x, y, z}

{a, b, c}

c + c2 − 4ab
2

,
−c − c2 − 4ab

2a
,

c + c2 − 4ab
2a

c − c2 − 4ab
2

,
−c + c2 − 4ab

2a
,

c − c2 − 4ab
2a

 if equal to:{ ·x, ·y, ·z} = {0,0,0} {x, y, z}

Rössler system
·x = − y − z
·y = x + ay
·z = b + z(x − c)

 system state

 parameters

{x, y, z}

{a, b, c}

c + c2 − 4ab
2

,
−c − c2 − 4ab

2a
,

c + c2 − 4ab
2a

c − c2 − 4ab
2

,
−c + c2 − 4ab

2a
,

c − c2 − 4ab
2a

 if equal to:{ ·x, ·y, ·z} = {0,0,0} {x, y, z}

Bifurcation diagram

a = b = 0.1
c ∈ (0,45]

References
Rössler, Otto E. "An equation for continuous chaos." Physics Letters A 57.5 (1976):
397-398.

Letellier, Christophe, and Valérie Messager. "Influences on Otto E. Rössler's earliest
paper on chaos." International Journal of Bifurcation and Chaos 20.11 (2010):
3585-3616.

Delage, Olivier, and Alain Bourdier. "Selection of Optimal Embedding Parameters
Applied to Short and Noisy Time Series from Rössler System." Journal of Modern
Physics 8.09 (2017): 1607.

This is the original paper. The Rossler attractor can be seen as a Lorentz attractor with one lobe. Differently from
Lorentz, in Rossler there is just one non-linearity.

Historical overview on the Rossler system and its main influence in physics.

All you need to smartly succeed in this TP.

Observability

·W = AW

X = CW
 Jacobian

 state
A ∈ ℝm×m

W ∈ ℝm
 measure matrix

 measure
C ∈ ℝr×m

X ∈ ℝr

The system is observable in
if

X
rank(Q) = m Q =

C
CA
CA2

⋮
CAm−rfor Rossler and observing

one coordinate
m = 3

r = 1

Observability in Rossler
A =

0 −1 −1
1 a 0
z 0 x − c

A2 =
−1 − z −a c − x

a a2 − 1 −1
z(x − c) −z −z + (x − c)2

·x = − y − z
·y = x + ay
·z = b + z(x − c)

Cy = [0 1 0] Qy =
0 1 0
1 a 0
a a2 − 1 −1

Cx = [1 0 0] Qx =
1 0 0
0 −1 −1

−1 − z −a c − x

Cz = [0 0 1] Qz =
0 0 1
z 0 x − c

z(x − c) −z −z + (x − c)2

det(Qy) = 1

det(Qx) = 0 if x = a + c

det(Qz) = 0 if z = 0

Goals for this TP
• Generate the data (time series) with ,

• Learn the discrete or continuous dynamical system from the time series

a = b = 0.2 c = 5.7

Wn+1 = NN(Wn)
·W = NN(W)

70% of the note: recover statistics
• PDF

• Time correlations

• Spectral density

• …

30% of the note: recover dynamics
• Equilibrium point (at least one)

• Lyapunov exponents (the largest one) λ ≈ 7 × 10−2

These analysis are enough to
reach the 70% of the note but
more analyses can make the
difference!

differences

Wt+Δt = M(Wt) ·W = F(W)

wt+Δt = Jwt ·w = Aw

dynamicsl system

linearized system

JacobianJ A

Note that J ≈ eAΔt

W0 − M(W0) = 0 F(W0) = 0Equilibrium state

Discrete Continuous

Constraints
• Temporal embedding or memory, discrete system: just ONE coordinate

• No Temporal embedding and no memory, discrete system: the whole state

• Continuous system: no constraints

y1 = NN(y0, y−1, y−2,...)

y1 = NN(y0, [h0])

 memory in RNNh0

W1 = NN(W0)

·W = NN(W)

y1 = NN(y0, ·y0, ··y0, . . .)

y of course!

RNN, temporal convolutions, MLP with
multi inputs ()y0, y−1, y−2, . . .

 can be recovered from the data! use finite
differentiation. Once you have and is just a

supervised learning. Otherwise you can ODE Net to infer
the governing ODE system. ODE Net is available online.

·W
W ·W

One approach is enough

Be smart
To find the equilibrium point and to evaluate the Lyapunov exponent, the
Jacobian has to be computed. Introduce a penalization onto the sensibility of
your model wrt the inputs!

loss = ∥W − Ŵ∥ + λ(?) ∥A − ̂A∥

∥ ·W − ·̂W∥

∥ ̂A∥F

Attention: with a RNN the total Jacobian needs to be computed!

Appendix D in: “Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of
Complex Spatiotemporal Dynamics”

There is not an unique way to
proceed! If you use a purely
data drive approach (without
explicitly introduce the true

Jacobian in the loss function)
will be appreciated.

deliver

• small report (4 pages)∼

Justify the loss function (e.g. MSE, , penalizations, etc) and
the performed analysis to validate your model

L∞

• codes to reproduce the pictures in the report (+ trained NN)

• code to generate a time series with your trained model (if discrete
system let us know the marching)Δt

I need to run your code to generate e new time series knowing the inbetween samplesΔt

Appendix

Wt Wt+Δt

Wt+2Δt
Wt+nΔt

Lyapunov exponent:

where:

|δW(t) | = eλt |δW0 |

|δW0 | = |W0 − W′ 0 |

Appendix

Wt Wt+Δt

Wt+2Δt
Wt+nΔt

Lyapunov exponent:

where:

|δW(t) | = eλt |δW0 |

|δW0 | = |W0 − W′ 0 |
w = np.eye(n)
Initial guess with unitary energy

Appendix

Wt Wt+Δt

Wt+2Δt
Wt+nΔt

Lyapunov exponent:

where:

|δW(t) | = eλt |δW0 |

|δW0 | = |W0 − W′ 0 |
w = np.eye(n)

w_next = np.dot(expm(jacob * delta_t),w)

Initial guess with unitary energy

Evolution of the initial guess following the tangent trajectory

Appendix

Wt Wt+Δt

Wt+2Δt
Wt+nΔt

Lyapunov exponent:

where:

|δW(t) | = eλt |δW0 |

|δW0 | = |W0 − W′ 0 |

Appendix

Wt Wt+Δt

Wt+2Δt
Wt+nΔt

w_next, r_next = qr(w_next)
Evaluate the stretching and the new orthonormal base

Lyapunov exponent:

where:

|δW(t) | = eλt |δW0 |

|δW0 | = |W0 − W′ 0 |

Appendix

Wt Wt+Δt

Wt+2Δt
Wt+nΔt

w_next, r_next = qr(w_next)
Evaluate the stretching and the new orthonormal base

Lyapunov exponent:

where:

|δW(t) | = eλt |δW0 |

|δW0 | = |W0 − W′ 0 |

Appendix

Wt Wt+Δt

Wt+2Δt
Wt+nΔt

w_next, r_next = qr(w_next)

rs.append(r_next)

Evaluate the stretching and the new orthonormal base

Store the amplification factors

Lyapunov exponent:

where:

|δW(t) | = eλt |δW0 |

|δW0 | = |W0 − W′ 0 |

Appendix

Wt Wt+Δt

Wt+2Δt
Wt+nΔt

mean(rs) ≈ eλit

Evaluate the mean amplification

mean(log(rs))/t ≈ λi

Lyapunov exponent:

where:

|δW(t) | = eλt |δW0 |

|δW0 | = |W0 − W′ 0 |

Training a RNN for a discrete system using just y coordinate is fast and safe. On the other hand recover the
Jacobian is not straightforward.

PERSONAL CONSIDERATIONS

Training a Neural Network to emulate the discrete Rossler system without temporal embedding is fast but you
need to accurately design the loss function and the penalization. Recover the Jacobian is easy with

automatic differeziation.

Training a Neural Network to recover the continuous Rossler system is hard. Exponentially more complicated
(), an error on is amplified in the solution propagation by . Moreover in the continuous space,
cross trajectories are not allowed. BUT, if you are able to got it, the Jacobian is for free and almost exact.
J ≈ eAΔt A J

