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MCMC 
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• Monte Carlo : Rejection sampling, Importance sampling, … 
 

• MCMC : Markov Chain Monte Carlo 
 
• Sampling technique to estimate a probability distribution 

  Draw samples from complex probability distributions 

In general : 

∫ 𝑓 𝑥 𝑃 𝑥 𝑑𝑥 ≈
1

𝑆
 𝑓 𝑥 𝑠 , 𝑥(𝑠)~𝑃(𝑥)

𝑆

𝑠=1

 



Bayesian Inference :  
 

• 𝜃 : Model parameter 
• 𝑥𝑖 : Observations 

 
 
 

𝑃 𝜃 𝑥1  … 𝑥𝑛 = 
𝑃 𝑥1  … 𝑥𝑛 𝜃 𝑃 𝜃

∫𝑃 𝑥1  … 𝑥𝑛 𝜃 𝑃 𝜃 𝑑𝜃
 

 

𝑃 𝜃 𝑥1  … 𝑥𝑛 =
1

𝑍
 𝑃 𝑥1  … 𝑥𝑛 𝜃 𝑃 𝜃  

 
 
 
MCMC : sample 𝑃 𝜃 𝑥1  … 𝑥𝑛  without the knowledge of 𝑍 

Objective 
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• 𝑃 𝜃  : prior on the model parameters  
• 𝑃 𝑥1  … 𝑥𝑛 𝜃  : likelyhood, potentially expensive to evaluate 



1.     Propose new 𝜃′ from the transition function 𝑄(𝜃′, 𝜃) (e.g. 𝑁 𝜃, 𝜎2 ). The transition from 
one parameter to another is a Markov Chain 
 

2.     Accept the new parameter 𝜃′ with a probability min (1,
𝑃 𝜃′ 𝑄(𝜃,𝜃′)

𝑃 𝜃 𝑄(𝜃′,𝜃)
) 

 
𝑄 must be chosen to fulfill some technical requirements.   
Samples are not independent.  

Metropolis-Hastings 
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We want to draw samples from 𝑃 𝛼 𝑃  
 

Sample 𝑁 0,1 )  



Metropolis-Hastings 
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Problem : The proposed samples come from a Gaussian. There is possibly an important 
rejection rate. 

  

Metropolis-Hastings: 1000 samples, step 0.1 
Rejection rate: 44% 
  



Hamiltonian Monte Carlo 

Journal Club 11/04/14 6 

𝜃 𝜃∗ 

𝑝  𝑝∗ 

𝜕𝜃

𝜕𝑡
=  

𝜕𝐸𝑘𝑖𝑛

𝜕𝑝
=  

𝑝

𝑚
 

𝜕𝑝

𝜕𝑡
= −

𝜕𝐸𝑝𝑜𝑡

𝜕𝜃
 

Same idea as Metropolis-Hastings BUT the proposed samples now come from the 
Hamiltonian dynamics :  
 
        𝐻 = 𝐸𝑝𝑜𝑡 + 𝐸𝑘𝑖𝑛 

        𝐸𝑝𝑜𝑡= − log 𝑃 𝜃 , 𝐸𝑘𝑖𝑛 =
𝑝2

2𝑚
 

 
 
 
 
 



Hamiltonian Monte Carlo 
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The Energy is conserved so the acceptance probability should theoretically be 1. 
Because of the numerical precision, we need the Metropolis-Hastings type decision in 
the end. 

Algorithm : 
  
• Sample 𝑝 according to its known distribution 
 
• Run the Hamiltonian dynamics during a time T 
 
• Accept the new sample with probability : 

min (1, exp −𝐸𝑝𝑜𝑡
∗ + 𝐸𝑝𝑜𝑡 exp (−𝐸𝑘𝑖𝑛

∗ + 𝐸𝑘𝑖𝑛)) 



Hamiltonian Monte Carlo 
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Gibbs Sampling Metropolis-Hastings Hamiltonian Monte Carlo 



Hamiltonian Monte Carlo 
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Advantage : The Hamiltonian stays (approximately) constant during the dynamic, hence lower 
rejection rate !  

Problem : Computing the Hamiltonian dynamic requires computing the model partial 
derivatives, high number of simulation evaluation ! 

  
Neal, Radford M (2011).  " MCMC Using Hamiltonian Dynamics. " In Steve Brooks, Andrew Gelman, Galin L. Jones, and 
Xiao-Li Meng. Handbook of Markov Chain Monte Carlo. Chapman and Hall/CRC. 

1000 samples, L = 200, 𝜖 =0,01 
Rejection rate = 0% 
 



Gaussian Process HMC 
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Same algorithm as HMC BUT the Hamiltonian dynamic is computed using Gaussian process 
simulating 𝐸𝑝𝑜𝑡 

𝜕𝑝

𝜕𝑡
= −

𝜕𝐸𝑝𝑜𝑡

𝜕𝜃
 

 
Gaussian process = distribution over smooth function to approximate 𝐸𝑝𝑜𝑡 : 

 

𝑃 𝐸𝑝𝑜𝑡 𝜃 ~𝑁 0, Σ ,  Σpq = 𝜔0exp(−
1

2
 𝑥𝑑

𝑝
− 𝑥𝑑

𝑞 2
/𝜔𝑑

2

𝐷

𝑑=1

)  

 



Gaussian Process HMC 
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Once the Gaussian process is defined with a covariance matrix, we can predict new values :  
 

𝑃 𝐸𝑝𝑜𝑡
∗ 𝜽, 𝑬𝒑𝒐𝒕, 𝜃

∗ ~𝑁 𝜇, 𝜎2 ,   

 
If the Gaussian process is “good”, 𝜇(𝜃∗) ≈ target density 

Algorithm :  
1. Initialization : 

• Evaluate the target density at D random points to define 
the Gaussian process. 

2. Exploratory phase :  
• HMC with 𝐸𝑝𝑜𝑡 = 𝜇 − 𝜎 : evaluation of points with high 

target value and high uncertainty. Evaluate the real target 
density at the end of each iteration. 

3. Sampling phase : 
• HMC with 𝐸𝑝𝑜𝑡 = 𝜇. 

 



Gaussian Process HMC 
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Conclusion 
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• Metropolis-Hastings : few model evaluation per iteration but important rejection rate 
 

• Hamiltonian Monte Carlo : a lot of model evaluation per iteration but low rejection rate 
 

• GPHMC : few model evaluation per iteration and low rejection rate 
 
• BUT : Initialization requires model evaluations to define a “good” Gaussian process 
• BUT : Exploratory phase requires one model evaluation per iteration 




