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My goals today

@ Introduce methodology
@ Show links between formulations (min, 2:, [/)

@ Show a success story: level-sets
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@ Can we use PDEs to do some interesting image processing?
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@ Definitions

@ Can we use PDEs to do some interesting image processing?
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An image is seen as a function defined in continuous space
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A PDE defines an evolution

(tX)/*

H(t,x,u,Vu,V?u) ~ v(x) = u(co,x)
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@ Can we use PDEs to do some interesting image processing?

@ From Gaussian filtering to the heat equation
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Gaussian filtering

@ Let ug an image, we define :

uy(x) = (G, x up)(x) avec Gy(x) = 7o
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Heat equation

@ A linear PDE

%(t,X) = AU(t,X), t Z 07
u(0, x) = uo(x).

t=20 t=12.5 t =60.5 t =935
@ A notion of scale
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Solution of the heat equation is a convolution
u(t,x) = (G\/ﬁ * Ug)(x)

Gaussian filtering
One operation in a large neighbourhood

oc=11 o=17

t=20 t =125 t =060.5 t =935

Heat equation
A succession of local operations
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Take home messages

@ PDE appear as a natural way to smooth images.

@ When it is linear, a PDE (or equivalently the convolution) do not
preserve edges.
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© Three solutions to go further
@ Solution 1: Make convolution " nonlinear”
@ Solution 2: Modify the heat equation
@ Solution 3: Define an optimisation problem
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© Three solutions to go further

@ Solution 1: Make convolution "nonlinear”
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Solution 1: Make convolution "nonlinear”
Bilateral filtering (Tomasi, Manduchi [1998])

o Given ug, we define u by :

‘multiplication of range
and spatial weights
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Denoising and Simplification

before after
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Denoising and Simplification

before after

Computer Graphics community like it!

Numerous improvements, extensions, efficient implementations and great
applications
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Do your own comics
Winnemoller, Olsen, Gooch [2006]

(video-spiderman.avi) -

before after
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Tone management for photographic look
Bae, Paris, Durand [2006]
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Tone management for photographic look
Bae, Paris, Durand [2006]

" Clearing winter storm”, Ansel Adams
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Tone management for photographic look
Bae, Paris, Durand [2006]

Our classical picture
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Tone management for photographic look
Bae, Paris, Durand [2006]

model
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Tone management for photographic look
Bae, Paris, Durand [2006]

model after
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© Three solutions to go further

@ Solution 2: Modify the heat equation
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Solution 2: Modify the heat equation

@ Heat equation

Ou

p— pr— 1 ?
9 Au =div( ? Vu)
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Solution 2: Modify the heat equation

@ Perona and Malik model [1990]

ou _ [ 1T+
T dlv(c(J(ZlL;f)Vu) with ¢(s) = { exp(—s)
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Solution 2: Modify the heat equation

@ Heat equation
du

— = Au=div( ? Vu)

ot

@ Perona and Malik model [1990]

ou
ot

scalar

— =div(c(|Vu]?) Vu) with c(s) =

1/vV1+s

exp(—s)

@ Buades, Coll et Morel [2005]: Bilateral filter is related to Perona and

Malik model
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Diffusion acts on isophote
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Diffusion can interpreted w.r.t. local image structures

@ Nonlinear diffusion is non only a "controlled” diffusion but it is also
related to a directional diffusion depending on local image structures

@ Most diffusion operators can be rewritten as:

(oo Yurr+ (o) o
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How to better take into account local image structure?

@ Limitation of previous models: Estimation of T, N is local
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How to better take into account local image structure?

@ Limitation of previous models: Estimation of T, N is local

@ Solution: Use structure tensor

u, u
t O XX oxy
kp*VuUVuU—kp*(u h )
axy ayy
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How to better take into account local image structure?

@ Limitation of previous models: Estimation of T, N is local

@ Solution: Use structure tensor

u, u
t O XX oxy
kp*VuUVug—kp*(u h )
axy ayy

o Weickert [1996]

ou . t

—— = div (D(k, * Vu,Vut) Vu)
ot matrix
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Example

Original Chaleur Perona-Malik Weickert

Kornprobst (INRIA) PDEs



© Three solutions to go further

@ Solution 3: Define an optimisation problem
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When a PDE is a gradient descent of an optimisation
problem (also called variational problem)

v(x) = Argmin E(u) = /F(X, u, Vu, V2u)dx
u(x) Q
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Solution 3: Define an optimisation problem

@ Let us start from a model of formation of images, for example :
u=Ru+n

where 7 is a white Gaussian noise and R is a linear operator.
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Solution 3: Define an optimisation problem

@ Let us start from a model of formation of images, for example :
u=Ru+n

where 7 is a white Gaussian noise and R is a linear operator.

@ Solve the least-square problem
inf/ lup— Ru?dx — R*up— R*Ru=0
vJa
is an ill-posed problem

@ Why? Opertor R*R is usually hard to invert (not bijective or low
eingenvalues)
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Constrain possible solutions thanks to a regularity
constraint

@ Tikhonov et Arsenin [1977]

inf/\u0 ~ Ru2dx+/\/|Vu|2dx
uJa Q
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Constrain possible solutions thanks to a regularity
constraint

@ Tikhonov et Arsenin [1977]

inf/\uo — Rul? dx + /|Vu|2dx
uJa Q

@ The two main ingredients are here!
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Constrain possible solutions thanks to a regularity
constraint

@ Tikhonov et Arsenin [1977]

im‘/uol:\’u2 dx + /|Vu|2dx
uJa Q

@ The two main ingredients are here!

@ To minimise, compute the Euler-Lagrange equation, and in that case,
we find again the Laplacian operator.

EL(u) = "Au— (R"Ru— R"up) =0, = EL(u).

at
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So, quadratic penalty gives linear diffusion, and othewise?

o Consider a general formulation :

inf E(u) = /(uo — Ru)? dx + / o(|Vul) dx
u Q Q
o Diffusion operator :

o (£02D,) = £079D oy
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So, quadratic penalty gives linear diffusion, and othewise?

o Consider a general formulation :
inf E(u) = /(uo — Ru)? dx + / o(|Vu|) dx
u JQ Q

o Diffusion operator :

div (¢/(|VU|)VU> = ¢/|(|VVUT|) urt + ¢"(|Vul) unn

[Vl

@ Choosing ¢ will have consequences on the solution regularity and as a
consequence on the functional space to consider to study the
variational formulation (not commented today, but lots of interesting
maths here)

#(s) =21+s2—-2 — ue BV(Q) (preserve discontinuities)
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Take home messages

@ Nonlinearity is needed to preserve discontinuities (seen in all
formulations)

@ PDE may or may not derive from an optimisation problem.
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© A success story: Levels-sets

o = = = nae
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A curve evolves

@ Lagrangian formulation

{ %_g(ta q) = N
(0, q) = co(a).

@ Example with v = &

LN 0 0
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A curve evolves... but what could be the interest?
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A curve evolves... but what could be the interest?

Example: Segmentation
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A curve evolves... but what could be the interest?

Example: Segmentation
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A curve evolves... but what could be the interest?

Example: Segmentation

... How to formalise the problem? By defining optimisation problems!
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K IF TIME *** Active contours, Kass, Witkin etal [1987]

b b
inf J(c) :/\c’(q)yquw/\c"(q)|2dq+A/g2(\V/(c(q))\)dq,

/ ~

-~

internal energy external energy

(g decreasing)

e —: J(c) not intrinsic (depends on paramerisation)
@ — : Because of regularity constraint, topology changes are impossible
(restricted to a single convex object).

@ — : Numerically, curve has to be initialised close to the object to
segment
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*** |F TIME *** What about a model with curvature?

b
inf (c / (@I da-+A [ &2(1VI(c(a))])da

e —: Still not intrinsic.
@ + : No high order terms in the Euler equation.

@ + : It can be shown that curvature also decreases.
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X IF TIME *** Idea!

o Caselles, Kimmel, Kichenassamy [1995,..] :
b

inf 1(c) = [ &(IVI(c(@)])[<(@)] da

a

@ + : Model is intrinsic!
e + : Equivalent to inf. J1, Aubert, Blanc-Férraud [1999]

@ + : Euler equation is a curve evolution :

Jdc

= N
ot
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Ok, but numerically, evolving a curve is not trivial

@ Distribution of points won't stay homogeneous
@ Stability problems
@ Topology changes...

VI A

April 2014 30 /48
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Idea: The Level-Sets method

Dervieux, Thomasset [1980], Osher, Sethian [1988]

@ A curve seen as an isophote of a function

@ Evolve curve is equivalent to evolve function

{%—g:vN,

. % =v |Vu|
C(07 q) = CO(q)’ U(O,X) = UO(X)'
=] 5 = = DA



Many advantages

o Fixed system of coordinates

@ Easy handling of topology changes

e Applicable in any dimension (think about surfaces in 3D!)

@ Equation can be solved with suitable numerical schemes coming from
hyperbolic equations.
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Exemple: Segmentation based on objects contours
Caselles, Kimmel, etal [1997], etc

— = g(|V!])|Vu| div (V”> + +(Vg, Vu)

|Vu
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Exemple: Segmentation based on regions
Chan, Vese [1999]

inf  F(i1,i2,¢) = plc]| +/ |Uo—i1|2dX+/ |up — iz dx
c inside(c) outside(c)

i1,i2,
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These are just two examples...

@ Many other applications have been considered (e..g, textures, 3D
objects in medical images, tracking of moving objects).

@ New methods to improve speed (e.g., fast marching).

@ Use shape priors.

@ Keep function as a distance function across iterations to avoid
periodic re-initialisation steps.

@ etc.
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@ Conclusion

o = = = nae
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Take home messages

@ PDE appear as a natural way to smooth images.

@ When it is linear, a PDE (or equivalently the convolution) do not
preserve edges.

@ Nonlinearity is needed to preserve discontinuities (seen in all
formulations)

PDE may or may not derive from an optimisation problem.

The notion of time evolution can be related to a notion of scale (in
image restoration) but also to different aspects like a motion (in
level-sets)

(not shown here) Many theoretical results allow to prove if your
problem is well defined or not.

@ Giving formulations in a continuous setting offers high intuitions and
discretisation aspects only come when simulations are needed.

@ There has been a high activity in this area in [1990-2010] with lots of
papers!
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If you want to learn more

Geometric Partial
Differential Equations
and Image Analysis

Fluid Mechasics, Compater Yision. ani Vaterdls Siene

Guillermo Sapiro
1999 2001
Sethian Sapiro
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153 Ronald Fedkiw

Level Set Methods and
Dynamic Implicit Surfaces

Gilles Aubert
Pierre Kornprobst

e Mathematical
seences | Problems in
Image
Processing
Partial Differential
Equations and the

Calculus of
Variations

2002
Osher, Fedwik

2002, 2006, 2014
Aubert, Kornprobst
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Thank you!

http://www-sop.inria.fr/members/Pierre.Kornprobst
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