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My goals today

Introduce methodology

Show links between formulations (min, ∂.
∂t ,
∫∫

)

Show a success story: level-sets
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An image is seen as a function defined in continuous space

u : Ω ⊂ IR2 → IR
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A PDE defines an evolution

u(t, x) /
∂u

∂t
= H(t, x , u,∇u,∇2u)  v(x) ≡ u(∞, x)
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Gaussian filtering

Let u0 an image, we define :

uσ(x) = (Gσ ∗ u0)(x) avec Gσ(x) =
1

2π σ2
exp

(
− |x |

2

2σ2

)
.

σ = 0 σ = 5 σ = 11 σ = 17
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Heat equation

A linear PDE {
∂u
∂t (t, x) = ∆u(t, x), t ≥ 0,

u(0, x) = u0(x).

t = 0 t = 12.5 t = 60.5 t = 93.5

A notion of scale
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Solution of the heat equation is a convolution
u(t, x) = (G√

2 t ∗ u0)(x)

Gaussian filtering
One operation in a large neighbourhood

σ = 0 σ = 5 σ = 11 σ = 17

t = 0 t = 12.5 t = 60.5 t = 93.5

Heat equation
A succession of local operations
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Take home messages

PDE appear as a natural way to smooth images.

When it is linear, a PDE (or equivalently the convolution) do not
preserve edges.
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Solution 1: Make convolution ”nonlinear”
Bilateral filtering (Tomasi, Manduchi [1998])

Given u0, we define u by :

u(x) =
1

w(x)

∫∫
d(x − ξ)d̃(u0(x)− u0(ξ))u0(ξ)dξ with

w(x) =

∫∫
d(x − ξ)d̃(u0(x)− u0(ξ))dξ
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Denoising and Simplification

before after

Computer Graphics community like it!

Numerous improvements, extensions, efficient implementations and great
applications
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Do your own comics
Winnemoller, Olsen, Gooch [2006]

before after
(video-spiderman.avi)
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Tone management for photographic look
Bae, Paris, Durand [2006]

”Clearing winter storm”, Ansel Adams
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Tone management for photographic look
Bae, Paris, Durand [2006]

Our classical picture
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Tone management for photographic look
Bae, Paris, Durand [2006]

model before
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Tone management for photographic look
Bae, Paris, Durand [2006]

model after
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Solution 2: Modify the heat equation

Heat equation
∂u

∂t
= ∆u = div( ? ∇u)

Perona and Malik model [1990]

∂u

∂t
= div (c(|∇u|2)

scalar
∇u) with c(s) =

{
1/
√

1 + s
exp(−s)

Buades, Coll et Morel [2005]: Bilateral filter is related to Perona and
Malik model

Kornprobst (INRIA) PDEs April 2014 22 / 48



Solution 2: Modify the heat equation

Heat equation
∂u

∂t
= ∆u = div( ? ∇u)

Perona and Malik model [1990]

∂u

∂t
= div (c(|∇u|2)

scalar
∇u) with c(s) =

{
1/
√

1 + s
exp(−s)

Buades, Coll et Morel [2005]: Bilateral filter is related to Perona and
Malik model

Kornprobst (INRIA) PDEs April 2014 22 / 48



Solution 2: Modify the heat equation

Heat equation
∂u

∂t
= ∆u = div( ? ∇u)

Perona and Malik model [1990]

∂u

∂t
= div (c(|∇u|2)

scalar
∇u) with c(s) =

{
1/
√

1 + s
exp(−s)

Buades, Coll et Morel [2005]: Bilateral filter is related to Perona and
Malik model

Kornprobst (INRIA) PDEs April 2014 22 / 48



Diffusion acts on isophotes
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Diffusion can interpreted w.r.t. local image structures

Nonlinear diffusion is non only a ”controlled” diffusion but it is also
related to a directional diffusion depending on local image structures

Most diffusion operators can be rewritten as:(
. . .
)

uTT +
(
. . .
)

uNN
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How to better take into account local image structure?

Limitation of previous models: Estimation of T ,N is local

Solution: Use structure tensor

kρ ∗ ∇uσ∇ut
σ = kρ ∗

(
uσxx uσxy
uσxy uσyy

)

Weickert [1996]

∂u

∂t
= div (D(kρ ∗ ∇uσ∇ut

σ)
matrix

∇u)
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Example

Original Chaleur Perona-Malik Weickert
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When a PDE is a gradient descent of an optimisation
problem (also called variational problem)

v(x) = Argmin
u(x)

E (u) =

∫
Ω

F (x , u,∇u,∇2u)dx
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Solution 3: Define an optimisation problem

Let us start from a model of formation of images, for example :

u0 = R u + η

where η is a white Gaussian noise and R is a linear operator.

Solve the least-square problem

inf
u

∫
Ω
|u0 − Ru|2 dx → R∗u0 − R∗Ru = 0

is an ill-posed problem

Why? Opertor R∗R is usually hard to invert (not bijective or low
eingenvalues)
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Constrain possible solutions thanks to a regularity
constraint

Tikhonov et Arsenin [1977]

inf
u

∫
Ω
|u0 − Ru|2 dx + λ

∫
Ω
|∇u|2dx

The two main ingredients are here!

To minimise, compute the Euler-Lagrange equation, and in that case,
we find again the Laplacian operator.

EL(u) = λ4u − (R∗Ru − R∗u0) = 0,
∂u

∂t
= EL(u).
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So, quadratic penalty gives linear diffusion, and othewise?

Consider a general formulation :

inf
u

E (u) =

∫
Ω

(u0 − Ru)2 dx + λ

∫
Ω
φ(|∇u|) dx

Diffusion operator :

div

(
φ′(|∇u|)
|∇u|

∇u

)
=
φ′(|∇u|)
|∇u|

uTT + φ′′(|∇u|) uNN

Choosing φ will have consequences on the solution regularity and as a
consequence on the functional space to consider to study the
variational formulation (not commented today, but lots of interesting
maths here)

φ(s) = 2
√

1 + s2 − 2 → u ∈ BV (Ω) (preserve discontinuities)
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Take home messages

PDE appear as a natural way to smooth images.

When it is linear, a PDE (or equivalently the convolution) do not
preserve edges.

Nonlinearity is needed to preserve discontinuities (seen in all
formulations)

PDE may or may not derive from an optimisation problem.
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A curve evolves

Lagrangian formulation{
∂c
∂t (t, q) = v(κ, ...) N

c(0, q) = c0(q).

Example with v = κ
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A curve evolves... but what could be the interest?

Example: Segmentation

... How to formalise the problem? By defining optimisation problems!
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*** IF TIME *** Active contours, Kass, Witkin etal [1987]

inf
c

J(c) =

b∫
a

∣∣ c ′(q)
∣∣2dq + β

b∫
a

∣∣ c ′′(q)
∣∣2dq

︸ ︷︷ ︸
internal energy

+ λ

b∫
a

g 2( |∇I (c(q))|) dq

︸ ︷︷ ︸
external energy

,

(g decreasing)

– : J(c) not intrinsic (depends on paramerisation)

– : Because of regularity constraint, topology changes are impossible
(restricted to a single convex object).

– : Numerically, curve has to be initialised close to the object to
segment

Kornprobst (INRIA) PDEs April 2014 36 / 48



*** IF TIME *** What about a model with curvature?

inf
c

J1(c) =

b∫
a

∣∣c ′(q)
∣∣2 dq + λ

b∫
a

g 2( |∇I (c(q))| )dq

– : Still not intrinsic.

+ : No high order terms in the Euler equation.

+ : It can be shown that curvature also decreases.
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*** IF TIME *** Idea!

Caselles, Kimmel, Kichenassamy [1995,..] :

inf
c

J2(c) =

b∫
a

g( |∇I (c(q))| )
∣∣c ′(q)

∣∣ dq.

+ : Model is intrinsic!

+ : Equivalent to infc J1, Aubert, Blanc-Férraud [1999]

+ : Euler equation is a curve evolution :

∂c

∂t
= (κg − 〈∇g ,N〉) N
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Ok, but numerically, evolving a curve is not trivial

Distribution of points won’t stay homogeneous

Stability problems

Topology changes...
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Idea: The Level-Sets method
Dervieux, Thomasset [1980], Osher, Sethian [1988]

A curve seen as an isophote of a function

Evolve curve is equivalent to evolve function{
∂c
∂t = v N,

c(0, q) = c0(q).
=⇒

{
∂u
∂t = v |∇u|
u(0, x) = u0(x).
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Many advantages

Fixed system of coordinates

Easy handling of topology changes

Applicable in any dimension (think about surfaces in 3D!)

Equation can be solved with suitable numerical schemes coming from
hyperbolic equations.
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Exemple: Segmentation based on objects contours
Caselles, Kimmel, etal [1997], etc

∂u

∂t
= g(|∇I |) |∇u| div

(
∇u

|∇u|

)
+ αg(|∇I |) |∇u|+ 〈∇g ,∇u〉
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Exemple: Segmentation based on regions
Chan, Vese [1999]

inf
i1,i2,c

F (i1, i2, c) = µ|c |+
∫
inside(c)

|u0 − i1|2dx +

∫
outside(c)

|u0 − i2|2dx
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These are just two examples...

Many other applications have been considered (e..g, textures, 3D
objects in medical images, tracking of moving objects).

New methods to improve speed (e.g., fast marching).

Use shape priors.

Keep function as a distance function across iterations to avoid
periodic re-initialisation steps.

etc.
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Take home messages

PDE appear as a natural way to smooth images.

When it is linear, a PDE (or equivalently the convolution) do not
preserve edges.

Nonlinearity is needed to preserve discontinuities (seen in all
formulations)

PDE may or may not derive from an optimisation problem.

The notion of time evolution can be related to a notion of scale (in
image restoration) but also to different aspects like a motion (in
level-sets)

(not shown here) Many theoretical results allow to prove if your
problem is well defined or not.

Giving formulations in a continuous setting offers high intuitions and
discretisation aspects only come when simulations are needed.

There has been a high activity in this area in [1990–2010] with lots of
papers!
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If you want to learn more

1999 2001 2002 2002, 2006, 2014

Sethian Sapiro Osher, Fedwik Aubert, Kornprobst
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Thank you!
http://www-sop.inria.fr/members/Pierre.Kornprobst
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