Phase fields for network extraction from images

Aymen El Ghoul

 lan JermynJosiane Zerubia
$4^{\text {th }}$ SWING meeting
May 19, 2010

Université
Nice

Problem: object extraction

- Ubiquitous in applications
- In remote sensing imagery: road and hydrographic networks, trees, buildings...
- In medical imagery: vascular networks, tumors...
- Automatic methods need to incorporate human knowledge into mathematical models.

Difficulties?

- Appearances of the background and the foreground are similar
- ‘shape’ (region) distinguishes between them.
- Rivers are different from roads
- branch extremities tend to not end.
- at junctions, a significant change of branch widths occurs.
- The presence of occlusions: gap closure.

Problem formulation?

- Calculate a MAP estimate of the region R containing the entity:

$$
\begin{array}{r}
\hat{R}=\arg \max _{R} \mathrm{P}(R \mid I, K) \\
\mathrm{P}(R \mid I, K) \propto \mathrm{P}(I \mid R, K) \mathrm{P}(R \mid K)
\end{array}
$$

- In practice, minimize an energy:

$$
\begin{aligned}
\hat{R} & =\arg \min _{R} E(R, I) \\
E(R, I) & =-\ln \mathrm{P}(\mathrm{I} \mid \mathrm{R}, \mathrm{~K})-\ln \mathrm{P}(\mathrm{R} \mid \mathrm{K}) \\
& =E_{\mathrm{I}}(I, R)+E_{\mathrm{P}}(R)+\mathrm{const}
\end{aligned}
$$

Likelihood: will not talk about this: important, but less generic.

Prior: subject of talk

Roadmap of the rest of talk

- Undirected network phase field HOACs
- The model.
- Limitations in the case of our purposes.
- Directed network phase field HOACs
- The model: extension of the undirected network model.
- Results on VHR remote sensing images.
- Conclusions and prospects.

First part: undirected phase field HOACs

- Active contours and HOACs.
- Phase diagram of a HOAC model.
- HOACs as phase fields?

Active contours?

- A region R is represented by its boundary, $\partial \mathrm{R}=[\gamma]$, the 'contour'.
- Classical prior energy:
- Length of $\partial \mathrm{R}$ and area of R : $E_{C, 0}(R)=\lambda_{\mathrm{C}} L(R)+\alpha_{\mathrm{C}} A(R)$
- Short-range dependencies between boundary points.

- Describes boundary smoothness.

Limitations of $\mathrm{E}_{\mathrm{C}, 0}$?

- Remote sensing images are complex.
- $\mathrm{E}_{\mathrm{C}, 0}$ is insufficient for automatic solution of real problems.
- Regions of interest are distinguished by their shape.
- But topology can be non-trivial, and unknown a priori.
- Need strong prior knowledge of shape, but without constraining topology.

Build better shape prior: HOACs

- Incorporate prior knowledge about shape via long-range dependencies between boundary points.

- How? Multiple integrals over the contour.
- E.g. Euclidean invariant two-point term:

$$
E_{C, Q}=-\frac{\beta_{C}}{2} \iint_{\left(S^{1}\right) 2} d t d t^{\prime} \dot{\gamma}(t) \cdot \dot{\gamma}\left(t^{\prime}\right) \Psi\left(\frac{\left|\gamma(t)-\gamma\left(t^{\prime}\right)\right|}{d}\right)
$$

Energy minimization

- Total energy (4 parameters): $\mathrm{E}_{\mathrm{C}, \mathrm{P}}(\mathrm{R})=\mathrm{E}_{\mathrm{C}, 0}(\mathrm{R})+\mathrm{E}_{\mathrm{C}, \mathrm{Q}}(\mathrm{R})$
- Problem: different stable configurations for some PSs.
- Solution: stability analysis \Rightarrow parameter constraints

Analysis of a long bar

Analysis of a circle

Stability analysis

- Taylor series expansion up to second order around γ_{0} (circle, bar):

$$
E_{G}^{(2)}(\gamma)=E_{G}^{(2)}\left(\gamma_{0}+\delta \gamma\right)
$$

Energy of γ_{0}
First order term
Second order term

$$
\mathrm{E}_{\mathrm{G}} \text { has a minimum }\left.\gamma_{0} \longleftrightarrow \frac{\delta E_{G}}{\delta \gamma}\right|_{\gamma_{0}}=0 \text { and }\left.\frac{\delta^{2} E_{G}}{\delta \gamma^{2}}\right|_{\gamma_{0}}>0
$$

Result: Phase diagram.

Typical phase diagram of water. ©Wikipedia.

Result: Phase diagram.

$E\left(w_{0}, l\right) \approx l e\left(w_{0}\right)$

$\mathrm{B}+$	
	$\mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}-$
	UB, UC
	$\mathrm{B}-, \mathrm{C}+$
	$\mathrm{B}-, \mathrm{C}-$
	$\mathrm{C}-$
	$\mathrm{B}-$

Result: Phase diagram.

$E\left(w_{0}, l\right) \approx l e\left(w_{0}\right)$

	$\mathrm{B}+$
	$\mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}-$
	UB, UC
	$\mathrm{B}-, \mathrm{C}+$
	$\mathrm{B}-, \mathrm{C}-$
	$\mathrm{C}-$
	$\mathrm{B}-$

Result: Phase diagram.

$\mathrm{B}+$	
	$\mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}-$
	UB, UC
	$\mathrm{B}-, \mathrm{C}+$
	$\mathrm{B}-, \mathrm{C}-$
	$\mathrm{C}-$
	$\mathrm{B}-$

Result: Phase diagram.

$\mathrm{B}+$	
	$\mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}-$
	UB, UC
	$\mathrm{B}-, \mathrm{C}+$
	$\mathrm{B}-, \mathrm{C}-$
	$\mathrm{C}-$
	$\mathrm{B}-$

Result: Phase diagram.

$\mathrm{B}+$	
	$\mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}-$
	UB, UC
	$\mathrm{B}-, \mathrm{C}+$
	$\mathrm{B}-, \mathrm{C}-$
	$\mathrm{C}-$
	$\mathrm{B}-$

Result: Phase diagram.

$E\left(w_{0}, l\right) \approx l e\left(w_{0}\right)$

	$\mathrm{B}+$
	$\mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}+$
	$\mathrm{B}+, \mathrm{C}-$
	UB, UC
	$\mathrm{B}-, \mathrm{C}+$
	$\mathrm{B}-, \mathrm{C}-$
	$\mathrm{C}-$
	$\mathrm{B}-$

Difficulties of HOACs?

- Model:
- Complex topologies require many contours.
- Algorithm:
- Implementation of $\partial \mathrm{E}_{\mathrm{Q}}$ is very complex.
- Execution is slow, especially with long boundary.
- Not enough topological freedom.

'Automatic' topological freedom?

- Contour (explicit) representation - No change of topology.
- Level set (implicit) representation
- Constrained to be a distance function.
- allows splitting and merging.

- but, not enough for our application.

Solution: phase fields

- A phase field $\phi: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function.
- It defines a region in the image domain Ω : $\mathrm{R}=\{\mathrm{x}: \phi(\mathrm{x}) \mathrm{>} \mathrm{z}\}$.
- Basic, local energy:

$$
E_{0}^{s}(\phi)=\int d^{2} x\left\{\frac{D}{2} \partial \phi \cdot \partial \phi+\lambda\left(\frac{\phi^{4}}{4}-\frac{\phi^{2}}{2}\right)+\alpha\left(\phi-\frac{\phi^{3}}{3}\right)\right\}
$$

Smoothed characteristic function.

Shape information?

- Write tangent vector $\dot{\gamma}$ in terms of $\partial \phi$

$$
\begin{aligned}
& E_{\mathrm{C}, \mathrm{Q}}(\gamma)=-\frac{\beta_{\mathrm{C}}}{2} \iint_{\left(S^{1}\right)^{2}} d t d t^{\prime} \dot{\gamma}(t) \cdot \dot{\gamma}\left(t^{\prime}\right) \Psi\left(\frac{\left|\gamma(t)-\gamma\left(t^{\prime}\right)\right|}{d}\right) \\
& E_{\mathrm{NL}}(\phi)=-\frac{\beta}{2} \iint_{2} d^{2} x d^{2} x^{\prime} \partial \phi(x) \cdot \partial \phi\left(x^{\prime}\right) \Psi\left(\frac{\left|x-x^{\prime}\right|}{d}\right)
\end{aligned}
$$

Phase fields as HOACs?

- Total prior energy:

$$
E_{\mathrm{P}}^{s}(\phi)=E_{0}^{s}(\phi)+E_{\mathrm{NL}}(\phi)
$$

- For a given region R , one can show:

$$
\begin{aligned}
& E_{0}^{s}\left(\phi_{R}\right) \approx \lambda_{\mathrm{C}} L(R)+\alpha_{\mathrm{C}} A(R) \triangleq E_{\mathrm{C}, 0}(R) \\
& E_{\mathrm{NL}}\left(\phi_{R}\right) \propto E_{\mathrm{C}, \mathrm{Q}}(R)
\end{aligned}
$$

- Result: one can use phase fields instead of HOACs.

Overview of the first part

- Contribution: phase diagram of a HOAC model.
- Limitations:
- The undirected network model does not allow large range of stable branch widths
- works very well for roads but not for rivers.
- Lack of connectivity: presence of gaps.
- Solution: directed network models.

Preview of the second part

- Directed networks (e.g. rivers) carry 'flow' through their branches.
- Desiderata:
- large range of branch widths, but
- width changes must be slow, except
- at junctions, $\Sigma_{i} w_{i}=0$.
- Goal: build priors which favor network regions with these geometric properties.

Second part: directed phase field HOACs

- The model.
- Stability analysis.
- Results on real images.

The proposed model?

- Introduce a local phase field model incorporating two phase field functions:
- a scalar field ϕ representing a region by its smoothed characteristic function, and
- a vector field v representing the 'flow' through the network branches.
- Total prior energy:

$$
E_{\mathrm{P}}(\phi, v)=E_{0}(\phi, v)+E_{\mathrm{NL}}(\phi)
$$

The local term?

- We require the vector field v to be:
- 0 outside the network and $|v|=1$ inside,
- smooth,
- parallel to the region boundary $\partial \mathrm{R}$, and
- divergence-free.
- The proposed local phase field energy:

$$
E_{0}(\phi, v)=\int d^{2} x\{\underbrace{\frac{D}{2} \partial \phi \cdot \partial \phi}_{\text {Smoothness }}+\underbrace{\frac{D_{v}}{2}(\partial \cdot v)^{2}}_{\text {Divergence }}+\underbrace{\frac{L_{v}}{2} \partial v: \partial v}_{\text {Smoothness }}+\underbrace{W(\phi, v)}_{\text {Potetetiol }}\}
$$

The potential $\mathrm{W}(\phi, v) ?$

- The potential must have 2 minima
- $(\phi,|\mathrm{v}|)=(-1,0)$ for the exterior
- $(\phi,|v|)=(1,1)$ for the interior
- E.g.: the simplest, a fourth order polynomial of ϕ and $|v|$
 $-\begin{gathered}1 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.2 \\ -0 \\ -0.2 \\ -0.4 \\ -0.6\end{gathered}$
$W(\phi,|v|)=\frac{|v|^{4}}{4}+\left(\lambda_{22} \frac{\phi^{2}}{2}+\lambda_{21} \phi+\lambda_{20}\right) \frac{|v|^{2}}{2}+\lambda_{04} \frac{\phi^{4}}{4}+\lambda_{03} \frac{\phi^{3}}{3}+\lambda_{02} \frac{\phi^{2}}{2}+\lambda_{01} \phi$

Intuitions?

- Large range of stable branch widths:
- We choose Ψ to be the Bessel function K_{0}.
- Branch width changes must be slow:
- low divergence + transition of $|v|$ from 0 to 1 across $\partial \mathrm{R} \Rightarrow / /$ to the boundary,
- // to $\partial \mathrm{R}+$ smooth $\Rightarrow / /$ in the interior,
- // in the interior + low divergence $+|v|=1$ \Rightarrow slow width changes and branches prolong.

Intuitions?

- At junctions, the total incoming widths equal total outgoing widths ('flow conservation' of v):
$-/ /$ in the interior + low divergence $+|v|=1$
\Rightarrow branch width conservation.
- The preferred configuation:

Geometeric evolutions

Undirected network model

- • • •

\cdots	-	\times	-
88	\times	x	\pm
\%	5	出	※
	\%		

Directed network model

\bullet	\bullet	\bullet	\bullet

x	\varkappa	0	0

\&	KY	IIT	Σ
	IIT		

Bessel Rochery et al.

Difficulties?

- Parameter learning: the model has many free parameters (9).
- Many stable configurations for some parameter ranges:
- e.g.: circular structures, line network structures.
- Solution: constrain the parameter values to favor stable networks.

Turing's stability

- Consider the energy without gradient (stabilizing) terms: $\mathrm{E}(\mathrm{W}(\phi, \mathrm{v}))$.
- Let $(\phi(\mathrm{x}), \mathrm{v}(\mathrm{x}))=\left(\phi_{0}, \mathrm{v}_{0}\right) \forall \mathrm{x} \in \Omega$ being a uniform phase of the system.
- $\left(\phi_{0}, v_{0}\right)=(-1,0)$ and $(1,1)$ are two stable uniform phases i.e. $\left(\phi_{0}, v_{0}\right)$ minimum of $E(W(\phi, v))$.
- Adding stabilizing terms to the energy, the uniform phase (ϕ_{0}, v_{0}) must remain stable:
- (ϕ_{0}, v_{0}) is stable to infinitesimal perturbations $(\delta \phi(\mathrm{k}), \delta \mathrm{v}(\mathrm{k}))$ \Leftrightarrow the 3×3 Hessian matrix $\mathrm{H}\left(\phi_{0}, \mathrm{v}_{0}\right)$ of E_{p} is positive definite.
\Rightarrow lower and upper bounds on parameter values.

Why? Turing's instabilities...

- The 3 invariants (\Leftrightarrow eigenvalues) of H :

Network modelling: bar ansatz?

- A 'network' is thought of as a set of \approx straight, long bars.

- The bar is defined by 4 physical parameters: $\mathrm{w}_{0}, \mathrm{w}, \phi_{\mathrm{m}}$ and v_{m}.

Energy of the bar

- Bar energy per unit length:

$$
\begin{aligned}
& e_{\mathrm{P}}\left(\hat{w}_{0}, \hat{w}, \phi_{m}, v_{m}\right)=\hat{w}_{0} \nu\left(\phi_{m}, v_{m}\right)+\hat{w} \mu\left(\phi_{m}, v_{m}\right) \\
& \quad-\beta\left(\phi_{m}+1\right)^{2} G_{00}\left(\hat{w}_{0}, \hat{w}\right)+\frac{\hat{D}\left(\phi_{m}+1\right)^{2}+\hat{L}_{v} v_{m}^{2}}{\hat{w}}
\end{aligned}
$$

- $\nu=\mathrm{W}\left(\phi_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}\right)-\mathrm{W}(-1,0)$:
energy gap between the background and the foreground,
- $\nu>0$ to favor pixels belonging to
 backgound rather than foreground (area force).

Stability conditions of the bar?

- First order

$$
\left.\begin{array}{l}
\frac{\partial e_{\mathrm{P}}\left(\hat{w}_{0}, \hat{w}, \phi_{m}, v_{m}\right)}{\partial \hat{0}_{0}}=0 \\
\frac{\partial e_{\mathrm{P}}\left(\hat{w}_{0}, \hat{w}, \phi_{m}, v_{m}\right)}{\partial \hat{v_{0}}}=0 \\
\frac{\partial e_{\mathrm{P}}\left(\hat{w}_{0}, \hat{w}, \phi_{m}, v_{m}\right)}{\partial \phi_{m}}=0 \\
\frac{\partial e_{\mathrm{P}}\left(\hat{w}_{0}, \hat{w}, \phi_{m}, v_{m}\right)}{\partial v_{m}}
\end{array}\right)
$$

- Second order:

Geometric evolutions...

- of a random configuration:

- for gap closure:

barGaps.avi

Likelihood?

- Multispectral Quickbird VHR images.

© DigitalGlobe, CNES processing, images acquired via ORFEO Accompaniment Program.

- Likelihood term $\mathrm{E}_{\mathrm{I}}(\phi)$:
- Multivariate mixture of two Gaussians for the background and foreground:

$$
\begin{aligned}
E_{\mathrm{I}}(\phi)=-\frac{1}{2} \int d x\{\ln & \sum_{i=1}^{2} p_{i}\left|2 \pi \Sigma_{i}\right|^{-1 / 2} e^{-\frac{1}{2}\left(I(x)-\mu_{i}\right)^{t} \Sigma_{i}^{-1}\left(I(x)-\mu_{i}\right)} \\
& \left.\quad-\ln \sum_{i=1}^{2} \bar{p}_{i}\left|2 \pi \bar{\Sigma}_{i}\right|^{-1 / 2} e^{-\frac{1}{2}\left(I(x)-\bar{\mu}_{i}\right)^{t} \bar{\Sigma}_{i}^{-1}\left(I(x)-\bar{\mu}_{i}\right)}\right\} \phi(x)
\end{aligned}
$$

Total energy: $\mathrm{E}(\phi, \mathrm{v})=\mathrm{E}_{\mathrm{P}}(\phi, \mathrm{v})+\mathrm{E}_{\mathrm{l}}(\phi)$.

Conclusions and prospects

- Conclusions:
- The stability analysis reduces the parameter tuning difficulties.
- The directed network model outperforms the undirected network model.
- Prospects:
- Parameter estimation.
- Global optimization algorithm (simulating annealing, ...)

