Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works

Estimating suitable metrics for an empirical manifold of shapes with application to human silhouettes

Guillaume Charpiat

Projet Pulsar

Shape WorkIN'Group 29/03/2010

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works

Мар

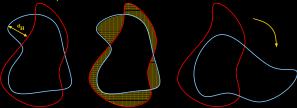
- Introduction
 - Motivation
 - Issues
- Searching for solutions
 - Main existing approaches and their limitations
 - Main idea
- The approach
 - Shape matching
 - Transport
 - Metric estimation (statistics on deformations)
 - Theory
- Future work

Guillaume Charpiat

Shape WorkIN'Group

Introduction ●○	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
Motivation						

- Shape spaces : which metric ?
 - (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)



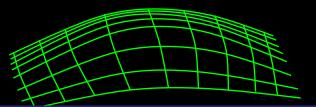
Guillaume Charpiat

Shape WorkIN'Group

Introduction ●○	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, warping : priors on probable deformations ?
 - \implies Which local metric on deformations ?

(metric on the manifold of shapes)

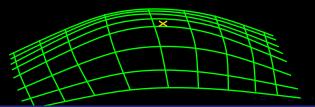


Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction ●○	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, warping : priors on probable deformations ?
 - \implies Which local metric on deformations ?

(metric on the manifold of shapes)



Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction ●○	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, warping : priors on probable deformations ?
 - \implies Which local metric on deformations ?

(metric on the manifold of shapes)

Guillaume Charpiat

Shape WorkIN'Group

Introduction ●○	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, warping : priors on probable deformations ?
 - \implies Which local metric on deformations ?
 - (metric on the manifold of shapes)
 - L² norm of instantaneous deformations
 - \blacktriangleright L^2 + curvature, H^1
 - \blacktriangleright rigid motion more probable \implies associated metric

Introduction ●○	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, warping : priors on probable deformations ?
 - \implies Which local metric on deformations ?
 - (metric on the manifold of shapes)
 - L² norm of instantaneous deformations
 - \blacktriangleright L^2 + curvature, H^1
 - rigid motion more probable \implies associated metric

VS.

rigidifying inner product

Shape WorkIN'Group

Guillaume Charpiat

 L^2 inner product

Introduction ●○	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, warping : priors on probable deformations ?
 - \implies Which local metric on deformations ?
 - (metric on the manifold of shapes)
 - L² norm of instantaneous deformations
 - L² + curvature, H¹
 - \blacktriangleright rigid motion more probable \implies associated metric

$\blacktriangleright \implies$ learn the suitable metric from examples (datasets of shapes)

Guillaume Charpiat

Shape WorkIN'Group

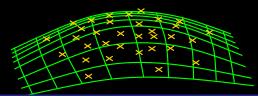
Introduction ○●	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Future works
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - high intrinsic dimension (\geq 30)
 - $\blacktriangleright \implies$ no dense training set

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction ○●	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - high intrinsic dimension (\geq 30)
 - no dense training set

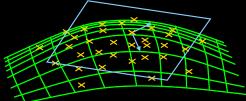


Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction ○●	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - high intrinsic dimension (\geq 30)
 - no dense training set

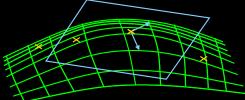


Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction ○●	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - high intrinsic dimension (\geq 30)
 - no dense training set



Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - ▶ high intrinsic dimension (≥ 30)
 - no dense training set

 to compare quantities defined on different shapes : need for correspondences

- match shape with different topologies ?
- very frequent topological changes

Shape WorkIN'Group

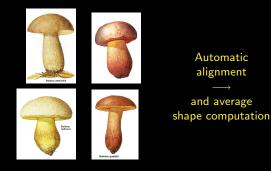
Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works		
	•0000000							
State of the art								

Searching for solutions

Main existing approaches and their limitations

- Approach 1 : mean + modes model
- $\hookrightarrow \text{ e.g. my PhD thesis}$



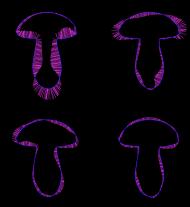
Metrics that suit an empirical manifold of shapes

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
State of the ar	ť					

Statistics (PCA) on deformation fields

between the mean shape and each sample



modes of deformation = deformation prior = Gaussian probabilistic model

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
State of the ar	t					
			12	/.		

▶ Mean *M*, shapes S_i , warpings $W_{M \to S_i}$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Future works
State of the art						
N.4	ILL THE STOPPORT			/		

▶ Mean *M*, shapes S_i , warpings $W_{M \to S_i}$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
State of the ar	t					
			12	/.		

▶ Mean *M*, shapes S_i , warpings $W_{M \to S_i}$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Future works
State of the ar	t					
More	details on PCA/n	nodes/Gaussia	an distribu	itions/inner pro	oduct	

- Mean M, shapes S_i , warpings $W_{M \to S_i}$
- ▶ PCA : diagonalize correlation matrix C : $C_{ij} = \langle W_{M \to S_i} | W_{M \to S_i} \rangle$
 - \implies eigenmodes e_k with eigenvalues λ_k : best coordinate system

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Future works
State of the ar	t					

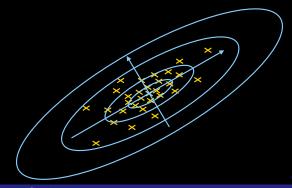
- Mean M, shapes S_i , warpings $W_{M \to S_i}$
- ▶ PCA : diagonalize correlation matrix C : $C_{ij} = \langle W_{M \to S_i} | W_{M \to S_i} \rangle$
 - \implies eigenmodes e_k with eigenvalues λ_k : best coordinate system
- > any new deformation W of M :

$$W = \sum_{k} \alpha_k e_k + \text{ noise}$$

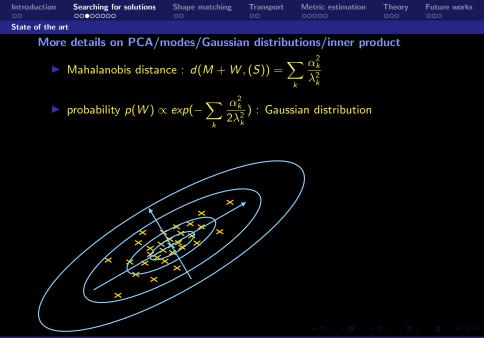
Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the art						

• Mahalanobis distance : $d(M + W, (S)) = \sum_{k} \frac{\alpha_k^2}{\lambda_k^2}$



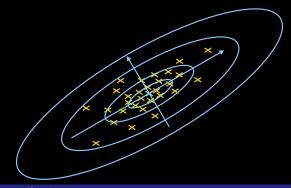
Guillaume Charpiat Metrics that suit an empirical manifold of shapes



Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works			
State of the ar	t								
N.4									

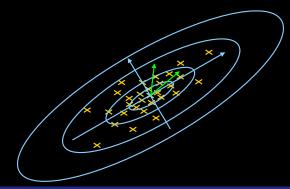
defines a Gaussian shape prior



Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Future works
State of the ar	t					

- defines a Gaussian shape prior
- ► associated inner product on deformations, in the tangent space of *M*: $\langle W_1 | W_2 \rangle = \sum_k \frac{1}{\lambda_k^2} \alpha_{1,k} \alpha_{2,k}$

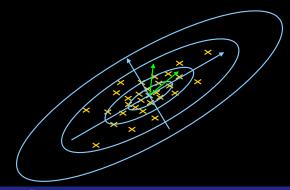


Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
State of the	art					

- defines a Gaussian shape prior
- ► associated inner product on deformations, in the tangent space of *M*: $\langle W_1 | W_2 \rangle = \sum_k \frac{1}{\lambda_k^2} \alpha_{1,k} \alpha_{2,k}$

• defines a deformation cost $||W||^2 = \langle W | W \rangle$



Guillaume Charpiat Metrics that suit an empirical manifold of shapes

	Searching for solutions					
00	0000000	00	00	00000	000	000
State of the art						

• Empirical distribution : $\mathcal{D}_{emp} = \sum_{i} \delta_{W_{M \rightarrow S_i}}$

(possibly smoothed by a kernel)

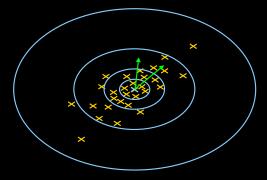
Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
	0000000					
State of the ar	4					

• Empirical distribution : $\mathcal{D}_{emp} = \sum_{i} \delta_{W_{M \to S_i}}$

(possibly smoothed by a kernel)

Any inner product $\langle | \rangle_P$ in tangent space of the mean \implies Gaussian distribution $\mathcal{D}_P(W) \propto \exp(-||W||_P^2)$



Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
	0000000					
State of the av						

State of the art

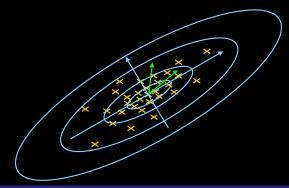
More details on PCA/modes/Gaussian distributions/inner product

Empirical distribution : $\mathcal{D}_{emp} = \sum_{i} \delta_{W_{M \to S_i}}$

(possibly smoothed by a kernel)

Any inner product $\langle | \rangle_P$ in tangent space of the mean \implies Gaussian distribution $\mathcal{D}_P(W) \propto \exp(-\|W\|_P^2)$

▶ Best *P* for Kullback-Leibler($\mathcal{D}_P | \mathcal{D}_{emp}$) : PCA!



Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
State of the ar	t .					

Example of application : image segmentation with shape prior

without shape prior

with shape prior

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
State of the ar	t .					

Example of application : image segmentation with shape prior

without shape prior

with shape prior

requires a mean shape (does not always make sense, e.g. person walking)

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
State of the ar	t .					

Example of application : image segmentation with shape prior

without shape prior

with shape prior

requires a mean shape (does not always make sense, e.g. person walking) Δ

- requires all deformations between the mean and samples : \implies relatively similar sample shapes (otherwise, not reliable)

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions 0000●000	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
State of the ar	t					

Approach 1 : mean + modes model

 \rightarrow example 2 : level-set means and modes

mean + first modes

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
State of the ar	t					

Approach 1 : mean + modes model

 \rightarrow example 2 : level-set means and modes

mean + first modes

mean shape makes no sense

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
State of the ar	t					

Approach 1 : mean + modes model

 \rightarrow example 2 : level-set means and modes

- mean + first modes
 - mean shape makes no sense
 - level-set differences to express deformations : do not handle thin parts

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Future works
State of the	art					

Approach 2 : distance-based methods (e.g. kernel methods)

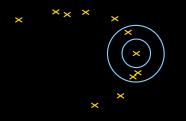
Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
State of the art						

× × ×

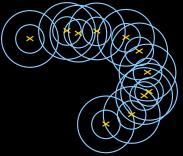
Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Future works
State of the	art					



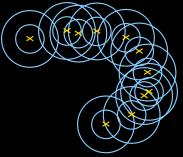
Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the ar	t					



Guillaume Charpiat Metrics that suit an empirical manifold of shapes

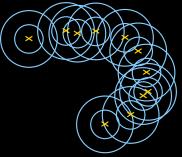
Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the art						



choice of a distance, of a kernel ?

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the art						

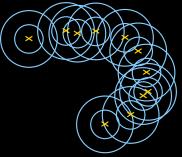


- choice of a distance, of a kernel ?
- distance between 2 shapes : not much informative (wrt deformations)

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the art						

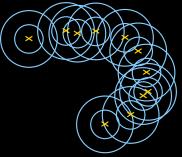


- choice of a distance, of a kernel ?
- distance between 2 shapes : not much informative (wrt deformations)
- rebuild geometry of space of shapes from distances ?

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the art						

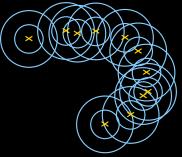


- choice of a distance, of a kernel ?
- distance between 2 shapes : not much informative (wrt deformations)
- rebuild geometry of space of shapes from distances ?
- distances are not reliable/meaningful for far shapes

Guillaume Charpiat

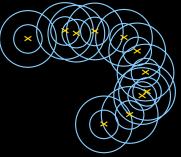
Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the ar		00	00	00000	000	000



- choice of a distance, of a kernel ?
- distance between 2 shapes : not much informative (wrt deformations)
- rebuild geometry of space of shapes from distances ?
- distances are not reliable/meaningful for far shapes
- needs for a representative neighborhood, i.e. a high dataset density (not affordable)

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the art						

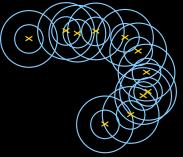


- choice of a distance, of a kernel ?
- distance between 2 shapes : not much informative (wrt deformations)
- rebuild geometry of space of shapes from distances ?
- distances are not reliable/meaningful for far shapes
- needs for a representative neighborhood, i.e. a high dataset density (not affordable)
- in a high-dimensional manifold, all distances are similar, and all points are on the boundary of the manifold

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
State of the art						



- choice of a distance, of a kernel ?
- distance between 2 shapes : not much informative (wrt deformations)
- rebuild geometry of space of shapes from distances ?
- distances are not reliable/meaningful for far shapes
- \blacktriangleright \implies needs for a representative neighborhood, i.e. a high dataset density
- in a high-dimensional manifold, all distances are similar, and all points are on the boundary of the manifold
- ightarrow \Longrightarrow cannot work, need for more information than distances

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
Main idea						

consider deformations (not just distances)

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport 00	Metric estimation	Theory 000	Future works
Main idea						

- consider deformations (not just distances)
- should not require high density of training set

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

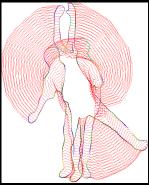
Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport 00	Metric estimation	Theory	Future works
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

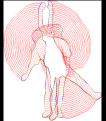
Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport	Metric estimation	Theory 000	Future works
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior
- prior chosen : transported deformations make sense,
 - i.e. a deformation observed on one shape can be applied to other shapes



Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport	Metric estimation	Theory 000	Future works
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior
- prior chosen : transported deformations make sense,
 - i.e. a deformation observed on one shape can be applied to other shapes



transport requires correspondences

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport 00	Metric estimation	Theory	Future works
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior
- prior chosen : transported deformations make sense,
 - i.e. a deformation observed on one shape can be applied to other shapes

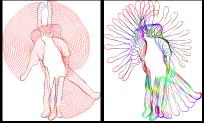
- transport requires correspondences
- but shape matching reliable only for close shapes

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport 00	Metric estimation	Theory	Future works
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior
- prior chosen : transported deformations make sense,
 - i.e. a deformation observed on one shape can be applied to other shapes



- transport requires correspondences
- but shape matching reliable only for close shapes
- compute correspondences between close shapes only, and combine small steps of reliable correspondences to build longer-distance correspondences

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works
Main idea						

Мар

- Close shape matching
- Transport
- Metric estimation (statistics on transported deformations)
- Theoretical justifications

Introduction	Searching for solutions	Shape matching ●○	Transport 00	Metric estimation	Theory	Future works
Close shape m	atching					

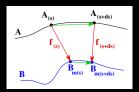
Shape matching

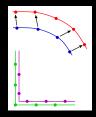
Simple case : two shapes, A and B, with one connected component

$$\inf_{f:A\to B} \int_{A} \|f\|^2 + \alpha \|\nabla f\|^2 dA$$

- shape sampling
- dynamic time warping
- theory & experiments :

higher sampling rate on target



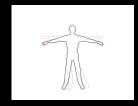


Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching ●○	Transport 00	Metric estimation	Theory	Future works
Close shape m	atching					

Shape matching

Simple case : two shapes, A and B, with one connected component



$$\inf_{f:A\to B}\int_{A}\|f\|^{2}+\alpha\|\nabla f\|^{2}dA$$

- shape sampling
- dynamic time warping
- theory & experiments :
 - higher sampling rate on target

Usual case : random topologies

Usual cases = more complex (more than 10 connected components in this silhouette) but one connected component $\rightarrow \bigcup_{i}$ connected components = the same

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching ○●	Transport 00	Metric estimation	Theory 000	Future works
Close shape ma	atching					

Further possible improvements

- as such, allows appearing points (mismatches)
- allows disappearing points : matching to Ø with a fixed high cost
- pb : better matchings, but energy value loses meaning

Introduction	Searching for solutions	Shape matching ○●	Transport 00	Metric estimation	Theory	Future works
Close shape m	atching					

Further possible improvements

- as such, allows appearing points (mismatches)
- > allows disappearing points : matching to \varnothing with a fixed high cost
- b : better matchings, but energy value loses meaning

Drawbacks

- specific to planar curves
- not symmetric : $m_{A \to B} = m_{B \to A}^{-1}$

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport ●○	Metric estimation	Theory	Future works
Local transport	t					

Local transport

Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport ●○	Metric estimation	Theory	Future works
Local transport						

Local transport

- Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)
- ▶ Two shapes S_i and $S_j \implies$ their correspondence field $m_{i \rightarrow j}$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport ●○	Metric estimation	Theory	Future works
Local transport	:					

Local transport

- Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)
- ▶ Two shapes S_i and $S_j \implies$ their correspondence field $m_{i \rightarrow j}$
- Transport (naive) :

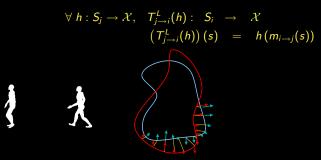
$$egin{array}{rcl} orall \ h: \ S_j
ightarrow \mathcal{X}, & T^L_{j
ightarrow i}(h): \ \ S_i &
ightarrow \mathcal{X} \ & \left(T^L_{j
ightarrow i}(h)
ight)(s) &= & h\left(m_{i
ightarrow j}(s)
ight) \end{array}$$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport ●○	Metric estimation	Theory	Future works
Local transport	t					

Local transport

- Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)
- ▶ Two shapes S_i and $S_j \implies$ their correspondence field $m_{i \rightarrow j}$
- Transport (naive) :



Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport ●○	Metric estimation	Theory	Future works
Local transport	t					

Local transport

- Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)
- ▶ Two shapes S_i and $S_j \implies$ their correspondence field $m_{i \rightarrow j}$
- Transport (naive) :

$$egin{array}{rcl} orall \ h: \ S_j
ightarrow \mathcal{X}, & T^L_{j
ightarrow i}(h): \ \ S_i &
ightarrow \mathcal{X} \ & \left(T^L_{j
ightarrow i}(h)
ight)(s) &= \ \ h\left(m_{i
ightarrow j}(s)
ight) \end{array}$$

Associated cost : $E(m_{i \rightarrow j}) \implies$ reliability $w_{i \rightarrow j}^L \propto \exp\left(-\alpha E(m_{i \rightarrow j})\right)$

Introduction	Searching for solutions	Shape matching	Transport ○●	Metric estimation	Theory	Future works
Global transpo	rt					

► Associated cost : $E(m_{i \rightarrow j}) \implies$ reliability $w_{i \rightarrow j}^{L} \propto \exp(-\alpha E(m_{i \rightarrow j}))$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport ○●	Metric estimation	Theory	Future works
Global transpo	rt					

- ► Associated cost : $E(m_{i \rightarrow j}) \implies$ reliability $w_{i \rightarrow j}^{L} \propto \exp(-\alpha E(m_{i \rightarrow j}))$
- close shapes : reliable; distant shapes : not reliable

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport ○●	Metric estimation	Theory 000	Future works
Global transpo	rt					

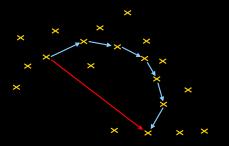
- ► Associated cost : $E(m_{i \to j}) \implies$ reliability $w_{i \to j}^L \propto \exp\left(-\alpha E(m_{i \to j})\right)$
- close shapes : reliable; distant shapes : not reliable
- \blacktriangleright \implies search for paths of small steps in the training set (S_i)

Introduction	Searching for solutions	Shape matching	Transport ○●	Metric estimation	Theory	Future works
Global transpo	rt					

- ► Associated cost : $E(m_{i \to j}) \implies$ reliability $w_{i \to j}^L \propto \exp\left(-\alpha E(m_{i \to j})\right)$
- close shapes : reliable; distant shapes : not reliable
- $\blacktriangleright \implies$ search for paths of small steps in the training set (S_i)
- graph : nodes = shapes, edges = transport, weights = transport cost

Introduction	Searching for solutions	Shape matching	Transport ○●	Metric estimation	Theory 000	Future works
Global transpo	rt					

- ► Associated cost : $E(m_{i \to j}) \implies$ reliability $w_{i \to j}^L \propto \exp\left(-\alpha E(m_{i \to j})\right)$
- close shapes : reliable; distant shapes : not reliable
- $\blacktriangleright \implies$ search for paths of small steps in the training set (S_i)
- graph : nodes = shapes, edges = transport, weights = transport cost
- shortest path between pairs of shapes : global transport



Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport ○●	Metric estimation	Theory	Future works
Global transpo	rt					

- ► Associated cost : $E(m_{i \to j}) \implies$ reliability $w_{i \to j}^L \propto \exp\left(-\alpha E(m_{i \to j})\right)$
- close shapes : reliable; distant shapes : not reliable
- $\blacktriangleright \implies$ search for paths of small steps in the training set (S_i)
- graph : nodes = shapes, edges = transport, weights = transport cost
- shortest path between pairs of shapes : global transport
- ► compose : $T_{i \to j}^G = T_{i_n \to j}^L$ o $T_{i_{n-1} \to i_n}^L$ o ... o $T_{i_1 \to i_2}^L$ o $T_{i \to i_1}^L$

Introduction	Searching for solutions	Shape matching	Transport ○●	Metric estimation	Theory	Future works
Global transpo	rt					

- ► Associated cost : $E(m_{i \to j}) \implies$ reliability $w_{i \to j}^L \propto \exp\left(-\alpha E(m_{i \to j})\right)$
- close shapes : reliable; distant shapes : not reliable
- $\blacktriangleright \implies$ search for paths of small steps in the training set (S_i)
- graph : nodes = shapes, edges = transport, weights = transport cost
- shortest path between pairs of shapes : global transport
- ► compose : $T_{i \to j}^{\mathcal{G}} = T_{i_n \to j}^{\mathcal{L}} \circ T_{i_{n-1} \to i_n}^{\mathcal{L}} \circ \dots \circ T_{i_1 \to i_2}^{\mathcal{L}} \circ T_{i \to i_1}^{\mathcal{L}}$

• reliability :
$$w_{i \rightarrow j}^{G} = \prod_{k} w_{i_{k} \rightarrow i_{k+1}}^{L}$$

Introduction	Searching for solutions	Shape matching	Transport ○●	Metric estimation	Theory	Future works
Global transpo	rt					

- ► Associated cost : $E(m_{i \to j}) \implies$ reliability $w_{i \to j}^L \propto \exp\left(-\alpha E(m_{i \to j})\right)$
- close shapes : reliable; distant shapes : not reliable
- $\blacktriangleright \implies$ search for paths of small steps in the training set (S_i)
- graph : nodes = shapes, edges = transport, weights = transport cost
- shortest path between pairs of shapes : global transport
- ► compose : $T_{i \to j}^{\mathcal{G}} = T_{i_n \to j}^{\mathcal{L}} \circ T_{i_{n-1} \to i_n}^{\mathcal{L}} \circ \dots \circ T_{i_1 \to i_2}^{\mathcal{L}} \circ T_{i \to i_1}^{\mathcal{L}}$

• reliability :
$$w_{i \rightarrow j}^{G} = \prod_{i} w_{i_k \rightarrow i_{k+1}}^{L}$$

use transport to propagate information

Example : colored walker

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

Metric estimation (statistics on deformations)

▶ set of shapes (S_i), local deformations $m_{i \to j}$, transport $T_{i \to k}^G$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

- ▶ set of shapes (S_i), local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

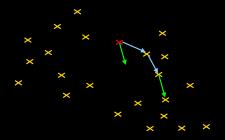
- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

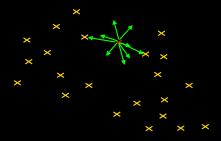


Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$



Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^{G}$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$
- statistics, for k fixed : PCA

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

- ▶ set of shapes (S_i), local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$
- statistics, for k fixed : PCA
- PCA with weights, and with H¹-norm

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

- ▶ set of shapes (S_i), local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$
- statistics, for k fixed : PCA
- PCA with weights, and with H¹-norm
- $\blacktriangleright \implies$ eigenmodes e_n (= principal deformations) with eigenvalues λ_n

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

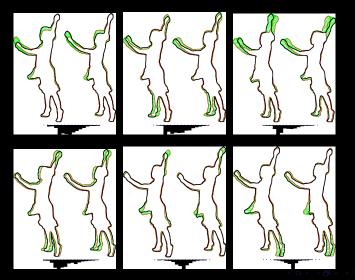
- ▶ set of shapes (S_i), local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$
- statistics, for k fixed : PCA
- PCA with weights, and with H¹-norm
- $\blacktriangleright \implies$ eigenmodes e_n (= principal deformations) with eigenvalues λ_n
- \implies defines an inner product P_k = metric in the tangent space of the shape S_k

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ●0000	Theory 000	Future works
Statistics on d	eformations					

- ▶ set of shapes (S_i), local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$
- statistics, for k fixed : PCA
- PCA with weights, and with H¹-norm
- $\blacktriangleright \implies$ eigenmodes e_n (= principal deformations) with eigenvalues λ_n
- \implies defines an inner product P_k = metric in the tangent space of the shape S_k
- P_k varies smoothly as a function of k

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
00	0000000	00	00	0000	000	000
Example of resu	ilts					

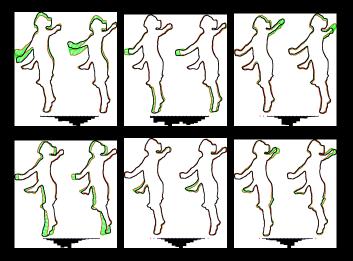
Example of results : dancing sequence (9s, 24Hz), shape 1



Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ○○●○○	Theory 000	Future works
Example of res	ults					

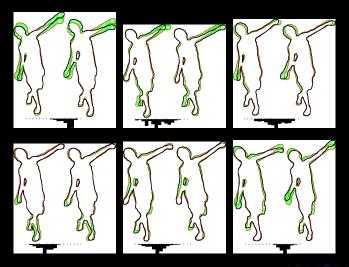
Example of results : shape 2



Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation 000●0	Theory 000	Future works
Example of res	ults					

Example of results : shape 3



Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation 0000●	Theory 000	Future works
weighted, H^1 -F	РСА					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation 0000●	Theory 000	Future works
weighted, H^1 -F	РСА					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

$$\blacktriangleright \sup_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{\mathcal{H}_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \sum_{i,j} w_{i \to j}^{k} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{\mathcal{H}_{\alpha}^{1}}^{2}$$

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ○○○○●	Theory 000	Future works
weighted, H^1 -F	РСА					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

$$\begin{aligned} & \sup_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \sum_{i,j} w_{i \to j}^{k} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}}^{2} \\ & \sum_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \mathbf{e}_{n} HFH \mathbf{e}_{n} \\ & \text{where } F = \sum_{i,j} w_{i \to j}^{k} \mathbf{f}_{i \to j}^{k} \otimes \mathbf{f}_{i \to j}^{k} = \text{weighted covariance matrix,} \\ & \text{and } H = Id - \alpha\Delta = \text{symmetric definite operator s.t.} \\ & \left\langle a \middle| b \right\rangle_{H_{\alpha}^{1}} = \left\langle H a \middle| b \right\rangle_{L^{2}} \end{aligned}$$

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ○○○○●	Theory 000	Future works
weighted, H^1 -F	РСА					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} | \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} | \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

$$\begin{split} & \sup_{\langle \mathbf{e}_n | \mathbf{e}_{n'} \rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \sum_{i,j} w_{i \to j}^{k} \left\langle \mathbf{f}_{i \to j}^{k} | \mathbf{e}_n \right\rangle_{H_{\alpha}^{1}}^{2} \\ & \sum_{\langle \mathbf{e}_n | \mathbf{e}_{n'} \rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \mathbf{e}_n HFH \mathbf{e}_n \\ & \text{where } F = \sum_{i,j} w_{i \to j}^{k} \mathbf{f}_{i \to j}^{k} \otimes \mathbf{f}_{i \to j}^{k} = \text{weighted covariance matrix,} \\ & \text{and } H = Id - \alpha \Delta = \text{symmetric definite operator s.t.} \\ & \langle \mathbf{a} | \mathbf{b} \rangle_{H_{\alpha}^{1}} = \langle H \mathbf{a} | \mathbf{b} \rangle_{L^2} \end{split}$$

Change of variables:
$$\mathbf{d}_n = H^{1/2} \mathbf{e}_n$$
: $\sup_{\langle \mathbf{d}_n | \mathbf{d}_{n'} \rangle_{,2} = \delta_{n-n'}} \sum_n \mathbf{d}_n H^{1/2} F H^{1/2}$

Guillaume Charpiat

Shape WorkIN'Group

 \mathbf{d}_n

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation 0000●	Theory 000	Future works
weighted, H^1 -F	РСА					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

classical PCA problem, with correlation matrix : $M_{(i,j),(i',j')} = \left\langle \sqrt{w_{i \to j}^{k}} \mathbf{f}_{i \to j}^{k} \left| \sqrt{w_{i' \to j'}^{k}} \mathbf{f}_{i' \to j'}^{k} \right\rangle_{H^{1}_{\alpha}} \right.$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation ○○○○●	Theory 000	Future works
weighted, H^1 -F	РСА					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

- ► classical PCA problem, with correlation matrix : $M_{(i,j),(i',j')} = \left\langle \sqrt{w_{i\to j}^k} \mathbf{f}_{i\to j}^k \left| \sqrt{w_{i'\to j'}^k} \mathbf{f}_{i'\to j'}^k \right\rangle_{H^1_{\alpha}} \right.$
- eigenvectors :

$$\mathbf{e}_n = \sum_{ij} \gamma_n^{(i,j)} \sqrt{w_{i \to j}^k \mathbf{f}_{i \to j}^k}$$

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ●○○	Future works
Theoretical jus	tifications					

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ●○○	Future works
Theoretical jus	tifications					

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem on best smooth direction field (or then it has to vanish sometimes)

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ●○○	Future works
Theoretical jus	tifications					

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem on best smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ●○○	Future works
Theoretical jus	stifications					

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem on best smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

PCA gives the best metric for a criterion based on Kullback-Leibler divergence between distributions

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ●○○	Future works
Theoretical jus	stifications					

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem orem obst smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

PCA gives the best metric for a criterion based on Kullback-Leibler divergence between distributions

Best metric for a given empirical manifold (all shapes together) ?

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ●○○	Future works
Theoretical jus	stifications					

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem orem obst smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

PCA gives the best metric for a criterion based on Kullback-Leibler divergence between distributions

Best metric for a given empirical manifold (all shapes together) ?

needs a smoothness criterion (⇒ transport)

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ●○○	Future works
Theoretical jus	stifications					

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem orem obst smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

PCA gives the best metric for a criterion based on Kullback-Leibler divergence between distributions

Best metric for a given empirical manifold (all shapes together) ?

- needs a smoothness criterion (\implies transport)
- $\blacktriangleright \implies$ best metric for a criterion involving transport & K-L divergence.

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ●○○	Future works
Theoretical jus	tifications					

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem orem obst smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

PCA gives the best metric for a criterion based on Kullback-Leibler divergence between distributions

Best metric for a given empirical manifold (all shapes together) ?

- needs a smoothness criterion (\implies transport)
- $\blacktriangleright \implies$ best metric for a criterion involving transport & K-L divergence.
- ▶ \implies best metric for another criterion involving transport & L^2 -norm of deformations.

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \to j}$, transport $T_{i \to k}^{G}$

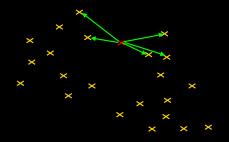
Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \to j}$, transport $T_{i \to k}^{G}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i) , local deformations $\mathbf{f}_{i \to j}$, transport $\mathcal{T}_{i \to k}^{\mathcal{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \to j}^L \delta_{f_{i \to j}}$



Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

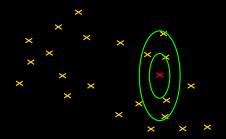
- ▶ set of shapes (S_i) , local deformations $\mathbf{f}_{i \to j}$, transport $\mathcal{T}_{i \to k}^{\mathcal{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \to j}^L \delta_{f_{i \to j}}$

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i) , local deformations $\mathbf{f}_{i \to j}$, transport $\mathcal{T}_{i \to k}^{\mathcal{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \to j}^L \delta_{f_{i \to j}}$

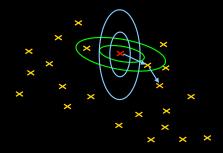


Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i) , local deformations $\mathbf{f}_{i \to j}$, transport $\mathcal{T}_{i \to k}^{\mathcal{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$



Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $T_{i \rightarrow k}^{G}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$
- Transported distribution : via $T_{i \to k}(\delta_{\mathbf{f}}) = \delta_{T_{i \to k}(\mathbf{f})}$.

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $\mathcal{T}_{i \rightarrow k}^{\mathcal{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$
- ► Transported distribution : via $T_{i \to k}(\delta_{\mathbf{f}}) = \delta_{T_{i \to k}(\mathbf{f})}$.
- Criterion : best (P_k) for $\sum_{i,k} w_{ik}^G KL(\mathcal{D}_{P_k} | T_{i \to k}(\mathcal{D}_{emp_i}))$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $\mathcal{T}_{i \rightarrow k}^{\mathsf{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$
- Transported distribution : via $T_{i \to k}(\delta_{\mathbf{f}}) = \delta_{T_{i \to k}(\mathbf{f})}$.
- $\blacktriangleright \text{ Criterion : best } (P_k) \text{ for } \sum_{i,k} w_{ik}^G \quad KL(\mathcal{D}_{P_k} \mid T_{i \to k}(\mathcal{D}_{emp_i}))$

► = best (*P_k*) for
$$\sum_{k} KL(\mathcal{D}_{P_{k}} | \mathcal{D}'_{emp_{k}})$$

where $\mathcal{D}^{T}_{emp_{k}} = \sum_{i,j}^{k} w_{i \to j}^{k} \delta_{\mathbf{f}_{i \to j}^{k}}$

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $\mathcal{T}_{i \rightarrow k}^{\mathsf{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$
- Transported distribution : via $T_{i \to k}(\delta_{\mathbf{f}}) = \delta_{T_{i \to k}(\mathbf{f})}$.
- Criterion : best (P_k) for $\sum_{i,k} w_{ik}^{\mathcal{G}} KL(\mathcal{D}_{P_k} | T_{i \to k}(\mathcal{D}_{emp_i}))$

$$= \text{best } (P_k) \text{ for } \sum_{k} KL(\mathcal{D}_{P_k} | \mathcal{D}_{emp_k}^T)$$

where $\mathcal{D}_{emp_k}^T = \sum_{i,j}^k w_{i \to j}^k \, \delta_{f_{i \to j}^k}$

► Transported deformations to any shape S_k : f^k_{i→j} = T^G_{i→k}(f_{i→j}) with reliability weights w^k_{i→j} = w^G_{i→k} w^L_{i→j}

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○●○	Future works
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $\mathcal{T}_{i \rightarrow k}^{\mathsf{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$
- Transported distribution : via $T_{i \to k}(\delta_{\mathbf{f}}) = \delta_{T_{i \to k}(\mathbf{f})}$.
- Criterion : best (P_k) for $\sum_{i,k} w_{ik}^{\mathcal{G}} KL(\mathcal{D}_{P_k} | T_{i \to k}(\mathcal{D}_{emp_i}))$

$$= \text{best } (P_k) \text{ for } \sum_{k} KL(\mathcal{D}_{P_k} | \mathcal{D}_{emp_k}^T)$$
where $\mathcal{D}_{emp_k}^T = \sum_{i,j}^k w_{i \to j}^k \, \delta_{\mathbf{f}_{i \to j}^k}$

- ► Transported deformations to any shape S_k : $f_{i \to j}^k = T_{i \to k}^G(f_{i \to j})$ with reliability weights $w_{i \to j}^k = w_{i \to k}^G w_{i \to j}^L$
- the one obtained by weighted PCA on transported deformations

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○○●	Future works
Best metric						

• empirical distributions : \mathcal{D}_{emp_i}

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○○●	Future works
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory ○○●	Future works
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○○●	Future works
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- **b** search for g_i : close to g_i and smooth from shape to shape

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○○●	Future works
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- search for g_i : close to g_i and smooth from shape to shape

$$E(g) = \sum_{i} \|g_{i} - g_{i}^{0}\|_{L^{2}(T_{i})}^{2} + \sum_{ij} w_{ij} \|T_{i \to j}(g_{i}) - g_{j}\|_{L^{2}(T_{j})}^{2}$$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○○●	Future works
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- search for g_i : close to g_i and smooth from shape to shape

$$E(g) = \sum_{i} \|g_{i} - g_{i}^{0}\|_{L^{2}(T_{i})}^{2} + \sum_{ij} w_{ij} \|T_{i \to j}(g_{i}) - g_{j}\|_{L^{2}(T_{j})}^{2}$$

$$\begin{array}{l} \bullet \quad \text{minimization} \implies Ag = g^0 \text{ with }: \\ \left\{ \begin{array}{l} A_{ii} = 1 + \sum_j w_{ij} \ T^*_{i \to j} \ T_{i \to j} + w_{ji} \\ A_{ij} = -w_{ij} \ T^*_{i \to j} - w_{ji} \ T_{j \to i} & \text{for } i \neq j \end{array} \right. \end{array}$$

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○○●	Future works
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- search for g_i : close to g_i and smooth from shape to shape

$$E(g) = \sum_{i} \|g_{i} - g_{i}^{0}\|_{L^{2}(T_{i})}^{2} + \sum_{ij} w_{ij} \|T_{i \to j}(g_{i}) - g_{j}\|_{L^{2}(T_{j})}^{2}$$

$$\begin{array}{l} \bullet \quad \text{minimization} \implies Ag = g^0 \text{ with }: \\ \left\{ \begin{array}{l} A_{ii} = 1 + \sum_j w_{ij} \ T^*_{i \to j} \ T_{i \to j} + w_{ji} \\ A_{ij} = -w_{ij} \ T^*_{i \to j} - w_{ji} \ T_{j \to i} & \text{for } i \neq j \end{array} \right. \end{array}$$

► $A = Id + \varepsilon \Delta$ where $\Delta =$ graph Laplacian (with transports)

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○○●	Future works
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- search for g_i : close to g_i and smooth from shape to shape

$$E(g) = \sum_{i} \|g_{i} - g_{i}^{0}\|_{L^{2}(T_{i})}^{2} + \sum_{ij} w_{ij} \|T_{i \to j}(g_{i}) - g_{j}\|_{L^{2}(T_{j})}^{2}$$

$$\begin{array}{l} & \text{minimization} \implies Ag = g^0 \text{ with }: \\ & \left\{ \begin{array}{l} A_{ii} = 1 + \sum_j w_{ij} \; T^*_{i \rightarrow j} \; T_{i \rightarrow j} + w_{ji} \\ A_{ij} = -w_{ij} \; T^*_{i \rightarrow j} - w_{ji} \; T_{j \rightarrow i} & \text{for } i \neq j \end{array} \right. \\ & \left. A = Id + \varepsilon \Delta \text{ where } \Delta = \text{graph Laplacian (with transport} \right. \end{array}$$

 $\blacktriangleright \ g = A^{-1}g^0 \ = \ (Id + \varepsilon \Delta)^{-1}g^0 \ \simeq (Id - \varepsilon \Delta)g^0 \ \simeq \ \mathcal{N}_{\varepsilon} \ast g^0.$

Guillaume Charpiat

Shape WorkIN'Group

orts)

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory ○○●	Future works
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- search for g_i : close to g_i and smooth from shape to shape

$$E(g) = \sum_{i} \|g_{i} - g_{i}^{0}\|_{L^{2}(T_{i})}^{2} + \sum_{ij} w_{ij} \|T_{i \to j}(g_{i}) - g_{j}\|_{L^{2}(T_{j})}^{2}$$

$$\begin{array}{l} \bullet \quad \text{minimization} \quad \Longrightarrow \quad Ag = g^0 \text{ with }: \\ \left\{ \begin{array}{l} A_{ii} = 1 + \sum_j w_{ij} \ T_{i \to j}^* \ T_{i \to j} + w_{ji} \\ A_{ij} = -w_{ij} \ T_{i \to j}^* - w_{ji} \ T_{j \to i} & \text{for } i \neq j \end{array} \right. \end{array}$$

- $A = Id + \varepsilon \Delta$ where $\Delta =$ graph Laplacian (with transports)
- $\blacktriangleright \ g = A^{-1}g^0 = (Id + \varepsilon \Delta)^{-1}g^0 \simeq (Id \varepsilon \Delta)g^0 \simeq \mathcal{N}_{\varepsilon} * g^0.$
- g = (Id − εΔ) g⁰ coincides with the D^T_{emp} and the inner products (P_i) which suit g = (g_i) the best (for K-L) are the ones we computed

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
						000

we have to deal with topological changes

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
						000

- we have to deal with topological changes
- transport is useful to reduce required training set size

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
						000

- we have to deal with topological changes
- transport is useful to reduce required training set size
- transport is useful to propagate information between shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
						000

- we have to deal with topological changes
- transport is useful to reduce required training set size
- transport is useful to propagate information between shapes
- globally optimal metrics (and low complexity)

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
						000

- we have to deal with topological changes
- transport is useful to reduce required training set size
- transport is useful to propagate information between shapes
- globally optimal metrics (and low complexity)
- learning functions defined on shape spaces / with values in shape spaces

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
						000

- we have to deal with topological changes
- transport is useful to reduce required training set size
- transport is useful to propagate information between shapes
- globally optimal metrics (and low complexity)
- learning functions defined on shape spaces / with values in shape spaces
- statistics on image patches through correspondences/transport

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Future works
						000

- we have to deal with topological changes
- transport is useful to reduce required training set size
- transport is useful to propagate information between shapes
- globally optimal metrics (and low complexity)
- learning functions defined on shape spaces / with values in shape spaces
- statistics on image patches through correspondences/transport

[NORDIA 2009 : Learning Shape Metrics based on Deformations and Transport]

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works ○●○
PCA and Kullb	ack-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory	Future works ○●○
PCA and Kullt	oack-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum_{i} w_i \, \delta_{\mathbf{f}_i}$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works ○●○
PCA and Kullt	oack-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

- Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum_{i} w_i \, \delta_{\mathbf{f}_i}$
- Any inner product (= metric) *P* is associated to a probability distribution: $\mathcal{D}_P(\mathbf{f}) \propto \exp(-\|\mathbf{f}\|_P^2)$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works ○●○
PCA and Kullt	oack-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

- Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum_{i} w_i \, \delta_{\mathbf{f}_i}$
- Any inner product (= metric) *P* is associated to a probability distribution: $\mathcal{D}_P(\mathbf{f}) \propto \exp(-\|\mathbf{f}\|_P^2)$

Given an inner product P_0 (= H^1) of reference, with its orthonormal basis (e_n) , supposing that P is continuous wrt. P_0 :

$$\forall \mathbf{f} \in T, \quad \|\mathbf{f}\|_{P}^{2} = \sum_{n} \alpha_{n} \langle \mathbf{f} | \mathbf{e}_{n} \rangle_{P_{0}}^{2}$$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works ○●○
PCA and Kullt	oack-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

- Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum w_i \, \delta_{\mathbf{f}_i}$
- Any inner product (= metric) *P* is associated to a probability distribution: $\mathcal{D}_P(\mathbf{f}) \propto \exp(-\|\mathbf{f}\|_P^2)$

Given an inner product P_0 (= H^1) of reference, with its orthonormal basis (e_n) , supposing that P is continuous wrt. P_0 :

n

$$\forall \mathbf{f} \in T, \quad \|\mathbf{f}\|_{P}^{2} = \sum_{n} \alpha_{n} \langle \mathbf{f} | \mathbf{e}_{n} \rangle_{P_{0}}^{2}$$
$$\implies \mathcal{D}_{P} \text{ is Gaussian} : \mathcal{D}_{P}(\mathbf{f}) := \prod \left(\frac{\alpha_{n}}{\pi}\right)^{\frac{1}{2}} \exp(-\alpha_{n} \langle \mathbf{f} | \mathbf{e}_{n} \rangle_{P_{0}}^{2})$$

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works ○●○
PCA and Kullt	oack-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

- Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum w_i \, \delta_{\mathbf{f}_i}$
- Any inner product (= metric) *P* is associated to a probability distribution: $\mathcal{D}_P(\mathbf{f}) \propto \exp(-\|\mathbf{f}\|_P^2)$

Given an inner product P_0 (= H^1) of reference, with its orthonormal basis (e_n) , supposing that P is continuous wrt. P_0 : $\forall \mathbf{f} \in T$, $\|\mathbf{f}\|_P^2 = \sum \alpha_n \langle \mathbf{f} | \mathbf{e}_n \rangle_{P_0}^2$

$$\blacktriangleright \implies \mathcal{D}_{P} \text{ is Gaussian} : \mathcal{D}_{P}(\mathbf{f}) := \prod_{n} \left(\frac{\alpha_{n}}{\pi} \right)^{\frac{1}{2}} \exp(-\alpha_{n} \langle \mathbf{f} | \mathbf{e}_{n} \rangle_{P_{0}}^{2})$$

 $\blacktriangleright \implies$ search over inner products = search over Gaussian distributions

Guillaume Charpiat

Shape WorkIN'Group

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works ○○●
PCA and Kullb	ack-Leibler					

► Gaussian distribution that fits \mathcal{D}_{emp} the best ?

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works ○○●
PCA and Kullb	oack-Leibler					

- ► Gaussian distribution that fits \mathcal{D}_{emp} the best ?
- search for best Gaussian (= for best P) that minimize $KL(\mathcal{D}_P|\mathcal{D}_{emp})$

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works	
PCA and Kullback-Leibler							

- ► Gaussian distribution that fits \mathcal{D}_{emp} the best ?
- search for best Gaussian (= for best P) that minimize $KL(\mathcal{D}_P|\mathcal{D}_{emp})$
- **best** inner product *P* is the one given by weighted PCA with norm P_0 !

Introduction	Searching for solutions	Shape matching	Transport 00	Metric estimation	Theory 000	Future works ○○●
PCA and Kullb	oack-Leibler					

- ► Gaussian distribution that fits \mathcal{D}_{emp} the best ?
- search for best Gaussian (= for best P) that minimize $KL(\mathcal{D}_P|\mathcal{D}_{emp})$
- **b** best inner product P is the one given by weighted PCA with norm P_0 !
- similar result for kernel-smoothed distributions : $\mathcal{D}_{emp}^{\mathcal{K}}(\mathbf{f}) = \sum_{j} w_{j} \mathcal{K}(\mathbf{f}_{j} - \mathbf{f}).$

Guillaume Charpiat