Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors

First meeting of the Shape Working Group

17/02/2010

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors

Program of the Day

- The Participants
- Shapes and related topics
- Talk & discussion 1, by Guillaume Charpiat (Pulsar)
- Coffee break
- Talk & discussion 2, by Stanley Durrleman (Asclepios)
- Conclusion, schedule next meeting, etc.

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors

This Shape WorkINg Group could become :

- a Shape PResentation Group (where each one makes a presentation about his own works)
- a Regular Shape Seminar (series of talks by various speakers, to know the latest works)
- a SHApe ReadINg Group (reading articles, books, to know precisely the state of the art)
- a ShapE WorkINg Group (where we think and work together to go beyond the state of the art)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors

Shapes and related topics

- Why study shapes ?
- What is a shape ?
 - what do we mean by shape ?
 - representation
 - families, shape spaces
- Pairwise shape comparison
 - distances
 - warpings
- Where do shapes come from ?
- Shape statistics
 - global variations
 - local scale
- Using information about shapes

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
•					

Why study shapes ?

- because they contain information
 - patch-based detection (bounding box)
 - vs. segmentation (contour)
 - image/video interpretation : posture/gesture recognition
 - diagnostic (medical imaging)
 - ... (application-dependent)
- to use them as priors
 - image segmentation with shape prior
 - etc.
- to optimize a given property
 - aerodynamics (shape of a plane), fluid mechanics
 - material constraints : shape of a bridge, soap bubbles
 - acoustics
 - aesthetics ?

Why study shapes ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

What is a shape ? Part I : What do we mean by shape ?

▶ planar contour of a 3D object projected into a 2D image vs. surface of the object in \mathbb{R}^3

- P P P F A F A F A A B P A A B P A A B P A A B P A A B P A A B P A A B P A A B P

What is a shape ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

Part I : What do we mean by shape ?

▶ planar contour of a 3D object projected into a 2D image vs. surface of the object in \mathbb{R}^3

just the contour (boundary) vs. a full object (region)

ロ * ◆聞 * ◆ 国 * ◆ 国 * の < の

What is a shape ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- planar contour of a 3D object projected into a 2D image vs. surface of the object in R³
- just the contour (boundary) vs. a full object (region)
- shape + intensity/texture, reflectance, physical material (texture: rough/smooth, elasticity (soft/hard)), ... => anything that can be defined on a shape

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- planar contour of a 3D object projected into a 2D image vs. surface of the object in R³
- just the contour (boundary) vs. a full object (region)
- shape + intensity/texture, reflectance, physical material (texture: rough/smooth, elasticity (soft/hard)), ... ampsi anything that can be defined on a shape
- shape as support (e.g. PDE run on the surface)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- planar contour of a 3D object projected into a 2D image vs. surface of the object in R³
- just the contour (boundary) vs. a full object (region)
- shape + intensity/texture, reflectance, physical material (texture: rough/smooth, elasticity (soft/hard)), ... ⇒ anything that can be defined on a shape
- shape as support (e.g. PDE run on the surface)
- subparts, hierarchical structure, labeling (names) of sub-regions...

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- planar contour of a 3D object projected into a 2D image vs. surface of the object in R³
- just the contour (boundary) vs. a full object (region)
- shape + intensity/texture, reflectance, physical material (texture: rough/smooth, elasticity (soft/hard)), ... ⇒ anything that can be defined on a shape
- shape as support (e.g. PDE run on the surface)
- subparts, hierarchical structure, labeling (names) of sub-regions...
- **invariant** to rotations or not ? to translations ? affine deformation group?

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- planar contour of a 3D object projected into a 2D image vs. surface of the object in R³
- just the contour (boundary) vs. a full object (region)
- shape + intensity/texture, reflectance, physical material (texture: rough/smooth, elasticity (soft/hard)), ... ⇒ anything that can be defined on a shape
- shape as support (e.g. PDE run on the surface)
- subparts, hierarchical structure, labeling (names) of sub-regions...
- invariant to rotations or not ? to translations ? affine deformation group?
- rigid, fixed shape vs. possible variations ? a shape = one state only, or a family of possible states ? shape vs. shape class ? dynamics ? possible qualitative changes (adding a subpart) ?

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- planar contour of a 3D object projected into a 2D image vs. surface of the object in R³
- just the contour (boundary) vs. a full object (region)
- shape + intensity/texture, reflectance, physical material (texture: rough/smooth, elasticity (soft/hard)), ... => anything that can be defined on a shape
- shape as support (e.g. PDE run on the surface)
- subparts, hierarchical structure, labeling (names) of sub-regions...
- invariant to rotations or not ? to translations ? affine deformation group?
- rigid, fixed shape vs. possible variations ? a shape = one state only, or a family of possible states ? shape vs. shape class ? dynamics ? possible qualitative changes (adding a subpart) ?
- global shape vs. local details (scaling down : shape texture)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- planar contour of a 3D object projected into a 2D image vs. surface of the object in R³
- just the contour (boundary) vs. a full object (region)
- shape + intensity/texture, reflectance, physical material (texture: rough/smooth, elasticity (soft/hard)), ... => anything that can be defined on a shape
- shape as support (e.g. PDE run on the surface)
- subparts, hierarchical structure, labeling (names) of sub-regions...
- invariant to rotations or not ? to translations ? affine deformation group?
- rigid, fixed shape vs. possible variations ? a shape = one state only, or a family of possible states ? shape vs. shape class ? dynamics ? possible qualitative changes (adding a subpart) ?
- global shape vs. local details (scaling down : shape texture)
- vague notion : imprecise shape/motion descriptors (size, motion energy...)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

Part I : What do we mean by shape ?

- planar contour of a 3D object projected into a 2D image vs. surface of the object in R³
- just the contour (boundary) vs. a full object (region)
- shape + intensity/texture, reflectance, physical material (texture: rough/smooth, elasticity (soft/hard)), ... ⇒ anything that can be defined on a shape
- shape as support (e.g. PDE run on the surface)
- subparts, hierarchical structure, labeling (names) of sub-regions...
- invariant to rotations or not ? to translations ? affine deformation group?
- rigid, fixed shape vs. possible variations ? a shape = one state only, or a family of possible states ? shape vs. shape class ? dynamics ? possible qualitative changes (adding a subpart) ?
- global shape vs. local details (scaling down : shape texture)
- vague notion : imprecise shape/motion descriptors (size, motion energy...)
- weak notion : "shape" of the graph of a function (Fourier, cf Gabor/wavelet for image texture), of an histogram (they "look the same" : distance ? correlation ?)

What is a shape ? Shapes and related topics

Why ? ○	What ? ○●○	Pairwise comparison	Where from ?	Statistics	Using priors O

sampling ⇒ set of points; distribution (measure)

What is a shape ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- sampling ⇒ set of points; distribution (measure)
- approximation :
 - explicit : polygon, mesh
 - bases of functions, parameterized families (splines, control points)
 - implicit : zero-level of a signed distance function (sampled/expressed on a basis), or zero-level of algebraic expressions (polynomials) (=> exact shape but restricted to a family)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- sampling ⇒ set of points; distribution (measure)
- approximation :
 - explicit : polygon, mesh
 - bases of functions, parameterized families (splines, control points)
 - implicit : zero-level of a signed distance function (sampled/expressed on a basis), or zero-level of algebraic expressions (polynomials) (=> exact shape but restricted to a family)

under a transformation :

- curvature function (rotation-invariant) : nice for matching (but for segmentation?)
- skeleton, medial axis
- any transformation/description which is one-to-one (or does not lose much information), e.g. Fourier
- shapes as metric spaces : pairwise distance matrix (with Euclidean norm: invertible! [Boutin]), n-uplets distance matrices (∀n ⇒ invertible [Gromov])

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- sampling ⇒ set of points; distribution (measure)
- approximation :
 - explicit : polygon, mesh
 - bases of functions, parameterized families (splines, control points)
 - implicit : zero-level of a signed distance function (sampled/expressed on a basis), or zero-level of algebraic expressions (polynomials) (=> exact shape but restricted to a family)

under a transformation :

- **curvature** function (rotation-invariant) : nice for matching (but for segmentation?)
- skeleton, medial axis
- any transformation/description which is one-to-one (or does not lose much information), e.g. Fourier
- shapes as metric spaces : pairwise distance matrix (with Euclidean norm: invertible! [Boutin]), n-uplets distance matrices (∀n ⇒ invertible [Gromov])

hierarchies (of subparts), possibly with algebraic groups (e.g. the phone by [Mitra,Sorkine])

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

- sampling ⇒ set of points; distribution (measure)
- approximation :
 - explicit : polygon, mesh
 - bases of functions, parameterized families (splines, control points)
 - implicit : zero-level of a signed distance function (sampled/expressed on a basis), or zero-level of algebraic expressions (polynomials) (=> exact shape but restricted to a family)

under a transformation :

- **curvature** function (rotation-invariant) : nice for matching (but for segmentation?)
- skeleton, medial axis
- any transformation/description which is one-to-one (or does not lose much information), e.g. Fourier
- shapes as metric spaces : pairwise distance matrix (with Euclidean norm: invertible! [Boutin]), n-uplets distance matrices (∀n ⇒ invertible [Gromov])
- hierarchies (of subparts), possibly with algebraic groups (e.g. the phone by [Mitra,Sorkine])

topology: genus only (pb: handling topological noise; lack of details)

What is a shape ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

Part III : families

self-intersecting boundaries or not

Shape WorkIN'Group

What is a shape ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

What is a shape ? Part III : families

- self-intersecting boundaries or not
- number of connected components

Shape WorkIN'Group

What is a shape ? Shapes and related topics

Why?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

Part III : families

- self-intersecting boundaries or not
- number of connected components
- set of all shapes : is not a manifold, but : a union of manifolds (for each number of components)
 + pathological cases (at topological change moments)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

Part III : families

- self-intersecting boundaries or not
- number of connected components
- set of all shapes : is not a manifold, but :
 a union of manifolds (for each number of components)
 + pathological cases (at topological change moments)
- smooth, or with sharp corners

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000				

Part III : families

- self-intersecting boundaries or not
- number of connected components
- set of all shapes : is not a manifold, but :

 a union of manifolds (for each number of components)
 + pathological cases (at topological change moments)
- smooth, or with sharp corners
- families of nice shapes (curvature bounds, distance to the skeleton)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
		0			

Part I : distances : to quantify shape difference/similarity

explicit formulas on explicit representations : Hausdorff distance, area of the symmetric difference any other one ?

Pairwise shape comparison Shapes and related topics

Why? What?	Pairwise comparison	Where from ?	Statistics	Using priors
	0			

Part I : distances : to quantify shape difference/similarity

- explicit formulas on explicit representations : Hausdorff distance, area of the symmetric difference any other one ?
- based on an implicit/particular representation :
 - level-set : L^2 , H^1 , $W^{n,p} \implies$ pb with thin parts that move
 - zero of a polynomial : coefficient-based distances ?
 - representation where the natural/chosen norm is particularly meaningful ?

Why? What?	Pairwise comparison	Where from ?	Statistics	Using priors
	0			

Part I : distances : to quantify shape difference/similarity

- explicit formulas on explicit representations : Hausdorff distance, area of the symmetric difference any other one ?
- based on an implicit/particular representation :
 - level-set : L^2 , H^1 , $W^{n,p} \implies$ pb with thin parts that move
 - zero of a polynomial : coefficient-based distances ?
 - representation where the natural/chosen norm is particularly meaningful ?

► path-based :
$$\inf_{\Gamma,\Gamma(0)=A,\Gamma(1)=B} \int_t \left\| \frac{\partial \Gamma}{\partial t} \right\|_{H^1}^2 dt$$

- infinitesimal deformation metric (manifold)
- ► $L^2(\Gamma(t) \to \mathbb{R}^n)$: bad-behaved [Michor-Mumford: 0-length geodesics]
- H^1 , or involve shape curvature
- requires the computation of the geodesic (except for Younes's sphere)
- metric adaptation (favoring rigid motions...)

Why? What?	Pairwise comparison	Where from ?	Statistics	Using priors
	0			

Part I : distances : to quantify shape difference/similarity

- explicit formulas on explicit representations : Hausdorff distance, area of the symmetric difference any other one ?
- based on an implicit/particular representation :
 - level-set : L^2 , H^1 , $W^{n,p} \implies$ pb with thin parts that move
 - zero of a polynomial : coefficient-based distances ?
 - representation where the natural/chosen norm is particularly meaningful ?

► path-based :
$$\inf_{\Gamma,\Gamma(0)=A,\Gamma(1)=B} \int_t \left\| \frac{\partial \Gamma}{\partial t} \right\|_{H^1}^2 dt$$

- infinitesimal deformation metric (manifold)
- ► $L^2(\Gamma(t) \to \mathbb{R}^n)$: bad-behaved [Michor-Mumford: 0-length geodesics]
- H^1 , or involve shape curvature
- requires the computation of the geodesic (except for Younes's sphere)
- metric adaptation (favoring rigid motions...)

transport (between distributions) : Earth mover distance (no spatial regularity)

Why? What?	Pairwise comparison	Where from ?	Statistics	Using priors
	0			

Part I : distances : to quantify shape difference/similarity

- explicit formulas on explicit representations : Hausdorff distance, area of the symmetric difference any other one ?
- based on an implicit/particular representation :
 - level-set : L^2 , H^1 , $W^{n,p} \implies$ pb with thin parts that move
 - zero of a polynomial : coefficient-based distances ?
 - representation where the natural/chosen norm is particularly meaningful ?

► path-based :
$$\inf_{\Gamma,\Gamma(0)=A,\Gamma(1)=B} \int_t \left\| \frac{\partial \Gamma}{\partial t} \right\|_{H^1}^2 dt$$

- infinitesimal deformation metric (manifold)
- ► $L^2(\Gamma(t) \to \mathbb{R}^n)$: bad-behaved [Michor-Mumford: 0-length geodesics]
- H¹, or involve shape curvature
- requires the computation of the geodesic (except for Younes's sphere)
- metric adaptation (favoring rigid motions...)
- transport (between distributions) : Earth mover distance (no spatial regularity)
- transformation groups : translation/rotation/scaling/affine : $\inf_{g \in G} d(A, gB)$
 - shapes as metric spaces ⇒ Gromov-Hausdorff [Memoli]

Pairwise shape comparison

Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
		00			

- of the contour \neq of the whole region inside
 - physical meaning of the metric ? [Fuchs]

Shape WorkIN'Group

Pairwise shape comparison Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
		00			

- of the contour \neq of the whole region inside
 - physical meaning of the metric ? [Fuchs]
- topological changes ?

ロト < 聞 > < 言 > < 言 > 、言 · O へ O

Pairwise shape comparison Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
		00			

- of the contour \neq of the whole region inside
 - physical meaning of the metric ? [Fuchs]
- topological changes ?
- find the best matching for a given criterion:
 - path-based metrics
 - explicit criterion : $\|\cdot\|_{H^1}$, angles, curvature,
 - local descriptors (of the image / of the shapes ?)
 - intrinsic quantities (curvature) vs. quantities defined on the shape (intensity)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
		00			

- of the contour \neq of the whole region inside
 - physical meaning of the metric ? [Fuchs]
- topological changes ?
- find the best matching for a given criterion:
 - path-based metrics
 - explicit criterion : $\|\cdot\|_{H^1}$, angles, curvature,
 - local descriptors (of the image / of the shapes ?)
 - intrinsic quantities (curvature) vs. quantities defined on the shape (intensity)
- related to : image registration : image similarity/distances
 - local cross-correlation
 - mutual information

vviiy: vviiat:	Pairwise comparison	Where from ?	Statistics	Using priors
	00			

- of the contour \neq of the whole region inside
 - physical meaning of the metric ? [Fuchs]
- topological changes ?
- find the best matching for a given criterion:
 - path-based metrics
 - explicit criterion : $\|\cdot\|_{H^1}$, angles, curvature,
 - local descriptors (of the image / of the shapes ?)
 - intrinsic quantities (curvature) vs. quantities defined on the shape (intensity)
- related to : image registration : image similarity/distances
 - local cross-correlation
 - mutual information
- optimization methods
 - gradient descent (of the warping cost) + multiscale
 - dynamic time warping
 - graph-cuts

Pairwise shape comparison Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
			•		

modeled by hand

<ロ>

Where do shapes come from ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
			•		

- modeled by hand
- image/video segmentation
 - issue : how to detect boundaries, define homogeneous regions...
 - human perception/priors (Kanizsa triangle)

Where do shapes come from ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
			•		

- modeled by hand
- image/video segmentation
 - issue : how to detect boundaries, define homogeneous regions...
 - human perception/priors (Kanizsa triangle)
- from motion

Where do shapes come from ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
			•		

- modeled by hand
- image/video segmentation
 - issue : how to detect boundaries, define homogeneous regions...
 - human perception/priors (Kanizsa triangle)
- from motion
- 3D reconstruction (multiple cameras)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
			•		

- modeled by hand
- image/video segmentation
 - issue : how to detect boundaries, define homogeneous regions...
 - human perception/priors (Kanizsa triangle)
- from motion
- > 3D reconstruction (multiple cameras)
- laser scans (or pattern projected)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
			•		

- modeled by hand
- image/video segmentation
 - issue : how to detect boundaries, define homogeneous regions...
 - human perception/priors (Kanizsa triangle)
- from motion
- > 3D reconstruction (multiple cameras)
- laser scans (or pattern projected)
- sonar, radar ?

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
			•		

- modeled by hand
- image/video segmentation
 - issue : how to detect boundaries, define homogeneous regions...
 - human perception/priors (Kanizsa triangle)
- from motion
- 3D reconstruction (multiple cameras)
- laser scans (or pattern projected)
- sonar, radar ?
- illumination properties
 - shape from shading
 - shape from specularities (reflection)

Where do shapes come from ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
			•		

- modeled by hand
- image/video segmentation
 - issue : how to detect boundaries, define homogeneous regions...
 - human perception/priors (Kanizsa triangle)
- from motion
- 3D reconstruction (multiple cameras)
- laser scans (or pattern projected)
- sonar, radar ?
- illumination properties
 - shape from shading
 - shape from specularities (reflection)
- $\blacktriangleright \implies$ few shapes available, or no good-quality guaranteed
 - high intrinsic dimension of shape spaces
 - no dense training set
 - introduce priors when defining statistics

Where do shapes come from ? Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
				● 0	

Shape statistics Global variations

▶ mean shape, e.g. defined by $\inf_{M} \sum_{i=1}^{N} d(M, S_i)^2$

- may be several means + computation issues + does not always make sense
- second order statistics : which variables ?
 - pb : correspondences between variables/shapes (transport?)
 - ▶ find a variable whose space if fixed, e.g. $\nabla_M d(M, S_i)$ or $m_{M \to S_i}$

 - pb : if cloud of shapes not Gaussian ?

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
				•0	

Shape statistics Global variations

• mean shape, e.g. defined by $\inf_{M} \sum d(M, S_i)^2$

- may be several means + computation issues + does not always make sense
- second order statistics : which variables ?
 - pb : correspondences between variables/shapes (transport?)
 - ▶ find a variable whose space if fixed, e.g. $\nabla_M d(M, S_i)$ or $m_{M \to S_i}$

 - pb : if cloud of shapes not Gaussian ?
- kernel methods : Parzen, kPCA [Cremers] : based on pairwise distances
 - + graph-based approaches (Isomap...)
 - pb : requires a rather dense training set + no use of deformations (unless Parzen on deformations) + needs a meaningful metric

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
				•0	

Shape statistics Global variations

• mean shape, e.g. defined by $\inf_{M} \sum_{i=1}^{N} d(M, S_i)^2$

- may be several means + computation issues + does not always make sense
- second order statistics : which variables ?
 - pb : correspondences between variables/shapes (transport?)
 - ▶ find a variable whose space if fixed, e.g. $\nabla_M d(M, S_i)$ or $m_{M \to S_i}$

 - pb : if cloud of shapes not Gaussian ?
- kernel methods : Parzen, kPCA [Cremers] : based on pairwise distances
 - + graph-based approaches (Isomap...)
 - pb : requires a rather dense training set + no use of deformations (unless Parzen on deformations) + needs a meaningful metric
- manifold learning techniques
 - statistics on the high-dimensional manifold of shapes ?
 - neighborhood : dimension estimation, k-nearest neighbors
 - spectral techniques : graph Laplacian, Hessian eigenmaps, Isomap
 - tangent space of shapes : LLE (locally linear embedding)...
 - using transport & learning the metrics (cf my next talk)

Shape statistics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
				00	

Shape statistics Local scale

shape texture (fine details)

◆□ → ◆圖 → ◆国 → ◆国 → ◆回 ◆ ○ ◆ ○ ◆

Shape statistics Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
	000			00	

Shape statistics Local scale

- shape texture (fine details)
- local variations, which may happen at different places of the contour (e.g. cell membrane)

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
				00	

Shape statistics Local scale

- shape texture (fine details)
- local variations, which may happen at different places of the contour (e.g. cell membrane)
- pattern recognition/classification

<u> </u>	•

for image segmentation :

Using information about shapes Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
					•

- for image segmentation :
 - exhaustive search : Hough transform (rigid shape), with graph-cuts, or minimum ratio cycle [Cremers] (almost rigid shape)

Shape WorkIN'Group

Using information about shapes Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
					•

- for image segmentation :
 - exhaustive search : Hough transform (rigid shape), with graph-cuts, or minimum ratio cycle [Cremers] (almost rigid shape)
 - initialization + shape evolution (active contours, snakes)
 - initialization-dependent
 - evolution metrics (H¹, rigidification...)
 - derivatives (functional analysis)
 - topological changes : level-set evolutions

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
					•

- for image segmentation :
 - exhaustive search : Hough transform (rigid shape), with graph-cuts, or minimum ratio cycle [Cremers] (almost rigid shape)
 - initialization + shape evolution (active contours, snakes)
 - initialization-dependent
 - evolution metrics (H¹, rigidification...)
 - derivatives (functional analysis)
 - topological changes : level-set evolutions
 - stochastics : random searches, Gibbs sampling, etc.

Why?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
					•

- for image segmentation :
 - exhaustive search : Hough transform (rigid shape), with graph-cuts, or minimum ratio cycle [Cremers] (almost rigid shape)
 - initialization + shape evolution (active contours, snakes)
 - initialization-dependent
 - evolution metrics (H¹, rigidification...)
 - derivatives (functional analysis)
 - topological changes : level-set evolutions
 - stochastics : random searches, Gibbs sampling, etc.
 - for detection :
 - good question : geometric configuration of patches ?
 - center voting, detection of contour parts [Ferrari]

Using information about shapes Shapes and related topics

Why?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
					•

- for image segmentation :
 - exhaustive search : Hough transform (rigid shape), with graph-cuts, or minimum ratio cycle [Cremers] (almost rigid shape)
 - initialization + shape evolution (active contours, snakes)
 - initialization-dependent
 - evolution metrics (H¹, rigidification...)
 - derivatives (functional analysis)
 - topological changes : level-set evolutions
 - stochastics : random searches, Gibbs sampling, etc.
- for detection :
 - good question : geometric configuration of patches ?
 - center voting, detection of contour parts [Ferrari]
- not from images but from clouds of points (scans) :
 - ICP (iterative closest point) ?

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors
					•

- for image segmentation :
 - exhaustive search : Hough transform (rigid shape), with graph-cuts, or minimum ratio cycle [Cremers] (almost rigid shape)
 - initialization + shape evolution (active contours, snakes)
 - initialization-dependent
 - evolution metrics (H¹, rigidification...)
 - derivatives (functional analysis)
 - topological changes : level-set evolutions
 - stochastics : random searches, Gibbs sampling, etc.
- for detection :

> ?

- good question : geometric configuration of patches ?
- center voting, detection of contour parts [Ferrari]
- not from images but from clouds of points (scans) :
 - ICP (iterative closest point) ?
- the issue of occultation

Using information about shapes Shapes and related topics

Why ?	What ?	Pairwise comparison	Where from ?	Statistics	Using priors

Summary

- Why study shapes ?
- What is a shape ?
 - what do we mean by shape ?
 - representation
 - families, shape spaces
- Pairwise shape comparison
 - distances
 - warpings
- Where do shapes come from ?
- Shape statistics
 - global variations
 - local scale
- Using information about shapes

Summary