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Quantitative information on growing organs is required to 

better understand morphogenesis in both plants and animals. 

However, detailed analyses of growth patterns at cellular 

resolution have remained elusive. We developed an approach, 

multiangle image acquisition, three-dimensional reconstruction 

and cell segmentation–automated lineage tracking (MARS-ALT),  

in which we imaged whole organs from multiple angles, 

computationally merged and segmented these images to 

provide accurate cell identification in three dimensions and 

automatically tracked cell lineages through multiple rounds 

of cell division during development. Using these methods, 

we quantitatively analyzed Arabidopsis thaliana flower 

development at cell resolution, which revealed differential 

growth patterns of key regions during early stages of floral 

morphogenesis. Lastly, using rice roots, we demonstrated that 

this approach is both generic and scalable.

The control of morphogenesis during plant and animal develop-
ment is a major question in developmental biology. Although 
several studies have provided profound insight into the molecular 
regulatory networks that act during development, the effects of 
such networks on shape transformations are often only described 
qualitatively. Indeed, describing shape and shape change as a 
geometrical output of gene activity requires the quantification 
of growth patterns with cellular resolution. Obtaining accurate 
geometric information about cell positions and shapes will be 
essential to develop quantitative growth models1–6 and to accu-
rately test their predictions. Although several recent methods, 
mostly based on nuclear tracking in animal cell populations7–10, 
have addressed cell positioning and tracking, they cannot provide 
information on three-dimensional (3D) cell geometry.

We are interested in characterizing and quantifying growth 
in plant meristems, which are small groups of pluripotent cells 
that give rise to all organs in both the shoot and the root. Three 
types of meristems can be identified: the root apical meristem, the 
shoot apical meristem and the floral meristem. Meristem size may 
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vary from a few cells to several thousand cells, depending on the  
species and the meristem type. In Arabidopsis thaliana, an initiating 
floral meristem measures 20–35 μm along each axis and contains 
30–50 cells, each ~150–250 μm3. With divisions every 19–24 h 
on average11, the flower quickly grows into an object measuring 
80–100 μm along each axis and containing several hundred cells, 
even before the onset of differentiation and organ formation. Rice 
root meristems, in contrast, may contain many thousands of cells12. 
Plant cells are typically separated from each other by cell walls and 
cell membranes of less than 0.5 μm in thickness, whose correct 
identification is essential to accurately determine cell shapes.

Different methods have been used to image and reconstruct 
tissues at cellular resolution7–10,13–15. Confocal laser-scanning 
microscopy has been used to image fixed roots and to semiauto-
matically identify individual cells16. In living plant tissues, most 
protocols have been restricted to surface reconstructions17–19. 
Confocal microscopy has the advantage of providing access to 
the inner parts of the tissue, but the fluorescence signal fades in 
the inner parts of thick tissue, making it difficult to identify cell 
walls in the deeper layers. Additionally, cell walls perpendicular  
to the focal axis of the microscope are very often not seen. These 
drawbacks severely limit the use of automatic processing to 
extract additional information from confocal images. Here we 
present a method to generate 3D digitized tissues at cell reso-
lution and to automatically track cell lineage during growth. 
To create a digitized tissue that can be used to quantitatively  
analyze growth in four dimensions, we developed an experimental 
pipeline comprising two key steps: multiangle image acquisition, 
3D reconstruction and cell segmentation (MARS) and automated 
lineage tracking (ALT). We applied this pipeline to analyze the 
developmental dynamics of young floral meristems over 70 h.

RESULTS
Multi-angle, real-time imaging via confocal microscopy
To overcome limitations owing to either tissue thickness or 
microscope resolution anisotropy (Supplementary Fig. 1), we 
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devised MARS based on the idea of visualizing a single sample 
from multiple angles (Fig. 1a). We stained shoot apical meristems 
bearing only flower buds between stages 1 and 3 with the vital 
dye FM4-64 and imaged them under a confocal laser-scanning 
microscope (Online Methods). First we imaged the flower from 
the top (‘top-view stack’), and then we manually tilted it by 30–40° 
and reimaged it (‘tilt-view stack’). We repeated this process such 
that we imaged every flower from at least three different angles  
(Fig. 1b–d). We avoided rotation angles greater than 50° to main-
tain sufficient common context between each image.

3D reconstruction and segmentation of volumetric images
We computed 3D cell-segmented images from multiangle scans 
in two steps. First, we fused the images acquired under dif-
ferent orientations to enhance the quality of the cell outlines 
(Supplementary Note 1), which required co-registering every 
image stack with a reference stack. We used a hierarchical strategy 
wherein, for convenience, we chose the top-view stack as the ref-
erence stack and in an incremental procedure registered the other 
(floating) tilt-view stacks onto this reference. Based on at least 
four landmarks that we manually identified in both the reference 
and the floating stacks (Fig. 1b–d and Supplementary Fig. 2)  
using surface reconstructions19, we computed an initial rigid trans-
formation (which consisted of rotation and translation; Fig. 1e).  
This first step usually yielded only an approximate matching  
(Fig. 1f), possibly because of local shape changes resulting from 
plant growth or from changes in the mechanical or physiological 
properties of the cells. Then, a more robust, rigid transformation 
was automatically computed using all available image informa-
tion20, followed by a refined nonlinear transformation computed 
using a block-based pyramidal algorithm21 
(Fig. 1g,h). This process substantially 
restored membrane-to-cytoplasm contrast 

in the entire 3D structure and also typically provided a much 
more homogeneous contrast distribution in the tissue (Fig. 1i,j 
and Supplementary Fig. 3).

Second, we segmented the resultant 3D images using a 3D water-
shed algorithm22 to identify the cells as individual 3D objects  
(Fig. 1k–m and Supplementary Note 2). Such an algorithm is well 
suited for processing our images, in which the objects to segment were 
dark areas (cell interiors) surrounded by bright and thin boundaries 
(cell walls). To initialize the procedure, every cell must have a unique 
marker. We defined these markers as the main local minima (com-
puted using the h-min operator22) of the noise-filtered image.

We next assessed whether MARS was generic and scalable by 
applying it to rice roots, which are large (200–450 μm) and have 
a complex cellular organization (with about 30 cell layers)23. We 
observed the root meristem under four azimuthal angles spaced 
approximately 90 degrees from one another. The cell recognition 
was of better quality in the four-fused-view reconstructions than 
in the one-view reconstructions: the algorithm could segment 
16,400 cells in the rice root tip for the four fused views and for 
one view with an estimated cell recognition rate of 88% and 61% 
in the root center, and of 93% and 87% in the cortical region, 
respectively (Online Methods, Supplementary Figs. 4 and 5 and 
Supplementary Note 3).

Automatic lineage tracking during growth
To identify cell lineages during floral growth, we developed a sec-
ond software pipeline called ALT (Fig. 2a). First, we used MARS 
to track the growth of young flower meristems (primordia) by 
imaging them from multiple angles every 24 h for up to 4 d and 
generating 3D cell-segmented images at each time point (Fig. 2b–i 
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Figure 1 | MARS. (a) Pipeline for segmented 
3D tissue reconstructions. From an image of 
inflorescence expressing a flower-specific GFP 
marker (pLEAFY<ER-GFP), one flower (blue 
box) is chosen for further study (left). For each 
flower, image stacks are acquired from multiple 
angles and computationally fused into a single 
3D reconstruction, which is then automatically 
segmented. (b–d) Example confocal images 
of a flower acquired from three angles. After 
image acquisition, three to eight common 
landmark vertices (colored dots) are identified 
in each image stack. (e–h) These image stacks 
are registered using a hierarchical process with 
increasing precision and then fused as follows: 
superposition of the raw images from two 
different views (e), a manual, rigid registration (f), 
an automatic, linear registration (g) and a 
dense, nonlinear registration (h). (i,j) Images 
showing details of single-angle (i) and fused 
multiangle (j) acquisitions. Arrows highlight 
signal for cell outlines and interiors that is low 
or absent in single-angle images. (k–m) After 
automatic segmentation, tissue was visualized 
with a full organ reconstruction (k) or with 
virtual sections using color codes for cell layer (l)  
or cell volume (m). Scale bars, 50 μm (a),  
25 μm (b–h,k–m) and ~10 μm (i,j).

©
 2

0
1
0

 N
a

tu
re

 A
m

e
ri

c
a

, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.



NATURE METHODS | VOL.7 NO.7 | JULY 2010 | 549

ARTICLES

and Supplementary Fig. 6). Next, we manually identified an initial 
set of surface (L1 layer) cell lineages for every pair of consecutive 
segmented images from sequential time points (Supplementary 

Note 4). We used these ‘known’ reference lineages to initialize 
the set of high-confidence lineages of the ALT pipeline. ALT 
begins by estimating a rigid transformation between two images 
by minimizing the total square distance between parent cells 
and their descendants in high-confidence lineages. It then esti-
mates new high-confidence cell lineages iteratively by perform-
ing the following steps until no candidate cell lineages remain 
(Supplementary Note 4).

In the first step, ALT computes a deformation field based on 
the high-confidence lineages. The residual positioning error is 
used to define a nonlinear transformation of the image voxels 
as a dense vector field (a vector per voxel). For this, each high-
confidence lineage is transformed into one vector that links the 
center of mass of the parent cell to the center of mass of all its 
descendants, and the dense vector field is computed by interpolat-
ing between these vectors.

In the second step, the deformation field is refined. The initial 
nonlinear transformation is refined by an automated nonlinear 
registration algorithm that matches the voxel intensities of the 
two images. This defines a more precise nonlinear registration 
that makes it possible to overlap the two images and compare 
their segmentations.

In the third step, ALT builds lineage hypotheses and solves 
the lineage problem. Pairwise registration of sequential images 
 permits candidate daughter cells for each parent cell to be 

 hypothesized, based on their spatial proximity in a common 
image frame. ALT formalizes the lineage problem as the search 
for a mapping between cells in sequential images that globally 
minimizes the total distances between the mapped cells. To solve 
this problem, ALT treats it as an optimal flow problem (Fig. 2j, 
Supplementary Note 4 and Online Methods).

In the final step, ALT updates the set of high-confidence line-
ages. ALT automatically scans the list of lineages between two 
images to identify those lineages that comply with additional cri-
teria (Supplementary Note 4) by applying plausibility tests based 
on geometric and topological rules that are not used to guide the 
algorithm. If a cell lineage passes the test, it is then added to the 
list of high-confidence lineages.

We used the ALT algorithm to identify lineages during flower 
growth over 70 h (Fig. 2k–n). ALT provided 84–100% accurate 
cell lineage information, depending on the extent of growth 
(Table 1 and Online Methods).

Validation of the MARS-ALT pipeline
We assessed the quality of the segmentation algorithm by an 
exhaustive visual examination of the results obtained from the 
automatic segmentations of Arabidopsis floral meristems. We 
examined eight MARS-analyzed floral meristems cell by cell 
using MARS exploratory tools (Supplementary Note 5). This 
included one flower (‘flower A’) imaged at an optimal resolution 
(varying from 576 × 576 to 680 × 680 pixels) at four time points 
separated by about 24 h each, and two flowers (‘flower 2’ and 
‘flower 3’) imaged at a higher resolution (1,024 × 1,024 pixels) 
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Figure 2 | ALT. (a) ALT pipeline. Reconstructed 
and segmented data from serial time points 
(tn and tn + 1) are compared to automatically 
determine cell lineages. (b–e) Confocal image 
surface projections of the top view of a  
wild-type flower collected at the indicated  
times. (f–i) Segmented 3D reconstructions  
of each time point (corresponding to images  
in b–e, respectively), with many cells belonging 
to the shoot apex and to neighboring flowers 
manually discarded. (j) ALT is modeled as a 
problem of flow in which plausible lineage 
correspondences are expressed in a valued 
graph. Edges connect parent cells of the source 
image (i1–6) to candidate daughter cells of the 
target image (j1–8). θI, θJ, s and t are additional 
nodes representing, respectively, void source 
cell, void target cell and source and target 
nodes emitting and collecting the flow. Each 
edge may carry units of flow that are bounded 
by the edge minimal and maximal capacities, 
ci,j and Ci,j, respectively, and is associated with 
a cost per unit flow. NI and NJ, the number 
of source and target cells, respectively; Ndiv, 
hypothesized maximum number of daughters 
that can be associated with a given parent. 
(k–n) Application of the ALT algorithm to floral 
growth: cells at an earlier time point (k,l) and 
corresponding daughter cells (m,n) were colored 
to show lineages. Detailed views (l,n) show cells 
that have undergone up to two rounds of cell 
division (arrowhead). Also visible is a tracking 
error (cell marked with an arrow should be red). 
Scale bars, 10 μm.
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at two time points each. We created a reference segmentation 
for each of these multiangle images by manually correcting an 
automatic segmentation. To assess the performances of different 
segmentation algorithms or the effect of varying their parameters, 
we compared, for a given image, the automatic segmentation pro-
duced by these algorithms to the reference segmentation of this 
image. As two segmentations, each containing hundreds of cells 
in three dimensions, cannot be manually compared routinely, we 
designed a special algorithm to automate this comparison process 
(Supplementary Note 6). We considered cells correctly identified 
if they could be associated one-to-one with a manually corrected 
cell by the validation mapping algorithm.

Merging increasing numbers of view stacks made it possible 
to substantially increase the percentage of correctly segmented 
cells. Thus, when a view stack alone was processed, 91.2% of 
cells were correctly identified (Fig. 3a). With the addition of one 
and two tilt-view stacks, identification improved to 95.7% and 
98.5%, respectively. Additional analysis revealed that in one- and 
two-angle segmentations, only about 60.9% and 81.5% of cells, 
respectively, had the correct volume relative to the reference 
 segmentations (Fig. 3b). Here we considered cells correctly 
 identified if, in addition to the above criterion, the volume of the 
mapped cells differed by a maximum of 10%. Image resolution 
had little effect on the efficiency of the algorithm, so that the 
results obtained for images acquired at optimal resolution or with 
oversampling differed by only about 2% (data not shown). We 
then analyzed how the segmentation errors were distributed in the 
data for floral meristem. As expected, in one-angle segmentations, 
the percentage of correctly segmented cells decreased steadily 
with the depth of the tissue (Fig. 3c). The fusion of one or two 
additional view stacks made it possible to substantially improve 
segmentation quality (Fig. 3c) such that at depths greater than  
40 μm, up to 7% more cells were correctly identified.

We analyzed how the cell wall signal depended on both its ori-
entation with respect to the focal axis of the microscope and on 

its depth in the tissue. Cell walls with different orientations have 
different projected silhouettes in the focal plane. We defined the 
ratio between the silhouette area of a cell wall projected in the 
focal plane and the total actual area of the wall as the silhouette to 
total area ratio (STAR), which has values between 0 and 1. Values 
close to 1 are reported for cell walls parallel to the focal plane, 
and values close to 0 are reported for cell walls perpendicular to 
it. The use of multiangle acquisitions enhanced the contrast for 
the different categories of cell-wall orientations (Fig. 3d), with 
particular improvement in regions with high STAR (that is, walls 
nearly parallel to the focal plane) in the reference image stack. 
Distribution of cell-wall orientations was not homogeneous in 
the tissue (Fig. 3e). At the meristem surface, cell walls had a hori-
zontal bias (STAR > 0.5), consistent with our observation that 
segmentation quality for surface cells was lower in single-angle 
segmentations (Fig. 3c). The use of multiple angles efficiently 
corrected this effect of the wall orientation distribution.

To assess the quality of the automatic cell-lineage tracking pro-
cedure, we used the four time points (T0 to T3) from the flower-A 
data (Fig. 2b–i) and validated the MARS-processed segmenta-
tions with the automated procedure described above (Table 1). 
We then manually identified a large number, ki, of reference 
 lineages between parent cells (at Ti−1) and daughter cells (Ti)  
for each time transition (i = 1, 2 or 3, k1 = 98, k2 = 129 and k3 = 
184 lineages) in superficial as well as internal cells. We compared 
the results of the ALT pipeline to these manually identified refer-
ence lineages (Table 1). About half the cells at time T0 yielded 
daughter cells at time T3, which corresponded to an average of 
3.5 daughter cells at T3 per parent cell at T0, for a 4.8-fold volume 
increase of the corresponding growing region. Our data showed a 
burst of growth between T2 and T3, during which both the volume 
and the cell division rate increased. When the change in volume 
was small (T0 to T1), ALT correctly identified all of the reference 
 lineages. The performance was slightly worse (89% of cell lineages 
identified) with a twofold increase in volume. With even bigger 

Table 1 | Results of the MARS-ALT pipeline applied to flower development

T0 (0 h) T1 (23 h) T2 (46 h) T3 (70 h)

Segmentation (MARS)
Total number of cells imaged and segmented 716 798 706 1,236
Mean cell volume (μm3) 212 189 250 299
Number of epidermal (L1 layer) cells 344 405 253 379
Number of subepidermal (L2 layer) cells 254 276 251 351
Percentage of correct MARS-segmented cells 97.8 96.2 98.6 98.1

Lineage tracking (ALT)a

Total number of cells tracked by ALT 357 444 582 1236
Increase in total volume of cells tracked during T0–T3

b NA  1.04-fold  2.26-fold  2.50-fold
S.d. of parent cell volume increase in a T0–T3 transition NA 0.29 0.94 1.38
Reference lineages provided for ALT initialization 4 26 33 NA
Cells with one daughter at the next time point (no division) 252 194 141 NA
Cells with two daughters (1 division) 94 154 240 NA
Cells with three daughters (2 divisions) 1 16 109 NA
Cells with four daughters (3 divisions) 0 4 51 NA
Cell lineages identified manually for ALT evaluationc 98 129 184 NA
Percentage of correctly detected mother-to-daughter lineagesd 100 89 84 NA
Percentage of correctly detected daughter-to-mother lineagese NA 100 94 94

All data presented are from the ‘flower-A’ time-course experiment (Fig. 2a). NA, not applicable.
aFor clarity, only the ancestors of cells present at T3 were retained for analysis. bAt T0, the total volume of the 357 T0−T3-tracked cells was 77.5 × 103 μm3. The fold-increase values in the table are based on  
the automatically tracked cells. As a consequence, they may be slightly affected by lineage errors. cA manual lineage identification was performed to determine the ancestors of all epidermal and subepidermal 
cells in the upper part of the flower bud (up to and including the sepals) at T3. 

dThis is the most strict definition of a lineage wherein, for a given parent cell, ALT provides the identical set of daughters that 
had been identified manually. eIn this definition of a correct lineage, for any given daughter cell, ALT provides the same parent cell that had been identified manually.
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increases of volume (2.5-fold between T2 and T3), only 84% of the 
cell lineages were perfectly identified. But this corresponded to an 
incorrect detection of a parent cell for only 6% of daughter cells. 
By extrapolation to the entire dataset, ALT correctly detected the 
parent cell for 1,162 of the 1,236 cells at T3. We observed similar 
trends in other time-course experiments (Fig. 3f,g).

The ALT algorithm identifies not only the cellular lineages 
but also the precise geometrical deformations that occur during 
growth. Based on this four-dimensional reconstruction, it is 
possible to estimate the intermediate 3D images by interpola-
tion between serial time steps. This virtual 3D representation 
of continuous growth at cellular resolution is a powerful way to 
observe organ-growth dynamics (Supplementary Note 7 and 
Supplementary Videos 1 and 2).

Analysis of early floral growth at cellular resolution
The Arabidopsis flower initiates on the flanks of the shoot apical 
meristem as a stage-1 bud. During stage 2, the bud becomes 
 separated from the shoot apical meristem and goes through a 
long growth phase. The first organs form at stage 3, when the 
flower bud comprises four sepal primordia surrounding a dome 
of meristematic tissue in the center, which gives rise to all other 
 floral organs. We used MARS-ALT to analyze cell lineage trajec-
tories and cell morphometrics of this entire zone in two inde-
pendent time-course experiments (Fig. 4a).

First, we used the digital reconstructions of the last time points 
in both time courses, selected all the cells of the sepals and the 
floral dome (the ‘floral organ zone’) and used ALT to identify these 
cells’ ancestors at the earliest time points in the two experiments. 
We then mapped the locations of those ancestors in the flower 
and observed that at mid–stage 2, these cells were located not at 
the vertical summit of the flower, but abaxially, in the region most 
distal to the shoot apical meristem (Fig. 4b,c). This suggests that as 
the flower develops, it undergoes unequal growth along the medial 
(proximo-distal) axis that pushes the abaxial cells toward the 

 summit (Fig. 4d). We next investigated whether such an unequal 
tissue growth was linked to particular cellular characteristics, such 
as cell size. We analyzed cell volumes during floral growth (Fig. 4e 
and Supplementary Fig. 7). We observed that at stage 3 in both 
time-course experiments, the floral organ zone cells had signifi-
cantly similar mean volumes (195 ± 88 μm3 for flower A (n = 674 
cells); 195 ± 102 μm3 for flower B (n = 611 cells); P = 0.9833 in a 
Welch two-sample t-test). However, during the transition from 
stage 2 to 3, many cells (12%, 70 h of flower A time course) grew 
to volumes of over 500 μm3 (Fig. 4e). We observed that all of these 
cells were located below the floral organ zone and likely belonged 
either to the emerging vascular strands or to the elongating pedicel 
(Fig. 4f). Whereas the smallest cells in this group (500–600 μm3) 
were distributed uniformly around the base of the flower (Fig. 4g), 
the largest cells (1,000–2,200 μm3) were located primarily along 
the abaxial side of the flower (Fig. 4h). Thus, in contrast to the 
majority of cells, these cells had not divided in this 24 h period. 
These data suggest that changes in cell division rules are an impor-
tant part of floral growth and specification and that these rules may 
be altered locally to control morphogenesis.

To explore cellular growth and dynamics in the floral organ 
zone, we examined the stem cells and the stem cell organizing 
center, which are crucial for proper flower development. We local-
ized the putative stem cells and organizing center over time using 
a stem cell–specific reporter line. Consistent with our findings 
for the floral organ zone, the putative stem cells and organizing 
center ancestors were also located in an abaxial region at early 
stages (Supplementary Fig. 8). It has long been suggested that 
organizing center cells are large and slow dividing24, but it has 
never been possible to properly examine their morphologies or 
dynamics in four dimensions. We found that at early mid–stage 2,  
the uppermost (L3 layer) putative organizing center cell had 
an exceptionally large volume (402 μm3 in flower-A data) that 
was almost twice the mean volume of all floral cells (212 μm3;  
Table 1). Descendants of this cell formed a tight cluster at stage 3,  

Figure 3 | Validation of MARS-ALT results. 
(a–d) Comparisons of eight individual flowers 
(representing 6,038 cells) that were segmented 
using reconstructions from one, two or three 
image stacks. Plotted are data for correctly 
identified cells (a) and correctly identified cells 
with correct volume (b) relative to the manually 
curated three-angle segmentation. Percentage 
of correctly segmented cells as a function of 
depth in the tissue in reconstructions compared 
to the manual 3-angle segmentation was plotted 
(c; depth was measured along the focal axis of 
the reference image relative to the meristem 
surface). Relative amelioration of contrast  
(d) between cell membrane signal and cell 
interiors (that is, the quality of cell outlines) for 
various cell membrane orientations relative to 
one-angle reconstructions was graphed. STAR is a 
measure of cell-membrane orientation. (e) Heat 
map of cell membrane orientation distribution as 
a function of depth in the flower. Red color, high 
values of the distribution, and blue, low values. 
(f,g) ALT results from time-course experiments 
covering different developmental stages from different flowers, showing percentage of mother cells with fully correct daughter cells (f) or percentage of 
daughter cells with correct mother cells (g) for average volume change per cell. Horizontal lines show s.d. (n = 49–184 lineages, depending on the point in 
the diagram). Points clustered at 100% were manually separated for clarity.
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whereas descendants of its immediate 
neighbors tended to form cell files that 
extended away from the organizing center 
cluster (Fig. 4i–k), reflecting local aniso-
tropic cell growth that presumably con-
tributes to the emergence of floral shape at stage 3.

By enabling examination of specific cells or groups of cells, 
MARS-ALT allowed us to analyze floral growth emergence. A 
powerful extension of this analysis will be to combine such stud-
ies with cellular identities (for instance, using cell-fate reporters) 
to clarify the temporal link between local growth properties and 
differentiation events.

DISCUSSION
Our pipeline has some key advantages over existing methods. In 
contrast to published ad hoc methods of fusing multiple images25, 
MARS requires neither dedicated hardware nor precise external 
landmarks to guide the fusion. It works at cellular resolution, 
can efficiently segment internal cells deep in living tissues, can 
efficiently segment very large numbers of cells and can be applied 
to images with different markers (Supplementary Fig. 9). In con-
trast to methods that track nuclei in growing tissues at very small 
time intervals (typically one image per minute)7, the combina-
tion of MARS and ALT allowed us to describe growth deforma-
tions in the entire cell and over long developmental time periods. 
Thus, we can begin to describe floral morphogenesis in terms of 
the morphological changes in component cells. As our lineage 

 tracking algorithm relies on a global optimization procedure, it is 
very robust to local segmentation or tracking errors. Furthermore, 
as we designed the pipeline with no plant-specific dependencies, it 
should be applicable to other biological systems, with adaptation 
to address cell movement and/or cell death in animal tissues. Our 
algorithm already accommodates the loss of cells (for example, 
those that leave the field of view), and should thus be able to 
‘accept’ cell death. The fact that the topology should not change 
in vegetal cells during growth is only used in ALT to select the 
most probable cell lineages (Supplementary Note 4). This test 
may be removed or weakened for use with animal tissues. It may 
be possible to address the issue of cell movement just by generat-
ing sufficiently clustered time point data.

One limitation of our algorithms is that the error rate for line-
age tracking tends to increase with increasing extent of change 
(deformation and/or cell divisions) that the tissue undergoes 
 during growth (Fig. 3f,g and Supplementary Fig. 7). Thus, 
during periods of rapid growth in a tissue, shortening the time 
interval between two acquisitions (and thus limiting the extent 
of change) may be required to obtain highly accurate ALT results. 
For 90% accurate daughter-to-mother cell lineage recognition, 
time intervals will have to be adjusted to maintain the s.d. of 
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Figure 4 | Application of MARS-ALT to flower 
development. (a) Reconstructions from two 
MARS-ALT time-course experiments (flower A 
and flower B) tracking wild-type floral growth. 
For comparison, stages 1–3 are positioned 
on a common timeline. Times of image 
acquisition (which are unrelated between the 
two experiments) and mean volumes (±s.d.) 
of cells in the floral organ zone are indicated. 
(b–k) Image renderings and schematics are 
side views of reconstructed flower A at early 
mid–stage 2 (c,i) or early stage 3 (b,f–h,j). 
The flower and a part of the shoot apical 
meristem (asterisk) are shown in red, with 
cells of interest in green or blue. Side view at 
70 h with all floral organ zone cells selected 
(b) and at 0 h showing the ancestors of 
the cells in b (c). The schematic in d shows 
growth along the proximo-distal axis with 
the first and last time points drawn as solid 
lines and intermediate stages represented as 
dashed lines. Frequency distributions (e) of 
cell volumes from flower A during growth. 
Rendering at 70 h with 143 large cells marked 
(f; green). The smallest (g; 500–600 μm3) 
and the largest (h; >1,000 μm3) of the marked 
cells in f are shown. Rendering in i shows a 
single stem cell organizing center cell (green) 
at 0 h and one immediate neighbor (blue). 
Daughter cells of both cells in i at 70 h are 
shown in j. (k) Schematic contrasting growth 
of the organizing center cell and that of its 
neighbor is shown in k (as in d). Scale bars, 
10 μm (a), and ~25 μm (b,c,f–j).
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volume expansion (which reflects nonhomogeneous tissue defor-
mation) below 0.8 (Supplementary Fig. 7). A second limitation is 
that because our current floral analyses have been focused on the 
early stages, our experiments have not used time windows of more 
than a few days. It is possible that the biological protocols may 
require modification for much longer time course experiments. 
It will be necessary to determine the optimal time window to 
accurately observe certain developmental phase changes, as floral 
growth is not a temporally linear process. Furthermore, because 
the vital stain appears to have some toxic effects upon prolonged 
exposure, other fluorescent membrane markers (such as GFP 
fusions) may be needed. Finally, in the long term, scaling up the 
pipeline to improve throughput may present potential problems 
from an algorithmic point of view, such as in automatically iden-
tifying input reference points for MARS and reference lineages for 
ALT. These are challenging, highly combinatorial operations that 
will require additional development and testing to reach complete 
(or near-complete) automation.

Our work has many potential applications. First, MARS-ALT 
provides the opportunity for developmental biologists to quantita-
tively examine organ growth and track growth rate, anisotropy and 
growth direction in both surface and internal cells. Incorporation 
of reporter expression could enable linking quantitative growth 
analyses to gene activity and cellular identity. Second, our digi-
tized floral growth template provides an opportunity to use 3D 
computational modeling to quantitatively test biological hypo-
theses. Third, we can now address a longstanding question on the 
precise nature of cell division rules in growing tissues and organs. 
Finally, our approaches may be used to examine and model organ 
growth in mutants with the aim of quantifying affected cellular 
behaviors and generating hypotheses on mechanisms that control 
them. This will serve to link the activities of specific genes to their 
morphogenetic outputs at cellular resolution.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Plant growth and imaging. Arabidopsis plants were grown as 
described previously26. Approximately 2 cm of the upper part of 
the plant, including the shoot apical meristem and the flowers, were 
placed in growth medium. All flower buds older than stage 3 were 
then dissected away to facilitate observations of early stage flowers. 
During time course experiments, plants were maintained in growth 
chambers between acquisitions, and, if necessary, older flower buds 
were removed. In general, only one flower from any given inflores-
cence meristem was tracked over time, to limit damage from han-
dling. Just before imaging, inflorescences were treated with about 
2 μl (of a 330 μg ml−1 stock) of the water-soluble lipophilic dye FM 
4-64 (Invitrogen), which labels cell membranes. The treated inflo-
rescences were then immersed in water and observed on a Zeiss 
LSM 510 confocal microscope with a 63× water immersion achro-
plan lens with a 2 mm working distance. Images were acquired 
at a resolution of 0.2 μm along x and y axes and 1 μm along the  
z axis. The meristems were manually rotated between angle scans, a 
process that took 2–5 min, which equates to a total acquisition time 
of 45–60 min per flower at each time point. Each set of multiangle 
scans took 45–60 min to acquire. In experiments in which the flowers  
were imaged multiple times, the inflorescence meristems were 
returned to a culture chamber after each observation and relabeled 
with FM4-64 before subsequent imaging.

All flowers presented here were either in the Columbia (Col) 
or the Wassilewskija (Ws) ecotypes. ‘Flower 3’ and ‘flower 2’ were 
observed at high resolution (1,024 × 1,024 pixels) over two time 
points. ‘Flower A’ and ‘flower B’ were imaged at ‘optimal’ resolu-
tion (using the option and specifications provided by Zeiss LSM 
Browser software) at four and three time points, respectively. 
Every flower was observed from three angles.

Rice (Oryza sativa L., variety Nippon bare) crown roots were 
collected from young seedlings (three developed leaves) and 
mounted (coverslip grade 0) in a PBS buffer solution (pH 7). 
Imaging was carried out on an inverted Zeiss 510 META NLO 
multiphoton microscope in the nondescanned mode using a 
chameleon ultra 140 fs pulsed Ti-sapphire laser (Coherent). For 
cell-wall autofluorescence measurement, the laser was scanned 
from 690 to 770 nm range, with a peak performance at ~710 nm 
(which is roughly equivalent to 355 nm in single-photon excita-
tion with a continuous wavelength laser system). Images were 
collected with a c-apochromat ×40, 1.2 numerical aperture (NA) 
(Korr uv-vis-ir) water-immersion objective.

Scalability of the MARS pipeline. We applied our MARS  
protocol to rice roots using a multiphoton microscope. We first 
acquired images of the root apex from multiple lateral views 
(Supplementary Fig. 5a); the first image stack was defined as 
the ‘reference view’ (X), one other view (X′) was diametrically 
opposite to this and two others were at either end of the ortho-
gonal diameter (Y and Y′). We segmented either the reference 
view alone (which we called ‘one-view’) or the 3D reconstruc-
tions generated by fusing the following combinations of image 
stacks: X plus X′ (two-opp-view); X plus Y or Y′ (two-ort-view); 
X plus X′ plus Y or Y′ (three-view) or all four (four-view). The 
results were evaluated on a sample of about 800 manually seg-
mented cells chosen in either the superficial cortical layer or 
the central meristematic zone (Supplementary Note 5 and 
Supplementary Video 3).

Lineage tracking as an optimization problem. After each regis-
tration step of the ALT algorithm, we used the obtained common 
reference system to detect potential cell lineages. For every cell 
i of a given image in the sequence (source image), we look for 
daughter candidates j1, j2,…, jk in the next image in the sequence 
(target image). Daughter candidates of i were identified based 
on their spatial proximity to i in the common reference system. 
Here these were defined as the cells j whose center of mass are at a 
distance less than a threshold distance, dmax, from the surface of i 
(the distance of a cell j to the surface of i is defined as the shortest 
distance between the center of j and any point of the surface of i). 
This defined a set of lineage hypotheses at this step (note that the 
cells belonging to the set of already determined high-confidence 
lineages are not taken into consideration here).

To solve the lineage problem, we then formalized the search for 
a set of consistent lineages between the source and target images 
as a combinatorial optimization problem. Here we define a valid 
mapping between the two images as a list of pairs of cells (i,j), i in  
the source image I and j in the target image J such that j is one 
of the candidate cells for cell i, and such that j appears only in 
one pair of the mapping (a cell of the target image cannot be a 
descendant of several cells in the source image). If a parent cell 
does not appear in a valid mapping M, it has no descendant in the 
target image by M. The set of such cells and the set of daughter 
cells that have no parent in the source image are denoted 

I JM Mand ,

respectively. We then attach a cost γij corresponding to the  
normalized distance between i and j. We also define constant 
costs, γI and γJ that a cell i has no daughters, and a cell j has no 
parent, respectively (Supplementary Note 4). Then, the cost of a 
valid mapping M between the source and the target image can be 
defined as the sum of the local cost of the pairs of cells in M: 

Γ( )M ij

M

I

I M

J

J M

= + +∑ ∑ ∑g g g

The search for a valid lineage between the two images can then 
be formulated as an optimization problem: among all the possible 
valid mappings, we look for a single M* with minimal cost, that is, 
that globally minimizes the distance between the mapped cells: 

M M
M

* arg min ( )=
valid

Γ

To solve this optimization problem, we modeled it as a problem 
of flow (Fig. 2j and Supplementary Note 3), which was shown 
to be tractable in polynomial time27,28.

Assessing the effect of tissue deformation between consecu-

tive acquisitions in ALT. The ALT pipeline accuracy is critically 
related to the amount of change in the tissue (deformation and/or 
cell divisions), rather than to the time intervals between acquisi-
tions. We tested this using serial time points where the deforma-
tion was limited (less than twofold), such as for ‘plant A’ at T0, T1 
and T2, and performed a direct tracking of cell lineages between 
T0 (considered as the source image) and T2 (as the target image), 
as if the image at T1 did not exist. We found that the tracking 
results were markedly better between T0−T1 (100%) and T1−T2 
(94%), than between T0−T2 (87%), hence showing that keeping 
time intervals short in order to limit deformation increases ALT 
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accuracy. In addition, this also decreases the required manual 
annotation (for example, T0−T1is 100% accurate regardless of 
whether 4 or 22 reference lineages are provided). However, sys-
tematically decreasing time intervals from 24 h to 12 h may not 
be necessary as different growth transitions require different time 
intervals (Fig. 3 and Supplementary Fig. 7).

Software. The MARS-ALT software pipeline is available as 
Supplementary Software and at http://openalea.gforge.inria.
fr/dokuwiki/doku.php?id=packages:packages/. Software details 

are described in Supplementary Note 5. Time estimates for 
the different phases of the MARS-ALT pipeline are given in 
Supplementary Table 1.

26. Das, P. et al. Floral stem cell termination involves the direct regulation of 
AGAMOUS by PERIANTHIA. Development 136, 1605–1611 (2009).

27. Edmonds, J. & Karp, R.M. Theoretical improvements in algorithmic 
efficiency for network flow problems. J. Association Computing Machinery 
19, 248–264 (1972).

28. Tarjan, R. Data structures and Network Algorithms. (Society for Industrial 
and Applied Mathematics, 1983).
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