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Abstract

Purpose: Radiotherapy planning requires accurate delineations of the tumor and of the critical structures. Atlas-based
segmentation has been shown to be very efficient to automatically delineate brain critical structures. We therefore
propose to construct an anatomical atlas of the head and neck region.

Methods and materials: Due to the high anatomical variability of this region, an atlas built from a single image as for
the brain is not adequate. We address this issue by building a symmetric atlas from a database of manually segmented
images. First, we develop an atlas construction method and apply it to a database of 45 Computed Tomography (CT)
images from patients with node-negative pharyngo-laryngeal squamous cell carcinoma manually delineated for
radiotherapy. Then, we qualitatively and quantitatively evaluate the results generated by the built atlas based on
Leave-One-Out framework on the database.

Results: We present qualitative and quantitative results using this atlas construction method. The evaluation was
performed on a subset of 12 patients among the original CT database of 45 patients. Qualitative results depict visually
well delineated structures. The quantitative results are also good, with an error with respect to the best achievable
results ranging from 0.196 to 0.404 with a mean of 0.253.

Conclusions: These results show the feasibility of using such an atlas for radiotherapy planning. Many perspectives are
raised from this work ranging from extensive validation to the construction of several atlases representing sub-

populations, to account for large inter-patient variabilities, and populations with node-positive tumors.
© 2008 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 87 (2008) 281—289.
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The treatment of tumors may involve chemotherapy,
surgery or radiotherapy. Owing to recent technological
advances, conformal radiotherapy precisely targets the
tumor while keeping an acceptable level of irradiation even
on nearby critical structures. However, it is necessary to
locate accurately the tumor and the organs at risk in order
to determine the best characteristics for the irradiation
beams. However, a manual delineation process is typically
tedious, very long and not always reproducible.

The use of an anatomical atlas, i.e. an image of a mean
anatomy and its segmentation, has been extensively studied
to automatically delineate the brain for many different appli-
cations [1—4]. These methods differ most often by the regis-
tration method used to map the atlas image onto the patient.
Recently, [5—7] proposed the use of an atlas for the segmen-
tation of brain critical structures for radiotherapy. In this con-
text, many methods have also been introduced to take into
account the presence of the tumor in the brain [8—10] to
reduce the tumor induced registration discrepancies.

Tumors in the head and neck region are more frequent
than in the brain and represent around 7% of all the
cancers. The treatment of these tumors often involves
radiotherapy. It would then be of great interest to devel-
op an anatomical atlas to help the physician to segment
automatically structures of interest in this region.
Recently, consensus guidelines have been presented for
the delineation of neck lymph node levels for radiother-
apy planning [11,12]. These are based on precise and
clearly identifiable anatomical landmarks to determine
the limits between the lymph node levels in the patient
image. Using an atlas whose anatomy is delineated
following these guidelines is therefore of great interest
as it would provide the physician with an automatic and
reproducible delineation.

Some desirable properties for the atlas have been out-
lined by Bondiau et al. [7] in the case of a brain atlas. They
evaluated three atlases for the automatic delineation of the
brain.
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¢ An initial atlas was built from an image of a single healthy
subject, which was delineated manually by an expert.
However, the anatomical variability between patients
introduced a systematic error on all segmentations
performed.

To overcome this problem, a second atlas, based on a
simulated MRI of an average brain anatomy (coming
from the BrainWEB' [13—16]), was constructed. Due to
the asymmetry of the atlas, however, certain errors
remained.

Finally, a symmetric atlas, derived from an image of a
symmetric anatomy (based on the preceding atlas),
effectively resolved these errors. Experiments showed
this last atlas was the most adapted to the different
anatomies.

The observations noted above apply equally, and in some
cases more so, to the head and neck region, where various
neck positions and degrees of fat may create large differ-
ences. Using an atlas built from one manually segmented
image may therefore lead to discrepancies when registering
one patient on the atlas. We have then chosen to build a
symmetric mean atlas from a database of patients manually
delineated following the rules given in [11].

This paper is organized as follows: we first describe our
image database and methods for atlas construction; we then
present the method we used to build an atlas from a data-
base of images which have been manually delineated. We
will then show how this atlas can be used to automatically
delineate a patient. In a second part, a Leave-One-Out
framework will be associated to our construction method
to evaluate quantitatively our atlas-based segmentation
method. Finally, we will present results of the head and
neck atlas construction and evaluation on our CT image
database.

Methods and materials

Head and neck image database

In this paper, we have used a database of patients with
node-negative pharyngo-laryngeal squamous cell carci-
noma. For that purpose, manually segmented images were
provided by the Radiation Oncology Department of the
Catholic University of Louvain (UCL). This database consists
of 45 CT images with a voxel size of 1.5 x 1.5 x 2 mm? ac-
quired in routine clinical practice. For each of these images,
structures of interest have been delineated following the
guidelines given in [11] for purposes of radiotherapy plan-
ning. The available structures for our atlas were the lymph
nodes (levels II, Il and IV), the parotids, the brainstem, the
spinal cord, the mandible and the sub-mandibular glands.

Some examples illustrating the variability of positions
and anatomy between the patients are shown in Fig. 1.
Some contours are missing in these patients. Some lymph
node levels have indeed been removed because they also in-
cluded the adjacent primary tumor volume.

' http://www.bic.mni.mcgill.ca/brainweb/

Atlas construction

State of the art

The construction of an atlas from a database of images
relies basically on the registration of all the images on a
reference image. However, choosing a specific image as the
reference introduces a bias due to its specific anatomy. Sev-
eral methods were therefore introduced to select the atlas as
the least biased reference image. Marsland et al. [17] se-
lected the reference image as the one that minimizes the
sum of the distances with respect to the other images. Park
etal. [18] proceeded in asimilar manner, but used all pairwise
registrations between the images to compute the distances.

Other methods were also introduced to build an unbiased
atlas [19—21]. They iterate on two steps: the registration of
the images on the reference and the application of the
inverse mean transformation to the mean image. Guimond
et al. [19] have shown that this approach, extended by
[20,21] to transformations containing large deformations,
is not dependent on the choice of the reference image.
Recently, based on this principle, a method has been inves-
tigated to generate directly a mean symmetric atlas from a
database of images [22].

Other methods use higher dimension registration to reg-
ister simultaneously the images in a common space
[23,24]. They optimize a criterion maximizing a similarity
measure between the images while minimizing the displace-
ments with respect to the mean image.

Finally, de Craene et al. [25] proposed recently a method to
build the mean image and compute the mean segmentations
together. This is achieved using an EM algorithm which
alternates two steps. First, the mean image is estimated by
registering the manual segmentations. Then, the mean seg-
mentations are computed using a method similar to stapLe [26].

Construction method overview

To create our mean symmetric atlas of the head and neck
region, we will use the database of CT images described in
Head and neck image database. In this context, we have
chosen not to use the method proposed in [25] because it re-
lies on the registration of manual segmentations without
taking into account the CT images. However, in our context,
the structures of interest do not cover all of the CT images;
hence, the computed transformations outside of these re-
gions will be indeterminate, leading to errors when building
the mean CT image. Moreover, the high intra- and inter-pa-
tient variability may also introduce errors in the atlas.

For these reasons, we have opted for a more classical,
separated approach in constructing our atlas, as illustrated
in Fig. 2. We present in the remainder of this section the
main steps of the atlas construction, which can be summed
up as follows:

e construction of an asymmetric mean image (mean image
construction),

e computation of the mean segmentations from the
individual manual segmentations (mean segmentations
computation),

e symmetrization of the atlas
symmetrization).

generated (atlas
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Fig. 1. Illustration of the image database from UCL. Examples of sagittal (upper line) and coronal slices (bottom line) and their manual
segmentations for 4 patients showing an important variability of position and anatomy.
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Fig. 2. Schematic view of the symmetric atlas construction method. This scheme illustrates the major steps (mean image construction, mean
segmentations computation and symmetrization) used to build an atlas from a dataset of images.

Mean image construction

This first step is performed using the method developed
by Guimond et al. [19]. It has the advantage of being faster
and simpler than the one proposed by Lorenzen et al. [21]
and is sufficient for our images. This method is based on
an iterative scheme to build an unbiased mean image from
the image database.

At each iteration i, all the images I, are non-linearly
registered (details are given in Non-linear registration
method) on a reference image R;, deriving transformations
T«. Next, a mean image M; is built by averaging the inten-

sities of the registered images. At the same time, the
non-linear transformations T, are averaged to produce a
transformation T. The reference image for the next iter-
ation is then computed by applying its inverse to
M; ZRi+1 :MiOT_1. _

Once convergence is reached, a mean image M is ob-
tained as well as transformations T, deforming each image
Iy on M. At the outset this algorithm requires an initial ref-
erence image Ry. As the built atlas is unbiased, any image of
the database can be selected as Ry,. More details can be
found in [19].
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Mean segmentations computation N

Each image I, is now associated to one transformation T
bringing it on the mean image M. By applying these T,
transformations to the manual segmentations, we can then
obtain all the manual segmentations on M.

The classical approach to obtaining the mean segmenta-
tions consists in taking the average of the manual segmenta-
tions independently for each structure. However, a high
variability exists among the patients in the database, which
can result in registration discrepancies. This may have an
important impact on the average segmentations when using
a simple mean. Moreover, using a simple mean may produce
overlapping mean segmentations for structures that are in
close proximity. This is not satisfactory as they are assumed
to be separated.

To overcome these drawbacks, we have chosen to use
sTAPLE [26]. This method uses a set of segmentations to pro-
duce a robust multi-category ‘‘ground truth’’. This is done
using an Expectation Maximization algorithm iterating the
following steps:

¢ the probability of each voxel to belong to each structure
is computed in the Expectation step, knowing the current
estimates of the expert parameters,

¢ quality parameters for each input segmentation are com-
puted in the Maximization step knowing the current esti-
mate of the ground truth.

All the manual segmentations coming from image /;, and
transformed onto the mean image M, are used as the input
segmentations in stapLe. Next, the mean segmentations are
computed by using a classification of the obtained probabil-
ities (i.e. each voxel is assigned the class that has the high-
est probability). This therefore ensures separated mean
segmentations. Moreover, the EM algorithm ensures a better
robustness with respect to variations among the manual seg-
mentations due to misregistrations, intra- or inter-expert
variability.

Atlas symmetrization

The preceding steps aimed at building an asymmetric
mean image and its associated mean segmentation. As pre-
viously indicated, using a symmetric atlas will help avoiding
discrepancies when registering it on the patients. We are
thus interested in this section in symmetrizing the atlas ob-
tained above.

To this end, we have chosen to use a method which esti-
mates the transformation bringing the image on its symme-
try plane. This method is illustrated in the literature on the
computation of the mid-sagittal plane of the brain [27].
Briefly, this method looks iteratively for a transformation
R between the image | and its symmetric /o Sx, where Sk
is a mirroring transformation. Additional details regarding
this algorithm are presented in [27].

The mean symmetric image Ms is then computed by aver-
aging the mean image centered on its symmetry plane Mo R
and its symmetric M o R o S¢. The binary symmetric segmen-
tations are then obtained in two steps:

¢ the symmetrization is applied to the image of probabili-
ties from STAPLE,

¢ then, the symmetric probabilities are classified to get the
mean symmetric binary segmentations.

Atlas adaptation

In the previous sections, we have presented a method for
building an anatomical atlas, composed of a mean CT image
and of mean segmentations, from a database of images. The
next step in the proposed atlas-based segmentation method
is to adapt this atlas onto the patient to produce its auto-
matic segmentation.

Adaptation process

Given the atlas Ms and a patient P, atlas-based segmen-
tation relies on a two-step inter-patient registration
process:

¢ a global affine transformation is computed between P
and Mg, based on a robust Block-Matching registration
algorithm [28],

e then, the remaining local deformations due to inter-
patient variability are recovered using a non-linear regis-
tration method.

These transformations are then applied to the atlas
structures to produce the automatic delineations. The
non-linear registration method is crucial to get an accurate
segmentation of the patient. There is indeed a tradeoff be-
tween its robustness and its ability to recover the deforma-
tions due to inter-patient variability.

Non-linear registration method

To get the best trade-off between robustness and preci-
sion, we have presented in [29] a framework to evaluate
both the method used to build the atlas and the one to reg-
ister it on the patient. This study, performed on three dif-
ferent methods, has shown better results when using a
two steps hierarchical approach for both the atlas construc-
tion and the atlas registration.

e First, locally affine registration [30] is used to recover
the large displacements in a robust manner.

e Then, the remaining local deformations are recovered
using a dense transformation (one displacement vector
per voxel).

Locally affine registration [30] allows predefined re-
gions to be registered on a reference image by associating
to each region a local affine transformation. The global
transformation is then interpolated between the regions
using weight functions for each region. The transforma-
tion is optimized by alternating between the optimization
and a visco-elastic regularization of the affine transforma-
tions. More details can be found in [30]. In our context,
regions were defined on the structures that were available
to build the atlas.

The second step is then to optimize a dense transformation
torecover the remaining local deformations. To be able tore-
cover large anatomical differences while being robust to reg-
istration discrepancies, we have chosen to use a method
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integrating an a priori outlier rejection. Moreover, this meth-
od is fast and able to produce smooth deformation fields.

This method, also presented in [29], is an extension to
dense transformation of Block-Matching based rigid registra-
tion [28]. At each iteration i, pairings are computed be-
tween the images using Block-Matching. A correction
displacement field 6T is then interpolated from the sparse
pairings U; using the similarity values of the pairings as con-
fidence parameters. This ensures a smooth transformation
close to the pairings associated to a good confidence value,
and more interpolated anywhere else.

An outlier rejection is then performed by comparing 6T
and U;. If the norm of their difference is greater than an
automatically defined threshold, then the pairing is consid-
ered as an outlier and removed. A correction 6T is then
computed from the remaining pairings and composed with
the current estimate of the transformation.

Atlas evaluation

We have presented so far a method for constructing an
atlas from a database of manually segmented images. We
now present a framework to evaluate the quality of the
automatic delineation on our database. This process con-
sists of the following steps:

¢ one of the database images and its segmentation is set
aside

e the atlas is built from the N — 1 other images (see Atlas
construction)

e the atlas is adapted on the left-out patient (see Atlas
adaptation)

e comparison of the automatic and manual segmentations

Two common overlap-based measures were used to com-
pare the automatic and manual segmentations: sensitivity
and specificity. We also compute the error between this cou-
ple of measures and the best achievable result (Sensitiv-
ity =1, Specificity =1), defined as the norm | (1 — Sens.,

(b)

1 — Spec.)||. This error has no unit and gives a simplified idea
of the quality of the result. The overall quality of the auto-
matic segmentation indeed increases as the error decreases.

Results

In this section, we present the segmentation results pro-
duced by the atlas built from our database of images. We
will then first present the atlas which is obtained from our
construction process. Then, we will present qualitative
and quantitative results on the database of images pre-
sented in Head and neck image database.

Obtained atlas

We have used our symmetric atlas construction method
to build an atlas from the database of 45 CT images de-
scribed in Head and neck image database. Fig. 3 illustrates
this atlas, showing the mean delineations superimposed on
the mean image.

First, this figure shows that the registration method used
in the atlas construction process performs well. Indeed, we
were able to produce images with sharp vertebral bound-
aries (image (c)), even though this region was particularly
variable among the patients of the database (see Fig. 1).
Our technique of hierarchical non-linear registration seems
then well adapted for the atlas construction.

Images (a) and (b) also reveal certain structures, such as
parotids and lymph node levels I, that are slightly overseg-
mented, which is primarily due to the variability in the man-
ual segmentations among the various patients in the
database. Even after non-linear registration on the mean im-
age, when the structures have been visually well deformed to
correspond to those of the atlas, these structures are still dif-
ferent. This intra-expert inter-patient variability therefore
results in an overestimation when computing the mean seg-
mentations. The structures, however, are still very close
qualitatively to the segmentations which we would expect.

Fig. 3. Resulting atlas using our symmetric construction method. Contours of mean structures superimposed on the mean image of the atlas:
(a): axial slice, (b): coronal slice, (c): sagittal slice. Structures represented in the atlas: (1): mandible; (2): right parotid; (3): right sub-
mandibular gland; (4): right level II; (5): left sub-mandibular gland; (6): left parotid; (7): left level Il; (8): spinal cord; (9): right level IlI; (10):

left level Ill; (11): right level IV; (12): left level IV; (13): brainstem.
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Fig. 4. Qualitative comparison of the atlas-based and manual segmentations. Delineations obtained on a patient removed from the atlas
construction process using the Leave-One-Out method. (a—c): manual segmentations; (d—f): delineations obtained using the atlas. Structures
represented: (1): mandible; (2): right parotid; (3): right sub-mandibular gland; (4): right level Il; (5): left sub-mandibular gland; (6): left
parotid; (7): left level Il; (8): spinal cord; (9): right level lll; (10): left level lll; (11): right level IV; (12): left level IV; (13): brainstem.

Table 1
Quantitative results of atlas-based segmentation
Sens. Spec. Error

Mean 0.820 0.860 0.253
Patient 1 0.852 0.870 0.216
Patient 2 0.853 0.855 0.228
Patient 3 0.793 0.849 0.277
Patient 4 0.911 0.829 0.211
Patient 5 0.740 0.876 0.307
Patient 6 0.890 0.860 0.196
Patient 7 0.872 0.838 0.223
Patient 8 0.888 0.842 0.203
Patient 9 0.636 0.865 0.404
Patient 10 0.738 0.901 0.291
Patient 11 0.892 0.814 0.234
Patient 12 0.776 0.924 0.240

Mean sensitivity (Sens.), specificity (Spec.) and error with
respect to the best result achievable (Sens. = 1, Spec. = 1) on 12
patients (between 10 and 13 structures delineated manually for
each patient). The mean row corresponds to the average of the
results over the twelve patients. Bold figures show the overall
average results as well as the lowest and highest errors obtained
on the 12 patients.

Qualitative evaluation

In Fig. 4, we show the qualitative results obtained on a pa-
tient left-out of the database using our Leave-One-Out eval-
uation method, the results of which were compared to the
manual segmentations available for this left-out patient.

First, on structures such as the brainstem, spinal cord or
mandible, we see that the delineations are qualitatively
good when compared to the manual segmentations. How-
ever, we also note a slight over-segmentation of the lymph
node levels (particularly level 1) and of the parotids. There
are indeed some of the surrounding tissues that are included
in node level Il (see arrows on coronal slices (b) and (e)).
These oversegmentations are linked to the ones we have no-
ticed in the atlas. They may also be linked to registration
discrepancies that arise when deforming the atlas on the pa-
tient. These errors can be due to too large differences in the
amount of neck fat as well as position differences between
the patient and the atlas.

Quantitative evaluation

The quantitative evaluation of the atlas-based segmenta-
tion was performed using the method proposed in Atlas
evaluation on 12 patients in the database. This subset was
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(d)

Fig. 5. Comparison between the atlas and a corpulent patient. Illustration of the anatomy differences between the atlas (bottom line) and

patient 9 (upper line) after a global affine registration.

chosen so that most of the atlas structures were manually
delineated on each patient. The evaluation on this subset
will then allow to get a better view of the results obtained
by the atlas-based segmentation.

In Table 1, we present the sensitivity and specificity re-
sults obtained for these patients. For clarity, we show only
the mean results over all structures of each patient. For
each couple of sensitivity/specificity results, we also know
the error between this pair and the best achievable result
(Sensitivity = 1, Specificity = 1), (see Atlas evaluation). Fi-
nally, the overall mean of these results over the 12 patients
is shown (bold line in the table).

This table indicates that the results are good for almost
all patients. We indeed obtain errors ranging from 0.196
to 0.404, and the overall mean error is of 0.253, which
suggests our atlas performs well on our database. One pa-
tient (patient 9), however, was not as well delineated as
the others. This is due to the specific anatomy of this pa-
tient, who was particularly large. His anatomy is indeed
very different from the one of the atlas as it can be seen
in Fig. 5.

This figure is a clear illustration that large differences
can exist between some patients and the mean atlas. This,
in turn, can lead to registration discrepancies, giving there-
fore less good quantitative results. This observation sug-
gests the presence of sub-populations within the database.
One possible solution to this problem would then be to build
several atlases representing these sub-populations from the
image database. Then, by selecting the most similar atlas to
a given patient, the anatomical differences would be less
important and the results closer to the manual
segmentations.

Discussion

In this article, we have presented a method for creating
an anatomical atlas of the head and neck region from a
database of 45 manually delineated CT images. This method
was associated with a Leave-One-Out framework to quanti-
tatively evaluate the results of the atlas-based segmenta-
tion. The evaluation of the built atlas has shown good
results both qualitatively and quantitatively. This demon-
strates the feasibility of using an anatomical atlas for radio-
therapy planning in this region, producing fully automatic
and reproducible segmentations of the structures of
interest.

The atlas built in this article already includes many useful
structures for radiotherapy planning. However, there are
still structures that are not present in the database of
images. A first additional work to this article will then be
to get more structures delineated in the database to get
an atlas comprising all the structures needed for radiother-
apy, as described in [11].

Then, more validation is also to be added to this work and
particularly in clinical conditions. It would indeed be of
great interest to compare the results of the atlas on
patients from different centers. Moreover, a cross valida-
tion from several experts would be very important. Efforts
to reach this validation actually have begun within the
MAESTRO European project [31], where the automatic
segmentations of several patients were compared to several
manual segmentations from different experts. This study,
that needs to be extended to more patients and more
experts, confirmed our results showing an oversegmentation
of some structures and quantifying an inter- and intra-ex-
pert variability of the manual segmentations. However,
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the obtained structures are still very well located and could
be used in the future as initialization for post-processing
algorithms, for example constrained deformable models.

Other issues concern the atlas construction method it-
self. For example, we have seen in our experiments that
the structures were overly segmented inside the atlas itself.
This is likely owing to the intra-expert variability in the
manual delineations. Such variability can result in too large
average segmentations. Hence, the process chosen for
building the mean segmentations from the individual ones
may not be optimal. It would therefore be interesting to
evaluate quantitatively this intra-expert variability. The
evaluation of different methodologies to build the mean
delineations, that can take into account probabilistic man-
ual segmentations instead of binary ones, will also be inter-
esting. These could be for example a combination of [32]
with the Log-Odd maps [33].

As previously mentioned, an other source of errors
explaining the over segmentations are the large differences
existing between the patients in the database. Indeed, var-
iable amounts of fat in the neck region as well as the posi-
tion of the neck relative to the atlas can also result in
registration discrepancies. One solution to this problem
could be the construction of several atlases tailored to
the sub-populations in the image database, as proposed in
[34]. A challenging point will then be the selection for a gi-
ven patient of the most similar atlas to get the best segmen-
tation results.

The built atlas described in this paper has been aimed at
patients with tumors staged NO, i.e., tumors that do not de-
form the anatomy. Consequently, this atlas may fail to seg-
ment patients with node-positive tumors, that may induce a
large deformation of the nearby structures. The construc-
tion of atlases for patients with tumors of higher stages will
then be of great importance. This also implies to take into
account for the deformations caused by the tumor in the
images when building the atlas and when registering it.
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