IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 5, MAY 2006

653

Reconstruction of Coronary Arteries From a Single
Rotational X-Ray Projection Sequence

Christophe Blondel, Grégoire Malandain* , Régis Vaillant, and Nicholas Ayache

Abstract—Cardiovascular diseases remain the primary cause of
death in developed countries. In most cases, exploration of pos-
sibly underlying coronary artery pathologies is performed using
X-ray coronary angiography. Current clinical routine in coronary
angiography is directly conducted in two-dimensional projection
images from several static viewing angles. However, for diagnosis
and treatment purposes, coronary artery reconstruction is highly
suitable. The purpose of this study is to provide physicians with
a three-dimensional (3-D) model of coronary arteries, e.g., for
absolute 3-D measures for lesion assessment, instead of direct
projective measures deduced from the images, which are highly
dependent on the viewing angle. In this paper, we propose a novel
method to reconstruct coronary arteries from one single rotational
X-ray projection sequence. As a side result, we also obtain an
estimation of the coronary artery motion. Our method consists of
three main consecutive steps: 1) 3-D reconstruction of coronary
artery centerlines, including respiratory motion compensation;
2) coronary artery four-dimensional motion computation; 3) 3-D
tomographic reconstruction of coronary arteries, involving com-
pensation for respiratory and cardiac motions. We present some
experiments on clinical datasets, and the feasibility of a true 3-D
Quantitative Coronary Analysis is demonstrated.

Index Terms—Angiocardiography, coronarography, image mo-
tion analysis, image reconstruction, tomography.

I. INTRODUCTION

CCORDING to the World Health Organization [1, page
48], coronary heart disease is the major cause of death
worldwide. In particular, coronary artery lesions are involved in
most cases of heart failure and are, thus, the subject of medical
imaging examinations when a pathology is suspected.
Currently, clinical routine relies on direct analysis of
X-ray coronary angiographies acquired from several static
acquisitions from distinct viewing angles. It, thus, produces
two-dimensional (2-D) measures [e.g., quantitative coronary
analysis (QCA)] which suffer from well known viewing angle
dependence, magnification factor, and superimposition ef-
fects. However, to achieve adequate therapeutic orientation,
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three-dimensional (3-D) measures such as absolute vessel
cross-sectional area would be of interest as they can be used to
specify diameter and length of angioplasty balloons or stents
to be used. In this context, 3-D reconstruction of coronary
arteries would be of great clinical and diagnostic interest as
it would provide physicians with 3-D absolute measures. Our
purpose is, thus, to obtain tomographic reconstructions of
coronary arteries, in a CT-like manner, from the most widely
available imaging modality for coronary artery examination,
X-ray coronary angiography.

Such 3-D information may be obtained by biplane angiog-
raphy, since this modality provides two (almost) synchronized
projections of the coronary arteries [2]-[4], or by selecting two
views from two single-plane angiograms [5]. However, using
only two projections is not sufficient to provide a precise mea-
sure of cross section areas. Reconstructing the coronary arteries
still remains a very challenging task, despite recent advances in
medical imaging hardware and methodologies. In X-ray coro-
nary angiography, the introduction of the digital flat panel [6]
combined with a rotational acquisition mode [7] allowed for the
proposal of new techniques in coronary artery modeling. The
number of projections used for reconstruction can be increased
by selecting the ones that correspond to the same cardiac time
in a rotational acquisition, as in [8], [9], but most of the acquired
images are discarded in such a procedure. By selecting projec-
tions close to a cardiac time, the number of used projections
increases [10] but reconstruction artifacts may appear due to
motion, and a significant number of acquired images are still
discarded.

The main two difficulties that arise for the tomographic recon-
struction of coronary arteries from angiograms are indeed the
respiratory and cardiac motions that are visible in the X-ray pro-
jection sequence. In this paper, we present a study that demon-
strates the feasibility of the reconstruction of a 3-D image of
the coronary arteries from a single rotational X-ray projection
sequence, without requiring any additional measure [e.g., elec-
trocardiography (ECG)].

Contrary to iterative methods that alternate between motion
estimation and tomographic reconstruction (e.g., [11]), the pro-
posed method is direct and consists of three major steps (see
Fig. 1): 1) static 3-D reconstruction of coronary artery center-
lines at one given cardiac phase; 2) estimation of four-dimen-
sional (4-D) motion from resulting set of 3-D lines; 3) 3-D to-
mographic reconstruction of coronary arteries performed by in-
tegrating cardiac motion compensation. This last step is only
sketched here, details can be found in [12].

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the rotational acquisition protocol that was
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Fig. 1. Overview of the proposed method. The reference images (images that
are synchronous with respect to the cardiac cycle) are identified in a prepro-
cessing stage, and some data, at the extremities of the temporal sequence, are
discarded. These reference images are used to reconstruct a static 3-D center-
lines model at the reference time. This model and all the data allow the calcu-
lation of a 4-D deformation field that estimates the cyclic heart motion. This
4-D motion and all the data (from ref. 1 to ref. n) are finally used to provide the
tomographic reconstruction of a 3-D image of the coronary arteries.

used and the datasets we were provided. Sections III, IV, and V
detail, respectively, the 3-D centerlines reconstruction (which
is coupled with respiratory motion correction), the coronary
artery motion estimation, and the tomographic reconstruction
with motion compensation. Experiments on patient datasets are
presented in Section VI, while the next Section VII discusses
the proposed method and some potential clinical applications.
Section VIII gives some perspectives.

II. DATA AND PREPROCESSING

A. Data

Images were acquired on an Innova 2000 system, from Gen-
eral Electric HealthCare, which is equipped with a digital flat
panel detector. The gantry performs a rotation while acquiring
the images [13]. The gantry motion is characterized by constant
SID (Source Intensifier Distance) value, constant cranio/caudal
(CRA/CAU) angle value, and varying left/right anterior oblique
(LAO/RAO) angle. Thus, the rotation occurs in patient axial
plane, with maximum LAO/RAO angle amplitude of 200°. Top
rotation speed is 40° s~ !, leading from 3-s- to 5—s-long acqui-
sitions. Angiograph acquisition frame rate is 30 Hz. Thus, this
protocol provides us with the imaging of three to seven cardiac
cycles. Images acquired at the same cardiac phase are approx-
imately separated by a 30° angular shift, depending on patient
heart rate.

For each patient, we have a single rotational sequence con-
sisting of o images I,, with spatial resolution 768 X 768 pixels
and pixel size of 0.2 mm. We resampled these images into a 512
x 512 lattice for computational purposes. In addition, a pre-
calibration step allowed to estimate the geometrical acquisition
parameters that are summarized in O projection matrix appli-
cations M,, : R® — R2, the matrix M,, being associated to
image I,.
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B. Preprocessing

A prerequisite for our method is the identification of a
pseudo-cardiac time (or observed cardiac phase) for all images
in the sequence. This information is computed solely from the
image sequence information, without any external measures
such as ECG signal. The basic idea is the following: along
the cardiac cycle, systole is characterized by myocardium
contraction and a global top-to-bottom motion of the coronary
tree in the axial direction, while diastole is characterized by
myocardium relaxation and a global bottom-to-top motion of
the coronary tree in the axial direction. In addition to the cardiac
motion, the coronary arteries are also subject to the respiratory
motion that consists mainly in a vertical translation in the axial
direction, but of much lower frequency than the cardiac one.
We then assumed that the high frequency part of the global
vertical motion of coronary arteries in the image sequence is
directly related to the cardiac phase.

To identify the vertical component of motion in the image se-
quence, we first compute for all images I,(z, y) the vector of
horizontal line integrals H,(y) = >, I,,(x,y) of an associated
local contrast image I,,(z, y) (obtained by applying a morpho-
logical top-hat operator [14] on the initial image I,,) over the
horizontal coordinate. The vertical motion between two suc-
cessive frames is estimated by identifying the shift along the
vertical axis that minimizes the sum of squared differences be-
tween the corresponding H,,. The process is carried out over
the complete sequence and leads to a nearly periodic signal over
time, whose high frequency characterizes the heart beat. Quasi
synchronous images can be easily identified by either selecting
image indices at local maxima of the integral signal, located at
end-diastole, or selecting image indices at local minima of the
integral signal, located at end-systole [41]. In practice, quasi
synchronous images acquired at end-diastole are preferred be-
cause they correspond to the most relaxed and stable state along
heart motion, and consequently reduces superimpositions and
potential asynchronism. The selected quasi synchronous im-
ages, which correspond to the same cardiac phase, are called
reference images. The set of reference images will be denoted
by R and its cardinal by R.

Using reference image indices, we assign to each frame a
normalized time that encodes the observed cardiac phase, rel-
atively to cardiac phase in reference images. Normalized times
belong to the [0,1[ interval. The computation scheme is the fol-
lowing: two successive reference images are respectively as-
signed to normalized time ¢ = 0 and normalized time ¢ =
1, then normalized times of intermediate images are given by
linear interpolation.

Time normalization is adapted to cardiac period changes
during the acquisition, which is often the case, as contrast
agent injection usually accelerates heart motion. Indeed, we
do not assume that the number of acquired images between
two references times is fixed for a given sequence. However,
images before the first and after the last reference images can
not be assigned a normalized time. In the following, we discard
these images from the sequence to only consider the N images,
N < (5, between the first and last references images. The
normalized time of image I,, is denoted %,,.
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Fig. 2. Filter response computation scheme. Filter response at pixel p is com-
puted by calculating an edge response on both sides of the potential rectilinear
structure, at distance o from pixel p in direction d,, orthogonal to the structure
direction D, .

III. THREE-DIMENSIONAL CENTERLINES RECONSTRUCTION

The first stage of our method is the reconstruction of 3-D cen-
terlines from the reference images, corresponding to normalized
time ¢ = 0. These images are selected from one single sequence
and acquired at the same cardiac phase but from distinct viewing
angles. Thus, they are supposed to be uncorrupted by cardiac
motion, but are subject to respiratory motion. The extraction of
the coronary artery centerline in 2-D images and their 3-D re-
construction, including the respiratory motion compensation, is
detailed below.

A. Vessel Enhancement

Our first prerequisite is to enhance the vessels in the an-
giograms. We used the approach first proposed in [15], [16]
and extended in [17]. It relies on a multiscale Hessian-based
filtering that enhances curvilinear structures.

For a given scale o, an original image [ is first convoluted
with a 2-D Gaussian GG, with standard deviation o. The convo-
luted image is denoted by I, = I * G,,. The Hessian matrix of
the convoluted image is computed by

9’1, 9°I,
ox? dyox

HI, = 521 521 (D
Jxzdy 9y?

where the second derivatives of I, are calculated by convoluting

I with the corresponding second derivatives of G,. The eigen-

values and eigenvectors of the Hessian allow to characterize the

local structures [18]. It follows that the direction D,, of a poten-

tial locally rectilinear structure, i.e., a vessel, can be estimated
2 2 2

by tan(2 D, ) = ngg;(% - %)

Let d, be an unitary vector orthogonal to direction D,. A
vessel point should exhibit strong edge information (the vessel
borders) at some distance in both directions d,, and —d,. We
evaluate this edge information as the derivative of I, with re-
spect to d,, at a distance o, and we end up with a filter designed
for rectilinear structures

R,(p)=min{VI,(p+ 0d,).ds,—VI,(p—0d,).ds}. (2)

Fig. 2 shows an illustration of the filter response computation
scheme. This filter enhances rectilinear structures with width
close to scale 0. Moreover, it also has maximum response at
vessel center. Since the observed vessels have highly varying

sizes, the previous computation is extended to multiple scales
and conducted for a set of scales 3, adapted for smallest to
largest vessels. In pixels length unit, for 5122 spatial resolu-
tion images, we use ¥ = {1,2,3,4,5,6}. At each point p, the
best scale o*(p) is selected according to the maximum filter re-
sponse: o*(p) = arg max R,(p).

To compare and nogmalize the filter responses across scales,
the concept of y-derivatives was used [17], [19]. The direction
and the response associated with the best local scale are col-
lected into a multiscale direction D* and a multiscale filter re-
sponse map R*. This multiscale filter response R* can be con-
sidered as a likelihood for pixels to belong to the projected cen-
terline of a coronary artery.

B. Two-Dimensional Centerlines Extraction

From the above computed multiscale responses, we now build
a set of 2-D curves that represent the coronary artery center-
lines. This will be done in three steps: subpixel local direc-
tional maxima computation, hysteresis thresholding of local di-
rectional maxima, and points linking.

1) Subpixel Local Directional Maxima Extraction: R* ex-
hibits higher intensities in the center of a rectilinear structure
than in the vicinity of its borders. A pixel p is then likely to
belong to the vessel centerline if R* is maximal at p along a
direction orthogonal to the vessel. Such a direction is given by
d,«(p), so pixel p is a local directional maximum if the fol-
lowing conditions hold: R*(p) > R*(p + d,+) and R*(p) >
R*(p — dy+).

A subpixel estimation of the detected local maxima is
achieved by fitting a quadric on points (p — dy+«, R*(p — dy+)),
(p, R*(p)), and (p + dy+, R*(p + dy+)). After some calcula-
tions, it turns out that this subpixel maximum p is given by

R R*(p—dy+) — R*(p+ds+)
f— do—*.
PP SR (p+ dor) + B (p — dov) — 2R7(p))

The extracted set of points contains most of the vascular but also
many non vascular structures that have to be excluded.

2) Hysteresis Thresholding: Most of the irrelevant local di-
rectional maxima that do not correspond to vascular structures
are characterized by a low multiscale filter response and the
small size of the connected components they belong to. Hys-
teresis thresholding is suited to discard them since it offers the
possibility to retain only the elements that match both an inten-
sity criterion and a criterion of size of the connected compo-
nents. Hysteresis thresholding requires both a high and a low
thresholds. We compute these thresholds as quantiles of the cu-
mulated histogram of the multiscale filter response maps over
the complete sequence. The low threshold is set to a typical
value of the multiscale filter response on vessels, while the high
threshold is set to a typical value of the multiscale filter re-
sponse on vessel centerlines. These quantiles can be related to
relative area respectively occupied by vessels and vessel center-
lines in the images. From our experiments, we chose the 90th
percentile for the low threshold and the 98th percentile for the
high threshold. In addition, hysteresis thresholding allows to re-
tain only sufficiently large connected components. The minimal
connected component size was set to five pixels.

3)
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Fig. 3. Epipolar constraint. The 3-D point that projects at p in image I is located on the 3-D line L, (that joins p to S ). Consequently, its projection in image >
is located on the projection £,, of the line L,,. With two images (left), there are many possible 3-D points as intersections of £,, with vessels in I,. However, only
one of them projects on a vessel in the additional image I,, (right). This allows to penalize spurious reconstructed 3-D points.

3) Points Linking: Local directional maxima have been ex-
tracted point-wise, but vessels projected in images have a con-
nected structure. We recover this structure by linking points that
belong to the same component using the method described in
[20]. We denote by Cy the set of the 2-D connected centerlines
extracted from image I.

C. Multiocular Matching

Building correspondences between the centerlines of two ref-
erence images, I; and I, that are from the same cardiac phase
but acquired from two distinct viewing angles, enables the 3-D
reconstruction of the coronary artery centerlines by applying tri-
angulation and epipolar constraints.

Most of the proposed approaches for 3-D reconstruction
of coronary artery centerlines rely on only two angiographic
views [21], typically obtained by biplane angiography. The
rotational acquisition allows to get between three and seven
reference frames, depending on gantry rotation speed and on
patient heart rate. We propose to use all the available images
to perform a multiocular matching of the extracted centerlines
in reference images, as basically described in [22]. This is
achieved by optimizing a matching criterion detailed below.

1) Asymmetric Matching: Let us first consider the asym-
metric problem of matching a set of linked points, denoted by
C = (p1,...,pn) € Cy,,1in a first image I, with the extracted
centerline points in a second image I5.

* Problem formulation: As illustrated by Fig. 3, a point p

in I; is the projection of a 3-D point M located in 3-D
line L, joining source position .S; to projection position p.
The projection of the 3-D line L,, in I, denoted £,,, must
contain the projection g of M in I5: this is the epipolar
constraint.

Unfortunately, the epipolar constraint does not generally
yield a single match in /5 for each p € I;. Indeed, in
most cases, line £, intersects more that one centerline in
I, resulting in a set of matching candidates in I> [see
Fig. 3 (left)]. Our experiments shows an average of five
matching candidates per point. Let Q; denote the set of
matching candidates in I for point p; in I;. Building the

correspondences for a set of linked points (p1,...,pn) of
1I; consists then in choosing a set of points {¢1,...,qn} €
Q1 X -+ X Qn.

To compare different matching configuration, we now de-
sign a criterion to measure the quality of a given matching
hypothesis (p;, i);—; . - This quality measure is com-
posed of an external energy term, involving reference im-
ages information, and an internal energy term, favoring in-
trinsically coherent matching configurations, that are both
detailed hereafter.

External energy term: To disambiguate between the
matching candidates, the reference images other than I
and > are used. This additional information is indeed
useful: among the several matching candidates given by
the epipolar constraint, only one will be coherent with
the additional views in most cases. As shown on the right
hand side of Fig. 3, to each epipolar candidate corresponds
a 3-D point using reconstruction by triangulation, whose
projection in additional images is on a vessel only for the
correct correspondence.

A numerical criterion that reflects the relevance of a re-
constructed 3-D point is the value of the multiscale filter
response of its projection in the additional views. Let I, €
R\ {I1,I>} be such an additional view (from the same
cardiac phase than I; and I by the definition of R). To
any given matching pair (p, q) corresponds a 3-D recon-
structed point M,,, whose projection in additional image
I, is m = M,M,,. We recall that R} is the multiscale
filter response map associated to the additional image of
index a. The external energy term measuring matching pair
(p, q) quality is defined by

1
AMEXt(p7 q) = = _ Z

= Ri(MoMy) )
I.eR\{I,I.}

where R stands for the number of reference images.

This criterion reaches high values for matching pairs that
are coherent with additional reference images.

Internal energy term: the above criterion is convenient for
points, but does not take into account the intrinsic linked
structure of vessel centerlines. Indeed, a linked set of points
in image I, that represents a detected centerline, is more
likely to project as a single connected component in other
reference images than as disconnected pieces. Exceptions
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Fig. 4. Results of the dynamic programming based matching process. Centerlines in the first reference image are matched with centerlines in the second reference
image (images in top row) according to the information contained in the two additional views (last images in top row). Projection of the 3-D reconstructed points

is presented in all reference images (bottom row).

may occur in case of superimposition or defective center-
lines extraction. This constraint is called geometrical co-
herence.

Let (p1, q1) and (p2, g2) denote two matching pairs, where
po follows p; in a set of linked points in the extracted
centerline in I;. We define the penalty for two successive
matching point pairs as a function of the distance ||q1¢2||

AMry ((p1, 01), (P2, 42)) = p (llq1211) o)
0, if d < d;
with p(d) ={ =%, ifd; < d < dy. (6)
1, else

Thresholds d; and dj, are chosen such that matched points
whose distance is below d; are not penalized, and such
that the ones whose distance is above d;, are not over-
penalized since they may indicate a discontinuity in the
matching points sequence. Typically, d; = 2 pixels and
dy, = 50 pixels for 5122 images.

* Matching criterion: Finally, the criterion measuring the
quality of a matching configuration (p;,¢;),_; N 1S
chosen to be the weighted sum of the external ener7gy, term
for all points pairs and of the internal energy term for all
successive points pairs

AM ((piaqi)izl,... N) == Z AMgxi(pi, 4i)

i=1,...,N

Z AMInt ((pw QZ)v (pi+17 qi"rl)) . (7)
i=1,...,N—1

>

+a

The optimal set of correspondences, {¢i,...,4n} =
argmin AM((pi, gi);—,,_ n), is computed by a dy-
namic programming based approach [23], which en-

ables to find the global optimum in predictable time
and low computational complexity. We denote by
AM(Cv CI2) = AM((p17 s 7pN)7C12) = AM((pZ7 qu))
the minimal value of the asymmetric matching criterion.

This optimization is repeated for all sets of linked points
of image I;. Fig. 4 shows an example of results provided by
matching process. The sum of the above matching criterion
over all the sets of linked points in [; is assumed to be a quality
measure of the 3-D reconstruction of all vessel centerlines: it
is defined by Zcech AM(C,Cy,) and we call it the global
asymmetric matching criterion. Note that this criterion depends
on the projection matrices M (see (4)).

2) Matching Symmetrization: The above described recon-
struction method is intrinsically asymmetric. Centerlines in
image /; are matched with centerlines in image /5 according to
the remaining images, and the result depends on the choice of
both images I; and I, which is undesirable.

A symmetric reconstruction is then achieved by considering
all ordered pairs of images among the reference images. With
our notations, we end up considering R(R — 1) pairs of im-
ages. This yields a number of 3-D reconstructed centerlines. The
ones that are supposed to represent the same 3-D vessel may be
slightly shifted from each other, mainly because of the respira-
tory motion, but also of an imperfect synchronization of refer-
ence images and of geometrical reconstruction errors.

Fig. 5 shows the result of this symmetric reconstruction. The
global matching criterion after symmetrization is merely given
by the sum of all global asymmetric matching criteria over all
ordered pairs of reference images, and is defined by

Sy Y Ay, 8)

ILER LeR\{I,} CECr,
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Fig. 5. (left) Symmetric reconstruction: projection in two reference images of the centerlines reconstructed by considering all the ordered pairs of four reference
images (a different greytone is associated with each asymmetric reconstruction), 3-D centerlines reconstructions appear redundant and slightly shifted. (right)
Fusion of the redundant 3-D reconstructed centerlines sets presented at left: the reconstructed centerlines after applying the fusion process are projected in two

reference images. A geometrically average reconstruction has been built.

a) Respiratory motion compensation: As shown in
[24]-[27], the respiratory motion effect on the myocardium
and, thus, on the coronary artery position, can be approximated
by a 3-D translation, mainly in the axial direction. From the
acquisition point of view, it corresponds to a translation of
the images in their acquisition plane, that can be encoded in
the calibration parameters, i.e., in the M,, matrices. Indeed,
as demonstrated in [28], the global matching criterion reaches
its minimum for optimal calibration parameters. We, thus,
consider optimizing the global matching criterion with respect
to the cameras translation in their acquisition plane, i.e.,

{Mi}i/ren= arg min > >

" LER LER\{L} (p1,.-pN)€ECT,

RN =Rp>

T2 LLeR\{I 1.}

R (M, M,

Pj qi)

p (lgigi+1ll) )

in order to estimate the respiratory motion. As a side result,
we also obtain the 3-D reconstructed centerlines for the optimal
projection matrices.

To optimize the global matching criterion, we use a FSQP
optimization method implementation [29], [30]. It results in a
translational correction in acquisition plane for reference im-
ages, reflecting respiratory motion effect. We propagate this in-
formation to other than reference images by linearly interpo-
lating corrections that were found for the two surrounding ref-
erence frames.

3) Reconstruction Fusion: The respiratory motion compen-
sation improved the reconstruction of 3-D centerlines, particu-
larly by reducing the slight shift observed between asymmetric
reconstructions, but is not sufficient to yield a perfect superim-
position of the 3-D centerlines obtained from the different asym-
metric reconstruction. Keeping multiple reconstructions of the
same 3-D vessels may bias the forthcoming 4-D motion estima-
tion since it introduces spatial imprecision. Consequently, we
fuse the distinct reconstructed centerlines sets in a single set
where previously redundant points appear only once. We also

store redundancy information, as it is a useful indicator for con-
fidence in reconstructed points.

The fusion relies on a threshold representing the maximum
shift distance allowed for redundant points. We set it to S mm
which is an approximate value for largest observable coronary
artery diameter. Two 3-D centerline sets are fused in a geomet-
rical manner: for each point in the first set, we find the closest
point in the second set, if their distance is smaller than a dis-
tance threshold, then points are considered redundant and are
replaced by their barycenter, else the closest point is added as a
new point. Iterating this process for all 3-D reconstructed cen-
terline sets leads to a fused 3-D centerline reconstruction. Fig. 5
illustrates the effect of fusion on redundant 3-D reconstructed
centerline sets.

Additionally, redundancy of fused points is given by the
number of points that contributed to the fused point position.
In practice, we build an application A : M — R, which
associates the number of contributions A(M) to any point M
in the fused 3-D centerlines set M. A(M) can be interpreted
as the confidence value for the 3-D reconstructed point M.

At the end of this first stage, we have 3-D reconstructed
centerlines, including confidence indices, that have been cor-
rected from respiratory motion effect. This reconstruction was
obtained from a few images from the same cardiac phase.

IV. FOUR-DIMENSIONAL MOTION COMPUTATION

From above computations, a 3-D reconstruction of the coro-
nary artery centerlines at the cardiac reference time is obtained,
as well as the respiratory motion compensation for all the ro-
tational sequence images. This 3-D model will now be used to
estimate the cardiac motion.

Contrary to 3-D motion approaches usually involved in the
biplane case [2], [31], that estimate a 3-D motion from time to
time, we use all frames simultaneously, independently from the
cardiac phase at which they were acquired, to estimate a global
motion, parameterized over space and time, hence, called 4-D
motion.

Contrary to Chen’s approach [32] that requires a 3-D recon-
struction at each cardiac cycle and the explicit establishment of
correspondences between 3-D reconstructions to compute the
4-D motion, only one single 3-D reconstruction (at the refer-
ence cardiac cycle) is needed here, and the 4-D motion is in-
ferred from image-based measures.
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A. Motion Parameterization

To choose a motion parameterization, we recall some features
of coronary artery motion: spatial and temporal smoothness and
semi-local spatial and temporal influence.

These characteristics led us to choose a parameterization
based on B-hypersolid, which is a 4-D tensor product of 1-D
B-splines B() [33]. This parameterization is a generalization
of 3-D B-solids proposed in [34].

Extremal space coordinates are computed from the bounding
box of the 3-D centerlines set M. The spatial support was sam-
pled using control points spaced 2 centimeters apart, leading to
typically ten control points along each spatial dimension. Time
extremal values were given by the interval [0,1[. This interval
was sampled using ten control points. In practice, we used cubic
B-splines, providing a sufficient number of degrees of freedom.
Knots vectors on space coordinates were chosen open uniform.
This allowed one of the B-spline basis functions to be non null
on the spatial bounds of the motion and, thus, the motion may
be non null on the spatial bounds of the motion support. On the
opposite, knots vector in time coordinate was chosen uniform.
This properties enforces that all B-spline basis functions to be
null on the temporal bounds and, thus, that the motion was con-
strained to be null at equivalent reference times ¢ = O and ¢t = 1.

Sets Z, J, and K respectively discretize x, y, and z space
coordinates, set £ discretizes time coordinate. Their respective
cardinals are Z R j , I& and £. Under a B-hypersolid motion ¢ :
R? x R? x R — R3, parameterized by vector p € RP (the knot
points coordinates), the position of point M = (z, y, z) after the
application of the displacement, evaluated at normalized time ¢,
is given by

O(p, M,t) =M+ > Bi(x)B;(y)Bi(2) Bi(t)pijui
1,7,k,1

with p;j € R® Vi, 5, k,0. (10)

B. Motion Optimization

Estimating the heart motion now boils down to finding the
optimal parameter vector p that will exhibit the best coher-
ence with the 2-D displacements observed in images I,,. This
is achieved through the optimization of a criterion that aims at
quantitatively evaluating the coherence of a B-hypersolid mo-
tion ®(p, ., .) with the angiogram sequence, through an external
energy term, and that penalizes degenerate motions, through a
regularization term.

The multiscale filter response, R}, is used as the likelihood
that a pixel belongs to an artery projection. Summing the values
of these responses for the projected 3-D reconstructed points M
under motion gives us the external energy term ¥ : R? — R
of the criterion

Wp)= 25 X Y AODE; (M, (8(p. M.1.)))

neN MeM
with A= > A(M). (11)
MeM

Note that the multiscale filter response of projected point M
is weighted by its reconstruction confidence A(M).

Successive steps for the evaluation of external energy term of
the criterion are then:

* motion application ® : R? x R? x R — R3;

« projection application M, : R? — R2;

» multiscale filter response value R} : R2 — R;

+ weighting by confidence index A : M C R?> — R.

To prevent degenerated optimal motions, we add three in-
ternal energy terms which penalize motions with large ampli-
tude, motions with erratic spatial behavior, and motions with
erratic temporal behavior.

To estimate the motion amplitude, we evaluate the normalized
sum over the control points of the square norm of vectors p;

1
I'i(p) = TIRE > il (12)

i5.k,1

To estimate the motion smoothness, we evaluate the normal-
ized sum over the control points of the square norm of the vector
difference between p;ji; and its spatial neighbors Vis (pijki)
(in terms of 26-connectivity in 3-D) and its temporal neighbors
Vr(pijrt) (in terms of 2-connectivity in 1-D)

1 1
Ia(p) = === =
IJIKL szk:l Vis (Pijki)

Z Pijer — Pirjrenl)> (13)
Pir 1111 €VR3 (Pijri)
1 1
Typ) = o 3 =
IJKL ”2,;1 Vr(Pijnt)
Z Ipijit — Pijrr|® (14)

Pkt €V (Pijrt)

where Vgs (piji1) and Vr(piji) are the respective cardinals of
sets Vra (Pijri) and Vr(pij)-
The final criterion for 4-D motion optimization is

T(p) = ¥(p) — arl'1(p) — a2l'2(p) — asl'3(p).  (15)
The knot vectors properties and discretization scheme lead to
approximately ten degrees of freedom along each coordinate, a
degree of freedom being a 3-D vector. Thus, vector p typically
has 30 000 components. Consequently, optimizing the criterion
requires a method dedicated to very large scale nonlinear opti-
mization problems. It can be noticed that the four terms of T
can be analytically derived. For instance, the gradient of U is

o 1 ORY OM,, 0% (p, M., t,
(p):ﬁE A(M) = (P, M, tn) (16)
0 NA &~ oM,, 0P Jp

As an optimization procedure we, thus, chose the

Polak-Ribiere variant of the nonlinear conjugate gradient algo-
rithm [35] and used the CONMIN implementation described
in [36]. The initial motion is set to null (p = 0). Optimization
process leads to an optimal parameterization p and associated
optimal motion ®(p, .,.) : R* x R — R3 that will thereafter
simply be denoted by ®. The motion ®(.,#) : R* — R? for
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Fig. 6. Results for 4-D motion computation. (left) Projection in two images (acquired at two distinct normalized times, all differing from the reference time) of
the 3-D centerlines reconstruction before 4-D motion application. (right) Projection in the same two images of the 3-D centerlines reconstruction after 4-D motion
application. According to centerlines superimposition on vessels, 4-D motion has been correctly determined by the optimization process.

a given normalized time ¢ is denoted ®;. Fig. 6 presents the
results for motion computation by comparing 3-D centerlines
projection before and after 4-D motion application.

V. THREE-DIMENSIONAL TOMOGRAPHIC RECONSTRUCTION

In our case, datasets differ from ideal tomographic conditions
in two ways: data truncation for background structures that are
located far from the gantry rotation center and coronary artery
motion occurring during the acquisition.

A. Background Removal

The angiograms include not only the structure of interest, i.e.,
the coronary vessels, but also background structures. Some of
these structures are not visible in all the views because the field
of view is smaller than the patient’s torso. Consequently, they
can potentially induce the so-called truncation artifacts during
the reconstruction [37]. So, we apply a subtraction technique be-
fore the reconstruction in view of applying the reconstruction to
projection data formed only by the arteries. A mask image is re-
quired to perform the subtraction and is obtained by processing
the angiograms.

Thus, we have to produce virtual mask angiograms from orig-
inal angiograms. This is done in four steps: binary vessel detec-
tion, virtual background image computation, virtual mask image
computation, and virtual subtracted image computation.

The first step is done by applying an hysteresis thresholding
to the multiscale filter response maps. The low and high thresh-
olds are chosen equal to those used during centerline detec-
tion. To manage potential detection defects near the bifurca-
tions or at distal parts of coronary arteries, this binary image is
dilated using mathematical morphology [14]. The second step
is achieved by applying a morphological closing to the orig-
inal image, this leads to an approximation of the corresponding
image, acquired without contrast agent injection. The third step
is performed combining these two images in the following way:
for any pixel, its virtual mask image value is given by the virtual
mask image value, if the pixel belongs to a vessel according to
the binary vessel detector image, or by the original image value,
if the pixel does not belong to a vessel. This third image is a vir-
tual mask of the original image. The last step is the logarithmic
subtraction of the original image /,, and the virtual mask image
to produce the virtually subtracted image .J,, that will be actu-
ally used as tomographic data [41].

B. Motion-Compensated Tomography

Classical tomographic reconstruction methods make the hy-
pothesis that the observed object remains still during sinogram
acquisition, which is of course not the case for coronary angiog-
raphy. Many approaches propose to restraint the sinogram to the
angiograms that were acquired at given cardiac phase [8], [9] or
to phases that remain close to a reference phase [38]. This leads
to few views tomographic reconstructions and often suffers from
strong artifacts due to lack of data.

On the contrary, we use all available frames, homogeneously
and independently from the cardiac phase they correspond to.
In [11], the authors propose an iterative scheme alternating
between motion estimation and tomographic reconstruction, in
the context of CT. Here, we use a single-pass reconstruction
method. We only give here a brief overview of the tomographic
reconstruction, a complete and detailed description of the
method can be found in [12].

The tomographic reconstruction is done by integrating the
4-D motion estimation into the tomographic projection operator
matrix. Given a voxel set that discretizes the 3-D region of in-
terest, the projection operator matrix coefficient P; ;, encodes
the contribution of voxel vy to pixel p; in image n. The solid
angle with origin the X-ray source S,, at frame n passing by
pixel p; edges is denoted (2,,. In the static case, those contri-
butions are estimated as the volume of the intersection between
the voxel and the solid angle, i.e.,

P; ; = volume (Q,, Nv) . (17)
After a few calculations [12], the contribution in the dynamic
case is obtained by P®, = volume($,, N ®;, (vy,)).
We chose to neglecty the relative volume variation effect, and
to use a single contribution scheme (a voxel contributes to only
one pixel per projection image .J,,)

pe {volume(vk), if ®; (c(vi)) € Qp, (18)

0, else
where c¢(vy,) is the center of voxel vy.
As the projection operator matrix P® has been corrected for
cardiac motion, we now can use an arbitrary tomographic re-
construction method. We chose the additive ART method [39].
The initial reconstruction is set to null intensity for all voxels,
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then an iterative update is done pixel-wise by additive distribu-
tion of the projection residuals for a given pixel. More precisely,
if r is a vector representing the current reconstruction, then the
sum of contributions associated to pixel p; in image n is given
by PPr, where P? is the raw of matrix P? corresponding to
pixel p; contributions. The residual for pixel p; is, thus, given
by Jn(pi) — P¥r and is homogeneously parted between con-
tributing voxels by (J,(p;) — P&r/||P2||2)P2T, as sketched
by the following update scheme:

Jn(pi) — PPr T

P14 poT. (19)
[izdlk

An iteration of ART algorithm is given by performing up-
dates associated to all available pixels. In practice, we used 2
iterations of ART algorithm.

VI. EXPERIMENTS

A. Practical Issues

There are a number of parameters in the proposed method:
scales (Section III-A), thresholds [Section III-B-2 and (6)],
weights [« in (7), a1, a2, and a3 in (15)], etc. Since the aim
of this study is to define and to assess a method that can be
used in a clinical environment, manual parameter tuning is
not desirable. Therefore, these parameters have been tuned
experimentally on a subset of the patient datasets at hand, by
visually inspecting intermediate and final results obtained by
different values of parameters. The obtained settings have been
retained for all the datasets, and the obtained automated method
yields, after visual inspection, satisfactory results.

To reduce the computation time, both the 4-D motion esti-
mation (Section IV) and the tomographic reconstruction (Sec-
tion V) have been parallelized using PVM [40].

Typical computational times are (for a dataset consisting in
120 images at 5122 spatial resolution, including five reference
images): from 10 to 50 min for the reconstruction of a 3-D cen-
terline model, from 15 min to 30 min for the 4-D motion esti-
mation, and about one hour for the tomographic reconstruction.

B. Reconstruction Results

The reconstruction method was experimented on synthetical
or phantom data, with a known 4-D motion. The obtained re-
sults, available in [12] and [41], shown that, for such perfect sit-
uations where the ground truth is known, the proposed method

Fig. 8. Stabilized display of a stenosis. Two images that were acquired at dis-
tinct cardiac phases, from distinct viewing angles, in which we manually pointed
the moving region of interest (a stenosis located at a bifurcation). Bottom left
in images: focused and automatically centered images around the region of in-
terest in the same images.

was able to retrieve the 4-D motion and to provide a good to-
mographic reconstruction.

The reconstruction of patient’s data is more challenging, and
is also more difficult to assess. We already exemplified the pro-
posed approach with a number of results obtained with four dif-
ferent patient datasets, respectively, used in Figs. 4, 5, 6, and 8.
This illustrates the anatomical variability that can be success-
fully handled by the reconstruction method. In addition, Fig. 7
depicts the maximum intensity projection (MIP) views of the
reconstructions of four different patient datasets.

VII. DISCUSSION

We have described a tomographic reconstruction method
from one single rotational acquisition and the results obtained
so far demonstrate the feasibility of the proposed approach.
The final as well as the intermediate results have the potential
to support the image interpretation and quantification by the
physician.

* Centerline reconstruction allows to estimate the magnifi-
cation factor attached to a 2-D point (at a reference time)
which yields better measurements, as well as optimal
viewing angles to avoid overlap and vessel shortening
[9], [42].

» Four-dimensional motion estimation allows to track a
point along the acquisition sequence. This enables a stabi-
lized display of a region of interest, e.g., around a lesion
(see Fig. 8 and [43] for details). Moreover, by extrapola-
tion it may give access to kinetic information about the
myocardium.
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1.1 mm?

2

Fig. 9. (left) Original angiogram. (right) Vessel cross sections measures (before, at, and after a stenosis).

* Three-dimensional tomographic reconstruction allows to
use standard 3-D visualization tools (isosurface, volume
rendering, endoluminal views, etc.). It should be pointed
out that, thanks to the 4-D motion estimation, renderings
from arbitrary viewing angle and cardiac phase can be pro-
vided. More importantly, it allows a true 3-D QCA proce-
dure, i.e., a quantitative 3-D measure of stenosis severity
(e.g., Fig. 9). Such a measure can be assessed with the
catheter, whose diameter is 2.0 mm, when it is visible in the
whole sequence [41]. In these cases, the measured mean
diameter is about 2.3 mm. The error is then of the same
order than the voxel size (0.25 millimeter). However, ex-
trapolating this measure assessement to the coronary ar-
teries is not straightforward, since the catheter may have a
more simpler motion.

Obviously, such assertions have to be verified through clinical
validation studies. Before initiating them, a retrospective anal-
ysis of our experiments is currently conducted.

The presented results and computation times have been ob-
tained with the angiograph acquisitions being subsampled (from
768 x 768 to 512 x 512 pixels), for computational purposes.
Additional experiments, conducted with full resolution images,
did not show any visual difference.

At this point, we systematically use the end-diastole images as
reference images to reconstruct a 3-D centerline model. In the
future, it would be interesting to automatically select the most
stable period of the cardiac cycle, which is the appropriate period
for 3-D reconstruction, and that may depend on the heart rate.

We remark that the quality of the reconstruction (assessed vi-
sually) is directly correlated to the number of cardiac cycles that
can be used for the processing. Typically, a number of four car-
diac cycles (this corresponds to five reference times, i.e., R = 5)
yields a visually good reconstruction, while artifacts or errors
(for instance, in the centerline reconstruction) are more likely to
occur when only three cardiac cycles are usable. The latter situ-
ation mainly arises because of a poor synchronization between
rotation and contrast agent injection. Such defects happened for
the first acquisitions, when the physicians did not master the ro-
tational acquisition, but not for the last ones because of a fast
learning curve [13]. It suggests that the quality of the recon-
structions will increase for the future experiments.

We observe that the computational time of the reconstruction
of a 3-D centerline model represents about one third of the total
execution time. This is due to the re-estimation of the camera
parameters, i.e., the respiratory motion (modeled as a transla-

tion) estimation. Since the acquisition duration is about a few
seconds, it is possible to ask for a breath hold during the acqui-
sition. This way, not only the total reconstruction time will be
greatly decreased, but we will make sure to avoid the additional
problems due to the respiratory motion estimation.

The roots of the coronary arteries are difficult to reconstruct
since they are perpendicular to the rotation axis. This particular
point is going to be investigated in relation with clinical partners.

It turns out that the first improvements will come from the
design of an other acquisition protocol. Then, some quantitative
quality measures have to be defined to assess both the overall
quality of the reconstruction and all the different steps of the
method (now excluding the respiratory motion estimation). This
will help to optimize each step separately (e.g., the fusion of the
centerline reconstructions). An other improvement in the future
could be to automatically identify not only the heart cycles as
we do now but also to identify the most appropriate period in
the heart cycle for applying the multiocular algorithm. From the
algorithm perspective, it has to be the most stable period along
the heart cycle.

VIII. CONCLUSION

We presented a novel and stand-alone method to successively
produce a 3-Dreconstruction of coronary artery centerlines,a4-D
motion estimation of coronary arteries, and a 3-D tomographic
reconstruction of coronary arteries from one single rotational
X-ray acquisition. In contrast to other approaches reported in
the literature, we are able to use almost all of the acquired
frames, thank to the estimation of the coronary arteries motion.

Experiments conducted on real clinical data produced visu-
ally good reconstructions which demonstrate the practicability
of such an approach. A further analysis encourages us to define
a different acquisition protocol (with a breath hold) to suppress
artifacts due to the respiratory estimation. Future work will con-
sist of a clinical evaluation of the method, and will encompass
both a quantitative assessment of the quality of the reconstruc-
tion and the identification of methodological improvements.
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