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Abstract

In this paper, we develop a rigorous, unified framework based on Ordinary Differ-
ential Equations (ODEs) to study epidemic routing and its variations. These ODEs
can be derived as limits of Markovian models under a natural scaling as the number
of nodes increases. While an analytical study of Markovian models is quite com-
plex and numerical solution impractical for large networks, the corresponding ODE
models yield closed-form expressions for several performance metrics of interest, and
a numerical solution complexity that does not increase with the number of nodes.
Using this ODE approach, we investigate how resources such as buffer space and
the number of copies made for a packet can be traded for faster delivery, illustrating
the differences among various forwarding and recovery schemes considered. We per-
form model validations through simulation studies. Finally we consider the effect of
buffer management by complementing the forwarding models with Markovian and
fluid buffer models.
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1 Introduction

Epidemic routing [28] has been proposed as an approach for routing in sparse
and/or highly mobile networks in which there may not be a contemporaneous
path from source to destination. It adopts a so-called “store-carry-forward”
paradigm — a node receiving a packet buffers and carries that packet as it
moves, passing the packet on to new nodes that it encounters. Analogous to
the spread of infectious diseases, each time a packet-carrying node encoun-
ters a new node that does not have a copy of that packet, the carrier is said
to infect this new node by passing on a packet copy; newly infected nodes,
in turn, behave similarly. The destination receives the packet when it first
meets an infected node. When the traffic load is very low, epidemic routing
is able to achieve minimum delivery delay at the expense of increased use of
resources such as buffer space, bandwidth, and transmission power. However
this also leads to link and/or storage congestion when the network is loaded.
Variations of epidemic routing have recently been proposed that exploit the
tradeoff between delivery delay and resource consumption, including K-hop
schemes [23,6], probabilistic forwarding [17,8], and spray-and-wait [26,25].
These different schemes differ in their “infection process”, i.e., the spread-
ing of a packet in the network. They need to be combined with a so-called
“recovery process” that deletes copies of a packet at infected nodes, follow-
ing the successful delivery of the packet to the destination. Different recovery
schemes have been proposed: some are simply based on timers, others actively
spread in the network the information that a copy has been delivered to the
destination [8].

Early efforts evaluating the performance of epidemic routing schemes used sim-
ulation [28,10,17]. More recently, Markovian models have been developed to
study the performance of epidemic routing [24,6,8|, 2-hop forwarding [6], and
spray-and-wait [26,25]. Recognizing the similarities between epidemic routing
and the spread of infectious diseases, [24,8] used ordinary differential equa-
tion (ODE) models adapted from infectious disease-spread modeling [3] to
study the source-to-destination delivery delay under the basic epidemic rout-
ing scheme, and then adopted Markovian models to study other performance
metrics.

In this paper, we develop a rigorous, unified framework, based on Ordinary
Differential Equations (ODE), to study epidemic routing and its variations.
The starting point of our work is [6], where the authors consider common
node mobility models (e.g., random waypoint and random direction mobility)
and show that nodal inter-meeting times are nearly exponentially distributed
when transmission ranges are small compared to the network area, and node
velocity is sufficiently high. This observation suggests that Markovian models
of epidemic routing can lead to quite accurate performance predictions; indeed



[6] develops Markov chain models for epidemic routing and 2-hop forwarding,
deriving the average source-to-destination delivery delay and the number of
extant copies of a packet at the time of delivery. An analytical study of such
Markov chain models is quite complex for even simple epidemic models, and
more complex schemes have defied analysis thus far. Moreover, numerical so-
lution of such models becomes impractical when the number of nodes is large.

We develop ODEs as a fluid limit of Markovian models such as [6], under an
appropriate scaling as the number of nodes increases. Through the paper we
show that ODE is a valid tool for investigating epidemic style routing. In fact
this approach allows us to derive closed-form formulas for the performance
metrics considered in [6], obtaining matching results. More importantly, we
are also able to use the ODE framework to further model the recovery pro-
cess, to study more complex variants of epidemic routing, and to model the
performance of epidemic routing with different buffer management schemes
under buffer constraints. While different recovery processes are studied also
in [8] using Markov chains, model simulation is first needed to determine a
number of model parameters. Many of our ODE models can be analytically
solved, providing closed-form formulas for the performance metrics of interest;
in cases where we resort to numerical solution, the computational complexity
does not increase with the number of nodes. The drawback of our ODE models
is that they provide the moments of the various performance metrics of inter-
est, while numerical solution of Markov chain models can provide complete
distributions (e.g., for the number of packet copies in the system). Simulation
results show good agreement with the predictions of our ODE models.

The main purpose of the paper is to show how ODE models can be advanta-
geously employed to study the performance of various epidemic style routing
schemes, rather than to provide final conclusions about the merits of spe-
cific schemes. Nevertheless we have obtained insights into different epidemic
routing schemes through our models. In particular, we have identified rules of
thumb for configuring these schemes, we have shown the existence of a linear
relation between total number of copies sent and the buffer occupancy un-
der certain schemes, and we have demonstrated that the relative benefit of
different recovery schemes depends strongly on the specific infection process.
Finally our analysis of buffer-constrained epidemic routing suggests that siz-
ing node buffers to limit packet loss is not vital as long as appropriate buffer
management schemes are used.

The remainder of this paper is structured as follows. Basic epidemic routing
and our basic ODE model are described and derived in Section 2, allowing
one to characterize the source-to-destination delivery delay, the number of
copies made for a packet, and the average buffer occupancy. In Section 3,
it is shown how the ODE model can be easily extended to three important
variations of basic epidemic routing (K-hop forwarding, probabilistic forward-



ing and limited-time forwarding), to the global timeout scheme for deleting
anti-packets, and to include signaling overheads. In Section 4, we perform val-
idation for these models through simulation. We use these extended models
to characterize the tradeoff between delivery delay and resource consumption
(buffer occupancy, number of copies made) in Section 5. In Section 6, we in-
tegrate the ODE models with Markov and fluid buffer models to study the
effect of finite buffers, and compare different buffer management strategies. In
Section 7, we review related works and compare our work with them. Finally,
in Section 8 we summarize the paper.

2 Basic epidemic Routing

In this section we develop our ODE model for basic epidemic routing [28], after
briefly describing epidemic routing and the scenario we are considering. We
then use the model to study three different recovery techniques for deleting
packet copies after the delivery of the packet.

We consider a set of N +1 nodes, each with a finite transmission range moving
in a closed area, and different source-destination pairs. We say that two nodes
“meet” when they come within transmission range of each other, at which
point they can exchange packets. Let us focus on a single packet. The analogy
with disease spreading is useful in describing epidemic routing. The source of
the packet can be viewed as the first carrier of a new disease, the first infected
node, which copies the packet to (infects) every node it meets. These new
infected nodes act in the same way. As a result, the population of susceptible
nodes (i.e., nodes without a copy of the packet) decreases over time. Once
a node carrying the packet meets the destination, it passes the packet on to
the destination, deletes the packet from its own buffer, and retains “packet-
delivered” information (an “anti-packet”) which will prevent it from receiving
another copy of this packet in the future. Such a node is said to have recovered
from the disease. Here the recovery process simply relies on meeting with the
destination. We will shortly consider more sophisticated recovery schemes.

Consider now many packets spreading at the same time in the network. We
assume that when two nodes meet they can exchange an arbitrary number
of packets, and each node has enough buffer to store all packets (the latter
assumption is relaxed in Section 6), thus allowing different infections to be
considered independently. We also assume a mechanism exists so that nodes
never exchange a packet if both nodes are already carrying a copy of that
packet (more details in Section 3.3).



2.1 ODE models for basic epidemic routing

As noted earlier, [6] showed that the pairwise meeting time between nodes is
nearly exponentially distributed, if nodes move in a limited region (of area
A) according to common mobility models (such as the random waypoint or
random direction model [2]) and if their transmission range (d) is small com-
pared to A, and their speed is sufficiently high. The authors also derived the
following estimation of the pairwise meeting rate [3:
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where w is a constant specific to the mobility model, and E[V*] is the average
relative speed between two nodes. Under this approximation, [6] showed that
the evolution of the number of infected nodes can be modeled as a Markov
chain.

We introduce our modeling approach starting from the Markov model for basic
epidemic routing before the delivery of a copy to the destination. Given n;(¢),
the number of infected nodes at time ¢, the transition rate from state n; to
state ny+1is ry(n;) = Bny(N —ny), where N is the total number of nodes in
the network (excluding the destination). If we rewrite the rates in a “density
dependent form”, as ry(nr) = NA(n;/N)(1—n;/N) and assume that A = N3
is constant, we can apply Theorem 3.1 in [16] to prove that, as N increases,
the fraction of infected nodes (n;/N) converges asymptotically to the solution
of the following equation® :

i'(t) = Mi(t)(1 —i(t)), fort >0 (2)

with initial condition ¢(0) = limy_,o n7(0)/N. The average number of infected
nodes then converges to I(¢) = Ni(t) in the sense of footnote 1. The following
equation can be derived for I(t) from Eq.(2):

I'(t)=BI(N —I), (3)

with initial condition I(0) = Ni(0). Such an ODE, which, as we have shown,
results as a fluid limit of a Markov model as IV increases, has been commonly
used in epidemiology studies, and was first applied to epidemic routing in [24]
as a reasonable approximation.

We remark that 1) the initial population of infected nodes must scale with N,
and 2) the pairwise meeting rate must scale as 1/N. Eq.(1) provides insight

! Formally, Ve > 0, limpy ;00 Prob{| sup,<;{nz(s)/N —i(s)}| > €} =0



into the physical interpretation of this meeting rate scaling: in particular if the
area A increases with N, keeping node density constant, then £ scales with
1/A, i.e,,1/N. In the following we will consider Eq.(3) with initial condition
I(0) = 1, which corresponds to an initial fraction of infected nodes i(0) =
1/N. Despite the “small” number of initial infected nodes, we will see via our
simulation results that the approximation is a good one. We also note that
Eq.(3), as well as other related equations we will derive shortly, can also be
obtained in a different manner from Markovian models by neglecting terms
related to higher moments (the details are given in Appendix C).

2.2 Delay under epidemic routing

Let Ty be the packet delivery delay, i.e., the time from when a packet is first
generated at the source to the time when it is first delivered to the desti-
nation, and denote its Cumulative Distribution Function (CDF) by P(t) =
Prob(T; < t). Under the same scaling and approximations considered earlier,
we can derive the following equation for P(t): P'(t) = Ai(1— P) , where i(t) is
the solution of Eq.(2). Let us consider Py(t), the CDF of T; when the number
of nodes in the system is N + 1, i.e., there are N nodes plus one destination
node. We have

Py(t 4 dt) — Py(t) = Prob{t < T; < t + dt}

= Prob{destination meets an infected node in [¢,t + dt] |T; > t}
«Prob{Ty > t}

= Prob{destination meets one of the n;(t) infected nodes in [t,t + dt] }

X(1 — Py(t))
= E[Prob{destination meets one of the n;(t) infected nodes in [t, ¢ + dt] |n;(t)}]
X (1 — Py(t))

~ E[Bn;(t)dt] (1 — Py(t))
= BE[n;(t)](1 — Pn(t))dt

— )E [”’(t)] (1= Py(t))dt.

N

Note that n(t) is the number of infected nodes at time ¢, given that the
destination has not received a copy of the packet. It implicitly accounts for
the condition T, > t. The following holds for Py (?):




As N increases, E[n;(t)/N] converges to i(t), and Py(t) converges to the
solution of

P'(t) = Xi(t)(1 — P(t)).

For a finite population of size N we can consider:

P'(t)=pI(t)(1 - P(t)). (4)

Eq.(4) was proposed in [24], based on an analogy with a Markov process.
Solving Eq.(3) and Eq.(4) with I(0) = 1, P(0) = 0 yields

N Pt) =1 N
1+ (N —1)e ANt 7 N — 14PNt

I(t) =

From P(t), the average delivery delay can be explicitly found as:

BIT = [(1- = InN/(B(N - 1)). (5)

The average number of copies of a packet in the system when the packet
is delivered to the destination under epidemic routing, E[Cep|, can also be
derived, as it coincides with the average number of infected nodes in the
system, apart from the source, when the packet is delivered (details given in
Appendix E): E[C,p] = [° I(t)P'(t)dt — 1 = £

Using a Markov chain model, [6] obtained the same results for the number
of copies, computed the Laplace-Stieltjes Transform (LST) of the delay, and
from the LST found the following asymptotic expression for the average delay
as N — o0o: g (InN + v + O(+)), matching Eq.(5). We note that the

B(N-1)
derivation is much simpler using our ODE model.

2.8 Recovery from infection

In the last section, we studied the delivery delay, and the number of copies
made at delivery time under epidemic routing. In this section, we study the
recovery schemes proposed in [8].

Clearly, once a node delivers a packet to the destination, it should delete
the packet from its buffer to save storage space and prevent the node from
infecting other nodes. Moreover, to avoid being reinfected by the packet, a
node can keep track of packet delivery. We refer to this information stored



at the node as “anti-packet”, and refer to this scheme of handling already-
delivered packets as the IMMUNE scheme. A more aggressive approach toward
deleting obsolete copies is to propagate anti-packets among nodes. An anti-
packet can be propagated only to infected nodes (which we will refer to as the
IMMUNE_TX scheme), or to both infected and susceptible nodes (VACCINE
scheme). We study the following two metrics for epidemic routing under these
different recovery schemes. One is the average number of times a packet is
copied during its lifetime, excluding the copy to the destination, denoted as
E[G]. This value is greater than or equal to E[C], because more copies can be
made after the delivery to the destination. This metric is strongly related to
the bandwidth requirement, and transmission power consumption of a specific
scheme. The other is the average buffer occupancy at each node E[Q], for which
we are going to derive an expression under a specific traffic pattern. The two
metrics are related each other and they both depend on the specific recovery
process.

In order to study these two metrics, similar to our earlier analysis in Sec-
tion 2.1, we can derive ODEs that take into account the recovery processes
as the limit of Markov models (details are deferred to Appendix A), with the
additional consideration that we need to scale the number of destinations np
in a manner similar to the scaling of the number of initially infected nodes,
i.e. limy_,o np/N = d. For example, if we consider the IMMUNE scheme, the
number of infected and recovered nodes should be respectively close to I(%)
and R(t), which are solutions of the following equations:

I'(t)=BI(N —1—-R)—BID (6)
R'(t)=pBID (7)

where D is the number of destinations, and we consider I(0) = 1, R(0) =
0, D = 1. This model allows us to evaluate the average number of times that a
packet is copied during its lifetime, E[Gep]. In fact the total number of copies
made for a packet equals the number of nodes that have ever been infected,
i.e., E[Gep] = limi oo (I(t) + R(t)) — I(0). A good approximation for E[G,,]
can be found through the previous equations by expressing I as a function
of R, without the need to solve for I(t) and R(¢) Analogous ODEs can be
derived for the IMMUNE_TX and VACCINE schemes, and a closed formula
can be derived for E[G,,| for the IMMUNE_TX scheme. Numerical solutions
are needed for the VACCINE scheme (see Table 1 for closed-form results and
Appendix B for the detailed derivations).

We next consider the average buffer occupancy E[Q)], in the case of N + 1
unicast flows, with each node being the source of one flow and destination for
one other flow. The packet generation process in each flow is a Poisson process
with rate A. Denote by L the average packet lifetime (the time from when the
packet is generated by the source node to when all copies of the packet are



removed from the system). The average number of copies of a packet in the
system during its lifetime is given by [;° I(¢)dt/L, where I(t) is the solution
to the ODEs that include the recovery process. As the total arrival rate of new
packets to the system is (N+1), by Little’s law, the average number of packets
in the system is (N +1)AL. Therefore the average total buffer occupancy in the
whole network is given by E[Qqota] = ([fo° I(t)dt/L)(N+1)AL = [5° I(t)dt(N+
1)), and the per-node buffer occupancy is thus E[Q] = A [° I(t)dt.

Modeling a node’s buffer as an M /M /oo queue gives the same result and shows
a linear relationship between the average buffer occupancy and the number
of copies made under the IMMUNE scheme. In fact, given that each packet
is copied E[G,,| times, each flow generates relay traffic at rate E[G,|A, and
the total rate of relay traffic in the network is E[Gep]A(N + 1) (as there are
N + 1 flows). This traffic is equally divided among the N + 1 nodes, hence
the arrival rate of relay packets to each node is E[G¢,]A, and the total packet
arrival rate is A(1 + E[G¢p]). If a copy is deleted only when the node meets
the destination?, the service rate is 1/3 and the average buffer occupancy is
E[Q] = 3(1 + E[G.).

3 Extended Model

The schemes in the previous section all share the same infection process: they
propagate a packet among nodes in a flooding/epidemic manner, but differ
in the way they counteract the infection after the packet has been delivered
to the destination. As results in Table 1 show, this can lead to substantial
differences in terms of buffer occupancy and the total number of copies made
for a packet. Depending on the specific applications, it might be preferable to
trade off timely delivery for savings in resource consumption, by changing the
way packets are propagated among nodes. We describe in Section 3.1 K-hop
forwarding, probabilistic forwarding and limited-time forwarding that allow
us to achieve such tradeoff. In Section 3.2, we introduce the global timeout
scheme that naturally addresses the problem of deleting anti-packets. We dis-
cuss how ODE models can be used to model signaling overhead in Section 3.3.
All the ODEs models we propose can be derived as limits of Markovian mod-
els, similarly to what we have shown in Section 2.1. We do not detail the
derivations, but only stress the peculiarities (if any) to be taken into account
when applying the limiting theorem.

2 This is the case under IMMUNE for the basic epidemic routing, and also for the
probabilistic and K-hop forwarding schemes we will consider.



3.1 Trade-off Schemes

3.1.1 K-hop forwarding

Under K-hop forwarding, a packet can traverse at most K hops to reach the
destination. We can use ODE models to model the K-hop forwarding scheme,
as we demonstrate for K = 2. Under 2-hop forwarding, the source copies the
packet to every node it meets until it meets the destination; relay nodes do
not copy the packet to any other node except the destination. As the packet
spreads at a rate proportional to the number of susceptible nodes, the following
equations model the delivery delay:

I't)=B(N - 1)
P'(t)=BI(1 - P).

with initial condition: I(0) = 1 and P(0) = 0. Note that in order to derive
the previous equations from the Markovian model similarly to what we did in
Section 2.1, we need to let the number of source nodes scale with N.

This ODE system can be solved explicitly, from which we can then derive an
asymptotic expression for the average delivery delay and the average number
of copies until delivery (see Table 1 for the results and Appendix D for the
derivation). These results again match those obtained in [6] using a Markov
Chain model.

We can apply analysis similar to Section 2.3 to study the number of copies
made and the average buffer occupancy for given recovery schemes. For IM-
MUNE recovery, we obtain more accurate model through the following deriva-
tions. Let Gapop(IN) be the number of times a packet is copied during its life
time (excluding the copy to the destination) for 2-hop forwarding. For each
packet, the source node copies the packet to every relay node it meets before
it meets the destination. Therefore Gapop(N) equals the number of nodes the
source node meets before meeting the destination. As the inter-meeting times
between pairs of nodes are i.i.d. exponential random variables, the destina-
tion node is equally likely to be the i-th node to meet the source node, for
i = 1,...,N. Therefore we have Pr(Gapep(N) = i) = %, fori =0,..,.N —1,
and hence E[Gaonop(N)] = Y1 Given Gopoy(N), we can derive the average
buffer occupancy using a M/M /oo model with the departure rate 3, using an
approach similar to what we described in Section 2.3.

10



Schemes I(t) E[T,] E[C],E[G] E[Q]
P(t)
Epidemic I(t) = W e ay E[C] = &A1 ~ NA/B (IM)
N—1+y/N2_2N+5
P(t) =1 y—swe E[G] ~ N — 1 (IM) A ATV RS
E[G] = &3 (IM_TX)
+7VN2*22N+5 (IM_TX)
, — A(NF1
2-hop I(t) = N — (N — 1)e—Bt 13— E[C] = /3VN, G =31 (m) | 2 (v
P(t)=1- eN—1-BNt—(N—1)e~F?
— N In(N) In(N) _ p(N-1)
Prob. I(t) = TH(N_1)e—pANE [m, m] E[C] =12 n-
Fwding P(t)=1- (m)w
- . _a yeflan—ar)t 4 1 ln(Nfg)
Limited-time I(t) = W N:oo E W
; _ (BN—p)FV(BN-p)2+4Bp p=NB
Fwd = ~
wding ai,2 28 Do B
. . _ as—1 ~
(no reinfection) | a3 < 0,a2 >0, A= s Ne oo o7 s
_ N In(N) N-1
Global P(t)=1- oot <T A1) . E[C] = 7
- _ b(T— In(1+(N—1)e=ANT) N2(N-1)
timeout P(t) =1 - €T — =D T2(ATNIN-1)2
Mﬁat>T7b:I(T) +W
— N In(N) _ N1
Global Pt)=1- W,t <T ﬂ(’;v_l) . E[C] ="
. _ NeP(T—t In(1+(N—1)e=ANT) N2(N-1)
timeout(2) P(t)=1- g avrit>T -2 B(Nfi) — TN IN 1)
i N
B(ePTN L N—1)
Table 1

Summary of closed-form expressions obtained for different schemes

3.1.2 Probabilistic Forwarding

Probabilistic forwarding is similar to epidemic routing except that when two
nodes meet, each node accepts a relay packet with probability p. When p = 0,
the probabilistic forwarding degenerates to direct source-destination delivery,
and when p = 1, epidemic routing is performed. Varying p in the range (0, 1)
allows a trade-off between storage/transmission requirements and delivery de-
lay. We can model the delivery delay using the following ODEs:

dl
dP

with I(0) = 1, P(0) = 0. We derived a closed-form solution for this ODEs, from
which we then derived bounds for the average delay, and close-form formula
for the number of copies at delivery time (Table 1). Similar to basic epidemic
routing case, we derived a ODE model to study G,ro and the average buffer
occupancy under probabilistic forwarding.

11



3.1.8 Limited-time Forwarding

Under limited-time forwarding, when a node accepts a packet copy, it starts a
timer with duration drawn from an exponential distribution with rate ;. When
the timer expires, the copy is deleted from the buffer. The choice of timeout
value allows us to trade off the delivery delay against storage and number of
transmissions. In order to guarantee the eventual delivery of each packet, a
node does not time out a packet for which it is the original source. When a
packet copy in a node times out, the node can either store an anti-packet (so
that it will not be infected by the packet again), or keep no information (in
which case it become susceptible to the packet again).

The former scheme can be studied by the following ODEs, where T'(¢) is the
number of timed out nodes at time ¢. As above these ODEs can be derived as
limit of Markovian models?® .

S BIN 1 -T) (I 1)
dT

E:M(I—l)

dP

We numerically solved this ODEs to calculate the average delivery delay, E[T}].
Similar to epidemic routing, by extending the ODEs to include recovery pro-
cesses, we are able to evaluate numerically the average number of copies made
for a packet E[G] and the average buffer occupancy E[Q)].

The latter scheme can be studied using the following ODEs:

dl
E:ﬁI(N—I)—u(I—l)
dP

The ODEs can be solved explicitly and an asymptotic expression for the av-
erage delay can be found (see Table 1 for the results, and Appendix D for
details).

We found that if u > NS the number of infected nodes goes to zero as ¢t — oco.
In this case limited-time forwarding can perform recovery via timeout and

3 There is no need to scale the timer rate u, while we need to scale 3 as we noted
in Section 2.1.

12



there is no need for explicitly transmitted anti-packets, the epidemic spreading
will eventually die out in this case. The asymptotic delay for u = N3 equals

357/n—3 (see Appendix D).
3.2 Handling anti-packets: global timeout scheme

Under the recovery schemes, IMMUNE, IMMUNE_TX and VACCINE (Sec-
tion 2.3), nodes store and propagate anti-packets to delete obsolete packet
copies in order to save buffer space and number of copies sent for a packet.
Although anti-packets are typically much smaller than data packets, a way is
needed to delete anti-packets: otherwise, the buffer space taken up by anti-
packets will grow infinitely. In this section, we describe a global timeout scheme
for deleting anti-packets.

Under the global timeout scheme, as the name suggests, there is a global
timer associated with each packet: acting upon the copies and anti-packets
for the packet stored at all the nodes. Before the timer expires, the packet
is propagated according to the forwarding scheme employed. When the timer
expires, all anti-packets will be deleted; the infected nodes keep their copies
of the packet, but can only forward the copy to the destination. Notice that
as there is no relaying after time 7', nodes do not need to keep anti-packets
from then on.

As [24] suggested, a global timer can be implemented as follows . The source
node sets a TTL (Time-To-Live) field to duration T for each packet generated.
The TTL field is decreased as time passes. Whenever the packet is copied to
another node, the new copy’s TTL field is set to the remaining TTL field of
the old copy; when an anti-packet is generated at the destination, its TTL
field is set to the same value as the data packet being delivered.

The global timeout scheme is similar to spray and wait [26] in that both
schemes have two phases: epidemic style forwarding phase and direct delivery
phase. While spray and wait limits the spreading by specifying the maximum
number of copies, our scheme limits the spreading by setting a duration. We
will see in Section 5 that varying the timeout value 7" allows a tradeoff between
delivery delay and resource consumption.

We now demonstrate how ODEs can be used to model this global timeout
scheme using the example of epidemic routing with IMMUNE recovery. As
usual, let I(¢) be the average number of infected nodes at time ¢, given that the

4 Under the scheme they considered, when the packet timer expires, all copies and

anti-packets of the packet are deleted from the network. We note that there is a
non-zero probability that the packet is not delivered to the destination.

13



packet has not been delivered; and P(t) be the CDF of delivery delay. Before
the timer expires, the packet propagates according to epidemic routing; while
after the timer expires, the packet can be only forwarded to the destination.
Therefore, I(t), P(t) satisfy the following ODEs:

I'(t)=BIt)(N —I(t),t<T
I't)=0,t >T
P'(t)=pI(t)(1 - P(t))

|

I

The initial conditions are I(0) = 1, P(0) = 0. When deriving these ODEs from
the Markovian model, one has to take into account that the system has time-
dependent transition rates (in particular they changes at time 7). Nevertheless
the same kind of convergence holds. It can be proven by applying Theorem 3.1
in [16] separately to the system trajectories before time T and after time T
and then appropriately join them.

The ODEs can be explicitly solved, and allow us to derive the average deliv-
ery delay and the number of copies made for a packet at delivery time (see
Table 1 for the results). After time 7', the packet can only be forwarded to the
destination, hence the total number of copies made for a packet (exclude the
copy to the destination) is given by Gg; = I(T)+ R(T) —I(0) under IMMUNE
and IMMUNE_TX scheme, where I(t) and R(t) are solutions to Eq.(A.1,A.2)
and Eq.(A.3,A.4) respectively. Under VACCINE, the total number of copies
made is given by C(T'), where C(t) is solution to Equation.(A.8) in Appendix
A. For the average buffer occupancy, E[Q], the following equation (derived in
Section 2.3) still applies: E[Q] = A [5° I(t)dt.

An alternative scheme is to delete all anti-packets and copies of the packet,
except at the source node, when the timer expires. Compared to the previous
scheme, this scheme saves buffer space but incurs larger delivery delay. Under
this scheme, P(t) satisfies the following ODE:

P'(t)=pBI(t)(1 - P(t)),t<T
P'(t)=p(1— P(t)),t>T

We derived close-form solution to the above ODEs, and obtained explicit for-
mula for the average delivery delay (see the global timeout (2) in Table 1). The
average number of copies made at delivery time, E[C], and during a packet’s
lifetime, E[G], are the same as under the original global timeout scheme.
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3.8 Signaling Overhead

We have so far studied the number of copies made for a packet and the av-
erage storage occupancy incurred by data packets, but ignored the signaling
overhead. We now discuss the signaling overhead involved in epidemic style
routing, using the global timeout scheme to delete anti-packets.

We assume that when two nodes move into the transmission range of each
other, they perform the following steps:

1
2

exchange identification information, i.e. node ID,
exchange header information of data packets,
exchange anti-packets information,

actual packet exchanges.

(
(
(3
(4

)
)
)
)

The transmission cost of the step (4) has already been studied in Section 2.3.
The amount of information exchanged in step (2) and (3) are different for
different forwarding and recovery schemes respectively. For example, under
K-hop, the packet header for a packet with hop count K — 1 does not need
to be sent to other relay nodes. Likewise, while IMMUNE_TX only propagate
anti-packets to infected nodes, VACCINE propagate anti-packets to all nodes.

Extending ODE models to consider signaling overhead is straightforward as
we illustrate using the basic epidemic routing with IMMUNE recovery and
global timer of duration T as an example. Let I(¢) and R(t) be the average
number of infected and recovered nodes respectively at time ¢, taking into
account the recovery process. We have:

I't)=BI(N-I1—-R)—BIt<T
I't)=-pI,t>T
R(t)=B8I,t<T

Since all anti-packets are deleted after the timer expires, we have R(t) =
0 for ¢ > T. Under a packet arrival rate of A\, Qunsi, the average per-node
buffer occupancy of anti-packets, is given by Qunti = A fOT R(t)dt, following an
argument similar to that in Section 2.3.

Now let us consider the overhead of exchanging packet headers and anti-
packets. Let H(t) and A(t) respectively denote the average number of packet
headers and anti-packets that are exchanged among all the nodes up to time
t, we have:

H'(t)=BI(N +1),t<T
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H'(t)=8I,t>T
A'(ty=p8I

Intuitively, before time T', the packet header is sent by infected nodes to every
node they meet®. After the timer expires, the packet header is sent only to
the destination node. Anti-packets are transmitted by the destination node to
infected nodes when they meet under IMMUNE, before or after 7'. For any
packet, the average total number of times the packet header and anti-packet
is exchanged is given by Q, = H(oc0) and @, = A(o0) respectively. Numerical
techniques can be used to evaluate these metrics.

4 Model Validation

We have developed a simulator that simulates various routing schemes and
recovery schemes under random waypoint and random direction models. The
results we present here are for a specific setting considered in [6]: N + 1 nodes
move within a 20 x 20 terrain according to random direction model [2,7]. Each
node chooses an initial direction, speed and travel time, and then travels in
that direction with given speed for the chosen travel time. When the travel
time expires, the node chooses a new direction, speed and travel time at ran-
dom, independently of all previous directions, speeds and travel times. If a
node hits the boundary of the terrain, it wraps around at the other side of
the terrain. The node speed is chosen uniformly in the range 4-10, and the
mean travel duration is 1/4. The transmission range of the nodes is chosen to
be 0.1. The pair-wise meeting rate for this setting is found to be 5 = 0.00435
using the formula in [6].

5 For the purpose of clarity, we ignore some optimizations that can be used to save
overhead. For example, when two infected nodes for packet ¢ meet, after one node
sends its packet headers, the other node, knowing the previous node has packet ¢,
need not send packet 7 header to B.
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We simulate NV + 1 unicast flows, with each node being the source of one flow,
and the destination of another flow. Each flow generates packets at a Poisson
rate of A = 0.01. The simulation is run long enough such that at least 500 pack-
ets are generated and delivered. We then use the 500 observations to calculate
the mean and 95% confidence interval for packet delivery delay and the total
number of copies made for a packet. Average buffer occupancy is calculated
after removing the initial transient period from the trace. These simulation
results are then compared with the ODE model predictions. We report rela-
tive modeling error, defined as (Vs — Vi, )/Vim, where V,, is the model predicted
value and V is the simulation result. We calculate the 95% confidence interval
for the relative modeling errors using the 95% confidence interval for V,. We
do not consider signaling overhead as we expect to observe similar prediction
performance for these metrics.

We first consider basic epidemic routing. We vary N between 5 and 160, and
plot the mean and 95% confidence interval of packet delivery delay obtained
from simulation, and the model prediction in Fig 1.(a). We find that the model
is able to accurately predict the delivery delay, capturing the performance
trend as N increases. Fig 1.(b) compares, for N = 160, the CDF of packet
delivery delay obtained from simulation with the one predicted by Eq.(4). It
shows that ODE model under predicts the packet delivery delay. To investigate
modeling errors, we ran another simulation with nodes meeting according to
a Poisson process with rate § = 0.00435 (i.e., we set the meeting rate in the
simulation to exactly match the model’s meeting rate) and the results of the
two simulations are very close (see the curve labeled as “Poisson Simulation”
in Fig 1.(b)). This suggests that the error introduced by the Poisson meeting
process approximation is negligible. We conjecture that the prediction errors
are mainly due to the small number of initially infected nodes and/or total
nodes number. This is confirmed by simulations where we vary the number of
initially infected nodes, and found the modeling error becomes smaller when
the number of initially infected nodes is large. We also used a moment-closure
technique to derive an ODE system involving second moments using the MVN
method (details are given in Appendix C). The modified ODE provided a
better prediction for average delivery delay and the CDF of delivery delay

(Fig 1).

For epidemic routing with different recovery schemes, Fig 2 plots E[G,(N)]/N,
and the average buffer occupancy E[Q| as predicted by the model and ob-
tained from simulation. We find that the ODE models are more accurate for
IMMUNE than for VACCINE. In some sense, any error in the infection pro-
cess modeling is amplified by the exponentially fast recovery of VACCINE. We
observe that IMMUNE_TX only slightly reduces the number of copies sent for
each packet, while VACCINE further reduces the number of copies sent. The
reduction in buffer requirements is similar for IMMUNE_TX and VACCINE.
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Fig 3 plots the relative modeling error for these three recovery schemes. We
observe that as N increases, the error decreases. While ODE models over
predict the copies sent and average buffer occupancy for IMMUNE recovery,
they under predict buffer occupancy for IMMUNE_TX recovery, and under
predict both metrics for VACCINE recovery.

Next, we present validation results for the forwarding schemes introduced in
Section 3, focusing on the following three metrics, average delay, E[T,], average
buffer occupancy, E[Q], and average total number of copies transmitted, E[G]
under IMMUNE recovery. We expect the prediction errors to be slightly larger
for IMMUNE_TX and VACCINE recovery as observed for epidemic routing.

For the 2-hop forwarding, Fig 4 compares the three metrics under varying
number of nodes, N, showing a good match between the modeling results and
simulation results. Fig 6.(a) plots the relative prediction error.

For probabilistic forwarding scheme, Fig 5 plots the three metrics, comparing
the model prediction with the simulation result, Fig 6.(b) plots the relative
prediction error for probabilistic forwarding. We observe a larger prediction
error for p € [0.01,0.1], and error decreases as p increases and approaches to 1.
We conjecture the large prediction error in p € [0.01,0.1] is due to the larger
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variance when p takes a value in this range (see Section C in the appendix).
Like for epidemic routing, the ODE models under predicts the delay, whereas
over predicts the number of copies sent and the average buffer occupancy.

For limited time forwarding (with no reinfection after timeout) under varying
average timeout value, 1/u, Fig 7 plots the three metrics as predicted by the
model and as obtained through simulation, and Fig 9.(a) plots the relative
modeling error. We observe that the relative modeling error decreases as the
average timeout value increases. This was expected because the higher the
number of infected nodes, the better is the fluid approximation. As in the case

19



Average Delay, E[Td]

Average Delay, E[Td]

45

Relative Modeling Error

* Simulation result ———
ODE result -
40 r
35 K
30 -
25 I
20 -
£
15 (§ —
5:‘} rrrrrrrrrrrrrrrrr S
o U
0 50 100 150 200 250 300 350
Average timeout value,1/p
(a) Delivery delay
Fig
180 ————— T T
Simulation result -
160 ODE result -
140
120
100
80 }u\
}
60 §
20 i;
0 . . L . . .
0O 10 20 30 40 50 60 70 80
Global Timeout Value, T
(a) Delivery delay
0.3
0.2 -
0.1 -
oL
01
0.2 ;’.
0.3 4
0.4+ |
-0.5 |
4 Delivery delay
-0.6 Total copies sent --—-------
07 ) Buffer occupancy ------

Nodes ever infected, E[G]

Nodes ever infected, E[G]

0 20 40 60 80

Average timeout value,1/p

(a) Limited-time forwarding

100

90

70 *}

60 H
50
40 { ) )
Simulation result -
ODE result -
30 L L L I

0 50 100 150 200 250 300 350
Relay nodes timeout value, T

(b) Copies transmitted

. 7. Limited-time forwarding

100
9
80 | 1
70 + I
60 I i
50
af ¥

F
30
20 ;‘
0]
0

Simulation result - b
. ODE result -

0O 10 20 30 40 50 60 70 80
Global Timeout Value, T

(b) Copies transmitted

Fig. 8. Global timeout scheme

Average Buffer Occupancy, Q

Simulation result -
__ODE result

50 100 150 200 250 300 350

Average timeout value,1/p

(c) Buffer occupancy

Average Buffer Occupancy, Q

Simulation result -
, ODE result -

o . S —
0O 10 20 30 40 50 60 70 80

Global Timeout Value, T

(c) Buffer Occupancy

Relative Modeling Error

-0.4

-0.6 -

' Del‘ivery‘delay
Total copies sent - i
Buffer occupancy ------

st

0O 10 20 30 40 50 60 70 80

Global timeout value, T

(b) Global timeout scheme

Fig. 9. Relative modeling error for limited-time and global timeout scheme

of epidemic routing, the model under predicts the delay, and over predict the

number of copies sent and the average buffer occupancy.

Finally, for epidemic routing with IMMUNE recovery and global timeout
mechanism, Fig 8 plots the three metrics under different global timeout value,
T, Fig 9.(b) plots the corresponding relative prediction errors. We observe
that the ODE models under predict the delay, and over predict the number of
copies sent and the average buffer occupancy, as the case for epidemic routing.
The relative modeling error decreases as the timeout value 7T increases, as for

limited time forwarding.
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5 Performance Trade-offs

In this section, we show how the ODE models we derived can be employed to
quantitatively explore the tradeoff between delivery delay and resource con-
sumption under different forwarding and recovery schemes, and to determine
configuration criteria. It is not our intent to exhaustively explore all the pos-
sible dimensions of epidemic routing (forwarding schemes, recovery schemes,
methods to manage anti-packets) in order to determine the best candidate to
be used in a specific scenario to optimize a specific performance metric.

Previous work [8,25] investigated the buffer-delay tradeoff by varying the num-
ber of nodes. However, we believe that the number of nodes is often given,
and it is consequently more important to evaluate the performance tradeoffs
achieved by different schemes and/or understand how performance changes as
configurable parameter values change. In terms of the tradeoff between delay
and the number of copies transmitted, previous work [25,26] only considered
the tradeoff achieved by a special scheme that enforces a fixed number of
copies.

We discuss the delay versus number of copies transmitted for a packet and de-
lay versus buffer occupancy tradeoff achieved by different forwarding schemes
under IMMUNE (Section 5.1) and VACCINE (Section 5.2). We ignore signal-
ing overhead in this discussion, because to consider anti-packets overhead, we
need to incorporate ways to delete anti-packets, for example, by introducing
global timeout scheme. For each scheme and the particular parameter setting,
choosing a different global timer T results in a different tradeoff between de-
livery delay and resource consumptions; there is not an optimal choice of T
unless a optimization goal is given, for example by assigning weights to the
different metrics (i.e., delivery delay, copies made for packet and anti-packet,
and total storage occupancy). The latter optimization consideration is beyond
the scope of this paper. The reader interested into this topics can refer to our
work [20].

The results are mainly based on numerical solution of the previous ODEs (for
N =100, 8 = 0.00435, A = 0.01), but we also employ asymptotic results for
qualitative considerations.

5.1 Performance Trade-off Under IMMUNE

Fig 10.(a) and (b) respectively plot the delay-versus-number-of-copies-sent and
the delay-versus-buffer-occupancy trade-offs achieved by different forwarding
schemes when IMMUNE recovery is employed. In the figure, there are four
singleton points corresponding to direct source-destination transmission, 2-
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Probability (p,%) || 0.1 [ 05 |08 | 1|15 | 2 | 5 [ 10|20 | 80
Timeout (1/p) 01 05| 1 | 2| 5 | 10|20 |40 80| 160 | 320
Global timer (T) || 001 | 1 | 2 |3| 5 | 7 |10 12| 15| 16 | 18 | 20 | 80
Table 2

Settings considered for Probabilistic, Limited-time forwarding, and Global timeout
scheme

hop, 3-hop forwarding and epidemic routing. Three curves have been obtained
for probabilistic forwarding, limited-time forwarding (without reinfection) and
global timeout respectively; for these curves, each point corresponds to a dif-
ferent value of the forward probability p, the mean timeout interval 1/u or

the global timeout 7 respectively. All these parameter values are shown in
Table 5.1.

Let us first consider the delay-versus-number-of-copies-sent trade-off. One can
reduce the number of copies sent by decreasing p, 1/u or T, but at the same
time the delay will increase. Intuitively, these schemes behave as the original
epidemic routing as p — 1, 1/u — oo and T — oo, whereas p — 0, 1/ — 0
or T — 0 correspond to a no-relaying scenario in which the packet is only
delivered directly from the source to the destination. The only difference is for
1/p — 0, the number of copies converges to N/2 (which is the average number
of nodes the source uselessly infects before meeting the destination). Global
timeout scheme appears to be the best choice when limiting the number of
copies transmitted is the main concern. As a rule of thumb, one can choose
T ~ E[T,]/2 (= 5 in this specific setting), where E[Ty| is the average delay
under epidemic routing. This choice significantly reduces the number of copies
sent from nearly 100 to 6.8, with delivery delay increased from around 10 to
around 30.

Fig 10.(b) shows that for probabilistic and K-hop forwarding, the delay-versus-
buffer-occupancy tradeoffs are similar to the delay-versus-copies tradeoffs.
This is due to the proportionality between the number of copies sent and
the buffer occupancy that we have shown in Section 2.3 for epidemic rout-
ing under IMMUNE. This relation holds for all schemes where copies are
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deleted only after the meeting with the destination, hence also for probabilis-
tic and K-hop forwarding under IMMUNE, but not for limited-time or global
timeout forwarding. We observe that the limited time forwarding is the best
choice when limiting buffer occupancy is of primary concern. With a value
of 1/p ~ 2E[T,] (=20 in this specific setting), the average buffer occupancy
is decreased to about one tenth of that of epidemic routing, with a small in-
crease in the delivery time. The delay-versus-buffer tradeoff achieved by global
timeout scheme is very close to that of limited time forwarding.

5.2 Performance Improvement by VACCINE

Fig 11 shows the tradeoff under various forwarding schemes when VACCINE
recovery is employed. For the delay-versus-copies tradeoff (Fig 11.(a)), com-
pared to IMMUNE recovery, VACCINE recovery decreases the average number
of copies sent for a packet and the average buffer occupancy for each forward-
ing scheme. However, for different schemes, different amount of improvements
are achieved by VACCINE recovery: in particular, the largest improvement
is achieved for probabilistic forwarding, followed by K-hop forwarding, and
then limited-time forwarding and the global timeout scheme. The relatively
small improvements for limited-time forwarding and the global timeout scheme
are due to their intrinsic recovery features: nodes delete packet copies when
the timer expires and they cannot be reinfected. The explanation is more
complex for the probabilistic and K-hop forwarding schemes. Because of the
two counteracting processes — the counter-infection recovery process due to
anti-packets spreading and the continuing ongoing packet infection — the to-
tal recovery speed depends not only on the recovery scheme but also on the
specific infection process. Given the same average delivery delay, when the
recovery process starts, the average number of nodes infected and the current
infection rate are higher under probabilistic forwarding (its infection rate is
exponential, hence in the long term it is faster than K-hop). For this rea-
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son, we expect the IMMUNE recovery process to be significantly “longer” for
probabilistic forwarding than for K-hop forwarding, leading to larger buffer
occupancy and more copies transmitted for a packet (as shown in Fig 10).
Conversely under VACCINE, the recovery process is much shorter; the buffer
occupancy is mainly determined by the initial infection process (before the de-
livery), and the difference in the copies transmitted and the buffer occupancy
under probabilistic forwarding and K-hop scheme becomes much smaller, as
shown in Fig 11.

Fig 11.(b) and (c) plot the delay-versus-buffer-occupancy tradeoff for various
forwarding scheme under VACCINE recovery, where (c) zooms into the small
buffer occupancy range. Comparing Fig 11.(c) with (a), we find that the delay-
versus-buffer tradeoff is similar to that of delay-versus-copies tradeoff except
for global timeout scheme. For global timeout scheme, as Fig 11.(b) shows,
as T increases, the delay decreases monotonically; whereas, the buffer occu-
pancy increases first and then decreases. To see why this is the case, Fig 12
plots the numerical solutions for I(t), the number of infected nodes at time
t, under different settings of 7T'. Basically, under global timeout scheme, the
recovery process after time 7' is IMMUNE recovery, which is much slower than
VACCINE recovery, therefore, increasing the timeout value 7' not only leads
to longer epidemic spreading phase, but also results in faster overall recov-
ery process. When 7T is smaller than a certain threshold (which is around 15
for the specific setting considered here), the first effect outweighs the second
one, leading to larger buffer occupancy (as illustrated by 7= 2 and T' = 10
curves); when T increases further, the second effect becomes dominant factor,
leading to small buffer occupancy under larger T (as illustrated by 7' = 20,
and T = 40 curves) .

Global timeout scheme with VACCINE

50

Number of infected nodes
©
8

Fig. 12. I(t) for different 7' under global timeout scheme

® Remembering that Q = A [;* I(t)dt, as derived in Section 2.3.

24



6 Epidemic Routing under Constrained Buffer

Thus far, we have assumed that each node has sufficient space to store all
packets. In reality, however, mobile nodes often have limited storage due to
cost and form factor. Sizing the buffer to limit end-to-end packet losses due
to buffer overflow in store-carry-forward networks is hard. For example, [§]
studied buffer occupancy variability for the purpose of buffer sizing, but their
model requires an empirical distribution obtained from simulation. In this sec-
tion, we examine the performance of epidemic routing under the constraint
that each node can store at most B packets. We consider three buffer man-
agement strategies: (i) droptail where newly arriving packets are dropped if
the buffer is full (previously studied in [28] through simulation), (i) drop-
head where the oldest packet in the buffer is dropped to accept newly arriving
packets, and (i) source-prioritized drophead, drophead_sp, which gives pri-
ority to packets arriving directly from the node itself. We describe the model
for drophead sp here; a full analysis can be found in [29].

Under drophead_sp, when a packet arrives to a full buffer, the node discards
the oldest relay packet (i.e., a packet it has received from other node) to make
space for the new packet. If all buffered packets are source packets, and the
arriving packet is a source packet, the oldest source packet is deleted. Relay
packets arriving to a buffer filled with source packets are not accepted. There-
fore, given Py, the probability that a node’s buffer is filled with source packets,
the effective infection rate is then 5(1 — Py). Py can be derived by modeling
the number of node-buffered source packets as a Markov chain (details can be
found in [29]).

As before, we focus on the spreading of a single packet. Let G g5 be the average
number of copies made for each packet under the drophead_sp policy. Let I?(t),
for j =1,2,---, B, be the probability that the packet is the j-th newest source
packet in the source node’s buffer, I;(¢), for j = 1,2,---, B, be the average
number of infected relay nodes where the copy is the j-th newest packet in
the buffer, S(¢) be the average number of susceptible nodes, and D(t) be
the average number of nodes that have dropped the packet. Using arguments
similar to those in Section 2.1, we can then use the following ODEs to model
packet spreading in the case of buffer limits. At infected relay nodes (Eq.(10)
and (11)), the packet becomes older whenever another packet arrives, with
rate (Gans + 1) (this is the total packet arrival rate to a node by an argument
similar to that in Section 2.3). At the source node (Eq.(12) and (13)), the copy
of this packet becomes older at rate A, the rate at which new source packets
arrive.

S'(t)=—B(1— Pp)S Ly (I + L) (8)
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Fig. 13. P(t) under B = 5,10

L(t)=B(1— P;)S TE1(IF + L) — (Gans + 1)ALy 9)
L(t)=Gans + DAXI;-1 = I;), 2<j<B (10)
L'(t)=-\I} (11)
E't)=\I;_,-1I}), 2<j<B (12)
D'(t) = (Gans + 1) A5 + A} (13)
P'(t)=8 Li,(I; + I)(1 - P) (14)

The initial conditions are given by: S(0) = N —1, I7(0) = 1, I$(0) = 0, for j =
2,..B, I(0) =0, fork =1,..., B, D(0) = 0, P(0) = 0. We find G4, by solving
the following fixed-point problem using a binary search algorithm: given G,
we numerically solve the corresponding extended ODE model (including the
recovery process) and calculate the accumulated amount of flow from state S
to I, i.e., Ggns. Given the new value of Gg,, we then again solve the ODEs.

We have simulated these schemes, using the same setting as before (N =
100, A = 0.01, B = 0.00435), with different buffer sizes B = 5,10, 20, and
compared our ODE results with simulation. Table 6 tabulates the packet loss
probability, i.e. the probability that all the copies of a packet are dropped
before the destination receives one. Figures 13 plot the delay distributions
predicted for B = 5,10, in the range [0,200] and [0, 50] respectively so that
the difference between schemes can be seen.

We observe that the models provide reasonable accurate loss probability pre-
dictions, and reflect the relative performance of the three dropping schemes.
The shape of the distribution probability function for delivery delay is also
well-captured by the model [29]. We observe that naive droptail performs
poorly. Drophead provides fast infection, as relay packets are always accepted;
however, significant packet losses are incurred for B < 10. With drophead_sp,
although the infection spreads slower than under drophead, more packets are
delivered. If the packet rate is so high that the buffer can only hold its own
source packets, drophead_sp degenerates to direct source-destination trans-
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mission. Note that with infinite buffers, the average buffer occupancy for this
setting is over 200 (Fig 2.(b)). Our results here suggest that similar perfor-
mance can be achieved by drophead and drophead_sp with a much smaller
buffer size, equal to only 20 packets.

7 Related work

In the mathematical epidemiology field, there exists a vast volume of lit-
erature about mathematical models on the spreading of infectious diseases,
including both stochastic and deterministic models [1,3]. These mathemat-
ical techniques have been applied to various computer networking problems
that exhibit a strong analogy to epidemic spreading of disease. For example,
[14,27,19,31] modeled the spread of computer virus and worms in computer
networks by adapting epidemiological models. Also, a number of network ap-
plications (protocols) have adopted epidemic-style spreading communication
for data dissemination and resource discovery, and therefore epidemic models
are a natural way to study their performance. These include epidemic algo-
rithms [4] for maintaining consistency of replicated database, gossip (rumor-
based) protocol [11], broadcast communication [15] and peer-to-peer data
sharing [21] in mobile ad hoc network, and more recently, epidemic routing
[28,8,30] in Delay Tolerant Networks. Epidemic routing differs from the other
above mentioned broadcast based protocols in that it supports unicast appli-
cation, using epidemic style flooding to decrease the delivery delay.

Based on earlier results in [5], we have used a homogeneous mixing model
employing a single parameter (derived from mobility parameters) to capture
the contact rate between mobile nodes. [15,19] considered similar network set-
tings as our work, i.e., mobile ad hoc network. [15] made a similar homogeneous
mixing assumption, and obtained the contact rate through finding best-fitting
formula from results of many simulation runs. [19] considered a network with

Buffer size | simulation/model | droptail | drophead | drophead_sp

5 simulation 0.9696 0.2234 0.0536
model 0.8544 | 0.0928 0.0079

10 simulation 0.9471 0.0315 0.0
model 0.7891 0.0088 0.0

20 simulation 0.899 0.0016 0.0
model 0.7011 0.0 0.0

Table 3

Loss Probability Under Constrained Buffer
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higher node density and slower nodal mobility than our paper, and extended
Kephart-Whilte model [13] to model the virus spreading, characterizing the
fraction of nodes with varying connectivities under given mobility models.

Another important difference between our work and the above mentioned
work lies in the fact that we are interested in performance metrics that are
unique to the unicast application in DTN. We have seen that there exists a
tradeoffs between the delivery delay and resource consumptions in terms of the
number of transmissions made for a packet and buffer occupancy. Using ODE
models, we have studied the performance of various epidemic style routing,
and explored the tradeoffs they achieve.

The work most closely related to ours is [8], where an ODE model is applied to
study delay under epidemic routing, and Markov chain model is used to study
the storage requirement under different recovery schemes. While both our work
and [8] study the delay, storage requirement, and transmission numbers of epi-
demic routing, our work goes beyond this single scheme to study schemes such
as 2-hop forwarding, probabilistic forwarding, limited-time forwarding, global
timeout scheme, and epidemic routing in the buffer-constrained scenario. In
addition, our analysis leads to new closed-form expressions and asymptotic
results, when the number of nodes increases, for a number of schemes. Fur-
thermore, we study epidemic routing under buffer-constrained scenario using
ODE models coupled with Markov models to compare different buffer man-
agement strategies. We also note that the approach in [8] is a hybrid approach
and requires obtaining some model parameters, such as the number of nodes
infected at the time of delivery, from simulations. We derive all metrics as part
of the model itself. Last, because our focus is on the use of ODE models, we
provide insight into when they do or do not work and why, and show how mo-
ment closure techniques could be employed to improve the model predictions.

Another closely related work is [5]. Based on the result of Poisson meeting
process, the authors modeled 2-hop forwarding and epidemic routing using
Markov chain models, and derived the average delay and the number of copies
generated at the time of delivery for these two schemes. Using ODE models,
we have more easily derived similar results. [9] later extended this work to
consider a variant of 2-hop scheme with exponential timers at each node with
and a limit on the maximum number of copies. Through Markovian analysis,
the author derived close-form formulas and numerical solutions for delivery
delay, number of copies transmitted for these two schemes respectively. Given
the difficulty in deriving asymptotic formulas from Markovian analysis, ODE
models were employed to derive asymptotic formulas for moments of delivery
delay, and copies made at delivery time for these two schemes.
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8 Summary

In this paper, we proposed and investigated a unified framework based on
ODE:s to study the performance of various forwarding and recovery schemes.
We derived ODE models as limiting processes of Markovian models under
a natural scaling as the number of nodes increases, and employed the ODE
models to obtain a rich set of close-form formulas regarding the packet-delivery
delay, number of copies sent, and buffer occupancy under various schemes. We
validated the models through simulations, and observed a good match between
the model prediction and simulation results. We used the ODE models to
explore performance tradeoffs achieved by various schemes, and obtain insights
into the different schemes. We further considered the buffer-constrained case,
and showed that with appropriate buffer management schemes, a much smaller
buffer can be used with negligible effect on delivery performance.
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A Derivation of ODEs that consider recovery processes

In this section, we derive ODE models to include the recovery process from
Markov Chain models. In order to derive the limiting equation the number
of destinations, np, need to scale with the number of nodes N. We first con-
sider IMMUNE scheme. Let ng(t) denote the number of recovered nodes at
time ¢, then the state can be denoted as (n;(t), ng(t)). We have the following
transition rates:

ra((ni(t), na(t)), (ni(t) + 1,nk(t))) = Brr(H)(N — ns(t) — na(t))
ra((nr(t), na(t)), (ne(t) — 1,nk(t) + 1)) = Br(t)np.

The transition rates can be written in a “density dependent” form, given
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that the number of destinations np scales in a manner similar to the scaling
of the number of initially infected nodes, i.e., limy_,oo np/N = d. Then by
Theorem 3.1 in [16], we get that, as N increases, the fraction of infected nodes
(ny/N) and recovered nodes (ng/N) converge asymptotically to the solution
of the following equations:

?(t) =Xi(t)(1 — i(t) — r(t)) — Ai(t)d, fort >0
r'(¢) = \i(t)d, for t >0

where d = np/N, and the initial conditions are i(0) = limy_,o n;(0)/N,7(0) =
0.

The number of infected and recovered nodes then converges to I(t) = Ni(t), R(t) =
Nr(t) in the sense of footnote 1. The following equation can be derived for
I(t), R(t) from the previous ODEs:

I'(t)=BI(N — I — R) — BInp (A1)

with initial condition I(0) = N3(0), R(0) = 0. We consider I(0) = 1, R(0) =
0, np = 1.

ODE models for IMMUNE_TX and VACCINE scheme can be similarly de-
rived. For IMMUNE_TX the transition rates are (omitting the dependence
from time, t):

TN((’TLI, ’I’lR), (’I’LI + 1, ’I’LR)) zﬂnI(N —nr— ’I’LR)
rn((ng,mg), (n; — 1,ng + 1)) = Bnr(ng + np)

The limiting equations are:

.
~
~~
~
~—
Il

Xi(t)(1 —i(t) — r(t)) — Mi(t)(r(t) + d), for t >0
r'(¢) = Xi(t)(r(t) + d), fort >0

The following equations can be immediately derived:

I'(t)=BI(N —I - R) - BI(1+R) (A.3)
R'(t)=BI(1+ R) (A.4)

For VACCINE we need to specify how many destination nodes have received
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the packet, let npr denote this number’. We assume that all the desti-
nations have to receive the packets from an infected node®. The transi-
tion rates are: ry((nr,ngr,npr), (nr + 1,ng,npr)) = pni(N — n; — ng),
rn((nr, R, npR), (N1—1,nr+1,npr)) = Bni(nr+npr) and rx((nr, nr, DR), (N1—
1,ng+1,npr+1)) = pnr(np—npr) and rn((nr, nr, npr), (nr,nr+1,npr)) =
B(N — n; — ng)(ng + npr) - The limiting equations are as follows, where

dr(t) = limN_)oo(nDR/N):

¢(t) = Ai(t)(1 —i(t) — r(t)) — Ai(t)(r(t) + d), for t > 0
() = M(£)(r(t) + d) + A1 — i(t) — () (r(t) + dn(2)), for t >0
d'(t) = Xi(t)(d — d,(t)), for t > 0

If we consider the average populations (Ni(t),Nr(t) and Nd,(t)), and assume
np = 1, we observe that Nd,(t) satisfies the same ODE as P(t), and derive
the following equations:

I'(t)=BI)(N — I(t) — R(t)) — BI(t)(R(t) + 1) (A.5)
R'(t)=pI(t)(1+ R(t)) + B(N — I(t) — R(t))(R(t) + P(t)) (A.6)
P'(t)=pI(t)(1 - P(t)). (A7)

Let C(t) be the number of nodes that are ever infected by the packet, then
we have

C'(t)=BI(t)(N — I(t) — R(t)) (A.8)
(A.9)

These ODE models allow us to evaluate the number of times a packet is copied
during its lifetime (excluding the copy to the destination), G = C(00), and
the average buffer occupancy, @ = A [;° I(t)dt.

7 There is no such a need for the previous schemes because only a destination can
recover an infected node. Hence even if the destination has not received the packet,
the destination receives it when it meets the infected node.

8 Different assumptions can be made, for example a destination could receive the
packet from another destination, or a destination could receive the antipacket from a
recovered node and propagate it without having received the packet. The latter case
is meaningful when we deal with an anycast communication (the packet has to reach
at least one of the destinations) or if we can rely on the fact all the destinations will
receive a copy of the packet from the destination that started the recovery process.
These different assumptions lead to minor differences in the final equations.
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B Derivation of the total number of copies

For IMMUNE scheme, Eq.(A.1) and (A.2) model the infection and recovery
process. Note that as R(t) is a strictly increasing function of ¢, I(R) is well
defined. Dividing Equation (A.1) over(A.2) yields (we assume np = 1):

dI
—=N-I-R-1
dR

The solution to this ODE with initial condition I(0) =1 is

I(R)=(-N+1)e®~R+N.

As limy oo I(t) = 0, we can solve I(R) = 0 for R to find limy o R(t). For
N large enough (N > 10), the solution gives lim; .o, R(t) =~ N. Since I(t) +
R(t)—(I(0)+ R(0)) = I(t)+ R(t) — 1 is the number of times a packet is copied
in the system by time ¢, we have E[G¢p(N)] = limy 00 I(¢) + R(t) —1 = N — 1.

Similarly, for IMMUNE_TX scheme, from Eq.(A.3) and (A.4), we can solve
I(R) and get:

_ -R*+(N-1)R+1
B R+1 '

I(R)

As lim; o I(t) = 0, we find limy_, R(t) by solving I(R) =0 for R. I(R) =0
has two roots (N — 1+ /N2 — 2N + 5)/2. Discarding the negative root, we
have lim; , o, R(t) = (N —14++/N2 — 2N + 5)/2. Therefore, for IMMUNE_TX
scheme, we found

B[Go(N)] = lim (I(8) + R(t) — 1) = Y -3 F VNI Z2N+5

t—o00 2

C Derivation of ODEs from Markov Chain through moment clo-
sure techniques

In this section, we show how the ODE model can be derived from Markov
Chain model by ignoring variability and how variability can be taken into
account using differential equations involving higher moments.

We consider the generic epidemic routing under IMMUNE recovery with a
pair-wise infection rate of 7, and per-node recovery rate of 5. Under the basic
epidemic routing, we have v = (; for probabilistic forwarding, we have v = pg.
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A bivariate Markov chain as illustrated in Figure C.1 can be used to model
the infection and IMMUNE recovery process, with state (S(¢), I(¢)) denotes a
state where there are S(t) susceptible nodes, and I(t) infected nodes at time
t, given that S(0) = N —1,1(0) = 1.

B(i+1)

Fig. C.1. Markov Chain for epidemic routing

Define the state probabilities: P, ;(t) = Pr{S(t) = s,I(t) = 4S(0) = N —
1,1(0) = 1}. The Kolmogorov forward equation for the process is :

dP; ;(t)
dt

= —PS,,(t)(ﬁl + ’}/SZ) + P5,1+1(t)ﬁ(i + 1)
Pyiaia(t)v(s+1)(@i - 1)

Let M(6y,6,,t) := E[e®*1%] be the moment generating function. Multiplying
the above equation with e?**t%2¢ and summing over all possible s, 4, we get:

0*M
06,06’

oM

_2 oM
ot Be™™ —1)

00,

+ (e —1) (C.1)

We define the cumulant generating function, K(61,62,t) := log M (61, 02,1),
and observe that the following equations hold:

0K _ 10M
ot M ot
0K _ 10M
661_M801

0’K OKOK 1 0*M

96,00, 96, 06, M 96,00,

Substitute these equations into Equation (C.1), we get:

2
oK ., 0K K 8K6K> ©2)

0 12 02—61 bt
g ~Plea = Dgg (e Y (801802 " 6, 06,
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By taking partial derivatives of #; and 6 respectively on Equation (C.2) and
setting 6; = 6, = 0, we can get the following ODE system.

dS _

— =—~(T

dt (IS + Cis)
dl - __

where S(t) = E[S(t)], I(t) = E[I(t)], C1s(t) = Cov(S(t), I(¢)).

If we ignore covariance of I(t) and S(t), and set Crs = 0, we get:

dsS _

= —_~IS
it~

drl .
= = _BI+~IS
7 BI + v

This is exactly the ODEs we have derived as limiting process of Markov Chain
model.

If we continue this process, we could derive ODEs for second-order moments
by taking second order partial derivatives of 8; and 6, respectively on Equa-
tion (C.2) and setting 6; = 0 = 0:

Vs -~ -
—dtS =v(IS + Crs) — 2v(Tssr + VsI + SCis)
v - - s
d—tI =B1 =2V +v(Crs + IS) + 2v(Tsir + CrsI + SV7)
dC - _ _ _ _
dtfs =—BC1s —v(Cis + IS) — vTs11 — vCisI — vSVi +vTss1 +yVsI +vSCs

where V,(t) = Var(S(t)), Vi(t) = Var(1(t)), and Tsys, Tssy are the third central
moments: Tsry = E[(S — ES)(I — EI)?],Tss; = E[(S — ES)*(I — EI)].

One could keep on this procedure to derive ODEs for the third and higher
moments, but eventually a moment closure technique is needed to truncate

the equations at certain order. We experiment with three different meth-
ods [12,22,18].

e MVN (Multi-Variate Normal) method: setting third central moments to

zero. This is equivalent to assuming a multi-variate normal distribution of
the state variables (S(¢), I(¢)).
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Fig. C.2. Comparison of different moment equations for the case p = 1.0
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, Iognormal melhoq —————

e Lognormal method: if we assume a lognormal distribution for the state
variables, then the third moments can be expressed in terms of the lower
moments

e Third-order moment: truncate the equations by setting fourth-order mo-
ments to zero.

In order to compare the performance of these different methods, we simulate
probabilistic forwarding, varying p in the range between 0.001 to 1.0, with
N =100, and compare the model predictions with the simulation results.

For the basic epidemic routing, i.e., p = 1.0,y = [ case, Figure C.2 plots
the average infected node number, the covariance of infected node number of
susceptible node, and the CDF of delay, comparing simulation results with the
prediction of different moment equations. We observe that third-order ODEs
gives similar result as first-order ODEs, with slight improved match with sim-
ulation results. Like first and third order ODEs, lognormal equations under
estimates the covariance, and therefore over predicts the infection spread-
ing process, and under predicts the delivery delay. On the other hand, MVN
method over estimates the covariance, and under estimates the spread of the
infection (as Figure ??.(a) shows). For this case, MVN method performs best
in prediction of delivery delay as shown also in the Figure 1 in Section 2.

However, MVN method has a drawback. For P in the range [0.01,0.3], the
MVN ODEs have no stable equilibrium, i.e., the solution diverges. [18] ob-
served this drawback of MVN method (under a different model), and at-
tributed it to the large variability under the scenario considered.

D Delay Asymptotic Results

Here we are going to derive the different bounds and asymptotic values we
presented in the paper. For each of the following forwarding schemes, closed-
form expressions can be derived for the number of infected nodes I(t) and the
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cumulative distribution of delay P(t) = Pr(Ty < t) =1 — Q(t). The expected
delay can be evaluated as E[Ty] = [;° Q(¢t)dt, so we are going to show how
this integral can be approximated for the different schemes.

e 2-hop forwarding (Section 3.1.1)
The expected delay is equal to:

o0

1
E[Td] B/Gte(N 1)(1-t—e~ )dt
0

eN-1)(1~t=e"") hag a single maximum for ¢ = 0, hence according to the

saddle point approximation when N — oo we can consider:

—t (N-1)(1—t—e"t)

_ _ _ 2
ete 0,~(N-1)t?/2

X e

hence

100 2 ™
ET _/ Nlt/2dt - -
[Ta] ~ B 6V2~/N—1

e Probabilistic routing (Section 3.1.3). In this case

Q) = (ﬁ)

This expression can be easily bounded:

N N

e < Q(t) € .
eNﬁt+N—1—Q()—eNﬂPt+N—1

Note that these bounds correspond to the comparison of the probabilistic
forwarding with epidemic routing with inter-meeting rates of 8 and Sp re-
spectively: probabilistic forwarding is slower than the first one, but faster
than the second one.

If we integrate the previous inequality, we get:

In(N) ln(N)
BN —-1) ~ Bp(N —1)

e Limited-time scheme with reinfection (Section 3.1.3) In this case:

< E[Ty] <

(a2 _ al)e*(hﬂt

Q(t) = (az _ 1) + (1 _ al)e(a2fa1)ﬁt’

where a; and a; are respectively the positive and the negative solution of
the equation SI(N — I) — pu(I — 1) = 0 (to be solved for I), obtained by
imposing % = 0.
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We consider three different asymptotic values: for N — oo, for y — oo
and for N = £ — oo.

As regards the first bound, we proceeded in the following way: we consid-
ered a function @, n(t) > 0 which approximates Qy(t) (we have stressed the
dependence from N), and for which we can closely evaluate [;° Qq n(t)dt.
This is an asymptotic value for the expected delay if:

lim Jo° Qn(t)dt — [§° Qa,n(t)dt
N—eo 107 Qan(t)dt

¢ Qn(t)—Qq,n(t)
Qa,n (1)

—0

In order to prove it, we proved tha converges uniformly to

zero in Rt as N diverges:

QN(t) - Qa,N(t) L> 0.

Qan(t) N

In fact in this case Ve > 0, 3n, € N such that Vt € R™ and VN > n,

Qn(t) — Qo (t)]
|Qa,n (1)

<e€

hence:
| Jo° Qn(t) — Qan(t)dt] <
|57 Qa,n(t)] T
The asymptotical behavior of as and a; as N — oo (limy 00 a2 = +00,
limy_, o a1 = 0) suggests to consider:

ao — a1
(az — 1) + (1 — ay)e2bt

Qan(t) =
which can be easily integrated.

Qn(t) — Qan(t)| _ (1 —enf)
QaN ) ealﬁt + (i;fi) eagﬁt

We can easily evaluate the maximum of the right expression, and we get:

a16t)

< (
- ( )eazﬂt

a2

aN() —al(az— ) ao a1
|Q QaNQ) | = (1—a1)(a2—1a1) (a )

2 — a1

The maximum converges to 0 when N diverges, hence the convergence is
uniform.
The asymptotic value is:

/QaN t)dt = 1/6( — 1631(12 In (“12__511)
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which behaves asymptotically as:

lln(N—%)
5 N—Z

In the same way we have found the second bound as y — co. In this case
lim, ,o a2 = 1, lim,_, a; = —o0, and we consider

Qa,u (t) = e~ P,

Qn(t) — Qan(t) ‘ _ 1
Qa,N(t) (az,l)(la,z;—a(lw—al)m) -1

The supremum is achieved for ¢ — oo and is equal to:

ag—l

1—&1

which converges to 0 as u diverges.
The asymptotic value is:

RS
Bay ko B

?Qa,u(t)dt =

Finally, as regards the third bound, a closed form can be found for E[T],
considering N = u/3:

VN=1+1
2 arccot VN T1

E[Td] = ﬁm )
and -
BT\, 28VN — 2

E Number of Copies

In this section we show how the results about the average number of copies
occurred until the delivery (Cy) can be derived.

First note that for all the considered schemes, except those based on timers,
the number of copies (excluding the copy to the destination) coincides with
the average number of infected node in the system when the packet is delivered
minus one. Hence:
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where I(t) is the number of infected nodes at time ¢, given that the packet
has not been delivered at time ¢.

By replacing P’(t) and integrating by parts, we have:

fﬂﬂpmﬁ

8 [ E()Q()dt
0w
BO/Wd(Q(t))

7F@Q@ﬁ+1

By replacing I'(t) according to the equation of the specific schemes and con-
sidering that [;° BI(t)Q(t)dt = P(co) — P(0) = 1, we can get the following
results, respectively for epidemic routing, 2-hop and probabilistic routing.

N-1
Cep= 5
T
Conop=BNE[Te] =1 ~ \/g VN
_p(N—-1)
Cprob — 1 + D
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