
Dynamic Backup Workers
for Parallel Machine Learning

Chuan Xu Giovanni Neglia
Inria, Université Côte d’Azur, Sophia Antipolis, France

firstname.familyname@inria.fr

Nicola Sebastianelli

Abstract—The most popular framework for parallel
training of machine learning models is the (synchronous)
parameter server (PS). This paradigm consists of n workers
and a stateful PS, which waits for the responses of every
worker’s computation to proceed to the next iteration.
Transient computation slowdowns or transmission delays
can intolerably lengthen the time of each iteration. An
efficient way to mitigate this problem is to let the PS wait
only for the fastest n − b updates, before generating the
new parameters. The slowest b workers are called backup
workers. The optimal number b of backup workers depends
on the cluster configuration and workload, but also (as we
show in this paper) on the current stage of the training.
We propose DBW, an algorithm that dynamically decides
the number of backup workers during the training process
to maximize the convergence speed at each iteration. Our
experiments show that DBW 1) removes the necessity to
tune b by preliminary time-consuming experiments, and 2)
makes the training up to a factor 3 faster than the optimal
static configuration.

I. INTRODUCTION

In 2014, Google’s Sybil machine learning (ML)
platform was already processing hundreds of terabytes
through thousands of cores to train models with hundreds
of billions of parameters [1]. At this scale, no single
machine can solve these problems in a timely manner, and,
as time goes on, the need for efficient parallel solutions
becomes even more urgent. Currently, the operation of
ML parallel systems requires a number of ad-hoc choices
and time-consuming tuning through trial and error, e.g., to
decide how to distribute ML programs over a cluster
or how to bridge ML computation with inter-machine
communication. For this reason, significant research effort
(also from the networking community [2], [3], [4], [5]) is
devoted to design adaptive algorithms for a more effective
use of computing resources for ML training.

Currently, the most popular template for parallel ML
training is the parameter server (PS) framework [6]. This
paradigm consists of workers, that perform the bulk of
the computation, and a stateful parameter server that

maintains the current version of the model parameters.
Workers use locally available versions of the model to
compute gradients which are then aggregated by the PS
and combined with its current state to produce a new
estimate of the optimal parameter vector. However, if the
PS waits for all workers before updating the parameter
vector (synchronous operation), stragglers, i.e., slow tasks,
can significantly reduce computation speed in a multi-
machine setting [7], [8]. A simple solution that mitigates
the effect of stragglers is to rely on backup workers [9]:
instead of waiting for the updates from all workers (say
it n), the PS waits for the fastest k out of n updates
to proceed to the next iteration. The remaining b ,
n− k workers are called backup workers. Experiments
on Google cluster with n = 100 workers show that a few
backup workers (4–6) can reduce the training time by
30% [9].

The number of backup workers b has a double effect
on the convergence speed. The larger b is, the faster each
iteration is, because the PS needs to wait less inputs from
the workers. At the same time, the PS aggregates less
information, so the model update is noisier and more
iterations are required to converge. Currently, the number
of backup workers is configured manually through some
experiments, before the actual training process starts.
However, the optimal static setting is highly sensitive to
the cluster configuration (e.g, GPU performances and their
connectivity) as well as to its instantaneous workload.
Both cluster configuration and workload may be unknown
to the users (specially in a virtualized cloud setting) and
may change as new jobs arrive/depart from the cluster.
Moreover, in this paper we show that the optimal number
of backup workers changes during the training itself(!)
as the loss function approaches a minimum. Therefore,
the static configuration of backup workers does not only
require time-consuming experiments, but is particularly
inefficient and fragile.

In this paper we propose the algorithm DBW (forISBN 978-3-903176-28-7 c© 2020 IFIP



Dynamic Backup Workers) that dynamically adapts the
number of backup workers during the training process
without prior knowledge about the cluster or the opti-
mization problem. Our algorithm identifies the sweet
spot between the two contrasting effects of b (reducing
the duration of an iteration and increasing the number
of iterations for convergence), by maximizing at each
iteration the decrease of the loss function per time unit.

The paper is organized as follows. Sect. II provides
relevant background and introduces the notation. Sect. III
illustrates the different components of DBW with their
respective preliminary assessments. DBW is then evalu-
ated on ML problems in Sect. IV. Sect. V concludes the
paper and discusses future research directions. Our code
is available online [10].

II. BACKGROUND AND NOTATION

Given a dataset X = {xl, l = 1, . . . S}, the training of
ML models usually requires to find a parameter vector
w ∈ Rd minimizing a loss function:

minimize
w∈Rd

F (w) ,
1

S

S∑
l=1

f(xl,w), (1)

where f(xl,w) is the loss of the model w on the
datapoint xl.

The standard way to solve Problem (1) is to use an
iterative gradient method. Let n be the number of workers
(e.g., GPUs) available. In a synchronous setting without
backup workers, at each iteration t the PS sends the
current estimate of the parameter vector wt to all the
workers. Each worker computes then a stochastic gradient
on a random mini-batch drawn from its local dataset, and
sends it back to the PS. We assume each worker has
access to the complete dataset X as it is reasonable in
the cluster setting that we consider. Once n gradients are
received, the PS computes the average gradient

gt =
1

n

n∑
i=1

gi,t =
1

n

n∑
i=1

1

B

∑
x∈Bi

∇f(x,wt),

where gi,t denotes the i-th gradient received by the PS,
computed on the random minibatch Bi ⊆ X. Then the
PS updates the parameter vector as follows:

wt+1 = wt − ηgt, (2)

where η > 0 is called the learning rate.
When b backup workers are used [9], the PS only waits

for the first k = n− b gradients and then evaluates the
average gradient as

gt =
1

k

k∑
i=1

gi,t. (3)

In our dynamic algorithm (Sect. III), the value of k is
no longer static but changes in an adaptive manner from
one iteration to the other, ensuring faster convergence
speed. We denote by kt the number of gradients the PS
needs to wait for at iteration t, and by Ti,t the time
interval between the update of the parameter vector wt

at the PS and the reception of the i-th gradient gi,t.
To the best of our knowledge, the only other work

proposing to dynamically adapt the number of backup
workers is [11]. The PS uses a deep neural network to pre-
dict the time Tk,t needed to collect new k gradients and
greedily chooses kt as the value that maximizes k/Tk,t.
This neural network needs itself to be trained in advance
for each cluster and each ML model to be learned. No
result is provided in [11] about the duration of this
additional training phase or its sensitivity to changes
in the cluster and/or ML models. Moreover, results
in [11] do not show a clear advantage of the proposed
mechanism in comparison to the static setting suggested
in [9] (see [11, Fig. 4]). Our experiments in Sect. IV
confirm that indeed considering a gain proportional to k
as in [11] is too simplistic (and leads to worse results
than DBW).

III. DYNAMIC BACKUP WORKERS

The rationale behind our algorithm DBW is to adap-
tively select kt in order to maximize F (wt)−F (wt+1)

Tk,t
,

i.e., to greedily maximize the decrease of the empirical
loss per time unit. We decide kt just after computing
wt. In the following subsections, we detail how both
numerator and denominator can be estimated, and how
they depend on k.

A. Empirical Loss Decrease

We assume that the empirical loss function F (w) is
L-smooth, i.e., it exists a constant L such that

‖∇F (w′)−∇F (w′′)‖ ≤ L‖w′ −w′′‖,∀w′,w′′. (4)

From (4) and (2) it follows (see [12, Sect. 4.1]):

∆Ft , F (wt)− F (wt+1)

≥ η∇F (wt)
ᵀgt −

Lη2

2
‖gt‖2. (5)

In order to select kt, DBW uses this lower bound as a
proxy for the loss decrease. We consider then the expected
value (over the possible choices for the mini-batches) of
the right-hand side of (5). We call it the gain and denote
by Gk,t, i.e.,:

Gk,t , E
[
η∇F (wt)

ᵀgt −
Lη2

2
‖gt‖2

]
. (6)



Each stochastic gradient is an unbiased estimator of
the full gradient, then E[gt] = ∇F (wt) and

E[‖gt‖2] = ‖∇F (wt)‖2 + V(gi,t)/k, (7)

where V(gi,t) denotes the sum of the variances of
the different components of gi,t, i.e., V(gi,t) ,∑d

l=1 Var([gi,t]l). Then, combining (6) and (7), Gk,t can
be rewritten as

Gk,t =

(
η − Lη2

2

)
‖∇F (wt)‖2 −

Lη2

2

V(gi,t)

k
. (8)

When full batch gradient descent is used, the optimal
learning rate is η = 1/L, because it maximizes the
expected gain. With this choice of the learning rate,
Eq. (8) becomes:

Gk,t =
η

2

(
‖∇F (wt)‖2 −

V(gi,t)

k

)
. (9)

Equation (9) shows that the gain increases as k
increases. This corresponds to the fact that the more
gradients are aggregated at the PS, the closer −gt is
to its expected value −∇F (wt), i.e., to the steepest
descent direction for the loss function. We also remark
that the gain sensitivity to k depends on the relative ratio
of V(gi,t) and ‖∇F (wt)‖2, that keeps changing during
the training (see for example Fig. 1). Correspondingly,
we can expect that the optimal value of k will vary
during the training process, even when computation
and communication times do not change in the cluster.
Experiments in Sect. IV confirm this is the case.

Computing the exact value of Gk,t would require
the workers to process the whole dataset, leading to
much longer iterations. We want rather to evaluate Gk,t
with limited overhead for the workers. In what follows,
we give our estimates for ‖∇F (wt)‖2 and V(gi,t) to
approximate Gk,t in (9). The derivation can be found
in [13]. We have

V̂(gi,t) =
1

D

D∑
v=1

̂V (gi,t−v)
+
, (10)

̂‖∇F (wt)‖2 =
1

D

D∑
v=1

max

‖gt‖2 − V̂(gi,t)
+

kt
, 0

 ,

(11)

where V̂(gi,t)
+

=
∑d

l=1
1

kt−1
∑kt

j=1 ([gj,t − gt]l)
2

and D is the number of past estimates considered.
Combining (9), (10), and (11), the gain estimate is

Ĝk,t =
η

2

(
̂‖∇F (wt)‖2 −

V̂(gi,t)

k

)
. (12)

In Fig. 1, we show our estimates during one training
process on the MNIST dataset (details in Sect. IV), where
our algorithm (described below in Sect. III-C) is applied
to dynamically choose k. The solid lines are the estimates
given by (10), (11), and (12). The dashed lines present the
exact values (we have instrumented our code to compute
them). We can see from Figures 1(a) and 1(b) that the
proposed estimates ̂‖∇F (wt)‖2 and V̂(gi,t) are very
accurate. Figure 1(c) compares the loss decrease ∆Ft

(observed a posteriori) and Ĝkt,t. As expected Ĝkt,t is a
lower bound for ∆Ft, but the two quantities are almost
proportional. This is promising, because if the lower
bound Ĝk,t/Tk,t and the function ∆Ft/Tk,t were exactly
proportional, their maximizers would coincide. Then,
working on the lower bound, as we do, would not be an
approximation.

B. Iteration Duration

In order to estimate Tk,t, the PS keeps collecting on-
line time samples {th,k} for h, k = 1, ..., n that record
the time the PS spends for receiving the k-th gradient,
provided that it has waited h gradients at the previous
iteration. Our estimators are described in [13].

C. Dynamic Choice of kt
DBW rationale is to select the parameter kt that

maximizes the expected decrease of the loss function
per time unit, i.e., kt = arg max1≤k≤n

Ĝk,t

T̂k,t
. Moreover,

we exploit additional information about local average
loss at each worker [13].

IV. EXPERIMENTS

We have implemented DBW in PyTorch [14] using
the MPI backend. The experiments have been run on a
CPU/GPU cluster. In order to have a fine control over the
round trip times, our code can generate computation and
communication times according to different distributions
(uniform, exponential, Pareto, etc.) or read them from a
trace provided as input file.

In all experiments DBW achieves nearly optimal
performance in terms of convergence time, and sometimes
it even outperforms the optimal static setting, that is
found through an exhaustive offline search over all values
k ∈ {1, ..., n}. We also compare DBW with a variant
where the gain Gk,t is not estimated as in (12), but it
equals the number of aggregated gradients k, as proposed
in [11]. We call this variant blind DBW (B-DBW),
because it is oblivious to the current state of the training.

We evaluated DBW, B-DBW, and different static
settings for k on MNIST, a dataset with 60000 images
portraying handwritten digits. For MNIST, we trained a



(a) Gradient norm (b) Gradient variance (c) Loss decrease

Fig. 1: Estimation of the loss decrease. MNIST, n = 16 workers, batch size B = 500, learning rate η = 0.01, estimates
computed over the last D = 5 iterations.

Fig. 2: Loss versus time. MNIST, batch size B = 500,
n = 16 workers, estimates computed over the last D = 5
iterations, proportional rule with η(k) = 0.005k, round
trip times follow shifted exponential distribution 0.3 +
0.7Exp(1).

neural network with two convolutional layers with 5×5
filters and two fully connected layers. The loss function
was the cross-entropy one.

The learning rate is probably the most critical hyper-
parameter in ML optimization problems. The rule of
thumb proposed in the seminal paper [9] is to set the
learning rate proportional to k, i.e., η(k) ∝ k. This
corresponds to the standard recommendation to have
the learning rate proportional to the (aggregate) batch
size [15], [16].

Figure 2 shows, for a single run of the training process,
the evolution of the loss over time and the corresponding
choices of kt for the two dynamic algorithms. The optimal
static setting is k∗ = 10. We can see that DBW achieves
the fastest convergence by using a different value of k
in different stages of the training process. In fact, as
we have discussed after introducing (9), the effect of k
on the gain depends on the module of the gradient and

on the variability of the local gradients. In the bottom
subplot, the dotted line shows how their ratio varies
during the training process. Up to iteration 38, V(gi,t)
is negligible in comparison to ‖∇F (wt)‖2. DBW then
selects small values for kt loosing a bit in terms of
the gain, but significantly speeding up the duration of
each iteration by only waiting for the fastest workers.
As the parameter vector approaches a local minimum,
‖∇F (wt)‖2 approaches zero, and the gain becomes more
and more sensitive to k, so that DBW progressively
increases kt up to reach kt = n = 16 as shown by the
solid line. On the contrary B-DBW (the dashed line)
selects most of the time kt = 9 with some variability
due to the randomness of the estimates T̂k,t.

A. Round trip time effect

In this subsection we study the effect of round trip
times variability. A round trip time includes the time to
transmit the parameter vector from the PS to the worker,
the time to compute the gradient, and the time to transfer
the gradient to the PS. We assume that round trip times are
i.i.d. according to a shifted exponential random variable
1 − α + α × Exp(1), where 0 ≤ α ≤ 1. This choice
allows us to easily tune the variability of the round trip
times by changing α. When α = 0, all gradients arrive
at the same time at the PS, so that the PS should always
aggregate all of them. As α changes from 0 to 1, the
variance of the round trip times increases, and waiting
for k < n gradients becomes advantageous.

Figure 3 compares the time needed to reach a training
loss smaller than 0.2 for the two dynamic algorithms and
the static settings k = 16, k = 12, and k = 8, that are
optimal respectively for α = 0, α = 0.2, α = 1. For each
of them, we carried out 20 independent runs with different
seeds. We find that our dynamic algorithm achieves the
fastest convergence in all three scenarios, it is even 1.2x
faster and 3x faster than the optimal static settings for



(a) α = 0 (b) α = 0.2 (c) α = 1

Fig. 3: Effect of round trip time distribution. MNIST, n = 16 workers, batch size B = 500, estimates computed over the last
D = 5 iterations, proportional rule for η(k) in static settings where η(k) = 0.005k.

α = 0.2 and α = 1. There are two factors that determine
this observation. First, as discussed for Fig. 2, there is no
unique optimal value of k to be used across the whole
training process, and DBW manages to select the most
indicated value in different stages of the training process.
Second, DBW takes advantage of a larger learning rate.
Both factors play a role. For example, if we focus on
Fig. 3(c), the learning rate for DBW is twice faster than
that for k = 8, but DBW is on average 3x faster. Then,
adapting k achieves an additional 1.5x improvement. The
importance of capturing the dynamics of the optimization
process is again also evident by comparing DBW with
B-DBW. While B-DBW takes advantage of a higher
learning rate as well, it does not perform as well as our
solution DBW.

V. CONCLUSIONS AND ACKNOWLEDGEMENT

In this paper, we have shown that the number of backup
workers needs to be adapted at run-time and the correct
choice is inextricably bounded, not only to the cluster’s
configuration and workload, but also to the stage of the
training. We have proposed a simple algorithm DBW
that, without priori knowledge about the cluster or the
problem, achieves good performance across a variety
of scenarios, and even outperforms in some cases the
optimal static setting.

As a future research direction, we want to extend
the scope of DBW to dynamic resource allocation,
e.g., by automatically releasing computing resources
if kt < n and the fastest kt gradients are always
coming from the same set of workers. In general, we
believe that distributed systems for ML are in need of
adaptive algorithms in the same spirit of the utility-based
congestion control schemes developed in our community
starting from the seminal paper [17]. As our work points
out, it is important to define new utility functions that take
into account the learning process. Adaptive algorithms are

even more needed in the federated learning scenario [18],
where ML training is no more relegated to the cloud, but
it occurs in the wild over the whole internet. Our paper
shows that even simple algorithms can provide significant
performance improvements.

This work has been carried out in the framework of
a common lab agreement between Inria and Nokia Bell
Labs. We thank Alain Jean-Marie for his suggestions.

REFERENCES

[1] K. Canini et al., “Sibyl: A system for large scale supervised
machine learning,” 2014, technical talk.

[2] A. Harlap et al., “Addressing the straggler problem for iterative
convergent parallel ML,” in 7th ACM SoCC, 2016, pp. 98–111.

[3] G. Neglia et al., “The role of network topology for distributed
machine learning,” in INFOCOM, 2019, pp. 2350–2358.

[4] Y. Bao et al., “Deep learning-based job placement in distributed
machine learning clusters,” in INFOCOM, 2019, pp. 505–513.

[5] C. Chen et al., “Round-robin synchronization: Mitigating commu-
nication bottlenecks in PS,” in INFOCOM, 2019, pp. 532–540.

[6] M. Li et al., “Scaling distributed machine learning with the
parameter server,” in 11th USENIX OSDI, 2014, pp. 583–598.

[7] C. Karakus et al., “Straggler mitigation in distributed optimization
through data encoding,” in Proc. of NIPS, 2017, pp. 5434–5442.

[8] S. Li et al., “Near-optimal straggler mitigation for distributed
gradient methods,” in IEEE IPDPS, 2018, pp. 857–866.

[9] J. Chen et al., “Revisiting distributed synchronous SGD,” in ICLR
Workshop Track, 2016.

[10] “DBW,” https://gitlab.inria.fr/chxu/dbw.
[11] M. Teng et al., “Bayesian distributed stochastic gradient descent,”

in Advances in NIPS 31, 2018, pp. 6378–6388.
[12] L. Bottou et al., “Optimization methods for large-scale machine

learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.
[13] C. Xu et al., “Dynamic backup workers for parallel machine

learning,” 2020, arXiv:2004.14696.
[14] “PyTorch,” https://pytorch.org/.
[15] P. Goyal et al., “Accurate, large minibatch SGD: training imagenet

in 1 hour,” CoRR, vol. abs/1706.02677, 2017.
[16] S. L. Smith et al., “Don’t decay the learning rate, increase the

batch size,” in ICLR, 2018.
[17] F. P. Kelly et al., “Rate control for communication networks:

shadow prices, proportional fairness and stability,” Journal of the
Operational Research society, vol. 49, no. 3, pp. 237–252, 1998.

[18] J. Konecný et al., “Federated optimization: Distributed optimiza-
tion beyond the datacenter,” in NIPS (workshop), 2015.


