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Abstract: Achieving fair bandwidth distribution among uplink and downlink flows in IEEE
802.11 infrastructure networks is a complex issue, due to the well-known features of the
Distributed Coordination Function (DCF) which regulates the access to the shared medium.
Indeed, the dynamic adaptation of the contention windows causes phenomena of short-term
unfairness, while the use of homogeneous contention parameters among the contending nodes
makes the aggregated downlink bandwidth equal to the uplink bandwidth of a single node. We
propose a dynamic tuning of the contention parameters used by the nodes, based on simple
network monitoring functionalities and rational strategies. Specifically, we propose a game-
theoretic analysis of such tuning, devised to guarantee a fair resource sharing among the nodes,
while optimizing the per-node uploading and downloading bandwidth.
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1. INTRODUCTION

WiFi infrastructure networks are characterized by a star
topology, which connects multiple mobile nodes to a com-
mon station called Access Point (AP). On one side, mobile
stations can upload traffic to the AP, which is connected
to external networks (e.g. to the Internet); on the other
side, they can download traffic from the external networks
through the AP. The problem of resource sharing in WiFi
networks is addressed by the standard Distributed Coordi-
nation Function (DCF), which is a Medium Access Control
(MAC) protocol based on the paradigm of carrier sense
multiple access with collision avoidance (CSMA/CA). The
basic idea of the protocol is very simple: sensing the
channel before transmitting, and waiting for a random
backoff time when the channel is sensed busy. This random
delay, introduced for preventing collisions among waiting
stations, is slotted for efficiency reason and extracted in a
range called contention window. Standard DCF assumes
that the contention window is set to a minimum value
(CWmin) at the first transmission attempt and is doubled
up to a maximum value (CWmax) after each transmis-
sion failure. The distributed DCF protocol is in princi-
ple fair,but, since stations experiencing collisions increase
their contention windows thus reducing their channel ac-
cess probability, short-term unfair behaviors can be ob-
served in small time scales. Moreover, the AP contends
as a normal station for the channel, then its channel

access probability is the same of other mobile stations.
This implies that the AP throughput, i.e. the aggregated
downlink bandwidth, is equal to the throughput perceived
by each of the other stations, thus resulting in a per-station
downlink bandwidth much lower than the uplink one.

Indeed, recent extensions of DCF (namely, the EDCA
protocol) allow the AP to set heterogeneous contention
windows among the stations to give priority to downlink
throughput or to delay-sensitive traffic. Thus, nowadays
nodes can adapt their contention windows according to the
values signaled by the AP for each traffic class. However,
there is the risk to exploit this adaptation in a selfish
manner, for example by using a contention window value
of a higher priority class, as in ?. Moreover, for a given
configuration of the contention parameters employed by
the AP and by the nodes, the uplink and downlink band-
width ratio depends on the number of contending stations
and no fixed uplink/downlink bandwidth repartition can
be provided.

These considerations motivate a game theoretical analysis
of DCF, in order to propose some protocol extensions able
to cope with the current resource sharing problems. The
problem can be formulated as a non cooperative game, in
which the contending stations act as the players of the
game. When stations work in saturation conditions, i.e.
they always have a packet available in the transmission
buffer, DCF can be modeled as a slotted access protocol,



while station behavior can be summarized in terms of per-
slot access probability, see ?.

We propose a game theoretic analysis of DCF in infras-
tructure networks, when all the stations have a desired
ratio between uplink and downlink throughput. Let τi
be the per-slot access probability representing the access
strategy of a generic station i. The channel access game
can be formulated by considering: n players, the set of
strategies τ = (τi, i = 1, . . . , n) in [0, 1]n, and the station
payoffs (J1, J2, . . . , Jn), that can be defined according to
the network and application scenario, see ?.

Previous studies have mainly considered that each node
utility is given by the node saturation throughput ?. In
?, it has been shown that a utility function equal to the
node upload throughput may lead to an inefficient Nash
equilibrium in which stations transmit in every channel
slot (i.e. play τ = 1). This situation creates a resource
collapse, because all stations transmit simultaneously thus
destroying all packet transmissions. More complex utility
functions combining upload throughput and costs related
to collision rates—??—or to energy consumptions—?—
lead to different equilibria, but they appear less natural
and implicitly assume that all the nodes have the same
energy constraints or collision costs. In some cases, ?, the
utility function does not correspond to any performance
metric and so appears completely arbitrary.

Assuming that each station tunes its access probability
using a fixed contention window value, we identify Nash
equilibria of the game. We propose to extend current DCF
operation by implementing our theoretical best response
strategies. To this purpose, we have developed some chan-
nel monitoring functionalities in ?, devised to estimate the
network status and to run-time drive the strategy adapta-
tions. Here, we also define a downlink scheduling scheme
able to provide a uniform total (uplink and downlink)
bandwidth to all the stations.

The rest of the paper is organized as follows. In section 2
we carry out the game theoretic analysis and we find the
Nash equilibria; in section ?? we show the MAC scheme
implementation and the performance evaluation trough
simulations; finally we drew some conclusive remarks in
section ??.

2. CONTENTION-BASED CHANNEL ACCESS: A
GAME THEORETICAL APPROACH

We assume that all the stations try permanently to trans-
mit on the channel, i.e. they work in saturation conditions.
We have verified that non-saturated stations affect the
performance of saturated stations only marginally and
regardless of their contention windows. When all stations
are saturated, it has been shown in ? that DCF can
be accurately approximated as a persistent slotted access
protocol, because packet transmissions can be originated
only at given time instants.

2.1 Station strategies

Let n be the number of saturated contending stations. We
assume that each station i is rational, and can arbitrarily
choose its channel access probability τi in [0, 1]. This choice

can be readily implemented by tuning opportunistically
the minimum and the maximum values of the contention
windows (respectively CWmin and CWmax for node i). By
observing that τi = 1/(1 + E[W ]/2), where E[W ] is the
average contention window used by station, a solution is to
set CW i

min = CW i
max = 2/τi−2. This choice also allows to

reduce the time-varying fluctuations of the channel access
probability experienced in DCF because of the dynamic
adaptations of the contention window values. The set of
all the strategies in the network is then [0, 1]n. We define
an outcome of the game as a specific set of strategies taken
by the players, then a vector τ = (τ1, τ2, · · · , τn) ∈ [0, 1]n.
We define that an outcome is homogeneous whenever all
the stations play the same strategy, i.e. τ = (τ, τ, ...τ).

The Performance perceived by a given station i not only
depends on the probability τi to access the channel, but
also on the probability that no other station interferes
on the same slot. Therefore, from the point of view of
station i, the vector strategy τ can be represented by the
couple of values (τi, pi), where pi = 1 −

∏
j 6=i(1 − τj),

the probability that at least one other station transmits,
summarizes the interactions with all the other mobile
stations. Since each contending station can be differently
programmed by the users, while the AP is shared among
all the stations, we initially assume that the AP behaves
as a legacy DCF station with saturated downlink traffic.
Thus, the overall collision probability suffered by station i
is 1 − (1 − pi)(1 − τAP ), where τAP is the channel access
probability employed by the AP. Since the AP is a legacy
station, its transmission probability is not chosen by the
AP, but is function of the perceived collision probability
pAP , τAP = f(pAP ), where f() has been derived in ?:

τ = f(p) =
1

1 + E[W ]/2
=

=
2(1− pR+1)

1− pR+1 + (1− p)
∑R
i=0 p

iW (i)
0 ≤ p < 1

2(R+ 1)

R+ 1 +
∑R
i=0W (i)

p = 1

(1)

where R is the retry limit employed in the network and
W (i) is the contention window at the ith retry stage (i.e.
W (i) = min{2iCWmin, CWmax}).
We can evaluate the AP collision probability as a function
of the vector strategy τ or as a function of a generic couple
(τi, pi):

pAP = 1−
n∏
i=1

(1− τi) = 1− (1− pi)(1− τi).

2.2 Station Utility

According to the slotted channel model, the random access
process can be described as a sequence of slots resulting in
a successful transmission (when only one station accesses
the channel), in a collision (when two or more stations
access the channel), or in an idle slot (when no station
accesses the channel). By observing that each slot bound-
ary represents a regeneration instant (see ?) for the access
process, the throughput of each station can be readily
evaluated as the ratio between the average number of bits
transmitted in each slot and the average duration of each
slot, see ?.



In our study we consider that the AP could allocate a
different downlink throughput to each station by imple-
menting a specific scheduling mechanism. For now on we
consider that the scheduling rule is given and we denote
xi the fraction of the AP’s throughput (SAP ) given to
station i (clearly

∑
i xi = 1). We can then express the

uplink throughput Siu and the downlink throughput Sid
for the i-th station as ?:

Siu(τi, pi) =
τi(1− pi)(1− τAP )P

Pidleσ + [1− Pidle]T
(2)

Sid(τi, pi) = xiSAP (pAP ) = xi
f(pAP )(1− pAP )P

Pidleσ + [1− Pidle]T
(3)

where P is the frame payload which is assumed to be
fixed, σ and T are, respectively, the empty and the busy
slot duration and Pidle is the probability that neither
the stations, nor the AP transmit on the channel, i.e.
Pidle = (1− pAP )(1− τAP ).

We define the utility function Ji for the mobile station i
as:

Ji = min{Siu, kiSid} (4)

The rationale of this definition is the assumption that the
station applications require bandwidth on both directions.
The coefficient ki ∈ (0,∞) takes into account the desired
ratio between the uplink and the downlink throughput
required by station i and we call it the application re-
quirement at station i. If ki = 1, station i requires the
same throughput in both directions. The limit case ki = 0
corresponds to a user i only interested in the downloading
rate Sid. In this case it is trivial to determine the user’s
dominant strategy, that is to not transmit at all in order
to avoid any collision with the AP. For this reason, in
this paper we exclude the case ki = 0. Conversely, the
limit case ki = ∞ corresponds to a user i only interested
in the uploading rate Siu (as assumed in most previous
literature). When ki = k, ∀i we ends up in the uniform
application requirements that is studied in ?, ?.

2.3 Nash Equilibria

We are interested in characterizing Nash Equilbria (NE)
of our game where stations achieve a non-null utility. The
inefficient equilibria in which all stations achieve an utility
value equal to 0 can be easily found by observing that:

Remark 2.1. In general, station i utility is a function of the
whole set of strategies (τ ), but it is constant and equal to
0 if a) pi = 1, i.e. if at least one of the other players is
transmitting with probability 1 (∃j 6= i | τj = 1), or if
b) τi = 0. We observe also that the AP access probability
τAP depends on τi and pi according to (1) and cannot be
equal to 1 for standard contention window values.

Proposition 2.1. The vectors of strategies τ , such that
∃ j, l ∈ 1, 2, · · ·n | τj = 1, τl = 1 are NE of the distributed
access game in which all stations achieve an utility value
that is constant and equals 0.

Proof The result is an immediate consequence of Re-
mark 2.1. If there are at least two stations transmitting
with probability 1, then the channel is entirely wasted be-
cause of collisions and Siu = Sid = 0,∀i. In these conditions,
Ji = 0 ∀i and stations are not motivated in changing their
strategies.

The following remark will be useful for characterizing more
efficient NE.

Remark 2.2. Consider a generic station i and the collision
probability pi ∈ (0, 1) suffered because of the other station
strategies. By derivation, it can be easily proved that
Sid(τi, pi) is a monotonic decreasing function of τi, starting
from Sid(0, pi) > 0, and that Siu(τi, pi) is a monotonic
increasing function of τi, starting from Siu(0, pi) = 0.

Let us denote a best response strategy of a station i as

τ
(br)
i . For ki = ∞, the station utility function is equal

only to Siu(τi, pi). From Remarks 2.1 and 2.2, it results

that the utility is maximized for τ
(br)
i = 1 when pi < 1

(then there is a unique best response), and it is constant
to 0 when pi = 1 (then any strategy is the best response).
For ki 6= ∞ and pi < 1, from Remark 2.2 we can state

that the utility Ji is maximized for τ
(br)
i ∈ (0, 1) such that

Siu(τ
(br)
i , pi) = kiS

i
d(τ

(br)
i , pi). It follows that, for pi < 1,

τ
(br)
i is the solution of the following implicit equation:

τ
(br)
i =

kixiτAP
1− (1− kixi)τAP

=

kixif
(

1− (1− pi)
(

1− τ (br)i

))
1− (1− kixi)f

(
1− (1− pi)

(
1− τ (br)i

)) (5)

The previous equation has a single solution τ∗i in the range

(0, 1). In fact, the left side l(τ
(br)
i ) of (5) is a continuous

strictly increasing function of τ
(br)
i with values in [0, 1].

For pi 6= 1, the right side r(τ
(br)
i ) is a continuous strictly

decreasing function with values in the same interval (we
are going to show it below), and with r(0) > l(0) = 0
and r(1) < l(1) = 1. Then, there is necessarily a unique
solution for pi 6= 1. In order to check our statement about
the function on the right side of (5), we can express it
as the composition of three functions h(y) = kixiy/(1 −
(1− kixi)y), f(x), g(τ

(br)
i ) = 1− (1− pi)(1− τ (br)i ). Now

g() is strictly increasing for pi 6= 1 and has value in [0, 1].
f() is strictly decreasing and has value in [0, 1] (this is
evident if we remind that f(x) is the probability to access
the channel for a legacy station that experience a collision
probability x). h() is strictly increasing in the interval [0, 1]
(for all the possible values of kixi). Then, the composition
h ◦ f ◦ g is strictly decreasing for pi 6= 1. The solution
τ∗i of (5) can be found numerically in a few fixed point
iterations.

Note that, as originally proved in literature and revisited
in ?, if there are stations with only uplink traffic flows, the
NE of the distributed access game with non-null utility
values are all and only the vector of strategies τ , such
that ∃! i ∈ {1, 2, · · ·n} | τi = 1 and ki =∞.

In this particular case our general utility function leads
to the same results of ?. Conversely, when ki 6= ∞ ∀i,
the next proposition shows that there is a non trivial NE
where all players obtain non null utility.

Proposition 2.2. For a given vector k of application re-
quirements (k1, k2, · · · kn) in (0,∞)n, and a given vector of
downlink throughput coefficients (x1, x2, · · ·xn), it exists
a unique NE τ with non-null utility values.



Proof We already know that all the vectors of strategies
such that at least two stations transmit with probability
1 are NE with zero utility. Moreover, an outcome with
only one station, say it i, transmitting with τi = 1 cannot
be a NE because the station would find convenient to
unilaterally reduce τi to increase its downloading rate.
Then we can conclude that a NE with non-null utility
values can only exist for τ ∈ [0, 1)n, or equivalently pj < 1
for all j, so in what follows we consider this case. A NE
is an outcome τ∗ of mutual best responses, that can be
expressed by (5), being that pi < 1 for all i, i.e. an
outcome such that for each i, τ∗i = kixiτAP

1−(1−kixi)τAP
, with

τAP = f(1−
∏n
i=1(1− τ∗i )). Although the above equations

characterize the best responses only for τ ∈ [0, 1)n, we
will first look for solutions with τ ∈ [0, 1]n, knowing that
solutions with one transmission probability equal to 1 are
not NE. The conditions can be geometrically represented
in the n + 1 dimensional hypercube [0, 1]n+1, where the
first n dimensions are the strategies τ1, τ2, · · · , τn and the
last dimension is the AP access probability τAP . We denote
θ = (τ1, τ2, · · · τn, τAP ) a generic vector in this hypercube.
Moreover we denote 0m and 1m the m-dimensional vectors
whose elements are respectively all equal to 0 and to 1.

A solution of the set of equations, if any, corresponds
to the intersection of the n-dimensional hypersurface S
identified by the equation τAP = f(1−

∏n
i=1(1− τi)) with

(τ1, τ2, · · · , τn) ∈ [0, 1]n, and the one-dimensional curve C,
identified by the set of n equations τi = kixiτAP

1−(1−kixi)τAP
with

τAP ∈ [0, 1].

We observe that S is continuous, and it divides the
hypercube in three regions: the surface S itself, the region
Rb of the points “below the surface”, i.e. Rb = {θ|τAP <
f(1 −

∏n
i=1(1 − τi))}, and the region Ra of the points

“above” it, i.e. Ra = {θ|τAP > f(1−
∏n
i=1(1− τi))}. Note

that the point 0n+1 belongs to Rb, because f(pAP (0n)) >
0, and the point 1n+1 belongs to Ra because f(pAP (1n)) <
1. The one-dimensional curve is also continuous and it
connects 0n+1 (for τAP = 0) and 1n+1 (for τAP = 1),
then it necessarily intersects the surface. This proves that
it exists an intersection point.

Moreover, it is easy to check that, for each i, ∂τAP

∂τi
|τ∈S < 0

and ∂τi
∂τAP

|τ∈C > 0. Then there can be a unique intersection
point.

Finally, we observe that this intersection point has to
belong to (0, 1)n+1, because the sign of the derivatives
for the point in C imply that all the points of C lie in
(0, 1)n+1 but 0n+1 and 1n+1, neither of which can be the
intersection point because we have shown that they do
not belong to S. Then, the intersection point is indeed a
NE and moreover the corresponding nodes’ utilities are all
non-null.

Figure ?? shows some examples of equilibrium conditions
in terms of surface and parametric curve intersections
for two stations (hence in a 3-dimensional space) and for
different k1 and k2 values.
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Fig. 1. Geometric interpretation of the Nash equilibrium
for heterogeneous application requirements

2.4 Downlink Scheduling Scheme

For evaluating the ratio xi of the downlink throughput to
be assigned to each station, the AP can employ different
policies. If the AP is not aware of the application require-
ments of each station, a possible solution is to equally share
the downlink throughput among the stations (i.e. xi = 1/n
∀i). Under this policy , called Application-Agnostic (AA)
scheduling, since each station i tries to get an uplink
throughput equal to kiS

i
d = ki/nSAP , the total uplink

and downlink throughput perceived by each station at the
NE is (1 + ki)/nSAP . This implies that stations requiring
large ki values will consume a large fraction of the network
resources.

Whenever the AP is able to estimate the application re-
quirement of each station (by monitoring the ratio between
the uplink and downlink throughput perceived by each
station), it can implement a different downlink schedul-
ing policy devised to improve the network fairness. For
example, by imposing that the total per-node bandwidth
Siu+Sid = (1+ki)xiSAP is equal for each station, with the
constraint

∑
i xi = 1, it results:

xi =
1

ki+1∑n
j=1

1
kj+1

(6)

We refer to this policy as an Application-aWare (AW)
scheduling policy. When multiple stations have the same
application requirements, we can group these stations into
applications classes, each identified by a specific ki value.
Stations beloning to the same classes will receive the same
downlink ratio xi.

Note that the AA scheduling policy guarantees a
uniform utility for all the stations, while the AW
scheduling policy equalizes the total per-station band-
width, thus resulting in heterogeneous utilities. Therefore,
we could argue that a different utility definition, based
on the total per-station bandwidth, could be considered.
However, such a definition does not capture the bidirec-
tional nature of the considered applications and could lead
to situations in which the uplink or downlink bandwidth
is null.
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2.5 Tuning of the AP channel access probability

In order to improve the downlink short-term fairness and
the overall network performance, we can use the AP
channel access probability τAP as a tuning parameter. In
this case, τAP does not depend on τ according to (1), but
it is equal to a fixed value c, which can be tuned by the
AP. The best response (5) for each station i is equal to

τ+i =
kixi · c

1− (1− kixi)c
(7)

and the NE in (0, 1)n becomes the intersection between an
hyperplane τAP = c and the parametric curve C identified
by the best response equations. Let JNEi (c) and SNEAP (c),
respectively, the station i utility and the AP throughput
perceived at the NE for each different c value selected by
the AP. When xi 6= 0 ∀i, the utility value JNEi of each
station is proportional to the AP throughput. Therefore,
all the utilities can be maximized by maximizing the same
function SNEAP :

max
c
JNEi (c) = kixi ·max

c
SNEAP (c).

Figure ?? shows the effects of the τAP tuning on the total
bandwidth perceived by n1 and n2 contending stations
belonging to two different service classes. Specifically, n1
stations have an application requirement k1 = 1 and
n2 stations have an application requirement k2, equal to
1, 2, 10 in Figure ??. The figure has been obtained for
a packet size of 1500 bytes, under the AW scheduling
policy. From the figure, it is evident that the per-station
bandwidth can be maximized for a given τAPo

value.
Although a closed form expression for such a maximum
is not trivial, we verified that an excellent approximation
for ki > 1 ∀i is given by:

τAPo
=

1

(1 +
∑
i kixi)

√
T/2σ

(8)

The approximation is based on the result shown in ?,
according to which the optimal channel access probability
that for a network with n competing stations is given
by 1

n
√
T/2σ

. In our scenario, at the NE outcome, the

AP behaves as a single contenting station, while all the
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Fig. 3. Throughput repartition in case of heterogeneous
application requirements (k1 = 1,k2 = 5) for two con-
tending stations under the AA downlink scheduling.

others require an uplink throughput equal to kixi times
the AP one. Figure ?? shows (empty boxes) the bandwidth
perceived when τAP is tuned to the approximated value
(??). The points are quite close to the actual maximum
values (as we also verified numerically).

3. GAME-BASED MAC SCHEME:
IMPLEMENTATION AND EVALUATION

On the basis of the results discussed in the previous sec-
tions, we propose some simple DCF extensions devised to
i) enable each contending station to dynamically tune its
channel access probability according to a best response
strategy; ii) enable the AP to act as a game designer for
forcing desired equilibrium conditions. Being n the number
of stations associated to the AP, we assume that the
AP maintains n independent downlink queues. For each
station i, uplink and downlink transmission queues are
always saturated, apart from the case ki = ∞ in which
the i-th downlink queue is empty. We also assume that
each station is aware of its application requirements ki,
while the AP is aware of the number of associated stations
n involved in the contention process. In actual networks,
for implementing a best response strategy, each station
needs to estimate the AP channel access probability τAP .
Moreover, for implementing the mechanism design and
scheduling policies described in the previous sections, the
AP needs to estimate the channel access probability τi
employed by each station and the per-station application
requirements ki. It is possible to simply filter some channel
status observations (idle slots, busy slots and successful
transmissions) for providing run-time estimations as de-
scribed in ?. We consider both the case in which the AP
behaves as a legacy station, and the case in which the AP
can adaptively tune its channel access probability.

We extended the custom-made C++ simulation platform
used in ?. We considered an 802.11g physical rate, with
the data rate set to 6Mbps. The contention windows used
by the AP have been set to the legacy values CWmin = 16
and CWmax = 1024. All the simulation results have been
obtained by averaging 10 different simulation experiments
lasting 10s, leading to a confidence interval lower than
3%. The measurement interval considered for run-time
estimations has been set to 400 channel slots.
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Figures ?? and ?? shows the time-varying uplink and
downlink throughput perceived by two contending stations
in case of heterogeneous application requirements (namely,
k1 = 1 and k2 = 5). Under the AA scheduling, the two
stations perceive the same average downlink throughput
(for sake of presentation the figure shows one curve only),
while the uplink one is proportional to the per-station ki
value. This means that station 2 employing k2 = 5 gets an
overall bandwidth much higher than station 1, although
the utility perceived by the two stations (i.e. the
minimum uplink and downlink throughput) is the
same. Conversely, under the AW scheduling, station 1
perceives a higher downlink throughput than station 2,
thus leading to a total bandwidth (uplink and downlink)
of about 1.4+1.4 Mbps. Station 2 still perceives an uplink
throughput equal to k2 = 5 times the downlink one, but
thanks to the downlink throughput reduction, its overall
bandwidth is comparable with station 1.

Figure ?? plots the overall bandwidth (i.e.
∑n
i=1 S

i
u + Sid)

available in the network under the AW scheduling policy,
in case of two service classes (k1 = 1 and k2 = 10), as
a function of the per-class number of stations n1 = n2.
The τAP tuning has been implemented according to the
approximated optimal value given in (??). For n1 = n2 =

20, the bandwidth available under legacy AP is 10% lower
than the one available in case of adaptive τAP tuning.

4. CONCLUSIONS

Resource sharing in WiFi networks has been modeled via
game theory. Analysis of the contention based channel
access has been presented and Nash equilibria has been
proved, when a bidirectional heterogeneous traffic is con-
sidered. The Access Point is used to tune the downlink
traffic in order to achieve fairness in bandwidth distribu-
tion. Two scheduling algorithms, AA (Application Agnos-
tic) and AW (Application Aware), are presented. Both the
algorithms induce the stations to work along their best re-
sponse access probability, ensuring a uniform utility (AA)
and a total per-station bandwidth. The proposed game-
based MAC scheme has been implemented and evaluated
in simulations, showing the increased bandwidth perceived
by the stations when the tuning is applied.
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