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Abstract—The massive introduction of Electric Vehicles (EVs)
is expected to significantly increase the power load experienced by
the electrical grid, but also to foster the exploitation of renewable
energy sources: if the charge process of a fleet of EVs is scheduled
by an intelligent entity such as a load aggregator, the EVs’
batteries can contribute in flattening energy production peaks due
to the intermittent production patterns of renewables by being
recharged when energy production surpluses occur. To this aim,
time varying energy prices are used, which can be diminished
in case of excessive energy production to incentivize energy
consumption (or increased in case of shortage to discourage
energy utilization).

In this paper we evaluate the complexity of the optimal
scheduling problem for a fleet of EVs aimed at minimizing
the overall cost of the battery recharge in presence of time-
variable energy tariffs. The scenario under consideration is a
fleet owner having full knowledge of the customers’ traveling
needs at the beginning of the scheduling horizon. We prove
that the problem has polynomial complexity, provide complexity
lower and upper bounds, and compare its performance to a
benchmark approach which does not rely on prior knowledge
of the customers’ requests, in order to evaluate whether the
additional complexity required by the optimal scheduling strategy
w.r.t. the benchmark is worthy the achieved economic advantages.
Numerical results show considerable cost savings obtained by the
optimal scheduling strategy.

Index Terms—Optimization; Modeling; Electric Vehicles,
Vehicle-to-Grid Interactions; Optimal Recharge Scheduling;

I. INTRODUCTION

Battery/fuel cell-powered vehicles and hybrid automobiles
propelled by either electricity generators and gasoline engines
[1] are expected to play a pivotal role in the novel Smart Grid
scenario, concurring in reducing carbon emissions by fostering
the exploitation of Renewable Energy Sources (RESes). The
potential consequences of a widespread introduction of Elec-
tric Vehicles (EVs) have been recently investigated [2]: on
one hand the EVs plugged at charging stations significantly
increase the power load experienced by the grid, on the other
hand the storage capacities of their batteries could also be ex-
ploited to cope with the intermittent energy generation patterns
of RESes by accumulating surpluses in energy production [3].
However, the scheduling flexibility and the battery capacity
of a single EV is too limited to justify that an EV owner
operates directly as a stakeholder on the electricity market.
An entity which is responsible for intelligently scheduling the
charging/discharging process of a large number of EVs [4] can

coordinate such Vehicle-to-Grid (V2G) interactions according
to various business models [5], possibly considering economic
incentives to compensate the additional battery deterioration
due to frequent charge/discharge or to encourage the owners
to plug their EV when parked.

Therefore, V2G has recently gained increasing interest in
various ICT-related disciplines, ranging from computer science
to telecommunications and control theory: numerous optimal
and heuristic scheduling strategies have been investigated,
mostly aimed at reducing carbon emissions [6] or the overall
recharge cost in presence of time-variable energy tariffs (see
e.g. [7]–[9]). The telecommunications research community
focused primarily on the characterization of the overall system
in terms of interactions among the various stakeholders (EVs,
load aggregator, energy utility), assuming either a centralized
scheduler [10] or a set of aggregators operating in a distributed
scenario [8], whereas the control-oriented community thor-
oughly investigated the development of on-board controllers
for the recharging process [6] and the stochastic modeling of
the individual EV behavior [11].

However, optimal strategies based either on Integer Linear
Programming or Dynamic Programming are typically char-
acterized by high computational complexity, both in terms of
asymptotic number of operations and computational time. This
paper aims at investigating whether the cost savings achieved
by an optimal centralized scheduling strategy minimizing the
overall recharging cost are worthy the additional complexity
w.r.t. a straight heuristic. To do so, we define an optimal
scheduling methodology for a service provider (e.g. car rental,
logistics/transportation company) owning a fleet of EVs, with
the aim of minimizing the overall cost of the battery recharge
in presence of variable energy prices. The considered scenario
is a day-ahead planning, which assumes that the details about
the customers’ traveling needs and the day-ahead energy price
are available at the service provider to define the battery
recharge scheduling for the next day. We prove that the
problem has polynomial complexity, provide complexity lower
and upper bounds, and evaluate the achieved cost savings w.r.t.
an online approach which does not rely on prior knowledge
of the users’ requests nor aims to minimize the total recharge
costs, but simply finds a feasible recharge plan fulfilling
the users’ traveling needs, with a computational complexity
exhibiting linear dependency on the problem input size.



The remainder of the paper is structured as follows: Section
II provides an overview of the related literature. Section III
recalls some background notions, then defines the scheduling
problem, proves that it can be solved to the optimum in a
number of operations polynomially depending on the problem
input size, describes an optimal algorithm for its solution,
and provides complexity upper and lower bounds. Section IV
evaluates the cost savings achieved by the optimal solution
approach w.r.t. an online benchmark technique. Finally, we
draw our conclusions in the last Section.

II. RELATED WORK

The characterization of the interactions between EVs and
power grid has been extensively addressed by the research
community in the last decade: for a survey on the impact of
the introduction of EVs in the Smart Grid environment the
reader is referred to [11], whereas a detailed overview on the
techno-economical models of load aggregation agents for EVs
is proposed in [12].

A substantial body of work investigates optimal and heuris-
tic policies for the battery recharge of a population of EVs.
Among the most remarkable contributions, Han et al. [7]
formulate a game model for V2G interactions in presence of a
profit-driven recharging station and two coexisting sets of EVs,
behaving respectively as selfish or cooperative: the recharge of
the former set of EVs is decided by the customers themselves
according to the real-time energy selling price, while the
station can directly control the charging/discharging process
of the EVs belonging to the latter set. A game theoretical
framework is adopted also by Zou et al. [13], who design
a distributed charging coordination method for EVs relying
on an auction mechanism based on progressive second price.
Conversely, since our scenario assumes that the entire fleet
is owned by an unique entity, competitiveness among the
vehicles is not considered and thus the objective function
models only the aggregator’s utility.

He et al. [8] propose a convex optimization model for a
global scheduling optimization problem aimed at the mini-
mization of the recharging cost assuming full knowledge of
the future behavior of the customers. The authors compare
it to a distributed version finding local optima for subsets of
vehicles, which also takes into account dynamic arrivals, show-
ing that the latter achieves close-to-optimum performance.
The approach adopted in our work also compares the global
optimum achievable by means of an Integer Linear Program
(ILP) formulation run by an omniscient scheduler to the results
obtained by a sub-optimal benchmark scheduling. However,
that paper assumes that the periods in which each vehicle
is plugged and available for recharging are problem inputs,
while our model optimizes the assignment between vehicles
and users to be served, with the aim of minimizing the recharge
costs. Joe-Wong et al. [14] combine a convex optimization
formulation for computing day-ahead energy prices and an
algorithm for estimating and refining EVs’ user reaction to
the prices, which allow the provider to dynamically adjust
the offered prices based on the EVs’ behavior. Conversely,

our optimization scenario does not allow for price negotiation,
since it assumes day-ahead planning.

Li et al. [9] discuss a methodology for modeling the overall
charging demand of EVs based on queuing theory, which
allows for the differentiation of the fleet’s behavior in case
of a charging station and a local residential community. A
queuing theory-based approach is used also by Alizadeh et
al. [10] to provide a stochastic mathematical model for EV
aggregate load aimed at short-term load forecasting. Paper
[9] assumes a maximum limit on the number of vehicles
contemporaneously charged, whereas paper [10] assumes an
infinite number of available plugs. In our work, we adopt the
latter assumption, which does not introduce additional waiting
times in the recharging process.

Sundström and Binding [15] design two models for EVs’
battery recharge, respectively exploiting a linear and a
quadratic approximation of the non-linearities in the relation-
ship between applied, external, charging power and the rate of
change of the batterys state-of-energy. The authors conclude
that the violations of the battery boundaries in case of linear
approximation do not exceed 2% of the usable capacity, and
that the improvements given by the quadratic approximation
model do not justify the increase in computational complexity.
In our paper, we also adopt a linear recharge model.

III. PROBLEM FORMULATION

A. Background

We shortly describe the Minimum Weighted Matching Prob-
lem (MWMP). Let G = (V,E) be a complete balanced
bipartite graph, i.e. a graph in which vertexes can be divided in
two disjoint subsets V1, V2 such that |V1| = |V2| = |V |

2 . Each
vertex v ∈ V1 is connected to every vertex v′ ∈ V2 by an edge
e(v, v′) ∈ E. Let we(v,v′) be a non-negative weight associated
to the edge e(v, v′). The problem goal is to individuate a
perfect matching E of minimum weight for graph G, i.e. a
set of |V |2 edges connecting each node v ∈ V1 to a different
node v′ ∈ V2 such that each node v ∈ V is vertex of exactly
one edge belonging to the set E and the sum of the weights
associated to the edges of E is minimum.

B. The Scheduling Problem (SP)

We consider a scenario in which a service provider owns
a fleet of vehicles V and a recharging station where the
vehicles are parked and can be recharged after usage. We
assume that the station is equipped with a sufficient number
of plugs to recharge the vehicles at any time without queuing.
Each vehicle is characterized by the same battery charging
rate r. Note that the recharge operations are assumed to be
non-interruptible, meaning that, once the recharge process
has started, it must be completed without intermediate in-
terruptions. We also assume that time is divided in epochs
of duration T . Let, U and T be the set of users and the
set of discretized epochs within the optimization time span,
respectively. Before the beginning of the scheduling horizon,
every user u ∈ U specifies a service request in terms of
the triplet (tdu, t

a
u, eu) ∈ T × T × R+, indicating the user’s



departure and arrival time (0 < tdu < tau < |T |) and the
amount of discharged energy during the travel, respectively.1

Without loss of generalization, we assume that each user
expresses a single service request during the optimization
period. Moreover, we assume that the batteries of all the
vehicles are fully charged at the beginning of the scheduling
period. A vehicle returning to the charging station after serving
a customer must be fully recharged before being assigned to
a new user.

Let cτ ≥ 0 be the energy price for each epoch τ ∈ T . A
possible schedule for the recharge of the set of vehicles V to
serve the set of users U during the set of time epochs T is
defined by the set Z ⊆ Z = U×V×T of |U| triplets (u, v, t),
indicating the starting epoch t for the recharge of vehicle v
serving user u. The goal of the problem is to individuate the
feasible scheduling ensuring the lowest overall recharge cost
experienced by the service provider.

Formulation:

min
Z⊆Z

∑
(u,v,t)∈Z

t+d eur e−1∑
k=t

ck (1)

subject to:
|Zu| = 1 ∀ u ∈ U (2)

where Zu = {(u′, v, t) ∈ Z : u′ = u}.

t ≥ tau ∀ (u, v, t) ∈ Z (3)

t ≤ tdu′−d
eu
r
e ∀ ((u, v, t), (u′, v, t′)) ∈ Z×Z : tau ≤ tdu′ (4)

The objective function minimizes the overall recharging cost
experienced by the service provider. Constraint (2) ensures
that the set of vehicles serving a given user has cardinality 1,
i.e. that each user service request is associated to exactly one
vehicle. Constraint (3) imposes that a vehicle can be charged
only after its return to the charging station and constraint (4)
states that vehicle v associated to a given user u can serve a
second user u′ only in case u′ departs after the return of u
and there is sufficient time to complete the battery recharge
before the departure of u′.

In the following Subsections we prove the computational
equivalence of SP and MWMP by showing that SP is poly-
nomially reducible to MWMP and vice versa. Moreover, we
provide upper and lower bounds for the complexity of SP.

C. Polynomial-time Reduction of SP to MWMP

Theorem 1: The SP problem is polynomially reducible to
the MWMP problem, i.e. SP ≤P MWMP .

Proof: The proof consists in a Cook reduction. We start
describing how to map a generic instance of SP onto an
instance of MWMP.

Given a generic instance of the SP problem, let NU1 ,NU2 be
two disjoint sets of nodes of cardinality |U| each, representing

1The energy usage associated to the travel can be computed as a function of
the expected traveling distance. Note that the proposed scheduling approach
is agnostic w.r.t. the technique adopted for the computation of such amount.
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Fig. 1. Complete balanced bipartite graph obtained from the SP problem.
Weights of the outgoing edges for the nodes corresponding to vehicle v = 2
and user u = 2 are shown as example.

the users’ arrivals and departures, respectively. Moreover, let
NV1 , NV2 be two disjoint sets of nodes of cardinality |V|,
representing the fleet of EVs parked at the charging station
at times t = 0 and t = |T |, respectively. Finally, we define
the sets N1 = NU1 ∪ NV1 , N2 = NU2 ∪ NV2 and consider
the complete balanced bipartite graph G = (V,E) with
V = N1∪N2, E = {e(n, n′) : n ∈ N1, n

′ ∈ N2}. Links have
associated non-negative weights we(n,n′) = C(n, n′), where
the cost function C : V ∪ U × V ∪ U → R+ is defined as
follows:

C(n, n′) =



0 if n ∈ NV1 (5a)

mintan≤t≤|T |−d
en
r e
∑t+d enr e−1
k=t ck (5b)

if n ∈ NU1 , n′ ∈ NV2

mintan≤t≤tdn′−d
en
r e
∑t+d enr e−1
k=t ck (5c)

if n ∈ NU1 , n′ ∈ NU2 ∧ tan ≤ tdn′ − d
en
r e

∞ otherwise (5d)

A pictorial view of G is proposed in Figure 1. Each link
corresponds to a possible scheduling choice and its weight
is the corresponding recharging cost. An edge connecting a
node n ∈ NV1 to a node n′ ∈ NV2 corresponds to a vehicle
that is not used during the scheduling period, and then its
weight is 0 according to Eq. (5a). An edge between a node
n ∈ NV1 and a node n′ ∈ NU1 denotes that n′ is the first user of
vehicle n. The vehicle does not need to be charged (because all
vehicles are fully charged at the begin) and then the associated
weight is 0 (Eq. (5a)). Conversely, an edge (n, n′) with n ∈
NU1 , n′ ∈ NV2 corresponds to user n being the last user for
vehicle n′ and its weight is then the minimum energy cost
associated to a recharge period of d enr e slots, chosen during



Algorithm 1 Mapping a solution of MWMP to a solution of
SP in Theorem 1

1: Z ← �
2: for all e(n, n′) ∈ E : n ∈ NV1 do
3: t̃← tan, v ← n
4: while n′ 6∈ NV2 do
5: while

∑t̃+den/re−1
k=t̃

ck 6= we(n,n′) do
6: t̃ ← t̃ + 1 {A feasible solution exists by con-

struction, which breaks the cycle before t̃ reaches
tdn′ − d

en
r e}

7: end while
8: Z ← Z ∪ {(n′, v, t̃)}
9: t̃← tan′ , e(n, n

′)← e(n′′, n′′′) ∈ E : tan′′ = t̃
10: end while
11: end for

the interval [tan, |T |], i.e. the time window between the return
of the customer n and the end of the scheduling horizon (the
vehicle n′ must be charged after serving its last customer,
in order to be fully charged before the beginning of the next
scheduling period). This cost is expressed by Eq. (5b). Finally,
an edge between n ∈ NU1 and n′ ∈ NU2 denotes that the same
vehicle is consecutively used for users n and n′. This is not
possible if the time interval between the return of user n and
the departure of user n′ is not long enough to guarantee that the
vehicle can be fully recharged (i.e. tan > tdn′ − d

en
r e). In such

case, Eq. (5d) sets the weight of edge (n, n′) to∞. Otherwise,
if the interval is long enough, Eq. (5c) sets the cost of the edges
(n, n′) to the minimum energy cost associated to a recharge
period of d enr e slots chosen in the period [tan, t

d
n′ ] (which is

the time span between the return of user n and the departure
of user n′). The asymptotic complexity of computing the cost
function C is O(|T |(|U|+ |V|)2), which shows a polynomial
dependency on |T |, |U|, and |V|.

We observe that any possible matching E over graph G
can be mapped into a corresponding scheduling Z by means
of Algorithm 1, which runs in in O(|U||T |) operations. The
Algorithm considers the vehicles one at a time, sequentially
visits the edges of the matching E which correspond to the
recharge periods scheduled for vehicle v (in chronological
order), and adds to the set Z the associated triplets.

Moreover, if the matching E has finite weight, the cost
of the corresponding scheduling Z has the same cost. If
the matching has infinite cost, then it contains at least one
edge with infinite weight and we can conclude that the
corresponding schedule is not feasible.

The set of schedules corresponding to all the possible
matchings over G is in general a subset of the set of all
possible schedules, but we are going to show that for any
schedule Ẑ there exists a matching E whose corresponding
schedule Z , obtained by Alg. 1, has cost not larger than the
cost of Ẑ . It follows that the schedule corresponding to the
optimal solution of MWMP is the optimal solution of SP.
Consider a schedule Ẑ and then apply Algorithm 2, which

Algorithm 2 Mapping a solution of SP to a solution of
MWMP in Theorem 1

1: E ← �
2: for all v ∈ V do
3: Zv ← {(u, v′, t) ∈ Z : v′ = v}
4: if Zv 6= � then
5: sort (u, v, t) ∈ Zv over t in ascending order and

store the ordered list in ZSv {Let (ui, vi, ti) be the
ith element of the list ZSv }

6: E ← E ∪ {we(n,n′) : n ∈ NV1 ∧ n = v, n′ ∈ NU2 ∧
tdn′ = tdu1

}
7: if |Zv| ≥ 2 then
8: for all i : 2 ≤ i ≤ |Zv| do
9: E ← E ∪{we(n,n′) : n ∈ NU1 ∧ tan = taui−1

, n′ ∈
NU2 ∧ tdn′ = tdui}

10: end for
11: end if
12: E ← E ∪ {we(n,n′) : n ∈ NU1 ∧ tan = tau|Zv| , n

′ ∈
NV2 ∧ n′ = v}

13: else
14: E ← E∪{we(n,n′) : n ∈ NV1 ∧n = v, n′ ∈ NV2 ∧n′ =

v}
15: end if
16: end for

identifies the set of users that each vehicle v serves (line 3),
sorts them in ascending order w.r.t. their respective recharge
starting times (line 5), and includes in the set E the edges with
weight equal to the corresponding recharge cost (line 6-15).
We observe that different schedules can produce the same set
of ordered sequences of users (these schedules only differ for
the time epochs when the recharge periods start). The weights
of the links in E correspond to the minimum recharge costs
that can be obtained under the constraint that each vehicle is
assigned that specific sequence of users. It follows that the
scheduling Z obtained from E has cost not larger than the
cost of Ẑ .

D. Polynomial-time Reduction of MWMP to SP

We now show the polynomial reducibility of MWMP to SP.
Theorem 2: The MWMP problem is polynomially reducible

to the SP problem, i.e. MWMP ≤P SP .
Proof: Analogously to Theorem 1, the proof follows

the Cook reduction approach. To map a generic instance
of MWMP with finite weights onto an instance of SP, we
operate as follows. Let G = (V,E) be a complete balanced
bipartite graph as defined in Section III-A. The corresponding
SP instance has |V |2 vehicles (V = {1, . . . , |V |2 }) and |V | users
(U = {1, . . . , |V |}). Let T = {−1, 0, . . . , |V |

2

4 + |V |
2 + 1} be

the set of time slots within the optimization horizon. In the
horizon we can distinguish the first and last timeslots and |V |2
intermediate intervals Ih for h ∈ {1, . . . , |V |2 }, each of length
|V |
2 + 1 slots. Figure 2 shows such instance for |V | = 6.
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Fig. 2. Cost function obtained by means of Equation 7 from a bipartite
complete balanced graph G = (V,E) with |V | = 6.

Half of the users depart at the begin of timeslot −1 and
return by the begin of timeslot 0 (for u ∈ U : 1 ≤ u ≤ |V |

2 ,
tdu = −1, tau = 0), the other half of users departs later on (one
user at the end of every intermediate interval) and returns at the
end of the scheduling period (for u ∈ U : |V |2 + 1 ≤ u ≤ |V |,
tdu = (u− |V |2 )( |V |2 + 1), tau = |V |2

4 + |V |
2 + 1).

By construction, it follows that each vehicle will be used by
two and only two users. Since all the vehicles are back at the
begin of timeslot 0, this SP instance is equivalent to decide
how to match the |V |2 vehicles with the |V |2 users departing
later on. The rest of the proof will show that it is possible
to determine energy costs so that the SP instance is able to
capture all the variability of the |V |

2

4 weights of the MWMP
instance.

In order to decouple the total energy recharge cost for the
different vehicles, we can tune the required amount of energy
to be recharged. In particular, the vehicle used by user u ∈
U : 1 ≤ u ≤ |V |

2 requires eu = ur. For the second half of
users we can consider arbitrary energy requests (e.g. eu = 0
for u ∈ U : |V |2 + 1 ≤ u ≤ |V |).

Let us denote by m and M two positive numbers such that
m > maxe(n,n′)∈E we(n,n′), M > m|V |

2 . We first observe that
if all the weights of the links outgoing from a given node n (in
V1 or in V2) are increased by the same amount xn, the MWMP
instance is transformed in an equivalent one with the same
minimum weight matching (whose value will be increased by
xn). We can apply this transformation for all the nodes, thus
obtaining a sequence of equivalent MWMP instances. This
reasoning leads us to conclude that if we transform the weight
of each link as follows:

w′e(n,n′) = we(n,n′) +Mn2 +m(
|V |
2
− n′), (6)

we obtain an equivalent MWMP, because each weight has been
increased by two quantities that depend only from the two
terminating nodes.

We define the energy cost cτ as follows:

cτ =



w′
1,e(d τ+1

|V |
2

e) if τ = 0 ∨ τ mod ( |V |2 + 1) = 0

M |V |2
4 if τ mod ( |V |2 + 1) = |V |

2
w′
e(τ mod (

|V |
2 +1)+1,d τ+1

|V |
2

e)
− w′

e(d τ+1
|V |
2

e,τ mod (
|V |
2 +1))

otherwise
(7)

We observe that the computation of ct starting from the

weights we(n,n′) requires O(|V |2) operations.
It can be checked that this definition of the costs leads

to the following consequences (the reader may find useful
to refer to Figure 2). First, because of the presence of the
large constant M , energy costs are always increasing within
each intermediate interval. Moreover, the presence of slots
with cost M |V |2

4 at the end of each intermediate interval
makes inconvenient for the recharge of a vehicle to span
two consecutive intervals. As a result, every vehicle will
be charged by starting only at the begin of an interval. In
particular, if the vehicle driven by user n ∈ {1, . . . |V |2 } is
charged during the interval Ih, the aggregate recharge cost is:∑(h−1)( |V |2 +1)+n

k=(h−1)( |V |2 +1)
ck = w′e(n,h), i.e. equal to the weight of link

e(n, h) in the equivalent MWMP we are considering. Second,
the presence of m guarantees that the vehicle to be driven by
user u ∈ { |V |2 + 1, . . . |V |} will not be charged before the
interval I

u− |V |2
. As a consequence, only one vehicle will be

charged during each interval.
In conclusion this SP instance is equivalent to match each

of the |V |2 vehicles to a different recharging interval.
The optimality of the scheduling Z obtained by conversion

of the optimal matching E computed over graph G can be
proved by showing that for every matching Ê there exists
a schedule Ẑ which has cost equal to the cost of Ê plus a
constant term depending only on the problem input size.

We start showing that if there exists a matching Ê over
graph G such that

∑
e(n,n′)∈Ê we(n,n′) = Ξ, then there exists

a feasible schedule Ẑ defined as:

Ẑ =
⋃

e(n,n′)∈Ê

{(n, n, ( |V |
2

+ 1)(n− 1)), ((n′ +
|V |
2
, n, |T |)}

(8)
Note that, since users |V |2 + 1, . . . , |V | do not consume any

energy during their travel, the associated recharging periods
last 0 epochs and can be scheduled at t = |T |.

From Eqs. (6), (7) it follows that:∑
(u,v,t)∈Ẑ

t+deu/re−1∑
k=t

ck =
∑

e(n,n′)∈Ê

w′e(n,n′) =

∑
e(n,n′)∈Ê

we(n,n′) +

|V |
2∑
i=1

((i− 1)m+ i2M) =

Ξ +m
|V |
4

(
|V |
2
− 1

)
+M

|V |(|V |+ 1)(|V |+ 2)

24



i.e. the cost of the schedule Ẑ is obtained by adding to the cost
of the corresponding matching Ê a positive quantity which
depends only on the cardinality of V .

Moreover, by construction the following equality holds:

w′e(n,n′) =

k=(n′−1)( |V |2 +1)+n′−1∑
k=(n−1)( |V |2 +1)

ck

= min
t∈T : 0≤t<(

|V |
2 +1)n′

t+n−1∑
k=t

ck ∀e(n, n′) ∈ E

Since the interval [0, ( |V |2 + 1)n′] covers the whole time span
between the return of user n and the departure of user n′, no
recharge cheaper than w′e(n,n′) can be scheduled for a vehicle
serving both users. It follows that, for the set of associations
between users and vehicles derived by the matching Ê over
graph G, there is no feasible schedule ensuring lower overall
cost than the cost of the matching Ê plus the constant term
m |V |4

(
|V |
2 − 1

)
+M |V |(|V |+1)(|V |+2)

24 . Therefore, the solution

Z obtained from the matching of minimum weight E by
means of Eq. (8) provides the schedule of minimum cost for
the equivalent SP.

Theorem 3: The SP and MWMP problems are computation-
ally equivalent, i.e. SP ≡P MWMP

Proof: The proof directly follows from Theorems 1 and
2.

E. Complexity Evaluation of SP

Let Γ(|U|, |V|, |T |) be the complexity of the SP problem.
Let Ψ(n) be the complexity of the MWMP problem. The
variable n denotes the number of vertexes.

Corollary 1: The following upper bound to the complexity
of the SP problem holds:

Γ(|U|, |V|, |T |) = O(max{(|U|+ |V|)2|T |,Ψ(2(|U|+ |V|))})
(9)

Proof: The proof is a direct consequence of Theorem
1, which proves the polynomial-time reducibility of SP to
MWMP. Hence, any instance of SP can be solved by mapping
it onto an instance of MWMP through the construction of a
bipartite graph G = (V,E), finding the optimal solution of
MWMP over G and converting it to the equivalent solution of
SP. It follows that:

Γ(n) = O((|U|+ |V|)2|T |+ Ψ(2(|U|+ |V|) + |U||T |)

The above bounds can be refined by defining Γ(n) as the
complexity of the SP problem versus the total size of input
n = |U|+ |V|+ |T |. Since it is known [16] that the complexity
of MWMP is smaller than O(n3), the following bound can be
easily derived: Γ(n) = O(n3). This bound is tight in the sense
that it cannot be reduced without making assumptions on the
relative size of the input variables. If, for example, the number
of time epochs is assumed to be a fixed parameter, then the
following tighter bound holds: Γ(n) = O(Ψ(n)).

Algorithm 3 Benchmark online algorithm for SP

1: δv ← 0 ∀v ∈ V , Z ← �
2: Upon arrival of the traveling request (tdu, t

a
u, eu) at epoch

tdu
3: v ← rand(ṽ ∈ V : δṽ < tdu)
4: Z ← Z ∪ (u, v, tau), δv ← tau + deu/re

Corollary 2: With Γ(n) and Ψ(n) defined above, the
following holds:

Γ(n) = Ω(Ψ(
√
n)) (10)

Proof: By virtue of Theorem 2, the following equality
holds:

Ψ(n) = O(n2 + Γ

(
n+

n

2
+
n(n+ 2)

4
+ 2

)
+ n)

= O(n2 + Γ(n2) + n).

Thus, we have Γ(n2)+n2 = Ω(Ψ(n)). Since, from an obvious
lower bound, Γ(n2) = Ω(n2), we obtain

Γ(n2) = Ω(Ψ(n))

By performing a variable substitution, we obtain the thesis.
The exact complexity of MWMP is not known. The best

lower bound in the literature for the MWMP is Ψ(n) = Ω(n2).
Applying this bound to Corollary 2 results in the obvious
bound Γ(n) = Ω(n). However, if a larger lower bound for
MWMP were found, then the lower bound for SP would be
similarly increased.

IV. PERFORMANCE ASSESSMENT

In this Section we quantify the savings of the opti-
mal scheduling with day-ahead knowledge over simpler ap-
proaches. As discussed in the previous Sections, the optimal
solution to the SP can be obtained by solving the corre-
sponding MWMP and converting the optimal matching to the
optimal schedule. As a benchmark, we consider Alg. 3, which
is an on-line heuristic approach that does not assume any
future knowledge about the traveling requests of the users in
terms of departure/arrival times and amount of energy usage
during the travel. Under assumption that all the vehicles are
fully charged at the beginning of the scheduling horizon,
whenever a travel request by user u comes, Alg. 3 assigns
to u a randomly chosen vehicle among the ones parked at
the recharging station and currently not under recharge (i.e.
with full battery level). Then, as soon as v returns at time tau
after serving user u, it is immediately recharged during the
next deu/re consecutive epochs. Therefore, the complexity of
the algorithm is O(|U|), i.e. shows linear dependency on the
number of users. Note that, since each recharge is scheduled
immediately after the vehicle’s return without introducing any
waiting time, Alg. 3 always provides a feasible solution, given
that the considered instance of SP admits at least one feasible
scheduling.

Numerical results are obtained assuming a scenario of a fleet
ranging from 200 to 500 vehicles and a set of 500 users. The



TABLE I
PERFORMANCE COMPARISON OF THE OPTIMAL SCHEDULING VS. THE

ONLINE BENCHMARK

|U| |V| Aver. Gap [%] Max. Gap [%] Min. Gap [%]
500 500 24.4 167.8 2.8
500 400 23.8 177.4 3.6
500 300 21.9 168.8 3.1
500 200 17.6 110.5 2.75
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Fig. 3. Daily trend of overall scheduled recharge (optimal and benchmark
approaches) vs. energy cost, assuming |V| = 400, |U| = 500.

departure time, arrival time and amount of energy required
for the travel have been computed based on the TripChaining
dataset [17], whereas the trend of the hourly energy cost on the
day-ahead energy market has been obtained from [18]. Results
have been averaged over 365 days (each 24-hours period from
00:00 to 23:59 is divided in 96 epochs of 15 mins duration).

Table I compares the performance of the optimal day-ahead
scheduling, which assumes full knowledge of the departure
and arrival times of the users, to the on-line benchmark,
which does not rely on any information about the future
traveling partterns of the users. Results show that the on-line
strategy increments the total recharge cost by on average 17-
25%, with peaks above 110%. The savings allowed by the
optimal approach decrease when the fleet size decreases, since
a small fleet imposes that each EV must sequentially serve
multiple users, which reduces the periods in which the EV
is plugged at the recharging station and limits the recharge
cost minimization, which must be performed over shorter time
spans. An example of the daily recharge schedule is plotted
in Fig. 3 for both optimal and benchmark approaches, from
which it results that the optimal scheduling delays most of
the recharges to the end of the day, when the energy cost is
significantly lower.

V. CONCLUSIONS

This paper evaluates the computational complexity of an
algorithm for optimal day-ahead scheduling of the battery
recharge of a fleet of electric vehicles. We provide analytical
upper and lower bounds to the problem complexity and
compare the performance of the proposed algorithm to an on-
line benchmark approach, showing that it leads to considerable
cost savings in presence of time-variable electricity tariffs.
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