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Abstract

In this work, we introduce a framework to let forwarding
schemes evolve in order to adapt to changing and a pri-
ori unknown environments. The framework is inspired by
genetic algorithms: at each node a genotype describes the
forwarding scheme used, a selection process fosters the dif-
fusion of the fittest genotypes in the system and new geno-
types are created by combining existing ones or applying
random changes. A case study implementation is presented
and its performance evaluated via numerical simulations.

1. Introduction

Epidemic-style forwarding [11] has been proposed as an
approach for achieving system-wide dissemination of mes-
sages in Delay-Tolerant Networks (DTNs) [3] in face of fre-
quent disconnections [9]. DTNs are sparse and/or highly
mobile wireless ad hoc networks where no continuous
connectivity guarantees can be assumed. Epidemic-style
forwarding in DTNs is based on a “store-carry-forward”
paradigm: a node receiving a message buffers and carries
that message as it moves, passing it on to new nodes upon
encounter. Alike the spread of infectious diseases, each
time a message-carrying node encounters a new node not
having a copy thereof, the carrier may decide to infect this
new node by passing on a message copy; newly infected
nodes, in turn, behave similarly. The destination receives
the message when it first meets an infected node.

An unconstrained epidemic forwarding scheme (in
which an infected node spreads the epidemic to all nodes
it encounters) is able to achieve minimum delivery delay at
the expense of an increased use of resources such as buffer
space, bandwidth, and transmission power. Variations of
epidemic forwarding have been recently proposed in order
to exploit the trade-off between delivery delay and resource
consumption. This family includes, among the others, K-
hop schemes [4], K-copy techniques [2], probabilistic for-

warding [6], and spray-and-wait [10]. These schemes differ
in their “infection process”, i.e., the spreading of a message
in network. They need to be combined with a “recovery
process” that deletes copies of a message at infected nodes,
following the successful delivery of the message to the des-
tination. Various recovery schemes have been proposed:
some are simply based on timers, others actively spread in
the network the information that a copy has been delivered
to the destination, using so-called antipackets [5].

Depending on the specific application scenario, different
performance metrics could be envisaged, such as the prob-
ability to successfully deliver a message to the destination,
the delivery time, the total energy consumption in the sys-
tem or a combination of the previous ones. For a given op-
timization goal, the choice of a specific forwarding scheme
and its parameters configuration depend in general on the
number of nodes in the system, on their mobility patterns
and on the traffic generated in the networks [7]. In many
scenarios, these characteristics cannot be known at system
design and deployment time and may drastically change
across time and space. Consider for instance a personal dig-
ital assistant (PDA) carried by a user in its daily activities.
During the day, the PDA may travel at different speeds (e.g.
from zero up to car speed), moving from highly crowded ar-
eas (supermarkets, classrooms,...) to sparse ones, with very
different trajectories (straight along a highway or following
a random walk from shop to shop) and different levels of
power availability.

In order to deal with these issues, various adaptive tech-
niques for message forwarding can be envisaged. This ap-
proach is limited in that it requires an a priori definition
of the actions to be taken to optimize the mechanism for
some specific situation. The approach we propose is differ-
ent. We want to embed the ability to evolve autonomously
in the forwarding service itself. This is achieved by us-
ing concepts and tools from the Genetic Algorithms (GAs)
field. Each node employs a (potentially different) forward-
ing policy, which prescribes the operations to be undertaken
when receiving a message destined to another node. Such



a policy is described by an array of parameters called the
genotype. Genotypes are associated with a fitness measure
which, roughly speaking, indicates the ability of the current
set of parameters to achieve good performance in the local
environment. Fitness is evaluated using local information
and feedback which is sent from the destination backwards
within ACK messages, which act also as antipackets. When
two nodes meet, they may exchange genotypes (and associ-
ated fitness levels), updating the pool they maintain. Each
node periodically generates a new genotype judiciously us-
ing those in its pool. The whole system is engineered in
such a way to present a drift towards higher fitness levels.

The rest of the paper is organized as follows. Section 2
overviews the evolutionary delay-tolerant forwarding ser-
vice engineered in this paper. Its multiple components are
detailed in the following sections: Section 3 presents the
forwarding policy followed by each node and its unified rep-
resentation; Section 4 presents the selection process of good
forwarding policies and the generation of new policies; and
Section 5 presents the fitness estimation process. Then Sec-
tion 6 describes the specifications of the protocol. The out-
comes of a simulative study, performed using a freely avail-
able software tool, are reported in Section 7. Section 8 con-
cludes the paper. An extended version is available as INRIA
technical report [1].

2. An evolutionary forwarding service

In this paper, we aim at introducing evolution into DTNs
forwarding service. Our approach is based on the funda-
mental observation that forwarding schemes simply per-
form a decision whether to relay a copy of a given mes-
sage to an encounter node or not. Thus, multiple forwarding
schemes can co-exist and interact within the same network.
This flexibility comes from the completely distributed na-
ture of the forwarding process in epidemic-style relaying,
which allows node to use different policies in an uncoordi-
nated fashion.

We represent the forwarding policy used at a given node
as a genotype. The genotype must capture the key features
of the used policy. By changing its genotype, a node can
make its policy evolve. A selection process will drive the
evolution towards a predefined objective. This selection
process should favor the selection of genotypes achieving
good performance with respect to the predefined objective.

For instance, assume that the objective is to minimize the
message delivery time. Obviously, the best will be to flood
the network with message copies, as one cannot improve
over using, for each message, all meetings between nodes.
Thus, unconstrained epidemic routing is the fittest policy as
regards delivery time minimization; genotypes representing
this policy should be favored in the selection process.

From this example, it becomes clear that the different

forwarding policies have to be evaluated with respect to the
predefined objective. We shall devise a fitness function that
returns a high value should the policy be considered to per-
form well and a low value otherwise. We note that a node
cannot evaluate by itself whether its current policy fits the
current scenario, because it is in general not aware of the
consequences of its actions. For example a given node can
never know by itself whether its decisions – according to its
forwarding policy – to relay or not to relay a message were
the right ones or not. Thus, a node may be relaying a mes-
sage when the latter has already been delivered to its desti-
nation, hence wasting resources. On the other hand, a node
may refrain from relaying a message when it happens to be
the key node in the message delivery process, e.g., if it is
the only node traveling between two disconnected clusters
of nodes in the network. We also observe that the fitness of
a node’s policy depends on the policies implemented by the
other nodes as well. Message delivery is in fact a collab-
orative process involving many nodes each applying possi-
bly a different policy. A specific policy can be beneficial
or detrimental depending on other nodes actions, hence it
is difficult to isolate the individual performance of a single
policy. The previous considerations imply the need of an
online distributed fitness evaluation process. Last, observe
that evaluating the fitness of genotypes is a noisy process
because of randomness of the mobility process. Therefore,
the fitness should be estimated. This estimation is affected
by a delay between the moment nodes perform actions and
the moment the consequences of these actions are known.

In this paper, we report on a case study implementation
of the proposed approach to epidemic-style forwarding in
delay-tolerant networks. Our main objective with this im-
plementation is to gain insight into the applicability of the
proposed approach. In particular, our purpose is to provide
a first answer to the following questions:

(i) Does the distributed genetic algorithm “converge”?
(ii) If so, what does the convergence point look like and

how much time is required for the convergence?
(iii) What are the performance with respect to an opti-

mally configured static forwarding scheme?
These questions will be tackled by implementing a (re-
duced) version of the proposed framework, and running nu-
merical simulations to evaluate, in a realistic scenario, the
behavior of the system.

3. The forwarding policy

A forwarding policy consists of a set of actions to under-
take upon message reception. It defines what nodes do when
they get within mutual transmission range. The actions can
be specified using parameters and may rely on information
contained in message headers (like message generation time
or message hop count). For instance, a node can transmit a



Table 1. Mapping example

Genotype 1 0 0 1 0
... 0 1 1 0 1

Interpretation P = (18/31)1.5 ≈ 0.44,H = 13
Policy if (msgHops < H) then

if (uniform(0,1) < P) then
ForwardMessage();

endif
endif

xi = policy 1, fitness φ̂i

xj = policy 21, fitness φ̂j,i

Pool Gi

Node j

fitness φ̂j

xj = policy 21
Node i

xi = policy 1
fitness φ̂i

xi = policy 1, fitness φ̂i,j

xk = policy 32, fitness φ̂k,j

xj = policy 21, fitness φ̂j

Pool Gj

Figure 1. System architecture.

message with probability P as long as the message has not
been forwarded more than H times. The values of these
parameters uniquely specify one policy.

A simple binary string can be used to represent the pol-
icy, as illustrated in Table 1 where the genotype spans 10
bits. The 5 rightmost bits represent the maximum number
of hops H , whereas the 5 leftmost bits provide the value of
a such that P := (a/31)1.5 returns the forwarding probabil-
ity. Each representation yields a unique forwarding policy;
see e.g. Table 1. Many other parameters can be added as
genes in the genotype, like the maximum number of copies
that a node can do for a given message or a timer restrict-
ing message lifetime. The behavior of a generic forwarding
scheme can be changed by tuning the values of the parame-
ters that specify the actions to be undertaken.

So as to explore the applicability of the proposed ap-
proach, we consider a fixed-length genotype comprising
only one parameter, which is the probability P of relaying
a copy of the message upon encountering a new node.

4. Generation of new forwarding policies

We adopt the genetic algorithms approach to generate
new forwarding policies. At this point we assume that each
node has an estimation of the fitness of the genotype it is us-
ing, leaving the estimation details to the following section.

In our implementation, as nodes meet, they transmit their
own genotype and its current fitness estimation. Each node
i maintains a pool, denoted Gi, of available genotypes (in-
cluding the one currently in use) and their fitness estima-
tions, as illustrated in Fig. 1. Let φ̂i denote the fitness esti-
mation of node i genotype and φ̂i,j denote the fitness value
of node i genotype as known by node j. φ̂i,j is the value of

φ̂i at the last meeting time between nodes i and j, so these
two values may at times be different.

At generation times, nodes apply GA-like operators to
the genotypes maintained in their pools. First, genotypes
are selected for reproduction based on their weighted fit-
ness. In other words, node j selects genotype xi with prob-
ability pi,j := φ̂i,j/(

∑
k∈Gj

φ̂k,j). Then the GA operators
are used to create new genotypes from existing ones. These
operators are crossing-over and mutation. More details are
provided in [1].

Crossing-over is performed with probability pc and re-
quires to select two genotypes from the pool. It consists in
breaking two genotypes at a uniformly-randomly chosen bit
position and exchanging the tails of the genotypes; from the
two offsprings produced, called crossovers, one is equiprob-
ably selected. Mutation consists in a random change occur-
ring in the genotype. As an example, mutation can be im-
plemented by swapping, with probability pm, each bit of a
binary representation of the genotype.

After having generated the genotype that will be used,
the genotype fitness is set to zero and the pool of genotypes
is emptied. For a start, we consider a synchronized repro-
duction phase, leaving the non-synchronous case for future
work. Every Tg seconds, the generation lifetime, nodes syn-
chronously create a new offspring each, i.e., each updates its
own genotype. This synchronism allows to clearly identify
different generations during the evolution.

5. Fitness estimation

We have seen in the previous section that the generation
of new genotypes relies heavily on the fitness figures of the
actual ones. It is then crucial for the proper evolution of
the forwarding service to devise a fitness estimator that will
closely reflect the performance of the genotype with respect
to the targetted optimization.

In this paper, we consider that the function to optimize,
F , is the expected value of some performance metric, say
f , which can be evaluated for a specific infection process
I . By infection process, we mean the complete history of
events related to the delivery and cancellation of a generic
message in the network. Examples of f(I) are the time
needed to deliver a message to the intended destination, the
time before an infection dies (i.e., when all copies are erased
from the network), the number of copies done for a given
message and the power required to propagate the message.

The optimization goal, defined as F = E[f(I)], depends
on the entire set of forwarding policies used in the network.
A candidate solution is then an N -tuple (x1, x2, . . . , xN ),
where N denotes the number of nodes in the network and xi

denotes the genotype used at node i, for i = 1, 2, . . . , N . In
standard GAs, the fitness φ of a candidate solution is simply
the function to optimize evaluated at this point, namely φ :=



F (x1, x2, . . . , xN ). However, this is not useful in our case
as we want to evaluate the fitness of a single policy not that
of an N -tuple of policies.

In our implementation, we let f = TD + γ
∑

i∈W Ci

where TD is the delivery time of a generic message, Ci is
the number of message copies made by node i, W is the
set of nodes contributing to the delivery of the first message
copy to reach the destination, and γ is a parameter which
can be understood as the time-equivalent cost of a copy. In
other words, γ represents the minimum decrease of the de-
livery time we would like to observe should an additional
copy be made by a node in W . The optimization goal is to
minimize the cost

F = E

[
TD + γ

∑
i∈W

Ci

]
. (1)

Introduce h as the number of hops done by the first copy
of a message that reaches destination. We have |W | = h.
The quantity TD/h + γCi can be seen as an approxima-
tion of the contribution of node i (i ∈ W ) in the global
performance metric f . Should h be a constant, minimizing
TD/h + γCi shall also minimize f and thereby the cost F .
The fitness of node i genotype is hence defined as

φi = E

[
1 − TD/h + γCi

R

]
, (2)

where R is set to a high enough value, for instance 2E[TD]+
γN , so that φi > 0. By collecting samples of TD/h +
γCi, node i can simply estimate φi using the sample mean.
In the following we are going to describe the whole fitness
estimation process.

Let the message header contain fields specifying the hop
count h and the time at which the payload was generated at
the source. Assuming that all nodes are synchronized (this
assumption can be removed [1]) the destination can evalu-
ate the delivery time as soon as it receives the first copy of a
message. Let each node, before forwarding a copy of a mes-
sage, add its own identifier to the message header. The set
W is nothing but the set of node IDs present in the header
of the first copy reaching the destination. The destination
node sends to nodes in W a new acknowledgment (ACK)
message, which provides feedback specifying the delivery
delay TD and the number of hops h = |W |. At this point,
the node evaluates the “reward” obtained for having taken
part in the infection, as a decreasing function of the quantity
TD/h + γCi. More precisely, we define the reward at node
i as

ri = max
{

1 − TD/h + γCi

R
, 0

}
. (3)

Upon receiving the n-th ACK message and computing the
reward ri(n) according to Eq. (3), node i updates its esti-
mation of the genotype fitness as follows (this corresponds

to averaging all rewards received):

φ̂i(n) =
n − 1

n
φ̂i(n − 1) +

1
n

ri(n) . (4)

6. Protocol specifications

Two nodes are able to exchange messages (should they
decide to do so according to their policies) when they get
within mutual communication range. The evolving proto-
col makes use of two types of messages to be exchanged
over the network: DATA messages and ACK messages.
DATA messages are those carrying the payload transmitted
by any mobile node to a specific destination, whereas ACK
messages are used:

• to acknowledge the successful delivery of the message
at its intended destination;

• to feed back the reward to the nodes along the success-
ful path from source to destination (rewarding);

• to serve as anti-DATA, removing already delivered
messages from nodes buffer hence blocking their diffusion.

Each mobile node maintains two internal data structures
dedicated to the storage of DATA and ACK messages re-
spectively. In the structure storing DATA messages, each
item additionally stores a counter of the number of copies
of that message already disseminated in the network.

Whenever a node receives a DATA message to be re-
layed, it first adds its own node ID to the header, then in-
crements by one the hop count in the message header. The
DATA message is stored until its ACK message is received.
In addition to DATA messages, nodes diffuse also ACK
messages following the IMMUNE TX strategy in [5].

Whenever a node receives an ACK message, it checks
whether the corresponding DATA message is stored in its
internal memory, in which case it is erased. Should the cor-
responding DATA message be present and should the node
be in the set W present in the ACK message header, the
node will then apply the proper rewarding scheme to update
its genotype fitness, as described in the previous section.

7. Numerical results

In order to evaluate the performance of the presented
algorithms, we run extensive simulations using the freely
available simulation tool OMNeT++ [8].

We consider N mobile nodes, moving at constant speed
v over a L × L square playground according to the random
direction mobility model. Each node selects the angular
direction of its next movement uniformly in [0, π], moves
along this direction with a uniform speed; upon reaching
the border, it generates a new angular direction and moves
accordingly. Nodes initial locations are sampled from a uni-
form distribution which is the nodes stationary distribution
under this mobility model (perfect simulation).



Table 2. Simulation parameters

γ/100 = 1, 4, 8, 16s Tg = 120000s L = 500m
pc = 0.10 Ts = 3000s r = 25m
pm = 0.01 Tstep = 2s v = 1m/s
Static scenario N = 20
Dynamic scenario N varies in {5, 10, 20, 30, 40}

Distinct nodes are considered to be in communication
range if the mutual distance falls below the communication
range r. Each mobile node generates a new DATA message
every τ seconds where τ is uniformly distributed between
0 and Ts seconds. The destination of the new message is
chosen uniformly among the nodes in the simulation. Each
message generated is stored in the out queue of the gener-
ating node. The position of every mobile node in the simu-
lation is updated every Tstep seconds. Each generation lasts
for Tg units of time.

The specific values used are in Table 2. GA parameters
pc, crossover probability, and pm, mutation probability, are
taken to be fixed. The investigation of performance sensi-
tivity to these parameters is left to future work.

As regards the genotype, the forwarding probability P
has been quantized non-uniformly using 5 bits for the repre-

sentation. P takes value in
{

(i/31)1.5
, i = 0, 1, . . . , 31

}
.

Static scenario We first consider a case where the num-
ber of nodes is kept constant (N = 20) throughout the sim-
ulation run. The time-equivalent cost of one message copy
is set to γ = 800. The N initial forwarding probabilities are
chosen independently in the set of possible values according
to a uniform distribution.

Figure 2 depicts the forwarding probabilities present in
each generation. As it might be seen, after few generations
only small values are used across the population, but for
some occasional high values due to random mutations. Us-
ing different initial random seeds yields similar results.

Figure 3 shows the corresponding evolution over time
of the cost (1), expressed in seconds. Observe how the
cost rapidly decreases across the first generations and how
it “converges” to an almost constant value after 6 genera-
tions. Again, running simulations with different initial ran-
dom seeds yields similar conclusions.

Comparison with probabilistic forwarding We have
conducted a series of simulation runs in which message de-
livery was achieved through pure probabilistic forwarding
[6]; that is, a scheme in which all nodes use the same fixed
forwarding probability. We ran simulations varying the for-
warding probability P from 0 to 1 and computed the cost
for γ in {100, 400, 800, 1600}. For each γ we conducted
simulations using our evolutionary forwarding scheme.

Figure 4 reports the cost, as expressed in (1), achieved by
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Figure 2. Genotype evolution over time.
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Figure 3. Cost averaged over all messages
delivered in a generation vs. time.

the probabilistic forwarding scheme against the forwarding
probability. The cost achieved by our scheme is also re-
ported for the sake of comparison.

As one could expect, for low values of γ, like γ = 100
(corresponding, roughly speaking, to a scenario where re-
sources are not an issue but low delays are required), the
cost function is monotonically decreasing in P and flood-
ing (P = 1) is the best forwarding policy. On the other
hand, if the value of γ is high (resource-constrained sce-
nario, e.g. γ = 1600), the minimum is for P = 0 and nodes
should make no copies letting the source deliver its message
to the destination. For intermediate values of γ (in our case
γ = 800), a minimum exists and a tradeoff between low de-
lay and low resource consumption can be found. The graph
reports also the performance achieved by our evolutionary
scheme, after the initial convergence transient. The scheme
is able to achieve almost optimal performance for all γ.

Dynamic scenario Last, we consider a simulation case
in which N , the number of nodes in the system, varies with
time. In particular, it is increased every 20 generations, fol-
lowing the sequence 5, 10, 20, 30, 40. This dynamic sce-
nario challenges the ability of the proposed framework to
track the variations in the network and adapt its parameters
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Figure 4. Cost for probabilistic forwarding
(PF) and evolutionary forwarding.
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Figure 5. Dynamic scenario: cost vs. time.

accordingly. The time-equivalent cost of a copy is set to
γ = 800. We compute the cost (in seconds) achieved by our
evolutionary forwarding scheme in each generation. The re-
sults are reported in Fig. 5 which depicts as well the perfor-
mance of the probabilistic forwarding scheme with the for-
warding probability set to its optimal value when N = 20
(P ≈ 0.065; see Fig. 4).

As expected, probabilistic forwarding exhibits steady
performance as long as the number of nodes does not
change. Instead the cost plot of our evolutionary forwarding
scheme presents spikes whenever N increases. The abrupt
change is mainly due to the arrival of new nodes, whose
initial forwarding probability is set uniformly at random.
During the transient following the spike, genotypes fitter to
the new scenario are identified and the cost reduces.

Given a network scenario, our evolutionary solution ex-
hibits performance similar to a pure probabilistic forward-
ing scheme tuned for the specific scenario. But it outper-
forms it whenever the scenario changes.

8. Conclusion

In this paper, we have presented a framework for embed-
ding autonomous evolution in epidemic-style forwarding
schemes. The proposed approach is based on the applica-
tion of a GA-like mechanism to parameters arrays describ-
ing the policy employed by the nodes in the system. The
simulation results presented indicate that the proposed case-
study implementation is able to track changes in the system
conditions (e.g., number of nodes in the scenario consid-
ered), and achieves similar if not better performance than
solutions statically optimized for a given operating point.
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