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UNIVERSITÀ DI PALERMO

Date: December 2004

Author: Giovanni Neglia

Title: Ingress Traffic Control in Differentiated

Services IP Networks

Department: Ingegneria Elettrica - DIE

Degree: Ph.D. Convocation: February Year: 2005

Permission is herewith granted to Università di Palermo to circulate
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Abstract

In this thesis we address issues concerned with three particular traffic control

mechanisms employed in Differentiated Services IP networks: call admission

control, active queue management and marking. In our study these mech-

anisms share the purpose to control traffic which is going to enter into the

network, rather than traffic which is already in the network. It appears evi-

dent if we consider call admission control because it immediately changes the

profile of ingress traffic by admissions ad rejections. At the same time ac-

tive queue management and marking are considered as a way to drive TCP

adaptation.

As regards call admission control, our study underlines that, when long

range dependence takes place, measurement-based admission control exhibits

good traffic forecasting properties which motivate better performance in com-

parison to traditional mechanisms based on a–priori knowledge. Besides, it

appears to be able to change the stochastic properties of traffic aggregate, up

to remove long range dependence.

As regards active queue management, we stress the spatially distributed

feature of its control action, that is TCP flows may turn to be controlled at

the same time by two or more nodes acting independently according to their

specific settings. Configuration rules have been proposed in order to assure

system stability from a modeling point of view, when a single node controls the

traffic aggregate. Yet, we show that instability and poor network performance

may arise when two nodes act at the same time.

xi



Finally we propose a new marking algorithm, which explicitly takes into

account the interaction among the TCP adaptation rule, the active queue man-

agement discipline, and the marking strategy. Extensive performance evalua-

tion shows that the algorithm is able to assure significant improvements. We

have developed an analytical fixed-point model exhibiting a novel approach

for the queue behavior.
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Chapter 1

Traffic Control

In this thesis the expression traffic control is employed in its broadest meaning,

as the set of actions taken by the network which affect the traffic in order

to achieve a given performance. These actions are detailed in what follows,

anyway we can note that we are leaving out the source adaptation mechanisms,

while we are including congestion control strategies inside the network.

1.1 About Terminology

In the ATM framework traffic control has a similar comprehensive meaning.

For example, according to ITU-T Recommendation I.371 [1], “ATM layer traf-

fic control refers to the set of actions taken by the network to avoid congested

conditions”, while “ATM layer congestion control refers to the set of actions

taken by the network to minimize the intensity, spread and duration of conges-

tion”. The latter is defined as a state of network elements, in which the network

is not able to meet the negotiated Quality of Service (QoS) objectives for the

connections already established or for any new connection request, because

of traffic overload or control-resource overload. According to these definitions

of traffic control and congestion control, control mechanisms are often distin-

guished into two categories: preventive and reactive controls. In particular

the following traffic control mechanisms are listed in [1]: resource provision-

ing, virtual path management, Connection Admission Control (CAC), fast re-

source management, call routing and load balancing, usage parameter control,

priority control, traffic shaping. Explicit (forward or backward) congestion

indication, selective cell discard, and reaction to usage or network parameter

1
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control are indicated as congestion control techniques. Many of these mecha-

nisms can be deployed also in the Internet and are described in Sec. 1.3. The

distinction between traffic and congestion control can often be unclear: the

same mechanism can be used in a preventive way or in a reactive way. For ex-

ample an admission control mechanism discarding new incoming connections

can be seen as a preventive mechanism if deterministic multiplexing is em-

ployed or a reactive one when statistical multiplexing occurs. This fuzziness

appears also in [1]: for example selective cell discard (a congestion control

mechanism) requires priority control (a traffic control mechanism). For this

reason we decided to use the term “traffic control” to indicate both preventive

and reactive control actions. More recently (see for example [43]) the term

traffic management has been used with this meaning in the ATM framework.

The IP network framework is even more chaotic as regards terminology.

ITU-T confirms the distinction between traffic control and congestion control

[165]. In many contexts, “traffic control” is employed according to the wide

meaning we adopted, see for example the Bonaventure’s overview of traffic

control and Quality of Service (QoS) [29], the topics of the conference “Scal-

ability and Traffic Control in IP Networks” ([148, 149]), the Italian TANGO

Project [155], and [85], [140]. In particular in TANGO project, under the traf-

fic control umbrella there are CAC, Active Queue Management (AQM), dy-

namic routing, traffic conditioning (i.e. metering, marking, shaping, policing),

Multi-Protocol Label Switching (MPLS) and even end-to-end (E2E) mecha-

nisms (e.g. rate-adaptive protocols, like TCP). Conversely “traffic control” is

employed with a more specific meaning in other significant contexts. In the

Integrated Services (IntServ) framework it denotes the router functions that

create different qualities of service [31]. It is implemented by three components:

the packet scheduler, the classifier, and admission control. Traffic policing is

considered one of the function of the scheduler. As regards Differentiated Ser-

vices (DiffServ), the expression “traffic control” usually does not appear in

related RFCs, but traffic conditioning is defined as the set of control functions

performed to enforce rules specified in a Traffic Conditioning Agreement [27],

including metering, marking, shaping, policing. Yet in [23] the authors use the

terms “aggregate traffic control” and “DiffServ” interchangeably. Despite this

lack of definition in the RFCs, an identification between traffic conditioning

and traffic control is quite common (as in AQUILA project [7]). We think it is
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due to the decision to name “Traffic Control Module” the software performing

DiffServ traffic conditioning in Linux operating system [102]. Besides, this

module performs functions similar (with the exception of CAC) to the “Traffic

Control Module” of IntServ-enabled routers [32].

Finally traffic control techniques are often presented in the framework of

traffic engineering. Traffic engineering is not limited to traffic control, but it

encompasses the application of technology and scientific principles also to the

measurement, characterization, modeling of Internet traffic. Moreover its main

issue is performance evaluation and performance optimization of operational

IP networks. As regards traffic engineering definition and overview see [12, 11,

10].

1.2 Traffic Control

in Circuit-Switched Networks

Before describing traffic control techniques in a Differentiated Services sce-

nario, we briefly present traffic control in circuit-switched networks, with ref-

erence to the Public Switched Telephone Network.

In circuit-switched networks, each connection is allocated a fixed amount of

bandwidth, and a constant data rate in the network is provided to communi-

cating entities throughout the duration of the connection. The call admission

control is the criteria which is employed in order to admit new calls. In PSTN

it is usually a very simple one: if a requested channel is available, the con-

nection is established, otherwise it is rejected. This simple CAC is sufficient

to control traffic in circuit-switched networks since the dedicated bandwidth

is always available for a connection and there is no contention for network re-

sources once a channel is allocated. Being the resource requirements constant

during the call, the traffic control issue mainly comprises three aspects:

Provisioning or planning determines network resources at long time scales,

i.e. adequate engineering of component elements (like circuits and ex-

changes) in terms of capacity, number and configuration.

Resource management allocates and configures network resources at mid-

dle or short time scales. Being PSTN dimensioned in order to satisfy
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peak hour traffic requirements, resource reallocation or reconfiguration

is usually required only when faults occur.

Call routing decides the path the call will follow. The early telephone net-

work relied on static hierarchical routing. Upon the advent of digital

switches and stored program control which were able to manage more

complicated traffic engineering rules, dynamic routing was introduced to

alleviate the routing inflexibility in the static hierarchical routing so that

the network would operate more efficiently. This resulted in significant

economic gains [84]. Dynamic routing typically reduces the overall loss

probability by 10 to 20 percent (compared to static hierarchical rout-

ing) and can also improve network resilience by recalculating routes on

a per-call basis and periodically updating routes. Three approaches to

dynamic routing have been adopted in current networks: 1) in time-

dependent routing, regular variations in traffic loads (such as time of

day or day of week) are exploited in pre-planned routing tables; 2) in

state-dependent routing, routing tables are updated online according to

the current state of the network (e.g., traffic demand, utilization, etc.);

3) in event dependent routing, routing changes are incepted by events

(such as call setups encountering congested or blocked links) whereupon

new paths are searched out using learning models. A detailed descrip-

tion of the various routing strategies applied in telephone networks is

included in [8].

These aspects require information about the status of the network. Digi-

tal exchange technology currently makes it possible to gather information on

network status internally (meters) and makes it available to external systems.

Meters reflect the call attempts number, completed calls, rejected calls, etc.

From these basic meters it is possible to determine the degree of congestion,

the level of utilisation, the percentage of free resources, etc.. There are global

exchange meters and specific meters for every object in the exchange: route

(connection between two exchanges), destination (numbering) and internal or-

gan (internal component). Runtime measurements can be sent periodically or

on threshold triggering, and are employed to reveal bad operation. Network

planning is clearly based on information collected from the exchange over the

day and has to be stored in order to be able to analyse daily, weekly, monthly
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traffic and so forth. It is interesting to note that all the traffic controls (also

the actions aiming to recover from faults) usually require human attendance

(see for example Telefónica’s traffic management system [35]).

1.3 Traffic Control

in Differentiated Services Networks

In this section we present an overview of the large range of traffic control

techniques in IP networks, where the Differentiated Services (DiffServ) ap-

proach is adopted. Firstly we illustrate main differences in comparison to

PSTN that justify such extension of traffic control mechanisms, secondly we

exemplify them according to a time-scale taxonomy. Despite the reference

to DiffServ, the most part of the following considerations holds for a generic

packet-switched or cell-switched network. The DiffServ framework is described

in Appendix B, some traffic control mechanisms have been object of our re-

search activity and are more deeply described in the following chapters.

Clearly the first discriminating element is the packetization of information

to be delivered. It appears quite obvious but it allows network elements to

operate on shorter time scale in comparison to call (or session) duration. At

the same time packetization offers the possibility of statistical multiplexing

gain. That is, taking advantage of variable sources data-rate, network elements

can be dimensioned on average demand rather than on peak demand, allowing

considerable resource sparing. Conversely when statistical multiplexing is used

there is a non-null probability that at some point in time the offered load to

a multiplex point will exceed its capacity. Hence packet level congestion can

occur and it is faced by apposite traffic control mechanisms.

A second point is the large heterogeneity of application and user require-

ments. While PSTN is mainly intended for the transport of real-time content,

the Internet is (or would become) a generic purpose network: file transfer

as well as remote control or multimedia real-time communication should be

supported. Many applications are elastic, i.e. they can work under a variety

of network conditions and still perform correctly (for example File Transfer

Protocol, emails transfer), others have QoS requirements (are inelastic). Be-

sides such QoS requirements are usually different, not only quantitatively, but
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also as regards the key performance issue (or combination of issues): through-

put, delay, jitter, loss percentage, availability and security. Among inelastic

applications some are tolerant, i.e. they can run in given range of QoS. For

example Video on Demand can tolerate losses and a certain amount of delay,

interactive real-time audio transmission is loss-tolerant to some extent (hu-

man brain can recover sporadic losses), but has stricter delay requirements,

online trading is not loss tolerant. Tolerant applications are often adaptive,

that is they try to maintain the perceived quality at an acceptable level, even

under poor network conditions. This can be done by lowering the packet

sending rate (VAT) or by lowering the resolution of the transmission (e.g., in

video transfer) or even by using specialized compression and error-correction

techniques. Adaptive applications may use extra buffering to compensate for

network transients and allow for graceful degradation in performance. Most

audio and video streaming applications on the Internet are adaptive. Tolerant

and nonadaptive applications do not have the ability to cope with network

transients: they can still tolerate some QoS degradation, but this directly

affects the quality perceived by an end user. It has to be noted that Inter-

net users are no more an undistinguished mass, and the same service can be

provided with different characteristics of quality or availability depending on

the user specific requirements. At the same time this heterogeneity of user

desiderata corresponds to different pricing schemes. Further information on

QoS needs of current Internet applications can be found in [52, 112].

Currently most of the traffic involves the transfer of static (or slowly chang-

ing) information on an adaptive reliable transport protocol (TCP). This has

two main consequences: network traffic control mechanisms can be usefully

aware of TCP adaptivity mechanisms, and the forecast of user requests can

be advantageous.

In what follows we present the main traffic control techniques according to

the time-scales over which they operate. This classification is quite common

in the ATM framework [1, 72, 91] and it has also been proposed for Internet

traffic control [29, 85, 167]. More in details we define the operation time-scale

as the time interval between the begin of the control and the manifestation of

its effects in the network. Although we have not found this strict definition in

scientific literature, we remark that two different time intervals constitute the

operation time-scale: the time needed to perform the control action (the action
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Figure 1.1: Traffic Control Techniques and their Time-Scales.

time), and the time needed to note its effects in the network (the reaction

time). Often the classifications implicitly consider one of these time intervals

as reference, sometimes they do not distinguish, but it can lead to ambiguity

because the magnitude of these two interval times is sometimes comparable,

but often one prevails. Our classification is shown in Fig. 1.1, we tried to make

it as complete as possible. Clearly in some cases it may look questionable.

1.3.1 Provisioning

Provisioning determines the resources of the network. The goal of provision-

ing is to ensure that the network has enough resources to meet the expected

demand with adequate QoS. Users expect some accessibility to the service, usu-

ally high, and providers need to plan the network to meet these expectations.

With network provisioning, the challenge is to ensure that sufficient resources

are available to accept all potential connections, while still maintaining a cost-

effective network design. This leads to a tradeoff between the quantities of

resources that should be placed in the network versus the expected utilization

that they can achieve. The amount of resources depends on the degree of

statistical multiplexing which is considered acceptable. Here pricing is funda-

mental to incentive the provider to expand capacity as demand grows in order

to ensure that the performance is maintained. Certain aspects of provisioning,

such as capacity planning, respond at quite large timescales, ranging from days

to possibly years. The introduction of automatically switched optical trans-

port networks (e.g., based on the Multi-protocol Lambda Switching concepts
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[13]) could significantly reduce the lifecycle for capacity planning by expedit-

ing provisioning of optical bandwidth. For a recent overview of IP network

planning refer to [144].

1.3.2 Management

While provisioning determines the resources, management allocates and con-

figures them at middle or short time scales. Because of increasing complexity,

management costs have become significant in current data networks. ISPs have

been asking to vendors for management tools enabling the following features:

centralized management, with the ability to perform tasks via the network; ab-

stracted (or simplified) management data, which fits with the fewer interfaces

objective by abstracting the functions and decisions criteria across multiple

devices; automation of management tasks in order to support management in-

formation re-use, and to allow the network to operate with a minimum of hu-

man intervention; commonality across multi-vendor devices; fewer interfaces;

consistency across interfaces.

One step towards this direction is the Bandwidth Broker employment,

which is responsible of negotiating Service Level Specifications and config-

ure edge routers to enforce resource allocation and admission control. More

details on Bandwidth Broker are in Sec. B.7.

A more general solution is the Policy Based Management framework, which

provides a way to allocate network resources, primarily network bandwidth,

QoS, and security (firewalls), according to defined business policies. A policy-

based management system allows administrators to define rules to address

these issues and manage them in the policy system. These rules take the

form “If condition, then action.” A condition may be a user or a group, the

time of day, the application type, or the network address. Policy rules are

then distributed to network resources. Resources include devices that manage

network bandwidth, security, IP addresses, storage, processors, and agents, as

well as systems that manage services such as billing, accounting, and service

mapping. Locator services are also required to help resource managers find one

another. The IETF Policy Working Group has developed a policy management

architecture that is considered the best approach for policy management on

the Internet. It includes the following components:
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Policy management service A graphical user interface for specifying, edit-

ing, and administering policy.

Policy repository A place to store and retrieve policy information, such as

a Lightweight Directory Access Protocol (LDAP) server or a Directory

Enabled Network (DEN) device.

Policy Decision Point (PDP) A resource manager or policy server that

is responsible for handling events and making decisions based on those

events (i.e., at time x do y), and updating the PEP configuration appro-

priately.

Policy Enforcement Point (PEP) PEP exists in network nodes such as

routers, firewalls, and hosts. It enforces the policies based on the “if

condition then action” rule sets it has received from the PDP.

Local Policy Decision Point (LPDP) This is a scaled-down PDP that ex-

ists within a network node and is used in cases when a policy server is

not available. Basic policy decisions can be programmed into this com-

ponent.

A variety of protocols may be used to communicate policy information be-

tween the PDP and the PEP. COPS (Common Open Policy Service) is the

usual protocol, although DIAMETER or even SNMP may be used. COPS

is a client/server protocol that provides transport services for moving policy

information among IP network nodes. It also provides the transport for pol-

icy queries and responses. By moving policy information to different subnets,

users can log on at other locations and receive the same service they receive

from their home network. COPS was developed by the IETF RSVP Admission

Policy (RAP) Working Group, which is developing a scalable policy control

model for RSVP.

1.3.3 Caching and Content Delivery Networks

As we said above, most of the traffic involves the transfer of static (or slowly

changing) information, like the Web traffic for example. Hence performance

can be improved if user requests are predicted and contents are conveyed closer

to the user. An example is the employment of a proxy server in the user
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network. A proxy server sits between a client application, such as a Web

browser, and a real server. It intercepts all requests to the real server to see

if it can fulfill the requests itself. If not, it forwards the request to the real

server. Proxy servers can dramatically improve performance for groups of

users. This is because the proxy server stores the results of all requests (let us

consider web pages) for a certain amount of time. Hence if an user requests

a page which has already been requested by another user formerly, the proxy

server simply returns the page that it already fetched, instead of forwarding

the request to the Web server where the page resides, which can be a time-

consuming operation. Since the proxy server is often on the same network as

the user, this is a much faster operation.

Content Delivery Networks (sometimes called content distribution net-

works) are an extension of this simpler approach: a content from a site is

copied to geographically dispersed servers and, when a page is requested, faster

delivery is achieved by identifying and serving it from the closest server to the

user. Typically, high-traffic Web site owners and Internet service providers

(ISPs) hire the services of the company that provides content delivery (e.g.

Accelia [3], Akamai [4], Mirror Image [113]). A common content delivery ap-

proach involves the placement of cache servers at major Internet access points

around the world and the use of a special routing code that redirects a Web

page request to the closest server. When the Web user clicks on a URL that is

content-delivery enabled, the content delivery network re-routes that user’s re-

quest away from the site’s originating server to a cache server closer to the user.

The cache server determines what content in the request exists in the cache,

serves that content, and retrieves any non-cached content from the originat-

ing server. Any new content is also cached locally. Other than faster loading

times, the process is generally transparent to the user, except that the URL

served may be different than the one requested. The three main techniques

for content delivery are: HTTP redirection, Internet Protocol (IP) redirection,

and domain name system (DNS) redirection. In general, DNS redirection is

the most effective technique. Content delivery can also be used for specific

high-traffic events such as live Web broadcasts by continually dispersing con-

tent from the originating server to other servers via satellite links.



11

1.3.4 Routing

The Internet deploys dynamic routing algorithms with distributed control to

determine the paths that packets should take en-route to their destinations.

Interior Gateway Protocol (IGP) such as RIP or OSPF are used to exchange

routing information within an autonomous system1 , while the Border Gate-

way Protocol (BGP) is an inter-autonomous system routing protocol. Here

we focus on intra-autonomous system routing. The routing algorithms are

adaptations of shortest path algorithms where costs are based on link metrics.

The link metric can be based on static quantities, for example assigned ad-

ministratively according to local criteria, or on dynamic quantities, depending

for example by the network congestion measure such as delay or packet loss.

Static link metric assignment, according to local criteria, has shown to be in-

adequate because it can easily lead to unfavorable scenarios in which some

links become congested while others remain lightly loaded. Even if link met-

rics are assigned in accordance with the traffic matrix, forecasting errors or

simply traffic dynamics can lead to unbalanced loads in the network. Also, the

routing protocols does not take traffic attributes and capacity constraints into

account when making routing decisions. This results in traffic concentration

being localized in subsets of the network infrastructure and potentially causing

congestion. One adopted solution is adjusting IGP and/or BGP parameters to

route traffic away or towards certain segments of the network, but it tends to

have network-wide effect. Consequently, undesirable and unanticipated traffic

shifts can be triggered as a result.

Another solution is available when a virtual-circuit network, such as ATM,

frame relay, or WDM, provides virtual-circuit connectivity between routers

that are located at the edges of a virtual-circuit cloud. In this mode, two

routers that are connected through a virtual circuit see a direct adjacency

between themselves independent of the physical route taken by the virtual cir-

cuit through the ATM, frame relay, or WDM network. Being the router logical

topology decoupled from the physical topology, it can be re–configured to make

it correlate more closely with the spatial traffic distribution using the underly-

ing path-oriented technology. This approach is called the overlay model [10].

1An autonomous system is a network or group of networks under a common administra-
tion and with common routing policies.
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According to our presentation it requires the management of two separate

networks with different technologies resulting in increased operational com-

plexity and cost. The IP over ATM technique is no longer viewed favorably

due to recent advances in MPLS (which allows virtual circuit employment)

and router hardware technology. Both these adaptive solutions employ a mea-

surement system that monitors changes in traffic distribution, traffic shifts,

and network resource utilization and subsequently provides feedback to the

online and/or offline traffic engineering mechanisms and tools which employ

this feedback information to trigger certain control actions to occur within the

network.

The traffic engineering mechanisms and tools can be implemented in a

distributed fashion or in a centralized fashion, and may have a hierarchical

structure or a flat structure. The above solutions rely on the legacy Internet

interior gateway routing system, currently there is there is strong interest in

path oriented technology with explicit routing and constraint-based routing

capability such as MPLS. Constraint-based routing refers to a class of routing

systems that compute routes through a network subject to the satisfaction of

a set of constraints and requirements. It is a generalization of QoS routing

[45], which selects paths to be used by a flow based on the QoS requirements

of the flow itself. In the most general setting, constraint-based routing may

also seek to optimize overall network performance while minimizing costs.

The constraints and requirements may be imposed by the network itself or

by administrative policies. Constraints may include bandwidth, hop count,

delay, and policy instruments such as resource class attributes. Constraints

may also include domain specific attributes of certain network technologies

and contexts which impose restrictions on the solution space of the routing

function. Path oriented technologies such as MPLS have made constraint-

based routing feasible and attractive in public IP networks. The concept

of constraint-based routing within the context of MPLS traffic engineering

requirements in IP networks was first defined in [12].

1.3.5 Admission Control

As we said in Sec. 1.2, admission control evaluates if the network can provide

to the flow the requested service while maintaining the service promised to
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the other flows. The admission control needs to determine (or estimate) the

available resources and the requested resources. The service is provided if

available resource are not smaller than requested resources. Available and

requested resources can be determined by explicitly declared traffic parameters

(e.g. by conformance to a token bucket) or through measurements, or both.

The admission control method could be centralized or distributed. We can

observe that the time-scale of the admission process is related to the call arrival

rate, while the time-scale of congestion recovery (i.e. when the admission

control estimates that no new call can be admitted) is related to the call

duration time. A more detailed overview of CAC is in Sec. 2.1.

1.3.6 Active Queue Management

The most part of current Internet traffic employs TCP as transport protocol.

TCP is responsive to congestion: it assumes that packet discard is due to

congestion, hence it uses the receipt of the three duplicate acknowledgements

or the expiration of a retransmit timer as indication of congestion and conse-

quently reduces its transmission rate. The traditional technique for managing

router queue lengths is to accept packets for the queue until the maximum

length is reached, then reject (drop) subsequent incoming packets until there

is space in the queue because a packet has been transmitted (this technique

is known as tail drop. The basic idea of Active Queue Management (AQM)

is to take into account TCP responsiveness, and drop packets before a queue

becomes full, so that end nodes can respond to congestion before buffers over-

flow. Hence AQM appears to be a proactive approach to queue management.

By preventive dropping and introducing some randomness AQM mechanism

are able to overcome droptail overcomes like lock-Out and full queues. A more

detailed overview of AQM is in Sec. 3.1.

1.3.7 Traffic Conditioning

Traffic conditioning, which enforces that the traffic entering the network of

the flow follows the rules agreed for the service. In fact, there is a traffic

profile description that allows to classify each packet as in-profile or out-profile

packet. In-profile packets receive some QoS while out-profile receive some other

(lower), this depending on the services rules. Therefore, traffic conditioning
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involves some traffic metering and comparison to a profile, and some actions.

These actions could be the following: delaying an out–profile packet until

becoming in–profile (also called shaping), discarding an out–profile packet (also

called policing), and changing its DiffServ codepoint (also called re–marking).

A more detailed overview of traffic conditioning is in Sec. B.4.

1.3.8 Queue Discipline

DiffServ Per-Hop-Behaviors (PHB, see Sec. B.5) are implemented in nodes by

means of some buffer management and packet scheduling mechanisms.

Buffer managements algorithms, which decide when a packet is discarded,

have been already illustrated as AQM mechanisms, whose purpose is to preven-

tively notify incipient congestion, and as policing mechanism in the framework

of traffic conditioning. On shorter time-scales, buffer management is a way to

cope with current congestion at the node. Drop tail, random drop on full (a

randomly selected packet is dropped) and drop front on full (the packet at the

front of the queue is dropped) are typical buffer management mechanisms.

Scheduling algorithms decide which packet has to be sent among those

contending for the same transmission link. The packets can be in the same

buffer or in different buffers. A main distinction of schedulers is between

work-conserving algorithms and non-work-conserving algorithms. The former

schedulers are never idle, when there are packets waiting to be sent, that is,

a packet is always sent unless there are no packets in the buffers. The latter

schedulers may be idle, even when there are packets waiting to be sent, because

they wait for packets to become eligible for transmission. While scheduling

is a long-time studied topic, the advantages of non-working-conserving disci-

plines have not been realized at the begin. The reason is twofold. Firstly, in

most of performance analysis the major performance indices were the average

delay of all packets and the average throughput of the server. The average

delay is the same for all the working-conserving discipline, and non-working-

conserving disciplines cannot achieve lower delay. Secondly, queuing analysis

assumed often a single serve environment, and the potential advantages of

non-working-conserving disciplines arise when a complex networking environ-

ment is considered. In guaranteed performance service, delay bounds are more
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important performance indexes than average delay. In order to derive end-to-

end delay bounds traffic needs to be characterized inside the network on a per

connection (or per aggregate) basis. With work-conserving disciplines, even

if traffic of a connection can be characterized at the entrance to the network,

traffic pattern may be distorted inside the network, thus making the source

characterization not applicable at the servers traversed by the connection.

Some examples of working-conserving schedulers are First-In-First-Out, Pri-

ority, Round Robin, Virtual Clock, Weighted Fair Queuing, Worst-case Fair

Weighted Fair Queueing, Self-Clocked Fair Queueing and Delay Earliest-Due-

Date. Some examples of non-work-conserving schedulers are Jitter Earliest-

Due-Date, Stop-and-Go, Hierarchical Round Robin, Rate Controlled Static

Priority, Jitter-Virtual Clock and Core-Jitter-Virtual Clock. Further informa-

tion on scheduling disciplines can be found in [167] and its bibliography.

1.4 Contribution

and Organization of the Thesis

In this thesis we address three particular traffic control mechanisms: Call

Admission Control (CAC), Active Queue Management (AQM) and marking.

They operate at middle time-scale ranging from the Round Trip Time (RTT)

to the call (or session) duration. In the title of this thesis we refer to ingress

traffic control for two reasons. Firstly CAC and marking are deployed at the

ingress routers of a DiffServ domain. Secondly the specific traffic controls

we are considering have not the purpose to control the traffic already in the

network, but to affect the traffic which is going to enter into the network. This

appears evident if we consider Call Admission Control because it immediately

changes the profile of ingress traffic by admissions ad rejections. At the same

time active queue management does not aim to give immediate relief to the

network, but to signal incipient congestion to TCP sources. In this way AQM

action reduces the amount of traffic which will be offered to the network after

a RTT. Finally our marking algorithm is also a way to drive TCP adaptation

according to the network status, hence the same considerations hold.

The thesis is organized as follows. In Chapter 2 we focus on CAC and com-

pare Parameter Based Admission Control (PBAC) and Measurement Based

Admission Control (MBAC) in the presence of Short Range Dependent and
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Long Range Dependent (LRD) traffic. In Chapter 3 we study a control-

theoretic approach to AQM and show that network instability can arise in a

multiple bottleneck scenario, even when configuration rules assure local stabil-

ity at each node. In Chapter 4 we propose a new adaptive marking algorithm

together with its performance evaluation and analytical model. The three

chapters are almost independent, but the reader can find useful the AQM

overview in Chapter 3 before tackling Chapter 4. Three appendixes com-

pletes the thesis: Appendix A provides analytical background on LRD and

Self-Similarity, Appendix B briefly describes the DiffServ approach and archi-

tecture, while Appendix C explains results on the effect of reordering shown

in Chapter 4.

In our opinion, the main contributions of this thesis are the following:

• The study on CAC confirms that MBAC mechanisms can achieve better

performance in comparison to the PBAC when traffic LRD is considered.

• Besides, to the best of our knowledge, it is the first study showing that

MBAC algorithms are able to change the traffic correlation structure

and to filter away Long Range Dependence.

• The study on AQM highlights the distributed nature of TCP control

by such mechanisms, and the limits of configuration rules ignoring this

aspect.

• A new adaptive marking algorithm has been proposed. Extensive per-

formance evaluation shows the benefits of its adoption. An analytical

model provides deeper understanding and can be used for configuration

purpose.

• A novel approach to model the queue behavior has been adopted and

can be used in different contexts.



Chapter 2

The effect of
Measurement-Based
Admission Control on
Traffic Long Range Dependence

In this chapter we compare two approaches to admission control: Parameter-

Based Admission Control (PBAC) and Measurement-Based Admission Con-

trol (MBAC). Although the measurement-based algorithms are usually con-

sidered “approximations” of the parameter-based ones, we support the thesis

that it is not true, on the contrary MBAC schemes are in principle superior to

PBAC schemes when Long Range Dependence (LRD) comes into play. This

result is due to two main interrelated effects: 1) MBAC ability to forecast traf-

fic is more useful than PBAC a priori knowledge when the traffic exhibits long

scale temporal correlation, 2) MBAC is able to highly reduce traffic correlation

by compensating traffic variability through the admission process.

The chapter is organized as follows. Sections 2.1 and 2.2 briefly overview

call admission control and results about LRD in data networks. Sec. 2.3 in-

tuitively explains why MBAC could outperform PBAC. The specific MBAC

scheme adopted, the simulation details and the statistical analysis are de-

scribed in Sec. 2.4. Finally performance results are presented and discussed

in section Sec. 2.5. Analytical background on LRD, self-similarity and heavy-

tailedness is provided in Appendix A.

17



18

2.1 Call Admission Control

The role of any admission control algorithm is to ensure that admittance of a

new flow into a resource constrained network does not violate service commit-

ments made by the network to admitted flows (see also Sec. 1.3.5).

There are two basic approaches to admission control: 1) the parameter-

based approach computes the amount of network resources required to support

a set of flows given a priori flow characteristics, 2) the measurement-based

approach relies on measurement of actual traffic load in making admission

decisions.

Parameter-Based Admission Control (PBAC) algorithms usually require

that the user declares its traffic characteristics at the connection setup time.

The flow is then enforced to declared value by policing at the edge routers (see

Sec. B.4). The set of traffic characteristics the user declares is called traffic

descriptor. It needs to be easily specified by the user, easily monitored by the

network, and suitable for online performance evaluation. The traffic descriptor

has been standardized in the ATM framework [1, 43]: it includes peak cell rate

and cell delay variation tolerance, sustainable cell rate, and burst tolerance.

Bibliography about PBAC algorithms can be found in [151].

Parameter-Based Admission Control algorithms can be more easily ana-

lyzed by formal methods in comparison to measurement-based ones. Theoret-

ical analysis is quite different depending whether the buffering effect is taken

into account in evaluating performance. Methods in which the buffering ef-

fect is considered are called Rate-Sharing Multiplexing (RSM) methods, and

those in which the buffering effect is not considered are called Rate-Envelope

Multiplexing (REM) methods. If RSM methods are considered, we need to

model the queuing process at the output port buffer in the ATM switch.

Many techniques exist for modeling such queuing, such as MMPP/D/1/K,

MMBP/D/1/K, and so on. By solving the queuing model, one can evaluate

packet loss probability or queuing delay or link utilization. A strength of the

RSM methods is that they can achieve high efficiency because they consider

the buffering effect. But in general, they require a significant amount of pro-

cessing power. In addition, RSM methods are dependent on the input traffic

model. By contrast, with REM methods the queuing process at the output

port buffer needs not be considered. When the aggregate data rate exceeds
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link capacity, excess packets are deemed to be discarded immediately. In this

case the virtual packet loss probability is calculated by using the peak and av-

erage rate; it does not require any assumptions on burst length or inter-burst

length distributions.

While traditional CAC methods rely on the a priori knowledge of the sta-

tistical characterization of the offered traffic, Measurement-Based Admission

Control (MBAC) algorithms base the decision whether to accept or reject an

incoming call on runtime measurements on the traffic aggregate. They are

usually considered as the second-best solution when traffic descriptor are un-

known or uncertain or when limited resources do not allow the network to

track the number of active connections and their traffic descriptor. As we are

going to show in this chapter MBAC can be a much more powerful tool.

A large number of MBAC algorithms have been proposed in literature (e.g.

[62, 69, 92, 75]). In [75] it has been observed that many MBAC schemes rely on

certainty equivalence assumption. These methods use a static AC algorithm,

but insert measured quantities rather than a priori known traffic descriptors

(and these measured quantities are assumed to be the “real ones”). Despite the

attractive feature of reusing existing PBAC algorithms, the authors show that

this assumption can grossly compromise the target performance of the sys-

tem: overload is due to jointly occurring “misleading measurements” (giving

an overly optimistic impression of the momentary load) and rare behavior in

the period after the measurement. Certainty equivalence methods neglect the

first type of error. At the same time [33] introduces the separation between the

admission criterion and the measurement procedure. The admission criterion

determines on the basis of a number of traffic characteristics (of the existing

flows and the new flow) whether or not to accept the new flow. The mea-

surement procedure captures the required traffic characteristic from the flows

that are currently present. The authors show that different MBAC schemes

behave very similarly in terms of throughput/loss performance. In particular

it appears that the measurement process, and in particular the length of the

averaging periods and the way in which new flows are taken into account,

are much more important than the specific admission criteria (either heuristic

or theoretical) in determining how close MBAC schemes approach ideal CAC

performance.
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The admission control method can be centralized by one entity that main-

tains the topology as well as the state of all nodes in the network, thus elimi-

nating the need of a distributed reservation state. An example of centralized

solution in a DiffServ scenario is the bandwidth broker (Sec. B.7). A different

approach is distributed admission control.

In the IntServ framework each node tracks the available resources for its

links and performs a local decision upon receiving a service request and hop-by-

hop resources are reserved in a path [92]. In the DiffServ framework core router

are not flow-conscious and distributed admission control is performed at edge

routers, which can have a limited knowledge of network status. Anyway start-

ing from 1998, a number of proposals have shown that per-flow Distributed

Admission Control schemes can be deployed over a DiffServ architecture (e.g.

[94, 70, 39, 53, 26, 25]), resulting in statistical per-flow QoS guarantees. Such

solutions are referred to as Endpoint Admission Control (EAC) schemes. EAC

builds upon the idea that admission control can be managed by pure end-to-

end operation, involving only the source and destination host. At connection

set-up, each sender-receiver pair starts a “probing phase” whose goal is to de-

termine whether the considered connection can be admitted into the network.

Although the described scheme looks elegant and promising (it is scalable, it

does not involve inner routers), a number of subtle issues come out when we

look for QoS performance. A scheme purely based on endpoint measurements

suffers of performance drawbacks mostly related to the necessarily limited (few

hundreds of ms, for reasonably bounded call setup times) measurement time

spent at the destination. Measurements taken over such a short time cannot

capture stationary network states, and thus the decision whether to admit or

reject a call is taken over a snapshot of the network status, which can be quite

an unrealistic picture of the network congestion level. The simplest solution

to the above issue is to attempt to convey more reliable network state infor-

mation to the edge of the network. In such a view, EAC can be supported

by a Measurement Based Admission Control (MBAC) that runs internally to

the network (i.e., in a whole domain or in each internal router or in the edge

devices), e.g. [39, 70, 53]. In [25] the authors propose GRIP (Gauge&Gate

Reservation with Independent Probing) a reservation framework where End-

point Admission Control decisions are driven by probing packet losses occur-

ring in the internal network routers. The Gauge&Gate acronym stems from
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the assumption that network routers are able to drive probing packet discard-

ing (Gate) on the basis of accepted traffic measurements (Gauge), and thus

implicitly convey congestion status information to the edge of the network

by means of reception/lack of reception of probes independently generated by

edge nodes.

2.2 Self-Similarity in IP Networks

The experimental evidence that packet network traffic shows self-similarity

was first given in [99], where a thorough statistical study of large Ethernet

traffic traces was carried out. This paper stimulated the research commu-

nity to explore the various taste of self-similarity. This phenomenon has been

also observed in wide area Internet traffic [159, 46], and many of the causes

that contribute to self-similarity for both TCP [139, 55] and UDP [22] traffic

aggregates have been now more fully understood. As regards practical conse-

quences, many works [138, 117, 74, 166] show that self-similarity has a severe

detrimental impact on network performance.

From an analytical point of view it is known that LRD asymptotically arises

when many random variables, exhibiting heavy-tailedness are superposed (see

Sec. A.5). At the same time there is widespread evidence [46, 162] that human

as well as computer sources behave as heavy-tailed ON/OFF sources, so this

result should be considered a physical explanation of the traffic self-similarity

- independent of network or protocol characteristics [46] - rather than a mere

way to generate self-similar traces.

An extensive bibliographical guide to self-similar traffic in data networks

can be found in [161]. A more recent one is in [140].

2.3 Intuition

As we said in Sec. 2.1, it is frequently considered “obvious” that the ultimate

goal of any MBAC scheme is to reach the “ideal” performance of a parameter-

based CAC scheme. In fact, MBAC schemes are traditionally meant to ap-

proximate the operation of a parameter-based CAC (i.e. by estimating the
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status of the system). They cannot rely on the detailed a priori knowledge of

the statistical traffic characteristics, as this information is not easy supplied by

the network customer. Therefore, their admission control (AC) decisions are

based on an estimate of the network load obtained via a measurement process

that runs on the accepted traffic aggregate1.

However, a closer look at the basic principles underlying MBAC suggests

that, in particular traffic conditions, these schemes might outperform tradi-

tional parameter-based CAC approaches. An initial insight into the perfor-

mance benefits of MBAC versus parameter-based algorithms in an LRD traffic

scenario is given in [33]. In this paper, we present additional results that con-

firm the superiority of MBAC and, in addition, we justify them showing that

MBAC algorithms are able to reduce the self-similarity of the traffic aggre-

gate generated by the admitted HT sources. In other words, we support the

thesis that MBAC schemes are not just “approximations” of parameter-based

CAC, but they are in principle superior to traditional CAC schemes when

self-similarity comes into play.

An intuitive justification can be drawn by looking at the simulations pre-

sented in figures 2.1 and 2.2. Each figure shows two selected 200 s simulation

samples, which for convenience have been placed adjacently. The y-axis rep-

resents the normalized link utilization. The figures report: i) the normalized

number of accommodated calls2; ii) the link load, for graphical convenience

averaged over a 1 s time window, and iii) the smoothed link load, as measured

by the autoregressive filter adopted in the MBAC, whose time constant is of

the order of 10 seconds.

Figure 2.1 plots results for the PBAC scheme. According to this scheme, a

new flow is accepted only if the number of already admitted flows is lower than

a maximum threshold Nt. In the simulation run Nt has been set to 129, which

corresponds to a target link-utilization of about 88%, and a very high offered

load (650%) was adopted. As a consequence, the number of flows admitted to

the link sticks, in practice, to the upper limit.

The leftmost 200 simulation seconds, represented in figure 2.1, show that,

1The reader can recognize the underlying certainty equivalence assumption, described in
Sec. 2.1.

2The simulation details are described in section 2.4. For what concerns the considered
plots, a 100% link utilization in terms of calls, i.e. nominal average offered load equal to
the link capacity, corresponds to 146.8 accommodated flows
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owing to LRD of the accepted traffic, the load offered by the admitted sources

is well above the nominal average load. Traffic bursts even greater than the

link capacity are very frequent. On the other hand, as shown by the right-

most 200 seconds, there are long periods of time in which the system remains

under-utilized. This is the so-called Joseph effect [105]. The criticality of self-

similarity lies in the fact that the described situation occurs at time scales,

which dramatically affect the loss/delay performance.

MBAC schemes behave very differently, as reported in figure 2.2 for the sim-

ple scheme described in section 2.4.2. In this case, new calls are blocked when

the offered-load measurement is higher that 89%3. We see that the offered-load

fluctuates slightly around the threshold. However, long term traffic bursts are

dynamically compensated by a significant decrease in the number of admit-

ted calls (leftmost plot). The opposite situation occurs when the admitted

calls continually emit below their nominal average rate (rightmost plot): in

these periods the number of admitted calls significantly increases. This “com-

pensation” capability of MBAC schemes leads us to conclude that MBAC is

very suited to operate in LRD traffic conditions, as quantitatively confirmed

in section 2.5.

3The values 129 in PBAC and 89% in MBAC were selected so that the resulting average
throughputs were the same.
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2.4 The Simulation Scenario

To obtain simulation results, we have developed a C++ event-driven simulator.

A batch simulation approach was adopted. The simulation time is divided into

101 intervals, each lasting 300 simulated minutes, and results collected in the

first “warm-up” time interval are discarded.

As in many other admission control works [75, 33], the network model

consists of a single bottleneck link. The reason is that the basic performance

aspects of MBAC are most easily revealed in this simple network configuration

rather than in a multi-link scenario. The link capacity was set equal to 2

Mbps and 5 Mbps. Most results are related to an infinite buffer size scenario.

Thus, QoS is characterized by the delay (average and 99th delay percentiles)

experienced by data packets rather than packet loss as in [33]. The rationale

for using delay instead of loss is threefold. Firstly, loss performance depends

on the buffer size adopted in the simulation runs, while delay performance does

not require a choice of buffer size (we have actually used infinite buffer size).

Secondly, the loss performance magnitude may be easily inferred, for a given

buffer size, from the analysis of the distribution of the delay, which can be well

summarized via selected delay percentiles. Thirdly, and most importantly, a

limited buffer size acts as a smoothing mechanism for traffic bursts. Large

packet losses, occurring during severe and persistent traffic bursts (as that

expected for self-similar traffic), have a beneficial congestion control effect

on the system performance. Conversely, in a very large buffer scenario, the

system is forced to keep memory of non-smoothed traffic bursts and therefore

performance is further degraded in the presence of high traffic variability4.

As our performance figures, we evaluated link utilization (throughput) and

delay distribution, summarized, for convenience of presentation, by the average

and 99th delay percentile. The 95% confidence intervals have been evaluated.

4 Specifically, this justifies the very different performance results we obtain in high uti-
lization conditions when compared with the loss-utilization performance frontier presented
in [33] for LRD sources. In that paper, unlike our results presented in figures 2.4, 2.5 and
2.6, it appears that performance of MBAC schemes tend to converge to the performance
of traditional CAC schemes - i.e. the PBAC algorithm - as the utilization increases. A
theoretical justification for this behavior can be found in [74], where the authors derive a
formula to estimate the “correlation horizon” (which results to scale in linear proportion
to the buffer size), beyond which the impact on loss performance of the correlation in the
arrival process becomes nil.
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In all cases, throughput results show a confidence interval always lower than

0.3%. Instead, despite the very long simulation time, higher confidence inter-

vals occur for 99th delay percentile results: less than 5% for MBAC results,

and as much as 25% for PBAC results (this is an obvious consequence of the

self-similarity of the PBAC traffic aggregate). Nevertheless, even accounting

for such an uncertainty on the results, the PBAC and MBAC delay perfor-

mance are very different (Sec. 2.5).

2.4.1 Traffic Sources

For simplicity, we have considered a scenario composed of homogeneous flows.

Each traffic source is modelled as an ON/OFF source. While in the ON

state, a source transmits 1000 bit fixed size packets at a Peak Constant Rate

(PCR) randomly generated in the small interval 31 to 33 Kbps (to avoid source

synchronization effects at the packet level). Conversely, while in the OFF

state, it remains idle. The mean value of the ON and OFF periods were set,

respectively, equal to 1 s and 1.35 s (Brady model for voice traffic). This

results in an average source rate r = 0.4255 · E[PCR] ≈ 13.6 Kbps. ON and

OFF periods were drawn from two Pareto distributions with the same shaping

parameter c = 1.5 (so they exhibit heavy-tails, in particular the variance is

infinite), hence the aggregated traffic is self-similar [162].

Simulation experiments were obtained in a dynamic scenario consisting of

randomly arriving flows. Each flow requests service from the network, and

the decision whether to admit or reject the flow is taken by the specific simu-

lated admission control algorithm. A rejected flow departs from the network

without sending any data, and does not retry its service request again. The

duration of an accepted flow is taken from a lognormal distribution [28] with

mean 300 s and standard deviation 676 s (we adopted unitary variance for

the corresponding normal distribution as reported in [28]), but call duration

is extended to the end of the last ON or OFF period. Because of this, the

real call-lifetime exhibits longer mean (320 s) and infinite variance. If the last

burst were cut off, the process variance would become finite.

The flow arrival process is Poisson with arrival rate λ calls per second. For

convenience, we refer to the normalized offered load ρ = λ · r · Thold/Clink,

being r the mean source rate, Thold the average call duration and Clink the link
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capacity. Depending on the simulation experiment, the arrival rate ranges from

underload conditions (less than 50% of the link capacity) to severe overload

conditions (up to 650%).

2.4.2 The MBAC Algorithm

Rather than using complex MBAC proposals, we have implemented a very

basic MBAC approach. The rationale for the choice of a very simple MBAC

scheme is twofold. Firstly, it has been shown [33] that different MBAC schemes

behave very similarly in terms of throughput/loss performance. It appears that

the length of the averaging periods and the way in which new flows are taken

into account, are much more important than the specific admission criteria.

Secondly, and more importantly, our goal is to show that the introduction of

measurement in the admission control decision is the key to obtain performance

advantages versus the PBAC approach, rather than the careful design of the

MBAC algorithm. In this perspective the simpler the MBAC scheme is, the

more general the conclusions are.

The specific MBAC implementation is described as follows. A discrete

time scale is adopted, with sample time T = 100 ms. Let X(k) be the load,

in bits/sec, entering the link buffer during the time slot k, and let B(k) be a

running bandwidth estimate, smoothed by a simple first order autoregressive

filter

B(k) = αB(k − 1) + (1− α)X(k)

We chose α = 0.99, corresponding to about 10 s time constant in the filter

memory.

Consider now a call requesting admission during the slot k + 1. The call

is admitted if the estimated bandwidth B(k) is less than a predetermined

percentage of the link bandwidth. By tuning this percentage, performance

figures can be obtained for various accepted load conditions.

An additional well-known issue in MBAC algorithm design [62, 92] is that,

when a new flow is admitted, the slow responsiveness of the load estimate will

not immediately reflect the presence of the new flow. A solution to prevent

this performance-impairing situation is to artificially increase the load estimate

to account for the new flow. In our implementation, the actual bandwidth
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estimate B(k) is updated by adding the average rate of the flow (i.e. B(k) :=

B(k) + r).

2.4.3 Statistical Analysis of Self-Similarity

The Hurst parameter H is able to quantify the self-similarity of the accepted

traffic aggregate (Appendix A). For a wide range of stochastic processes H =

0.5 corresponds to uncorrelated observations, H > 0.5 to LRD processes and

H < 0.5 to SRD processes.

In order to evaluate H, we used three well known methods: the aggregate

variance, the rescaled adjusted range and the wavelet estimators. The methods

are described in Sec. A.6.

We implemented by ourselves the first two methods, for the third a MatLab

implementation is freely distributed [160]. All methods receive as input a

realization X(i) of the discrete-time stochastic process representing the load

offered, during a 100 ms time window, to the link buffer by the accepted traffic

aggregate. A common problem is to determine over which scales LRD property

exists, or equivalently the alignment region in the logscale diagrams. Using

the fit test of the matlab tool [160] we determined for our traces the range

from 2000 s -11th octave- to 250000 s -18th octave- (the two last octaves were

discarded because there were too few values). All the three methods were

applied over this scale.

2.5 Performance results

The results shown in this section appeared in [122, 123, 124].

A problem arising in the comparison of different CAC schemes is the def-

inition of a throughput/performance operational trade-off. In general, CAC

schemes have some tunable parameters that allow the network operator to set

a suitable utilization target and a consequent QoS provisioning. For example,

in the case of the ideal PBAC algorithm, a higher setting of the threshold

value results in an increased system throughput, at the expense of delay per-

formance. By adjusting these parameters, CAC rules can be designed to be

more aggressive or conservative with regard to the number of flows admitted.
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Figure 2.3: Link utilization vs offered load

Results presented in Fig. 2.3 were obtained by setting the PBAC and

MBAC tuning parameters so that a target 90% link-utilization performance

is achieved in overload conditions. The figure compares the throughput/delay

performance (99th delay percentiles, measured in ms, are reported) of MBAC

and PBAC, versus the normalized offered load. Minor differences can be noted

in the capability of the considered schemes to achieve the performance target

(as expected, PBAC converges faster than MBAC to the utilization target).

A much more interesting result is the significantly lower MBAC 99th delay

performance versus the PBAC one.

It is restrictive to limit the investigation to a single level of performance,

but it is preferable to compare different CAC schemes for a wide range of

link utilization targets (and, correspondingly, QoS performance), obtained by

varying the CAC threshold parameters. Unless otherwise specified, all results

presented in what follows are obtained in large overload conditions (650%

offered load).

Rather than varying the offered load, Fig. 2.4 compares MBAC and PBAC

by plotting their QoS performance versus the link utilization (following [33],

the QoS versus utilization curve is called Performance Frontier). The figure re-

ports the delay/utilization performance frontiers of PBAC and MBAC in terms

of 99th delay percentiles. The figure reports the results obtained for both LRD

and Markovian flows. It is shown that better performance are obtained using a
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Markovian traffic model, but it is also enlightened the remarkable performance

improvement provided by MBAC with respect to PBAC in LRD assumptions,

especially for large link utilization. Considering Markovian flows, PBAC acts

slightly better than MBAC, in fact no memory arises in offered traffic process,

thus the best bandwidth control simply consists in monitoring the number of

admitted connections. Instead, with LRD flows, MBAC performance fron-

tiers assume intermediate values, between PBAC-LRD and Markovian curves.

Thus, MBAC appears to be more robust than PBAC to the traffic statistical

properties. Average delays with LRD flows are shown in Fig. 2.6. Moreover,

in Fig. 2.5 the performance frontiers are plotted for a 5 Mbps link. Beside the

general performance improvement in comparison to the 2 Mbps link scenario

shown in Fig. 2.4, one can see that MBAC behavior, with Markovian traffic, is

closer to the PBAC behavior, since the traffic granularity is reduced and the

impact of a flow erroneously admitted is less significant.

We argue that the performance enhancement of MBAC over PBAC is due

to the beneficial effect of MBAC in reducing the self-similarity of the accepted

traffic aggregate. A visual comparison of the temporal behavior of MBAC and

PBAC is proposed in Fig. 2.7. For a time scale 10 times greater than that

used in figures 2.1 and 2.2, Fig. 2.7 reports, for both PBAC (left) and MBAC

(right) algorithms, i) the number of admitted calls, ii) the instantaneous offered

load (averaged over a 1 s period) and iii) the offered load measured by the
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autoregressive MBAC filter. For convenience of visualization, the three plots

have been separated on the y-axis scale. The different temporal behavior of

PBAC and MBAC is clearly visible.

To quantify the time behavior of the two PBAC and MBAC traffic ag-

gregate time series, Fig. 2.8 reports a log-log plot of the aggregate variance,

computed as described in Sec. 2.4.3. While the two curves exhibit similar be-

havior for small values of the aggregation scale, the asymptotic slope of the

PBAC plot is very different from the MBAC one, suggesting that the MBAC-

controlled traffic is not self-similar (H ∼ 0.5). We recall that the asymptotic

slope β is related to H by β = 2H − 2. The lines corresponding to H = 0.50,

H = 0.55, H = 0.75 and H = 0.80 are plotted in the figure as reference

comparison.

Similar considerations can be drawn by looking at Fig. 2.9, which plots the

estimated squared wavelet coefficients d2
x(j, l) versus the basis-function time

scale. 95% confidence intervals under gaussian assumption are depicted. For

reference purposes, the lines corresponding to H = 0.50, and H = 0.80 are

also plotted in the figure. An interesting consideration is that in both figures

the MBAC curve departs from the PBAC curve at a time scale of the order of

about 100 seconds. Although a thorough understanding of the emergence of

such a specific time scale is outside the scope of the present paper, we suggest

that it might have a close relationship with the concept of “critical time scale”
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outlined in [75].

The H estimates are reported in tables 2.1 and 2.2, with the correspond-

ing CAC settings (the maximum call number for PBAC and the maximum

link utilization for MBAC), and the achieved link utilization. For the wavelet

estimates 95% confidence interval are also indicated. The three methods de-

scribed in Sec. 2.4.3, provide congruent estimates. Results are impressive, and

show that H decreases from about 0.75, in the case of PBAC, to about 0.5 for

MBAC. It is interesting to note that 0.75 is the H value theoretically calculated

in [73], [162] and [100] under different assumptions (see also Theorem A.5.1

and Theorem A.5.2), when a flow has HT periods of activity/inactivity with

a shaping parameter c = 1.5 (the formula is H = (3 − c)/2). We note that,

as expected, H does not depend on the link utilization. In conclusion, ta-

ble 2.2 quantitatively supports our thesis that self-similarity is a marginal

phenomenon for MBAC controlled traffic (H close to 0.5).

Further results obtained by considering a finite buffer scenario are depicted

in Fig. 2.10 and 2.11, where buffers having respectively 100 and 2000 packets

length, are considered. Note that in the former case, in which a short buffer of

100 packets is considered, PBAC performance is comparable to the MBAC one

only in extreme underload condition or conversely in a harsh over-utilized sce-

nario. In the latter case, with a 2000 packets buffer, MBAC performance does
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not saturate at all, while in the PBAC scenario a greater buffer length should

be needed in order to avoid losses occurring when the buffer is entirely filled.

These figures show, in the same conditions as before, i.e. in very high offered

load conditions, that the performance gain resulting from MBAC scheme adop-

tion is not impaired by a finite buffer application. Moreover Fig. 2.12 shows

how MBAC approach allows a significantly improvement in packet loss ratio,

which is controlled well under 1% even in a high offered load and a high link

utilization scenario.

Table 2.3 reports the Hurst parameter estimate obtained via the Wavelet

method, when a finite and short buffer is employed (the link bandwidth is

2Mbps). Even if these results relate to a short buffer scenario (100 packets

instead of infinite), the values reported in table 2.3 for H are very similar to

those of tables 2.1 and 2.2, where an infinite buffer size was adopted.

The impact of the connection duration is drawn in Fig. 2.13. The ability

of reducing traffic LRD is more effective as the duration increases. In fact,

MBAC measurements are not able to efficiently track traffic variability when

the holding time is too short in comparison to the filter memory.

Most of the previous results were obtained under constant overload condi-

tions. The aim of the Fig. 2.14 is to show the behavior of the two CAC schemes

in a wide range of offered load conditions, with a fixed target link-utilization

(the thresholds chosen, 110 connection for PBAC and 77% for MBAC, give
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very similar throughput performance under the same offered load). The ver-

tical dashed line corresponds to this target. Hurst-parameter was estimated

by the wavelet estimator. When the offered load is below the target, the

Hurst-parameter estimates5 are quite similar because MBAC and PBAC do

not enforce any rejection. By the way, in this situation, no need of access

control arises and delay/loss performance copes with high QoS requirements.

Instead, the effect of CAC rules becomes evident when the offered load ex-

ceeds the target utilization: the PBAC curve approaches to H = 0.75, while

the MBAC one decays and approaches to non LRD values. Moreover, the

uncertainty of statistical results is shown by plotting several points for each

simulated scenario, obtained with different seeds for the random generator.

5In accordance with the fit test of the matlab tool [160] the LRD hypothesis on the range
from 2000 s to 250000 s (see section 2.4.3) should not be rejected.
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Thresh (calls) Thrput% H-Variance H-R/S H-Wavelet
105 71.8 0.73 0.79 0.78 [0.74,0.82]

M 115 78.3 0.74 0.78 0.80 [0.76,0.84]

A 125 84.5 0.71 0.79 0.75 [0.71,0.79]

X 130 88.7 0.78 0.76 0.75 [0.71,0.79]

C 135 91.7 0.72 0.72 0.77 [0.74,0.81]

140 94.7 0.78 0.80 0.74 [0.70,0.78]

Table 2.1: Hurst-parameter estimate for PBAC controlled traffic

Thresh (util%) Thrput% H-Variance H-R/S H-Wavelet
70 69.1 0.55 0.48 0.55 [0.51,0.58]

M 78 76.9 0.58 0.54 0.58 [0.54,0.62]

B 86 84.6 0.55 0.51 0.60 [0.56,0.64]

A 90 88.5 0.60 0.52 0.57 [0.53,0.60]

C 94 92.4 0.51 0.46 0.56 [0.52,0.60]

96 94.3 0.58 0.52 0.58 [0.54,0.62]

Table 2.2: Hurst-parameter estimate for MBAC controlled traffic
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Thresh Hurst Hurst
(util%) PBAC MBAC

70 0.75 [0.72,0.80] 0.51 [0.47,0.55]

80 0.74 [0.70,0.78] 0.60 [0.56,0.63]

85 0.75 [0.71,0.79] 0.51 [0.48,0.55]

90 0.75 [0.71,0.79] 0.51 [0.48,0.55]

94 0.79 [0.75,0.82] 0.51 [0.48,0.55]

Table 2.3: Hurst-parameter Wavelet estimate for PBAC and MBAC, using a
100 packets buffer
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Chapter 3

Active Queue Management
Stability in Multiple Bottleneck
Networks

In this chapter we stress the spatially distributed feature of Active Queue Man-

agement (AQM) control on TCP flows. In particular we discuss the influence

of multiple bottlenecks on the stability of AQM controllers, usually configured

on a single bottleneck basis. To see this, we consider a network scenario where

Random Early Detection (RED) -a well known AQM scheme- is configured

at each router according to previously developed control theoretic techniques.

These configuration rules assure stability in a single bottleneck scenario. Yet,

we show that instability may arise when two links become congested. We

justify this result through a multiple bottleneck model using the Generalized

Nyquist stability criterion.

The chapter is organized as follows. After an overview of AQM in Sec. 3.1,

the motivation of our research is presented in Sec. 3.2. Then Sec. 3.3 recol-

lects some results about RED stability and configuration criteria from [83]. In

Sec. 3.4 we present our multiple bottleneck counterexample, and prove ana-

lytically that instability can arise. In Sec. 3.5 we show, by simulation, results

what instability implies as regards network performance. Finally, conclusive

remarks are given in Section 3.6.

39
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3.1 AQM Overview

In this section we firstly present the AQM rationale (following [30]), then we

describe the two AQM schemes considered in this thesis (RED and RIO) and

other AQM proposals. Usually AQM schemes are intended to drop packets in

order to implicitly signal congestion, but an apposite form of Explicit Conges-

tion Notification (ECN) is also contemplated (Sec. 3.1.5).

3.1.1 Need for AQM

The common method for managing router queue lengths is known as Tail

Drop: a maximum length for each queue is fixed, all the incoming packets

are accepted until this limit is reached, then subsequent incoming packets are

refused until the queue decreases because a packet from the queue has been

transmitted. This is the traditional mechanism that has been used in the

Internet for years, but it has two important disadvantages, as stated in [30].

Lock-Out. The tail drop mechanism may allow a monopolization of queue re-

sources by a single or few flows, denying other connections the possibility

to find place in the router buffer.

Full Queues. Buffering in the network is needed in order to absorb data

bursts and to transmit them during the ensuing bursts of silence. At

the same time we would like to have normally-small queues in routers in

order to keep low end-to-end delay. The tail drop discipline allows queues

to maintain a full (or almost full) status for long periods of time, since

tail drop signals congestion (via a packet drop) only when the queue

has become full. As a consequence end-to-end delay is high. Besides

if the queue is full or almost full, an arriving burst will cause multiple

packets to be dropped. This can result in a global synchronization of

flows throttling back, followed by a sustained period of lowered link

utilization, reducing overall throughput. It is important to decouple the

steady-state queue size, and the ability to absorb traffic bursts.

Approaches like “random drop on full” or “drop front on full” are similar

to Tail Drop. When the queue is full these disciplines respectively discard a
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random selected packet and the packet at the front of the queue. They usually

solve the lock-out problem, but the full queues problem holds.

In the Internet many flows are responsive, i.e. they throttle back in re-

sponse to congestion notification. In particular most of the traffic in the cur-

rent Internet employs the Transmission Control Protocol (TCP) as transport

protocol. TCP is a connection-oriented, end-to-end, reliable protocol and re-

acts to congestion by reducing its transmission rate (specifically the sender

sliding window size). One TCP assumption is that packet loss is not due to

damage but to congestion in the network1. TCP detects packet losses by the

retransmit timer timeout or by the reception of a triple-duplicate ack (when

fast recovery is implemented). Other protocols employ adaptation rules simi-

lar to TCP in order to achieve fair resource employment. For this reason they

are said to be TCP-friendly.

TCP responsiveness is the basis of active queue management. The idea is

to employ packets dropping as a congestion notification to end nodes: in par-

ticular packets can be dropped before a queue becomes full in order to prevent

an incipient congestion. Such proactive approach has three main advantages.

1. AQM solves the full queues problem. In fact it is able to keep the average

queue size (hence the average queueing delay) small. At the same time

packet bursts can be absorbed reducing the number of packet dropped.

2. AQM can prevent lock-out behavior by ensuring that there will almost

always be space in the buffer for an incoming packet. This effect increases

fairness, even if general fairness among flows requires per-flow state,

which is not provided by queue management. Per-flow scheduling can

be useful employed with AQM in order to achieve fairness.

3. AQM allows routers to control when and how many packets to drop.

Hence the router can avoid multiple subsequent packets to be dropped,

which can cause global synchronization or some flows starvation. In fact

TCP recovers with more difficulty from a burst of packet drops than

from a single packet drop.

1This assumption is realistic in wired network. On the contrary TCP performance are
poor in wireless networks, which are characterized by losses due to transmission errors and
handoffs.
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Figure 3.1: RED dropping function

3.1.2 Random Early Detection (RED)

RED has been proposed in [65] and is the most popular AQM mechanism.

The RED algorithm drops arriving packets probabilistically. The probability

depends on the estimated average queue size.

RED gateway calculates the average queue size (avg), using a low-pass

filter with an exponential weighted moving average (avg) of the instantaneous

queue (q): avg = wq ∗ q + (1−wq) ∗ avg. The average queue size is compared

to two thresholds, a minimum threshold and a maximum threshold.

When the average queue size is less than the minimum threshold, no packets

are dropped. When it is greater than the maximum threshold, every arriving

packet is dropped. When the average queue size is between the minimum

and the maximum threshold, each arriving packet is dropped with probability

p, where p is a linearly increasing function of the average queue size as it

is shown in Fig. 3.1. Hence RED configuration is specified through three

parameters: the minimum and the maximum threshold and the maximum

dropping probability in the region of random discard Pmax.

Given a steady average queue avg, the number of packets that arrive, after

a dropped packet, until the next packet is dropped -say X- is a geometric

random variable with mean value 1/p. It is undesirable to have too many

marked packets close together, and it is also undesirable to have too long

an interval between marked packets. For this reason another version of the
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algorithm has been proposed. It produces a uniform distribution for X. The

variable p is evaluated according to the previous description, but the final

dropping probability pb is different and it is evaluated as pb = p/(1−count∗p),

where count is the number of undropped packets that have arrived since the

last dropped packet.

3.1.3 RED with In/Out bit (RIO)

RIO has been proposed in [42]. It uses two twin RED algorithms for drop-

ping packets, one for IN packets and one for OUT packets which share the

same physical queue. So RIO is configured with two sets of RED parame-

ters: (minin,maxin,Pmaxin
) and (minout,maxout,Pmaxout). RIO discriminates

against OUT packets in times of congestion essentially in two way: firstly IN

dropping probability depends on the average queue for the IN packets, while

OUT dropping probability on the average total queue; secondly parameter are

opportunely chosen for the two kinds of traffic. In [42] the authors suggest the

following rules:

minout < minin, maxout << maxin, Pmaxout > Pmaxin
,

and in the paper they choose maxout < minin.

3.1.4 Other Mechanisms

Many other mechanisms have been proposed. Sometimes they are variants

of the original RED aiming to improve some aspect. Here we briefly present

some of them.

Adaptive RED (ARED) [58, 64]. It focuses on the problem of parame-

terizing the RED algorithm in order to reach good performance in each possi-

ble scenario. RED performance, as regards both average queueing delay and

throughput have shown to be dependent on the traffic load. In particular a

more aggressive RED is required when the number of TCP flows is higher and

vice versa. Adaptive RED provide an adaptive variation of RED parameters

based on the average queue. The key idea is to adapt Pmax in order to keep

the average queue size between the two thresholds.
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RED with Penalty Box [143]. It is intended to distinguish responsive

users from unresponsive users. It is based on the observation that high band-

width flows see proportionally larger amounts of packet loss. It maintains

a list of the recent packet loss events in order to identify such unresponsive

flows. The rate of these flows is limited using mechanisms like as class-based

queueing.

Flow RED (FRED) [101]. It tries to solve some particular cases of unfair-

ness allowed in RED. In fact RED does not guarantee to give each connection

the same fraction of the total resources and ignore the control on misbehaving

flows. FRED is an improvement of RED able to provide major protection for

bursty and low-speed flows by keeping an information state for those flows

that have packets buffered in the router. It introduces new parameters that

allow a more accurate estimation of discarding probability. FRED allows each

connection to buffer minq packets and apply discard probability to the sub-

sequent packets. It never permits a flow to buffer more than maxq packets

and it counts how many times a flow tries to exceed maxq. Flows with high

strike values experiment higher dropping probability and they cannot buffer

more than avgcq packets.

Stabilized RED (SRED) [134]. It is a RED-derived mechanism that at-

tempts to improve RED performance by estimating the number of flows going

through the router. The basic idea is to compare every new incoming packet

to one entry randomly taken from the so-called Zombie list. The discard prob-

ability is entirely based on the instantaneous queue length and also on the

estimated number of active flows. This improvement has the advantage to

stabilize the buffer occupancy, independently of the number of active connec-

tions and to provide a way to detect misbehaving flows.

CHOose and Keep for responsive flows, CHOose and Kill for un-

responsive flows (CHOKe) [137]. It is another proposal, based on the

RED algorithm, whose goal is to approximate fair queueing and be, at the

same time, simple to implement. It is based on the assumption that the occu-

pancy of a FIFO buffer is a reliable indication of which flows are consuming a

great amount of resources. If a packet arrives and avg > max, the packet is
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discarded, like in normal RED, if avg > min the new packet is compared to

a randomly chosen packet from the FIFO buffer. If they belong to the same

flow they are both discarded, otherwise the randomly drawn packet is left in

the queue and the new one is admitted with a probability calculated according

to RED operation.

Random Exponential Marking (REM) [9]. It decouples congestion mea-

sure from performance measure such as loss, queue length or delay. While

congestion measure indicates excess demand for bandwidth and must track

the number of users, performance measure should be stabilized around their

targets independently of the number of users. This approach is different from

RED, where the queue occupancy is both a congestion measure and a perfor-

mance index.

BLUE [57]. It uses a constant dropping probability p. If the router buffer

often saturates p is incremented. On the other hand, if the queue is almost

empty and the link is idle the p is reduced. In order to avoid instability a

freeze time is chosen as the minimum time interval between two successive

updates of p. Stochastic Fair BLUE [59] is an extension of BLUE developed

to solve the problem of non-responsive flows.

3.1.5 Explicit Congestion Notification

In an effort to reduce losses in TCP/IP networks, Explicit Congestion Notifi-

cation (ECN) has been proposed as an additional congestion signal for TCP

flows [143]. ECN allows to mark packets with a Congestion Experienced (CE)

codepoint. When a packet marked with the CE codepoint is received by its

destination, the data is acknowledged with a packet containing the CE-ECHO

codepoint. When the CE-ECHO marked acknowledgment reaches the sender,

the sender reduces its throughput, as if a loss had happened in the network.
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3.2 Motivation

AQM algorithms usually rely on some heuristics and their performances appear

to be highly dependent on the considered network scenario (see, e.g., [41, 108,

60], as regards the RED algorithm).

Our research has been motivated by the consideration that the distributed

fashion of TCP flows control across the network has not been explicitly con-

sidered up to now. As a matter of fact TCP flows may turn to be controlled

at the same time by two or more nodes acting independently according to

their AQM settings. According to our opinion, this can hardly affect AQM

algorithms performance. In particular, we propose a counterexample to show

that RED controllers, configured according to [83], do not prevent from insta-

bility if two or more nodes face congestion at the same time (this is referred

to as multiple bottleneck scenario). In our papers [118, 120, 119] instability in

multiple bottleneck has been tackled by considering a distributed Multi-Input

Multi-Output model, whose stability has been studied considering the poles

of the rational Linear Time Invariant model obtained through linearization

and Padé approximation for time delays. Here the MIMO linearized model is

analyzed via the Generalized Nyquist stability criterion.

3.3 Single bottleneck model

The starting point in [83] is the model described by the following coupled,

nonlinear differential equations:

Ẇ (t) =
1

R(t)
− W (t)W (t−R(t))

2R(t−R(t))
p(t−R(t)) (3.3.1)

q̇(t) =
W (t)

R(t)
N(t)− 1q(t)C

where 1q = 1 if q > 0, 1q = 0 otherwise. Symbols used in the model above are

summarized in the following table.
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W expected TCP window size (packets);

q expected queue length (packets);

R round-trip time;

C link capacity (packets/sec);

R0 propagation delay (secs);

N load factor (number of TCP sessions);

p probability of packet drop;

The first equation represents the TCP window, that increases by one every

round trip time, and halves when a packet loss occurs. Packet loss rate is

computed as the dropping probability times the number of packets sent per

time unit. The round trip time is related to the propagation delay and the

queue occupancy by the following relation: R = R0 + q
C
. The second equation

represents the variation of queue occupancy as the difference between the input

traffic and the link capacity.

AQM schemes determine the relation between the dropping probability and

the nodes congestion status.

Here we considered RED as AQM scheme. RED configuration is specified

through four parameters: the minimum and the maximum threshold (THRmin,

THRmax), the maximum dropping probability in the region of random discard

Pmax, and the memory coefficient wq. RED can be modelled by the following

equations (refer to Sec. 3.1.2 for RED operation):

ẋ(t) = −kx(t) + kq(t) (3.3.2)

p(x) =





0, 0 ≤ x < THRmin

(x−THRmin)Pmax

THRmax−THRmin
, THRmin ≤ x < THRmax

1, THRmax ≤ x,

where k = − ln(1 − α)/δ and δ is the time between two queue samples. The

time interval δ can be assumed to be equal to 1/C for a congested node.

The linearized system (TCP sources, congested node queue and AQM con-

troller) can be represented by the block diagram of Fig. 3.2. In the block

diagram LRED = Pmax/(THRmax − THRmin).
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Figure 3.2: Linearized control system for a single bottleneck scenario

The open-loop transfer function of the system in Fig. 3.2 is:

H(s) =
LRED

(RC)3

(2N)2
e−sR

(
1 + s

k

) (
1 + s

2N
R2C

) (
1 + s

1
R

) (3.3.3)

In [83] the authors present RED configuration rules, that guarantee the

stability of the linear feedback control system in Fig. 3.2 for N ≥ N− and

R0 ≤ R+.

1 2 3 

8 

6 

4 7 

5 

Figure 3.3: Network topology

3.4 An Instability Example

In this section we show the example of a network where each router has been

configured so that stability is guaranteed when congestion occurs at a single

link, but instability arises when there are two bottlenecks at the same time.

We consider a parking lot network whose topology is depicted in Fig. 3.3.

The capacity and the propagation delay of each link are reported in Table 3.1.
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Table 3.1: Network Parameters

Link Capacity (Mbps) Propagation Delay (ms)
5-1 20 2.1
1-2 10 10
2-3 20 2.1
4-3 20 19.1
3-6 10 10
7-1 20 9.4
2-8 20 9.4

Packet size is 1500 bytes. Links between nodes 3 and 6 and between nodes 1

and 2 will play the role of bottlenecks.

The RED algorithm is deployed at nodes 3 and 1, respectively to manage

the output queues for the link 3 − 6 and 1 − 2. In what follows we refer to

these buffers simply as node 3 buffer and node 1 buffer, without specifying the

link.

We consider TCP flows aggregates from node 5 to node 6, from node 4 to

node 6 and from node 7 to node 8. We indicate the number of flows of these

aggregates respectively N5, N4 and N7.

Our RED configuration relies on the control theoretic analysis of RED

presented in [83]. Nevertheless, we do not adopt exactly the configuration rules

proposed there, since their high stability margins do not allow simple counter-

example. Then, we verify RED-configuration stability directly through the

Nyquist plot of the open loop transfer function.

We recall that the Nyquist criterion allows one to study the stability of the

closed loop system through the polar plot of the open loop transfer function

H(jω). For the functions we are interested in, the closed loop system is stable

if and only if the plot does not encircle the point (−1, 0).

We choose THRmin = 2, THRmax = 20, Pmax = 9%, and wq = 0.0017.

The analysis in [83] shows that stability increases as the number of flows

increases and the RTT decreases. Given a network scenario these quantities

are not independent because the queueing delay, and hence the RTT, depends

on the number of flows. In particular the higher the number of flows the bigger

the queue. In fact in order to evaluate the equilibrium point, we can impose
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the derivatives in equation system (3.3.1) equal to zero, obtaining

pW 2 = 2,
W

R
N = C, R = R0 +

q

C
,

and from equation system (3.3.2) considering that q > THRmin:

p = LRED(q − THRmin).

It follows that the equilibrium queue value has to satisfy the following

equation

(q − THRmin)2(q + CR0)
2 = 2

N2

L2
RED

. (3.4.1)

It is easy to see that as N increases, q increases.

The previous equation shows also that the most critical condition is the

lowest number of flows. Indeed q is approximatively proportional to
√

N ,

hence the gain of H(s) is proportional to 1/
√

N . In conclusion we expect that

if stability is guaranteed for a value N− with a certain gain margin, then the

gain margin is greater for N > N−.

Given the RED configuration, if there are N−
5 = N−

4 = 3 flows (and N−
7 =

0) link 3− 6 is congested, the average queue is q = 7 packets. The maximum

RTT is equal to 69 ms and the open loop transfer function H(jω) does not

encircle the point (−1, 0). Hence the system is stable, in particular the gain

margin is equal to 1.35. This gain margin assures stability even if flows number

reduces to 5 and if the average queue length increases to 12 packets.

As it is expected, if N5 > N−
5 and N6 > N−

6 the gain margin increases. For

example it is equal to 2.5 when N5 = N4 = 5.

Link bandwidths and propagation delays are such that the path from 4 to 6

and that from 7 to 8 have the same characteristics. Hence the same numerical

results hold if only the link 1−2 is congested due to aggregate 5 and aggregate

7, while N4 = 0.

Let us assume that both links are congested and N5 = N−
5 , N4 = N−

4 and

N7 = N−
7 . If we evaluate the new equilibrium point according to following

equations, it holds q4 = q2 ≈ 5.48. In comparison to the above situation,

the RTT of aggregate 5 increases due to queueing delays at both node 3 and

node 1 buffers, but the maximum RTT is always lower than 69 ms. Hence

the local stability conditions are satisfied and we would expect the network to

be stable and the gain margin should be even greater if N5 ≥ N−
5 , N4 ≥ N−

4
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and N7 ≥ N−
7 . Conversely we are going to show that a refined two-bottleneck

model predicts instability.

3.4.1 Two Bottleneck Model

We extend the single bottleneck congestion model described in Section 3.3

to the case of two congested nodes. With reference to the network topology

depicted in Fig. 3.3, according to notations introduced in [77] we obtain:





Ẇ4 = 1
R4
− W 2

4

2R4
p3(t−←−R 34)

Ẇ5 = 1
R5
− W 2

5

2R5
(p3(t−←−R 35) + p1(t−←−R 15))

Ẇ7 = 1
R7
− W 2

7

2R7
p1(t−←−R 17)

q̇3 = −C3Iq>0 + N4

R4
W4(t−−→R 34) + N5

R5
W5(t−−→R 35)

q̇1 = −C1Iq>0 + N5

R5
W5(t−−→R 15) + N7

R7
W7(t−−→R 17)

(3.4.2)

where Wj is the average window of the flows originating at node j, pi is the

dropping probability at node i buffer,
←−
R ij represents the backward delay from

node i buffer to source j (including queuing delay) and
−→
R ij the forward delay

from source j to node i buffer and Iq>0 represents a logical function that is

equal to 1 if the queue q > 0 and zero otherwise. For sake of simplicity in

equation system (3.4.2), the time dependence is indicated only for delayed

function values.

Now, we linearize the Model 3.4.2 around the equilibrium point

(Ŵ4, Ŵ7, Ŵ5, p̂3, p̂1) that is the solution of the following system:





W 2
4 p3 = 2

W 2
5 (p1 + p3) = 2

W 2
7 p1 = 2

W4

R4
N4 + W5

R5
N5 = C3

W5

R5
N5 + W7

R7
N7 = C1

p3 = LRED3(q3 − THRmin)

p1 = LRED1(q1 − THRmin)

R4 = R40 + q3

C3

R7 = R70 + q1

C1

R5 = R50 + q1

C1
+ q3

C3

(3.4.3)
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where Rk0 is the round trip time experienced from source k when no congestion

is present, and we omitted chapeau to simplify notation. In the Laplace domain

we obtain the following relations:

w(s) = −F (s)
←−
R (s)T p(s) (3.4.4)

q(s) = (sI + Ω)−1−→R (s)NT−1w(s) = G(s)w(s) (3.4.5)

where N = diag{Nj} and T = diag{Rj} for j = 4, 7, 5 and

F (s) =




W 2
4

s+ 2
W4R4

0 0

0
W 2

7

s+ 2
W7R7

0

0 0
W 2

5

s+ 2
W5R5




(3.4.6)

Ω =




N5W5

R2
5C3

+ N4W4

R2
4C3

N5W5

R2
5C1

N5W5

R2
5C3

N5W5

R2
5C1

+ N7W7

R2
7C1




In the delay matrixes
←−
R (s) and

−→
R (s) the columns correspond to sources

4, 7 and 5, and the rows to buffer 3 and 1. In particular

←−
R (s) =

[
e−s

←−
R34 0 e−s

←−
R35

0 e−s
←−
R17 e−s

←−
R15

]

−→
R (s) =

[
e−s

−→
R34 0 e−s

−→
R35

0 e−s
−→
R17 e−s

−→
R15

]

Note that
−→
R (s = 0) =

←−
R (s = 0) is the so called routing matrix of our

scenario.

R(0) =

[
1 0 1

0 1 1

]
(3.4.7)

The RED AQM control law that computes the packet marking probability

p as a function of measured queue length q is p(s) = K(s)q(s), where

K(s) =

[
k3LRED3

s+k3
0

0 k1LRED1

s+k1

]
(3.4.8)

The overall feedback loop is depicted in Fig. 3.4.
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Figure 3.4: Linearized control system for the multiple bottleneck scenario

3.4.2 Stability Analysis

Many methods have been developed in the past fifty years to analyze the

stability of time-delay system, (i.e. see [76] for a detailed survey), but for our

purpose, the classical result of the Generalized Nyquist stability criterion [50]

is sufficient and gives us an analytical tool that is easy to be verified. We recall

it hereafter:

Theorem 3.4.1. (Generalized Nyquist Criterion) If the open loop ma-

trix L(s) has P0 unstable poles, then the closed-loop system with return ratio

−kL(s) is stable if and only if the characteristic loci of kL(s), taken together,

encircle the point (−1, 0), P0 times anticlockwise.

As proved in [50], the above theorem is valid not only for the lumped case

when L(s) is a square rational transfer matrix L(s), but it has been extended

also to the distributed case. In the lumped case, L(s) is factorized in two part,

and P0 are the poles the rational part. In our case of interest, the open loop

matrix is given by

L(s) = K(s)(sI + Ω)−1−→R (s)NT−1F (s)
←−
R (s)T

Applying the Generalized Nyquist criterion, we analyze the characteristic

loci of L(s) in the case of N4 = N5 = N7 = 3, reported in Fig. 3.5.

Since the open loop is stable, and the characteristic loci of L(jω) encircle

the point (−1, 0), two times anticlockwise, as shown in Fig. 3.6, the closed

loop system is unstable.

This example shows the limits of local AQM configuration ignoring the

distributed nature of TCP flows control in a multiple bottleneck scenario. If
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Figure 3.5: L(s) characteristic loci in the case of N4 = N5 = N7 = 3

we consider the configuration rules given in [83], instability probably does not

arise in such a simple example, but there is a reduction of stability margins.

This modifies the system dynamic response and reduces the system robustness

to the flows number and the round trip time variation.

3.5 Simulation Results

In this section we investigate through simulations the previous analytical re-

sult. Firstly we are going to discuss what instability implies as regards network

performance in the single bottleneck scenario. Secondly we show that the two

bottleneck scenario with N5 = N4 = N7 = 3 (unstable according to the analy-

sis in Sec. 3.4.2) exhibits performance similar to those identified as instable in

the single bottleneck scenario. Finally we observe similar results even in other

scenarios, which are stable according to the two-bottleneck model.

Simulations were conducted through ns v2.1b9a [130]. We used TCP Reno

implementation.
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Figure 3.6: Particular of the L(s) characteristic loci in the case of N4 = N5 =
N7 = 3

3.5.1 Single Bottleneck

Now, in order to analytically show how instability of the linear model con-

cretely affects the network performance, we first present some results regarding

the single bottleneck scenario.

When dealing with simulation tests a first issue regards the choice of a

metric able to catch potential instability phenomena. For example [103] shows

the oscillations of the TCP window and a deterministic limit cycles in the

average window, averaged over all the flows of the same aggregate, and [135]

shows nonlinear phenomena, such as bifurcations, using Liapunov exponents

as a measure. Following the same line as in [83] we will look at the oscillating

nature of the queue length to distinguish between stable or unstable behaviors.

Differently from those papers, our results suggest that the amplitude of queue

oscillations is not significant by itself when RED is considered. As we are

going to show it can be more appropriate to consider the amplitude of queue

oscillations in relation to the average queue value.

Let us consider two aggregates, each one of five TCP flows (N = 10),

entering the network through node 4 and node 5 with destination node 6

(solid lines in Fig. 3.3). The link between nodes 3 and 6 is congested. Fig. 3.7

shows the instantaneous queue occupancy time-plot for the buffer at node 3.
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Figure 3.7: Instantaneous buffer occupancy with number of flows N = 10

RED should be able to keep the queue occupancy within the two thresholds

(dotted lines).

Numerical results for the throughput and the queue are shown in Table 3.2.

In particular the average queue size is in column “queue occupancy”, while

the standard deviation is in column “queue oscillation”. The value in paren-

theses is the normalized queue oscillation, i.e. the ratio between the standard

deviation and the average queue value.

Let us reduce the number of flows through the network and see if instability

occurs as claimed in [83]. In Fig. 3.8 the buffer occupancy is shown to revisit

with a higher frequency the regions associated to buffer underload (out of RED

thresholds). As the total flow number decreases from 10 to 6 we note that i)

the throughput over the link 3 − 6 (Thr5 + Thr4) reduces from 9.91 Mbps

to 9.74, ii) both the average queue occupancy and the oscillation amplitude

decrease, respectively from 9.06 to 6.71 and from 4.72 to 4.09, and iii) the

normalized standard deviation, i.e. the ratio between standard deviation and

mean, increases from 0.52 to 0.61.

If we reduce drastically the number of flows to 2, the above RED configu-

ration, turns to be too aggressive, which is evidenced by higher frequencies of

buffer occupancy oscillations and further reduction of the throughput. Even

longer periods, where buffer is underloaded results from Fig. 3.9.
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Figure 3.8: Instantaneous buffer occupancy with N = 6

In general, experimental results show that instability predicted by the

model in [83] leads to reduced link utilization and queue oscillation and higher

normalized oscillations (higher jitter in percentage).

Hence, while one could expect larger queue oscillations when the number

of flows decreases and the stability margins decrease, this intuition is not

confirmed by simulative results. The explanation is straightforward: RED

couples queue length and loss probability, in particular a lower number of flows

needs a lower global dropping probability, hence a lower average queue (from

a control theoretic point of view one says that the RED controller has steady

state regulation errors). As the average queue size decreases, the physical

constraint of positive queue values can determine smaller oscillations.

On the contrary the normalized standard deviation looks to reflect system

change from stability to instability. So in what follows we focus on it to analyze

instability phenomena.

3.5.2 Two Bottlenecks

Now we consider an additional aggregate entering the network from node 7,

with destination node 8 (dotted line in Fig. 3.3). In Fig. 3.10 node 3 buffer

appears to be empty more often than in Fig. 3.8.
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Figure 3.9: Instantaneous buffer occupancy with N = 2

Table 3.2: Numerical Results

N5 N5 N7 Thr5 Thr4 Thr7 queue3 queue3 queue1 queue1

occupancy oscillation occupancy oscillation
5 5 0 5.12 4.79 - 9.06 4.72 (0.52) 0.95 0.066 (0.27)
4 4 0 5.09 4.75 - 7.93 4.48 (0.56) 0.95 0.057 (0.25)
3 3 0 5.12 4.62 - 6.71 4.09 (0.61) 0.95 0.067 (0.27)
2 2 0 5.06 4.49 - 5.32 3.57 (0.67) 0.97 0.075 (0.28)
1 1 0 4.80 4.47 - 3.49 2.64 (0.76) 0.97 0.085 (0.30)
5 5 5 3.40 6.41 6.33 7.76 5.29 (0.68) 7.83 5.47 (0.70)
4 4 4 3.43 6.28 6.20 6.85 4.98 (0.73) 6.93 5.13 (0.74)
3 3 3 3.62 5.99 5.91 5.76 4.38 (0.76) 5.94 4.59 (0.77)
2 2 2 3.80 5.60 5.52 4.72 4.01 (0.85) 4.75 4.06 (0.85)

The numerical values stored in Table 3.2 support quantitatively our claims

rising from Fig. 3.10. In particular the normalized oscillation values of queue

3 is 0.76, equal to the value stored in the fifth row, corresponding to a single

bottleneck high instability scenario due to a low number of flows (N5+N4 = 2).

Note that, though the number of flows at each node and the flow round

trip time should assure stable operation, instability arises due to the traffic

aggregate from 5 to 6, which traverses both the congested links.

Moreover results in Table 3.2 indicate that even stable scenarios (according

to the two bottleneck model in Sec. 3.4) like that corresponding to N5 = N4 =

N7 = 5 cannot be easily distinguished by an instable scenario. This remark

suggests that the study through linear models could provide not signifivative
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Figure 3.10: Instantaneous node 4 buffer occupancy in a two bottleneck sce-
nario

insight on the stability of network with TCP traffic.

3.6 Conclusive Remarks

Our investigation showed that RED configuration based on a single-bottleneck

assumption may not prevent from traffic instability when congestion occurs,

at the same time, in two different locations of the network.

This suggests that the effect of multiple bottlenecks could be counteracted

by robust configuration of AQM controllers. In particular our results in [118]

suggest that the minimum number of flows N− should not take into account

flows being controlled by other nodes. Hence the network administrator should

evaluate not only the minimum number of flows at each node and their round

trip time, but he should also get more sophisticated information about traffic

matrix across the network and contemporaneously congested nodes.

In a similar way some robust design techniques for multiple bottleneck sce-

narios have been developed recently [77], but they appear to be very conserva-

tive, unless information about traffic matrix and congested nodes is available.

Another approach would be to implement new cooperative AQM con-

trollers, that base their control action on information about the congestion
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status of the other nodes. Simplicity is an obvious requirement, particularly

for signaling among nodes.

We think that ECN (Sec. 3.1.5) could be usefully employed for internodes

signaling. ECN has been proposed as a light in-band signaling form between

nodes and client, but it appears to be a simple way for nodes to transmit

downstream information about their congestion status. The advantages of

ECN employment are: no further network transmission resources are required,

information travels along the data path, and can be used by all the nodes

controlling the flow.

AQM controller should monitor the ingoing traffic, evaluate the share of

traffic controlled elsewhere, by the percentage of packets with the Congestion

Experienced codepoint set (CE packets) and set some tunable parameters ac-

cording to the controlled traffic share. For example a RED controller could

decrease the dropping curve slope LRED as the percentage of CE packets in-

creases in order to maintain a stable operation. Even if it is difficult to manage

such kind of aggregated information some improvements could be achieved in

comparison to a situation where each node is unaware of other nodes actions.



Chapter 4

A New Adaptive TCP Marker

In this chapter we propose a new marking algorithm. After an overview of

marking schemes in Sec. 4.1, the algorithm is described through Sec. 4.2 and 4.3.

Extensive performance evaluation is presented in Sec. 4.4. An analytical model

(with two variants) is proposed in Sec. 4.5 together with its simulative valida-

tion. Appendix B provides a survey of Differentiated Services architecture.

4.1 Need for Adaptivity in TCP Marking

Several packet marking algorithms have been proposed to provide service dif-

ferentiation among a set of TCP flows that share network resources. All packet

marking mechanisms have a common basic approach. Packets of each individ-

ual flow are marked based on a suitably chosen profile at an edge router.

Then, marked packets are aggregated in the network, and receive a different

treatment in the network core routers.

Generally, a two-level marking scheme is adopted, where packets labelled

as IN receive better treatment (lower dropping rate) than packets marked as

OUT. Within the network, dropping priority mechanisms are implemented in

active queue management schemes such as RIO - Random Early Discard with

IN/OUT packets (Sec. 3.1.3).

The basic idea of proposed algorithms is that a suitable marking profile (e.g.

a token bucket which marks IN/OUT profile packets) may provide some form

of protection in the case of congestion. The purpose is to give the customer

the assurance of a minimum throughput, even during periods of congestion,

while allowing him to consume more bandwidth when the network load is low.

61
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Thus a connection using the assured service should achieve a throughput equal

to the subscribed minimum rate, also called target rate, plus some share of

the remaining bandwidth gained by competing with all the active best-effort

connections.

A large number of papers [42, 88, 150, 166, 78, 147, 56, 40, 164, 68, 51, 98,

163] have thoroughly studied marking mechanisms for service differentiation,

and have evaluated how the service marking parameters influence the achieved

rate.

This approach was first introduced in [42], where the authors propose a

time-sliding window marker. In [88] token bucket appears to achieve better

performance in comparison to time-sliding window. According to the authors

a correctly configured token bucket will allow for the natural burstiness of

TCP by marking as IN all the packets within a burst, while with an average

rate estimator some packets will be marked OUT giving them drop preference.

At the same time the authors claim that marking cannot offer a quantifiable

service to TCP traffic due to the interaction of TCP dynamics with prior-

ity dropping: when IN packets and OUT packets are mixed in a single TCP

connection, drops of OUT packets negatively impact the connection’s perfor-

mance. Afterwards token bucket and time-sliding window markers have been

extended to three colors [80, 81, 54].

Following studies confirm the difficulty of marker configuration. A detailed

experimental study of the main factors that impact the throughput of TCP

flows in a RIO based DiffServ network is provided in [150]. The article shows

that in an over-provisioned network all target rates are achieved, but unfair

shares of excess bandwidth are obtained. However, as the network approaches

an under-provisioned state, not all target rates can be achieved. In [166] it is

shown that it is possible to improve the throughput significantly even when

a small portion of traffic is sent as in-profile packets. At the same time the

authors observe that, in order to fully utilize the benefit of out-profile packets,

the amount of out-profile packets sent in addition to the in-profile packets

has to be carefully determined. In [78] a set of experimental measures is

presented. The main result is that the differentiation among the transmission

rates of TCP flows can be achieved, but it is difficult to provide the required

rates with a good approximation. In [147] the limits of token bucket are deeply

investigated. It appears that (i) the achieved rate is not proportional to the



63

assured rate, (ii) it is not always possible to achieve the assured rate and,

(iii) there exist ranges of values of the achieved rate for which token bucket

parameters have no influence.

These results suggested the need to introduce some adaptivity in order to

cope with TCP dynamics. In [56] the Packet Marking Engine (PME) monitors

and sustains the requested level of service by setting the DS-field in the packet

headers appropriately. By default, all packets are generated as low priority

packets. PME is idle, if the observed service rate at the low priority level either

meets or exceeds the requested service rate. If the observed throughput falls

below the minimum target rate the PME starts prioritizing packets until the

desired target rate is reached. Once the target is reached, it strives to reduce

the number of priority packets without falling below the minimum requested

rate. The Active Rate Management (ARM) is proposed in [40] in order to

provide minimum throughputs to traffic aggregates. It is a classical, linear,

time-invariant controller, which sets the token bucket parameters (specifically

the token bucket rate) adapting to changes in the network. The same issue is

tackled by [164]. The adaptive dual token bucket in [68] regulates the amount

of OUT packets in order to prevent TCP packet losses caused by excess low-

priority traffic in the network. This adaptive technique requires a congestion

signaling procedure from internal routers to border routers. When the RIO

buffer is not congested, the token bucket filter can increase the percentage of

out-of-profile traffic in order to exploit the bandwidth available on the output

line. Conversely, when the RIO buffer is congested, the token bucket filter

must reduce this percentage.

The Equation-Based Marking (EBM) [51] is someway similar to ours be-

cause it senses the current network conditions, in particular it estimates the

loss probability and the RTT experienced by a TCP flow (without any signaling

with core routers), and adapts the packet marking probabilities accordingly.

In particular it uses the TCP model in [136] and these estimates in order to

identify the target loss probabilities, corresponding to target throughput rates.

Then, it uses the current loss probability estimate as well as these target loss

probabilities to calculate the packet-marking probabilities. Main targets are

fairness among heterogeneous TCP flows and protection against non-assured

traffic. Fairness is also the main focus of [98] and [163]: the first concentrates
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on the effect of different RTTs, the second propose the Direct Congestion Con-

trol Scheme (DCCS) to achieve fairness between responsive and unresponsive

aggregate.

The proposals described above share the purpose to assure a minimum

throughput to TCP individual flows or aggregates. More recently, TCP mark-

ing has been proposed as a way to achieve better than best effort performance

[15, 116, 110]. The idea is that packet marking can be adopted also in a

scenario of homogeneous flows (i.e. all marked according to the same pro-

file), with the goal of increasing the performance of all flows. In particular

[110] focuses on WWW traffic and proposes a new scheme able to reduce the

completion time of a http session. This scheme is described more in detail in

Sec. 4.4.3. The TCP-friendly marker in [15, 116] considers long lived flows and

adopt goodput and loss as performance metrics. The main guidelines are: 1) to

protect small-window flows and retransmitted packets from losses by marking

them IN; 2) to avoid, if possible, to mark OUT consecutive packets in order to

reduce the possibility of burst loss of packets. Our approach share the purpose

to space as much as possible packet losses, at the same time many differences

hold. In the TCP-friendly marker a fixed number of IN tokens is available for

each time interval and it has to be distributed among the flows, on the contrary

our scheme adaptively set the length of IN packets burst (i.e. the number of

flow consecutive packets that are marked IN) according to the network status.

Besides, all the marking schemes share the idea that packets marked IN will be

protected against network congestion, while our algorithm operates according

to the someway opposite philosophy to employ OUT packets as probes (see

Sec. 4.2). Finally, our approach is much simpler.

4.2 Rationale behind our Marking strategy

The fundamental difference of our algorithm with respect to the previously

mentioned marking strategies is that our algorithm marks most of the packets

as IN, and interleaves IN packets with occasional OUT packets. The length of

an IN-packets burst is adaptively set based on an heuristic estimation of the

experienced packet loss ratio.
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Since the large majority of packets in the network are of type IN, by mark-

ing a packet as OUT we dramatically increase the probability that this packet

is dropped. In essence, the role of the OUT packet is that of a probe, whose

goal is to early discover whether the network is getting congested.

We remark that Random Early Discarding (RED) techniques have been

designed with the same philosophy in mind. By randomly dropping packets

when the queue size increases above a given threshold, RED provides early

feedbacks to the TCP congestion control mechanism running at the network

edge. However, RED provides only a “loose” form of control mechanism;

dropped packets may belong to a subset of offered flows (which consequently

reduce the emission rate), while other TCP flows may not experience packet

dropping and thus remain unaware of the congestion situation. Moreover, in

the same time, a few TCP flows may even experience multiple packet dropping

and therefore be severely penalized.

Conversely, our proposed marking strategy provides a stronger form of

control mechanism, as the packets that are likely to experience dropping are

not randomly chosen among all the offered packets, but are the ones specifically

marked as OUT. This operation allows to smoothly and fairly drive the TCP

congestion control operation and makes the traffic offered to the network more

regular, so better performance are achieved. Moreover, as we showed in [125]

the higher the dropping rate of OUT packets versus the IN dropping rate, the

better the performance gain is. Ideally, the optimal operational condition in

the network should be that of a 100% loss rate of the OUT packets but still

no loss encountered by IN packets.

When compared with the schemes proposed in [15, 116, 110], our marking

strategy presents two major differences. First, the majority of packets are

IN. Second, the performance takes advantage of a very high OUT packet loss

rate. The fact that our strategy performs well is apparently in conflict with

some results presented in [110], which show that interleaving IN and OUT

packets may have a highly negative impact on the TCP throughput, if the

loss rate of the OUT traffic is much larger than that of the IN traffic. In

particular, a throughput reduction may be encountered as long as the per-

centage of IN traffic becomes greater than a given threshold. Indeed, we too

have observed performance impairments for both a token-bucket marker and

for a marking scheme very similar to the one proposed in [15, 116] (protection
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of small window and retransmitted packets, an OUT packet inserted every n

IN packets). However, we remark that these schemes are not designed to be

adaptive to the network congestion status, while ours uses some heuristics to

provide adaptability.

4.3 The Marking Algorithm

A first version of the algorithm was presented in [125, 127]. A new version has

been presented in [121, 129]. Here we describe the most recent version and

conclude this section with some remarks about the first one.

The packet marking algorithm we proposed can be implemented at the

ingress router. It acts on a per-flow basis. When the ingress router detects a

TCP SYN packet, meaning that a new flow is offered, it reserves a state for

the flow. This state is composed of the following variables:

• SNh: This counter stores the highest Sequence Number (SN) encoun-

tered in the flow. It is initially set to the ISN (Initial Sequence Number)

value. It is updated whenever a non-empty packet (i.e. non ACK) with

a higher SN1 arrives at the router.

• Lseq: It is initially set to zero. It is increased by one unit for each new

arrived packet (i.e. in-sequence packet), while is reset to zero every time

an out-of-sequence packet arrives.

• Aseq: It stores the average length of in-sequence packet burst between

two consecutive losses, using an auto-regressive filter on the previous

values of Lseq. It is initially set equal to a design parameter A0.

• CIN : It counts the number of IN-packets in the burst. It is reset to zero

when it exceeds Aseq and an OUT packet is sent.

Note that we distinguish between two different bursts of packets: the in-

sequence packet one and the IN-marked packet one. An IN-marked packet

burst is a group of packets which are marked IN at the ingress router. An

1in a cyclical sense - recall that sequence numbers wrap when the value 232−1 is reached
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Figure 4.1: Packet Marking Algorithm

OUT-marked packet separates two consecutive IN-marked packet bursts. The

variable CIN stores the number of IN-packets in the current burst. An in-

sequence packet burst is a group of packets which arrive at the ingress router

with increasing SNs. Such group is bordered by two out-of-sequence packets

(one at the begin, the other at the end of the burst). According to [87], we

say that a packet is out-of-sequence if its sequence number is less than that of

a previously observed sequence number in that connection. The variable Lseq

stores the instantaneous length of the in-sequence burst, while the variable

Aseq tracks the average value of such length.

Note that an out-of-sequence packet can be caused by three different events:

• Retransmission. In this case, a sender infers that a packet has been

lost and retransmits the packet. The retransmitted packet will have a

sequence number that is smaller than previously observed packets at the

measurement point and hence will be deemed out-of-sequence.

• Network duplication. In this case, a non-sender retransmitted copy of a

packet is observed. This can occur when the router is within a routing

loop (and hence the same packet is observed more than once), or if the

network itself creates a duplicate copy of the packet.
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• In network-reordering. In this case, the network inverts the order of two

packets in a connection (for example, because of parallelism within a

router [1] or a route change).

Network duplication and reordering should be rarer events in comparison

to retransmissions, hence the algorithm assumes that all the out-of-sequence

events correspond to retransmission events2. Under such assumption the Aseq

is a good estimate of the average number of packets transmitted between two

consecutive losses. The algorithm aims to pace the TCP flow adaptation by

marking a packet OUT after a burst of Aseq IN packets. For this reason in

Sec. 4.2 we said that the length of an IN-packet burst is adaptively set based

on an heuristic estimation of the experienced packet loss ratio.

Hence this marking algorithm enforces TCP source adaptation through

OUT-packets higher sensibility to network congestion, but it does not change

the basic TCP adaptation law to the network congestion. In fact the algo-

rithm estimates per-flow losses through information implicitly conveyed by

TCP packets, and it simply tries to space the losses as far as possible. Perfor-

mance improvements are expected, because TCP adaptation should be more

regular and the traffic variability is reduced. Performance evaluation in Sec. 4.4

confirms such intuition.

The details of the algorithm are in the flow-chart in Fig. 4.1. When a non-

empty packet arrives at the router, its sequence number SN is read. According

to the new SN value, and the recorded highest sequence number encountered

before, we face two possible situations. If SN ≤ SNh, then the incoming

packet is a replica of a previously transmitted packet. This means that such

packet has probably been lost. Conversely, if SN > SNh the incoming packet

is a new one.

Our algorithm distinguishes these two cases. In the case of packet loss, the

value Aseq is updated as the weighted sum of the previous estimate with the

current value of Lseq. The Lseq value is then reset to 0. The out-of-sequence

packet is delivered marked as IN, hence the CIN counter is increased by one.

In the case of a new incoming packet the current in-sequence packet burst

size is increased by one. The packet is then marked as IN if the IN-packet

2More details on reordering are in Appendix C, while the some results on the effect of
reordering on the performance of the algorithm are shown in Sec. 4.4.6
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Figure 4.2: The first version of the Packet Marking Algorithm

counter CIN is shorter than the value Aseq. Conversely, if the actual burst of

IN-marked packets has become longer than Aseq, the actual packet is marked

as OUT, and a new burst begins (CIN = 0).

As regards the configuration parameters α and A0, unless otherwise spec-

ified, we have adopted α = 0.5, A0 = 7. These parameters have not been

chosen after an optimization procedure, nevertheless the performance of the

algorithm are very good.

The first version. As we said, the above algorithm is an improvement of

the original version presented in [125, 127] and shown in Fig. 4.2. The previous

algorithm was simpler, because a single variable (LIN) was taking into account

the number of in-sequence packets (as Lseq actually does) and the number
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of IN packets of the actual IN-packets burst (as CIN actually does). This

coupling required an artificial increase of the variable AIN (the average value

of LIN) after marking an OUT packet. In Fig. 4.2, this operation is generically

indicated as increase(AIN). In fact, when congestion conditions occur, several

packet losses may be encountered, and thus the value AIN decreased (left part

of Fig. 4.2). In [125, 127] we chose AIN := 2AIN + 1 but its correct amount

was dependent from network condition.

To better understand how this increment should be quantitatively ac-

counted, consider the situation in which all packets labelled as IN are success-

fully received, while all packets labelled as OUT are discarded. This means

that the congestion level in the network has reached a given stationary target

value. To remain in such stationary conditions, the OUT marking rate should

not vary with time, i.e. an OUT packet should be marked every ĀIN IN pack-

ets, being ĀIN a constant3 In the assumption of stop&wait TCP operation4, no

IN packet loss, and 100% OUT packet loss, it is easy to see that AIN remains

constant to an initial value ĀIN if the increase rule is AIN := AIN/(1− α).

4.4 Performance Evaluation

4.4.1 The Simulation Scenario

Usually we considered a simple dumbbell network topology like that in Fig. 4.3,

where there is a single bottleneck link. Unless otherwise specified the numeri-

cal values for link capacities and propagation delays, are those in Fig. 4.3. The

capacity of the bottleneck is set equal to 6 Mbps and the RTTs of the differ-

ent TCP flow paths are different (from 124 ms to 198 ms, the average value

is 160 ms). The different RTTs together with random start of source trans-

missions avoid phase effects, i.e. misleading simulation results due artificial

sources synchronization.

Each router deploys RIO (Sec. 3.1.3) as Active Queue Management. As

3It depends (in a non trivial manner) on the RIO configuration at the bottleneck link
and on the number of offered flows.

4For general values of the contention window, such an analysis is much more complex as
it further depends on how many packets have been sent when a triplicate ACK arrives at
the sender.
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Figure 4.3: Network topology

regards RIO configuration, the thresholds and Pmaxin
are chosen according to

[63], the filter coefficient wq according to [64], i.e. max = 3min, Pmaxin
= 0.1

and wq = 1−exp(−M/(C ∗10∗RTT )) = 0.0012, where C is the link capacity,

M is the packet size and RTT is the Round Trip Time.

RIO configuration allows the network provider to trade off link utilization

and delay performance: the higher the RED thresholds, the higher link uti-

lization and delay. For this reason different settings were considered, and the

results are presented through “performance frontiers”. Lastly queue physical

lengths were chosen so that packet losses occurred only in the core router, due

to RIO (not to physical queue overflow).

Simulations were conducted through Network Simulator (NS) [130], which

is nearly a “standard de facto” for IP networks simulations. In particular we

used two different releases of NS: the v2.1b8 and the v2.1b9a. Unless otherwise

specified we used TCP Reno implementation.

4.4.2 Long-Lived Flows

The expression long-lived flow refer to a TCP flow whose duration is some order

of magnitude greater than its RTT. It corresponds to the transfer of big amount

of data. In this situation TCP congestion control and congestion avoidance
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play a fundamental role in order to determine user performance. Usually long-

lived flows are modelled by infinite load sources, which have always data to

transmit. Each source is able to employ all the available capacity along the flow

path, for this reason these flows are also referred as greedy ones. When long-

lived flows are considered the throughput is determined only by the network

conditions and TCP dynamics.

The results in this section appeared in [125].

We considered two different load conditions with 10 and 40 TCP long-lived

flows. Each source starts to transmit randomly in the interval 0-1 s, in order

to avoid synchronization (Sec. 4.4.1).

Different RIO settings were considered. As regards the IN traffic, the

minin threshold values goes from 2 to 80 packets. As regards the OUT traffic

we considered two different scenarios: in the first the OUT traffic settings vary

according to IN traffic parameters, maxout = 3minout = minin and Pmaxout =

0.2, in the second they are fixed to minout = 2, maxout = 6 and Pmaxout = 0.2.

In what follows we refer to this two settings respectively as soft differentiation

and hard differentiation.

As regards the IN traffic, the minin threshold values goes from 2 to 80

packets. As regards the OUT traffic we considered two different scenarios:

in the first the OUT traffic settings vary according to IN traffic parameters,

maxout = 3minout = minin and Pmaxout = 0.2, in the second they are fixed to

minout = 2, maxout = 6 and Pmaxout = 0.2. In what follows we refer to this

two settings respectively as soft differentiation and hard differentiation.

We compared the proposed marker with a no-marker situation, where all

the packets are treated as IN packet. For each of the threshold setting we

evaluated link utilization (goodput) and average delay, and plotted them as

“performance frontiers”.

For each configuration at least 5 simulations with different random seeds

were run. Each simulation lasted 1000 simulated seconds, statistics were col-

lected after 50 seconds. In the figures we present in the following section,

standard deviation of goodput and average delay is always less than 1% of

their numerical value. These simulations were conducted through ns v2.1b8.

Figures 4.4 and 4.5 show the performance frontiers respectively for 10 flows

and 40 flows in soft differentiation. In figure 4.4 RIO threshold settings are

reported for three points in the form (minout,maxout)
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Figure 4.4: Delay vs link utilization - 10 flows, soft differentiation

(minin,maxin). Performance improvement provided by the marker employ-

ment is remarkable under high load condition.

The improvement is more significant when IN and OUT packets receive

more different services from the network, as one can see in figures 4.6 and 4.7.

As regards the number of packet marked IN by the algorithm, it increases

as thresholds are higher and link utilization increases. For both soft and hard

differentiation IN packet percentage varies from about 98% to more than 99%

for the tested configuration with 10 sources and from about 94% to 97% with

40 sources (losses increase with the number of flows). Figure 4.8 shows global,

IN and OUT loss percentage for 10 flows. We see that for high goodput

values in hard differentiation OUT loss percentage is near 100% while IN loss

percentage is very small: source behavior becomes almost “deterministic”, the

variance of the offered load is highly reduced so performance are significantly

improved.

4.4.3 Short-Lived Flows

In the previous section we considered long-lived TCP flows, so it could appear

questionable whether our scheme is able to improve performance in a more
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Figure 4.5: Delay vs link utilization - 40 flows, soft differentiation

realistic scenario, where very short flows do not allow the algorithm to reach

a steady state. Actually short flows are a significant part of Internet traffic

because of Web traffic (usually html pages are few tens of kBytes).

For this reason we here extend the performance evaluation to a more realis-

tic scenario, coming from a Internet measurement campaign [109]. We compare

our algorithm with a best effort scenario but also with another algorithm ex-

plicitly developed in order to reduce the completion time for short-lived http

flows [110]. In what follows we refer to this scheme as Web Packet Marking

(WPM).

This section is organized as follows. Firstly the Web Packet Marking

(WPM) strategy proposed in [110] is briefly presented. Secondly, the per-

formance evaluation of the APM and the comparison with WPM is carried

out.

The results in this section appeared in [127].

Web Packet Marking

As our algorithm, WPM can be implemented at the ingress router and act

on a per-flow basis. In particular in [110] the authors present two packet
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Figure 4.6: Delay vs link utilization - 10 flows, hard differentiation

marking schemes. The first one is tightly integrated with the TCP protocol:

the source is allowed to send up to Ns IN packets when it starts, and then up

to Na = sstresh at the beginning of a Slow Start phase, and up to Na = cwnd

at the beginning of a Fast Recovery phase. The second scheme does not

require the knowledge of internal TCP variables, but it uses a constant value

Na = Ns = 5, hence this scheme can be implemented at ingress router. In what

follows we compare the second scheme with our adaptive scheme. The rationale

behind WPM is that packets marked as IN will be protected against network

congestion, hence marking can be useful employed to protect flows with small

window, when packet losses cannot be recovered via the fast retransmission

algorithm. In fact when the window is small, a loss trigger a timeout, which

reduce TCP source throughput.

We present some remarks about this rationale in order to stress the novelty

of our approach. In a DiffServ Assured Forwarding (AF) scenario, the differ-

entiation between traffic classes is relative. For example RIO configuration

described in Sec.4.4.1 assures that IN packets dropping probability is lower

than OUT packets one, but no bound is guaranteed. For this reason the pro-

tection of IN packets in WPM relies on the assumption that most of the packets

in the network are of type OUT, hence IN packets will receive a “good-enough”
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Figure 4.7: Delay vs link utilization - 40 flows, hard differentiation

service. In fact in [110] the authors show that a throughput reduction may

be encountered as long as the percentage of IN traffic becomes greater than

a given threshold. The authors claim that the problem is interleaving IN and

OUT packets, when the loss rate of the OUT traffic is much larger than that of

the IN traffic. We want to stress that the IN packet protection vanishes as IN

traffic increases. Indeed, we too have observed performance impairments for

both a token-bucket marker and for a marking scheme very similar to the one

proposed in [15, 116] (protection of small window and retransmitted packets,

an OUT packet inserted every n IN packets.

Hence our approach shows two main differences (Sec. 4.4.2): 1) the majority

of packets are IN, 2) the APM performance takes advantage of a very high

OUT packet loss rate. The apparent conflict with results in [110] and with

similar results for the marker proposed in [15, 116] relies on the adaptivity.

These schemes are not designed to be adaptive to the network congestion

status, while ours uses some heuristics to provide adaptivity.

In this section we show performance evaluation results when also short-lived

flows are present in the network. To simulate WWW-like traffic, a number of

TCP-Reno sources are connected to each ingress router in the topology of

Fig. 4.3. The flow’s arrival rate is modeled as a Poisson process and the flow
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lengths are drawn from the distribution given in table 4.1. This distribution

has been constructed from data collected at the end of 2002 through the Tstat

tool [109] on the Internet access link of Politecnico di Torino, i.e. between

the border router of Politecnico and the ingress router of GARR, the Italian

research network. Collected flow length data have been ordered from the

shortest to the longest and divided in 15 groups, each corresponding to a

0.066% probability. Table 4.1 reports, for each group, the average flow length

measured both in bytes and in IP packets (for simplicity, we have considered

1500 bytes packets).

In our simulations we have considered two different WWW offered loads,

corresponding to 64% and 90% of the bottleneck link capacity. Since results

are very similar, in what follows only 64% load results are presented. One

continuous backlogged TCP flow has been added.

Different kind of RIO settings have been considered for APM, WPM and

the “no marker” situation (NM in what follows). In Sec.4.4.2 we showed that

APM performance is better as the service differentiation among OUT and IN

packets increases. So here we let the minin threshold values going from 9 to 240
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Table 4.1: Flow lenght distribution

Group Bytes Packets Group Bytes Packets
1 119 1 9 1650 2
2 179 1 10 2861 2
3 251 1 11 4706 4
4 334 1 12 8015 6
5 428 1 13 13681 10
6 529 1 14 26641 18
7 658 1 15 284454 190
8 948 1

packets, while the OUT traffic settings are fixed to minout = 2, maxout = 6 and

Pmaxout = 0.2. For the WPM algorithm, where the majority of the packets are

marked OUT, we let the minout threshold values going from 9 to 240 packets,

while the minin threshold is so high that no IN packets are dropped. When

no marker is applied, all the packets are considered IN and RIO configuration

is the APM one.

We considered two main performance figures: the average packet delay

and the average flow completion time, i.e. the time from the emission of the

SYN packet to the reception of the last data packet (no connection closing

has been simulated). These values are plotted versus the average goodput (at

the application level) for each of the threshold setting, so we can obtain the

“performance frontiers”.

Fig. 4.9 shows delay vs goodput. APM does not act on very short flows

(less than 7 packets), so the remarkable advantage in figure 4.9 is achieved by

controlling the longest flows (groups 13, 14, 15 and the long-lived TCP flow),

whose throughput is regulated by the insertion of OUT probe packets. Instead,

we note that the performance of WPM are very similar to that experienced

in the case of no marking (NM) algorithm employed (all packets marked as

IN). This is expected, as WPM is not specifically designed to improve good-

put/delay performance, but it is designed to reduce the completion time for

short flows.

Completion time results are shown in figures 4.10, for the three cases of i)

single packet flows; ii) 18 packet flows, and iii) 190 packet flows. Let us first

focus on the cases of 1 and 18 packet flows. As expected, WPM is effective (and



79

0

20

40

60

80

100

120

140

65 70 75 80 85 90 95 100

av
er

ag
e 

qu
eu

ei
ng

-d
el

ay
 (

m
s)

link utilization (%)

  NM
 WPM
 APM

Figure 4.9: Delay vs goodput

slightly better than APM) when the link utilization is low, essentially because

it protects the first packets in the flow, whose loss can be recovered only

via retransmission timeout expiration (and not via fast retransmit). At high

utilization, this “protection” effect reduces, as packet loss percentage decreases

(results in table 4.2), and queueing delay becomes the main contribute to

completion time. For this reason APM provides results consistently better

than NM and WPM, because it is the only marking strategy that allows to

keep the queue occupancy low in high utilization conditions 5.

5We remark that these insights on the performance of the considered algorithms were
made possible only by the choice of presenting results in terms of performance frontiers
rather than selecting a specific RED configuration. Indeed, several contrasting results pre-
sented in the TCP literature are motivated by different behaviors in different operational
conditions - selecting a single RED configuration allows to achieve performance for just a
single operational condition.
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The completion time results for the case of 190 packet flows (third plot of

figure 4.10) shows that, in high utilization conditions, APM “pays” the im-

proved completion time for short-lived flows with a significantly higher comple-

tion time for long-lived flows. The reason is that, in high utilization conditions,

long-lived flows are given sufficient time to “adapt” (i.e. increase the number

of OUT-marked packets) to the congestion situation, while short-lived flows

behave in a more aggressive manner.

Despite this significant worsening in comparison to NM and WPM, we re-

mark that this is not necessarily an impairment. To prove this point, figure

4.11 compares the normalized per-packet delay of APM with that of NM, plot-

ted versus the link utilization, for 1 packet flows and 190 packet flows. This

normalized delay is evaluated as the difference between the average comple-

tion time and the minimum completion time (when the network is unloaded),

divided by the total number of data packets. From figure 4.11 it appears that,

with APM, this normalized delay is less sensitive to the network configuration

(as it is the average per-packet delay in figure 4.9). More importantly, APM

is able to reduce the variability for different flow lengths in comparison to the

no-marker scenario. So APM control on longest flows can be seen as a way to

reduce the common TCP unfairness between short and long flows, caused by

the fact that long flows can rely on the Fast Retransmit and Fast Recovery
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Table 4.2: IN packets and dropped packets percentage

NM WPM APM
IN% 100 26-13 97-98

DROP% TOT 5.3-0.0 4.5-0.0 2.9-2.0
DROP% IN 5.3-0.0 0.0-0.0 1.1-0.0

DROP% OUT – 6.2-0.0 64-98

algorithms and have better Round Trip Time estimates. This unfairness holds

also for WPM traffic for high link utilization: WPM normalized-delay curves

are very similar to NM ones.

Finally, the difference among NM, WPM and APM in terms of percentage

of IN packets, and percentage of dropped packets appears evident from table

4.2, where their range of variation for the different RIO settings is shown (from

lower thresholds to higher one).
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4.4.4 A new three color marker

From previous results it appears clear that our scheme and WPM are in some

way orthogonal, so we can think to merge them. In order to elaborate a new

scheme we need three different kind of packets. In a DiffServ framework, the

domain administrator can dedicate an AF class (Sec. B.5) with three different

dropping level to marked TCP traffic, say i the class and AFi1, AFi2 and

AFi3 the levels, ordered for increasing dropping probability in core routers.

Vulnerable packets according to the WPM scheme can be marked as AFi1,

probing packets according to APM can be marked as AFi3, while the majority

of packets are marked as AFi2. Performance evaluation shows that this new

scheme, called Merge Packet Marking (MPM) is able to sensibly improve APM

marking behavior in low link utilization without any other drawbacks [126].

For example figure 4.12 shows the average completion time for 1 packet flow

when WPM, APM and MPM are employed.
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Figure 4.12: Flow completion time vs goodput

4.4.5 Reverse Traffic

It has been argued that reverse traffic can significantly impair TCP perfor-

mance as this affects the flow of ACKs (acknowledgments) back to the TCP

sources. The reason is threefold. Firstly there is a fundamental ambiguity in
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Figure 4.13: The effect of reverse traffic

the TCP operation: TCP mechanisms aiming to detect congestion are not able

to distinguish between forward path and reverse path congestion. This can

lead in significant underutilization of forward path resources when congestion

arises on the reverse path. Secondly, when ACKs are queued behind other

traffic for appreciable periods of time, the burst nature of TCP traffic and

self-synchronizing effects can result in an effect known as ACK compression,

which reduces the throughput of TCP. Specifically ACKs which are queued

behind a burst of other packets become compressed in time. This results in an

intense burst of data packets in the other direction, in response to the burst of

compressed ACKs arriving at the server. It can become a self-reinforcing ef-

fect. Thirdly, an out-of-phase synchronization mode can occur. In the one-way

traffic configuration, all of the connections are synchronized in–phase in that

the flow control windows of the various connections all increase and decrease at

the same time. With two-way traffic, under certain conditions the connections

in different directions are synchronized out-of-phase in that the flow control

window of one connection is increasing while that of the other is decreasing.

This phenomenon has the effect of keeping the bottleneck utilization below

optimal, even in the limit of infinite buffers. These effects becomes more sig-

nificant when there is a high degree asymmetry between forward and reverse

path. For further details on the effect of reverse traffic refer to [97, 19, 18, 168].
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Figure 4.14: The effect of upstream reordering

Fig. 4.13 shows that reverse traffic produces a decrease of link utilization

both in the no-marker scenario and in the APM scenario. Anyway also in this

case APM produces significant benefits.

4.4.6 Packet Reordering

Packet reordering is a phenomenon which occurs when packets belonging to a

same flow are received in a different order than the packet transmission one.

Possible causes of reordering in IP networks and its effects on the TCP perfor-

mance are presented in Appendix C. Here we are interested into reordering,

mainly because if packet reordering occurs upstream the marker, the algorithm

poorly estimates the number of packets between two consecutive losses. In fact

reordered packets are misleadingly considered as retransmitted.

Fig. 4.14 shows that performance of APM worsen when reordering occurs.

An odd result can be noted for the no-marker scenario: reordering appears

to produce a performance improvements. An explanation of this effect and

the description of the simulation scenario are in Appendix C. APM and NM

performance frontiers almost overlap when the reordering probability is about

7%.

When reordering occurs downstream the marker likewise affects APM and
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Figure 4.15: The effect of ack reordering

NM scenario. For example Fig. 4.15 shows analogous shifts of performance

frontiers.
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4.5 Analytical Models

SourcesMarker Network
T

outin ppRTT ,,

A

L

Figure 4.16: The three-block model.

In this section we are going to present an analytical model (with two vari-

ants) of PMA. The model is based on a Fixed Point Approximation (FPA),

a modeling technique deeply described in the following subsection. Accord-

ing to FPA the system is divided into its three main components as shown

in Fig. 4.16: the TCP sources, the network and the marker. Each element is

modeled separately, taking into account the effects of the others through the

parameters shown in figure. For example TCP sources depend on the network

by the RTT and the dropping probabilities pin and pout, and on the marker

by the average length (A) of an IN packet burst.

After an overview of FPA methods in Sec. 4.5.1, the submodels for the

TCP sources, for the marker and for the network are respectively presented in

sections 4.5.2, 4.5.3 and 4.5.4. In particular two different submodels for the

network are introduced, and this leads to two variants for the global model.

In Sec. 4.5.4 there are considerations about the existence and the uniqueness

of the model equation systems. Finally Sec. 4.6 shows simulative results vali-

dating the models.

4.5.1 About Fixed Point Approximations

The expression Fixed Point Approximation (FPA) refers to a particular mod-

eling technique, which we are going to describe in this section. This name

is quite spread in scientific literature [34, 111, 95], but also other names ap-

pear: fixed point models [71, 146], fixed point approach [14], reciprocal model

tuning [38]. Other papers [104, 114] refer the expression “fixed point” to the

specific method employed to solve the model equation system, rather than to

the modeling technique.



88

TCP source TCP sink

Figure 4.17: FPA single-bottleneck single-source example.

This section is organized as it follows. Firstly we introduce the idea of

FPA and its main assumption by an example, and we explain the origin of the

expression fixed point. Secondly we recall some mathematical results about

fixed point theorems. After a look at other assumptions often employed in

FPA, we present telecommunications works employing this kind of modeling

technique.

FPA main assumption by an example. Let us assume we want to model

a single long-lived TCP flow, which feeds a simple FIFO Drop Tail queue as

in Fig. 4.17.

Suppose we are interested into some average values, like the TCP through-

put or the queue occupancy. If we know all the parameters characterizing

the network (i.e. link capacities, link delays, buffer size) and the TCP sender

(like for example the TCP version, the maximum congestion window size, the

timer granularity) and the TCP receiver, we are able to describe exactly the

behavior of each element of the network and to evaluate the instantaneous

throughput of the TCP sender or the instantaneous queue occupancy. If we

would able to describe the evolution of these quantities in a closed form, we

could evaluate their average value, by integrating the analytical expressions,

but in general it is not the case.

In order to achieve our purpose we have to sacrifice the exact description

of the system. A way to make the problem analytically tractable is to divide

the system into two parts (e.g. the TCP source and the queue), to assume

some simplifying assumptions about their interaction, and then to develop an

analytical model for each part.

According to the FPA approach, the main assumptions are that we model

each part considering the other in a steady state, and that this state is inde-

pendent by the behavior of the part we are modeling. In our example we know
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that the throughput of the TCP source is dependent from the network instan-

taneous RTT and from packet discard at the queue. At the same time the

TCP traffic generates the queue in the network and causes eventually packet

discard when the buffer is full. Nevertheless, in order to model the TCP be-

havior, we assume that the network is in a steady state: e.g. we consider that

the RTT and the dropping probability (p) are constant, independently from

the present TCP throughput. If we add some further hypothesis (not essential

to the FPA rationale), for example that the packet discard is a bernoullian

process with mean value p, and we discard TCP timeout, we can evaluate the

long-term steady-state TCP throughput (packets per second) as in [133]:

T = f(RTT, p) =
1

RTT

√
3

2bp
(4.5.1)

A different formula is known to be more suitable when the timeout prob-

abilities are not negligible [136].

In the same manner, in order to model the network, we assume the TCP

source offers a constant traffic intensity to the network, independently from

the present network status (queue occupancy and packet discard probability).

If we add the hypothesis that the packet arrival at the buffer is a Poisson

process (mean value T ) and that service times are exponential (mean value

1/C), we can model the buffer as a M/M/1/K queue (K is the buffer length),

and derive the mean number of packets in the router (X, including the packet

being transmitted) and the mean dropping probability (p), i.e.:

p = g(T ) =
1− ρ

1− ρK+2
ρK+1 (4.5.2)

X =
ρ

1− ρ
− (K + 2)ρK+2

1− ρK+2
(4.5.3)

where ρ = T/C. From Eq. 4.5.3 the average RTT can be easily obtained,

being RTT = R0 + X/C, where R0 is the propagation delay in the network.

Hence the following equation holds for the RTT:

RTT = h(T ) = R0 +
1

C

(
ρ

1− ρ
− (K + 2)ρK+2

1− ρK+2

)
(4.5.4)

In order to determine T , RTT and p, we need to solve the system of

equations (4.5.1),(4.5.2) and (4.5.4). If we define the function F : <3 → <3 as

F (T, p, RTT ) = [f(RTT, p), g(T ), h(T )],
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then we can note that a solution of such system ([T ∗, p∗, RTT ∗]), if any, satisfies

the following relation:

[T ∗, p∗, RTT ∗] = F (T ∗, p∗, RTT ∗), (4.5.5)

i.e. the point [T ∗, p∗, RTT ∗] is a fixed point for the <3 → <3 mapping, estab-

lished by the function F . This remark justifies the name of FPA.

Under some proper conditions about the function F and its definition set,

fixed-point theorems can be used to conclude that at least a solution exists.

Some of these theorems are shown in what follows. The question of unique-

ness is more difficult, eventual monotonicity greatly constraints the possible

dynamics.

Different methods can be employed in order to solve Eq. 4.5.5. In particular

repeated substitution takes into account the following relation:

[Ti+1, pi+1, RTTi+1] = F (Ti, pi, RTTi), (4.5.6)

assuming that

lim
i−>∞

[Ti, pi, RTTi] = [T ∗, p∗, RTT ∗].

This kind of solution is particularly appealing, because Eq. 4.5.6 can be

read as a dynamical system, describing the network operation [111, 60]: in

our example the TCP source starts assuming zero loss probability (p = 0)

and injects traffic in the network; the buffer provides a new (different) value

of p by dropping packets. The source reacts to this packet loss probability

adjusting its sending rate until convergence is reached. Despite this striking

interpretation, it is not clear how close Eq. 4.5.6 actually describes the network

operation. By the way, convergence of Eq. 4.5.6 is not guaranteed.

Fixed point theorems. In this section we recall some results about the

existence of fixed points, starting from the simple and well-known Intermediate

Value Theorem, also known as Bolzano’s Theorem. The reader interested to

these topics can read [89] or [48].

• Intermediate Value Theorem (IVT).

Theorem 4.5.1. Let f : < → < be a continuous function, where [a, b]

is an interval of < and f(a)f(b) < 0, then there exists a x∗ ∈ [a, b] such

that f(x∗) = 0.
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Figure 4.18: An example of the Brouwer’s fixed point theorem.

Corollary 4.5.2. Let f : [0, 1] → [0, 1] be a continuous function, then,

there exists a fixed point, i.e. x∗ ∈ [0, 1] such that f(x∗) = x∗.

• Brouwer’s Fixed Point Theorem.

Brouwer’s fixed point theorem (Theorem 1.10.1 in [48]) is a generalization

of the corollary to the IVT set out above. Specifically:

Theorem 4.5.3. Let f : S → S be a continuous function from a non-

empty, compact, convex set S ⊂ <n into itself, then there is a x∗ ∈ S

such that f(x∗) = x∗.

Thus, the previous corollary is simply a special case (where S = [0, 1])

of Brouwer’s fixed point theorem. The intuition can be gathered from

Fig. 4.18, where we have a function f mapping from [0, 1] to [0, 1]. The

curve (x, f(x)) intersects the bisector at three points - a, b and c - all

of which represent different fixed points as, for instance, at point a,

a = f(a).

• Kakutani’s Fixed Point Theorem.



92

The following, Kakutani’s fixed-point theorem for correspondences (The-

orem 1.10.2 in [48]), can be derived from Brouwer’s Fixed Point Theorem

via a continuous selection argument.

Theorem 4.5.4. Let φ : S → S be an upper semi-continuous correspon-

dence from a non-empty, compact, convex set S ⊂ <n into itself such

that for all x ∈ S, the set φ(x) is convex and non-empty, then φ(.) has

a fixed point, i.e. there is a x∗ ∈ S such that x∗ ∈ φ(x∗).

Other common assumptions in FPA. In this section we deal with some

further assumptions one can find when the FPA is applied to more complex

(and realistic) scenarios, when there are many TCP flows and many routers in

the network. These assumptions cannot often be easily distinguished from a

FPA approach extended to all the network elements, i.e. when we divide the

network into as many parts as the number of TCP sources plus the number of

the network routers.

Firstly we consider the interaction of many TCP flows, sharing the same

network path. Clearly the instantaneous throughput of each source depends

on the current throughputs of the other flows. An exact analysis of their

interaction is quite complex. For example, a differential equation approach

would lead to write one equation for each TCP source. This kind of many-

body interactions is quite common in physics: for example consider electrons

subject to a magnetic field, where the electron spin contributes to the field. A

common simplification is the Mean Field Theory (MFT). The great difficulty

(e.g. when computing the partition function of the system) is the treatment

of combinatorics generated by the interaction terms in the Hamiltonian when

summing over all states. The main idea of MFT is to replace all interactions

to anyone body with an average or effective interaction. This reduces any

multi-body problem into an effective one-body problem. The ease of solving

MFT problems means that a lot of insight into the behavior of the system can

be obtained at a relatively low cost.

For example in field theory, the Hamiltonian may be expanded in terms

of the magnitude of fluctuations around the mean of the field. In this con-

text, MFT can be viewed as the zero-th order expansion of the Hamiltonian
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in fluctuations. Physically, this means a MFT system has no fluctuations,

but this coincides with the idea that one is replacing all interactions with a

“mean field”. Quite often, in the formalism of fluctuations, MFT provides a

convenient launch-point to studying first or second order fluctuations.

In general, dimensionality plays a strong role in determining whether a

mean-field approach will work for any particular problem. In MFT, many

interactions are replaced by one effective interaction. Then it naturally follows

that if the field or particle exhibits many interactions in the original system,

MFT will be more accurate for such a system. This is true in cases of high

dimensionality, or when the Hamiltonian includes long-range forces.

MFT is known under many names and guises, e.g. Self Consistent Field

Theory, Bragg-Williams Approximation, Bethe Approximation, Landau The-

ory. In particular the expression “self consistent” refers to the fact that the

mean field acting on the particle spin is determined by its own mean value.

As regards TCP sources sharing the same bottleneck, the MFT leads to

consider that each flow experiences a link capacity reduced by the average

throughput of the other flows, and a longer RTT due to the average queue

occupancy from other flow packets. If the paths of the N TCP sources are

identical, it is equivalent to consider a single equivalent source, whose through-

put is N times that of a TCP source. Explicit references to MFT application

for TCP modeling can be found in [16, 17].

The other common assumption concerns the networks of queues, and it is

known as Kleinrock’s independence approximation. Our overview follows [24].

Also in a network of queues there is a form of interaction, in the sense that

a traffic stream departing from one queue enters one or more other queues,

perhaps after merging with portions of other traffic streams departing from

yet other queues. Analytically, this has the unfortunate effect of complicating

the character of the arrival process at downstream queues. The difficulty is

that packet interarrival times become strongly correlated with packet lengths

once packets have traveled beyond their entry queue. As a result, even if

packet arrive from outside the network according to a Poisson process, it is

impossible to carry out a precise and effective analysis comparable to the one

for the M/M/1 and M/G/1 systems.

Kleinrock suggested that merging several packet streams on a transmission

line has an effect akin to restoring the independence of interarrival times and
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packet lengths. It was concluded that it is often appropriate to adopt M/M/1

queueing model for each communication link regardless of the interaction of

traffic on this link with traffic on other links. This is known as the Kleinrock

independence approximation and seems to be a reasonably good approximation

for systems involving Poisson stream arrivals at the entry points, packet length

that are nearly exponentially distributed, a densely connected network, and

moderate-to-heavy traffic loads.

It turns out that if somehow this correlation is eliminated and randomiza-

tion is used to divide traffic among different routes, then the average number

of packets in the system can be derived as if each queue in the network were

M/M/1. This is an important result known as Jackson’s Theorem [24].

Scientific literature. The employment of FPA techniques to model net-

works is not a novelty. For example there is a considerable body of literature

on the application of fixed point methods to estimating blocking probabilities

in circuit switched networks. One of the first work is [95], where the author

proposes Erlang Fixed Point Approximation in order to evaluate call blocking

probability in a network. The Erlang Fixed Point approximation assumes the

network is a collection of single-link networks which block independently (sim-

ilarly to the Kleinrock hypothesis). The existence of a fixed point is proven

using the Brouwer’s fixed point theorem, Theorem 4.5.3. Other applications

can be found in [145].

More recently FPA has been widely used to model the interaction of TCP

sources with the network. An overview of some important scientific works

follows.

In [114] two approximate techniques for analyzing the window size dis-

tribution of TCP flows sharing a RED-like bottleneck queue are presented.

Both methods presented above use a fixed point algorithm to obtain the mean

window sizes of the flows, and the mean queue length in the bottleneck buffer.

[71] has probably the merit to be the first paper where the FPA approach

is clearly stated and presented as a method “which allows the adaptive nature

of TCP sources to be accounted for”. Based on an input matrix of a mean

number of sessions per route and per traffic class, the parameters of packet

loss, link utilization and mean TCP throughputs are determined. The paper

relies on the Kleinrock’s assumption -even if it is not called so- and buffers are
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modelled as M/M/1/K queues.

Anyway in the same year two other papers, employing FPA, appeared

[38, 60]. In [38] the authors divide the system into two parts: the TCP

sources and the network; then they develop an analytical model for each part.

The first model uses a Markovian representation to describe the TCP source

through the interaction between application level behavior (ON/OFF sources)

and transport-layer protocol dynamics. The second model describes the net-

work as a queueing network, bringing into the picture aspects such as topology,

queueing capacity at the nodes, link capacity. The authors clearly state main

assumptions: the segment generation process as seen by the network is Pois-

son; average measures instead of complete distributions for losses and delay;

decoupling the states of the network and of the sources. In [60] the authors

model TCP sources sharing the same RED queue as a feedback control system,

with the controlled systems being the TCP senders, the controlling element

being RED, which acts on the dropping probability and on the queueing delay.

As the dropping probability or the queueing delay increases, the TCP through-

put decreases [136]. The authors assume that link’s bandwidth is fully utilized

by TCP sources if the dropping probability is below a given threshold, under

these circumstances they can determine what they call the “queue function”

(or queue law) q = G(p). The relation simply follows from the TCP formula

in [136] by imposing the total throughput equal to the link bandwidth. The

steady-state of the system is obtained by the queue function and the “control

function” p = H(q) -i.e. the RED dropping probability function. The two

equations are interpreted as the description of a dynamic system having the

average queue size and average packet drop rate as state parameters -we dis-

cussed above about such interpretation of FPA equations. Some improvements

to this approach are in [61]. The contribution is threefold: TCP throughput

formula in [136] is improved by taking into account clock granularity and ack

loss; the model in [60] is extended to heterogeneous flows (different RTTs),

short-lived flows and UDP flows; a method to find the equilibrium of a generic

multiple bottleneck network is proposed. The starting point is the relation of

TCP throughput as a function of queueing delays and dropping probabilities

in the network. The method tries to maximize the throughput of each source,

while satisfying the conditions on bandwidth constraints at each link.

In [34] the authors explore the use of fixed point methods to model the
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behavior of a large population of TCP flows traversing a network of routers

implementing active queue management (AQM) such as RED (random early

detection). Both AQM routers that drop and that mark packets are considered

along with infinite and finite duration TCP flows. As regards the case of

infinite duration flows, the approach appears to be an extension of [60] to

multiple bottleneck scenarios. In the case of finite duration flows, the authors

restrict themselves to networks containing one congested router. In all cases,

they formulate a fixed point problem with the router average queue lengths as

unknowns. Once the average queue lengths are obtained, other metrics such as

router loss probability, TCP flow throughput, TCP flow end-to-end loss rates,

average round trip time, and average session duration can be easily obtained.

In [146] the authors address the problem of predicting long-lived TCP

performance in multiple bottleneck networks. TCP flows are characterized by

the square root formula, and the buffer from a simple equation predicting that

the loss rate is just the proportional excess of the send rate over the capacity.

The same problem appears in [6]. The approach considers the whole net-

work and try to predict the throughput of all connections simultaneously,

taking into account their mutual interaction. The authors propose a model

for the network and present three equivalent formulations (Complementary

Problem, Fixed Point and Nonlinear Programming) of it. In particular, FPA

and Nonlinear Programming formulations lead to efficient computational pro-

cedures and FPA formulation helps to prove the existence of a solution. In

comparison to similar works, like [34], the presented model does not require the

pre-identification of bottleneck links and include the possibility of the source

rate limitation, but it neglects queueing delay. For this reason it is suitable for

networks with large delay-bandwidth product. The authors employ Th.4.5.3

in order to prove the existence of a solution.

The same authors -together with others- consider the effect of queueing

delays in [14], where each buffer is modeled as a M/M/1/K queue or as a

M [X]/M/1/K queue with batch arrivals. In the first part of the paper they

discuss the admissibility of the Poisson hypothesis. They prove the existence

and the uniqueness of the solution when the nominal load is less than one for

short and long lived TCP flows.

Recently, the authors of [111] investigated some theoretical issues concern-

ing the existence, the uniqueness and the stability of equilibrium points, which



97

have been determined by FPA. In particular the authors consider a single-

bottleneck scenario and short-lived flows. They adopt M [X]/M/1/K models

for the queue, they consider the X constant and equal to 1 or to WM , where

WM is the maximum window size in order to obtain performance bounds.

From their analysis the effect of packet retransmissions appears important. If

we consider an ideal protocol that provides a perfect selective retransmission

mechanism of lost packets, then the solution of the FPA exists, it is unique,

and it is stable under the only condition that the application goodput -i.e. the

rate of packets delivered by the transport layer to the upper layers- is less than

one. A real protocol can retransmit a packet unnecessarily, for example when

a TCP source sends again a segment of data that was already received by the

destination or that is still in flight along the path towards the destination. As

regards TCP, it often happens when a timeout occurs and all the packets with

sequence number higher than the last segment acknowledged are considered

lost. Under the assumption that unnecessary retransmissions are proportional

to necessary retransmissions, two thresholds can be found. If the application

goodput is below the lower threshold, a unique and stable solution of the FPA

exists, if the goodput is between the thresholds, there are two solutions, one

stable and the other unstable, finally if the goodput is greater than the upper

threshold, the system does not admit a stable operating point.

As a final remark we note that there has been related work focusing on

the development and solution of a set of differential equations describing the

transient behavior of TCP flows and queue dynamics [115]. FPA complements

this approach. The fixed point approach is much more efficient computation-

ally as the number of unknowns equals the number of links in the network,

whereas the differential equations approach requires the solution of a number

of equations equal to the number of routers plus the number of TCP flows.

On the other hand, the differential equations approach can be used to study

transient behavior.

4.5.2 The TCP Sources Model

According to the previous description, we aim to obtain an expression of the

average TCP throughput (T , the input to the Network block) and of the aver-

age length of the in-sequence packet burst (L, the input to the marker block),
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Figure 4.19: Timeline and transmitted packets

given the marking profile (A) and the network status (RTT , pin, pout). We

have conjectured a regenerative process for TCP congestion window (cwnd),

thus extending the arguments in [136] to include two different service classes,

with different priority levels.

We only consider loss indications due to triple duplicated acks, which turn

on TCP fast retransmit mechanism. We don’t consider in our analysis the fast

recovery mechanism neither the time-out loss events, for the sake of simplicity.

As regards time-out neglecting, this approximation appears to be not critical

because PMA spaces OUT packets and hence loss events. For this reason errors

are usually recovered by fast retransmission, not by time-out. Such intuition

is confirmed by our simulation results, where the number of time-outs appear

to be significantly reduced in comparison to a no-marker scenario.

A period of our regenerative process starts when the sender congestion

window is halved due to a loss indication. Figure 4.19 shows cwnd trend as

rounds succeed. Wi−1 is the cwnd value at the end of the (i − 1)-th period,

hence in the i-th period cwnd starts from Wi−1/2 and it is incremented by one

every b rounds (b is equal to 2 or 1, respectively if the receiver supports or

not the delayed ack algorithm). Notice that, due to neglecting fast recovery

and timeouts, each period starts with an IN retransmitted packet, hence the

number of packets sent in the period (Yi) is equal to Lseq +1, according to the

marker description in section 4.3.

In the i-th period we define also the following random variables: Ii is

the length of the period; βi is the number of packets transmitted in the last
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round; αi is the number of the first lost packet since the beginning of the

period, while γi is the number of packets transmitted between the two losses

occurred in the (i− 1)-th and in the i-th period. We get Yi = αi + Wi− 1 and

αi = γi − (Wi−1 − 1).

Due to the renewal-reward theorem we can obtain the expression for the

average throughput of n sources sharing the same path:

T (A,RTT, pin, pout) = n
E[Yi]

E[Ii]

We first compute E[Yi]. The relation between αi and γi allows us to explicit

E[Yi] as a function of the marking profile (A) and the network status (in

particular pin, pout). In general Yi 6= γi, however if we consider their mean

values, it holds:

E[Yi] = E[αi] + E[Wi]− 1 =

= E[γi]− (E[Wi−1]− 1) + E[Wi]− 1 =

= E[γi]

Let us denote by N the expected value E[γi]. We compute N as:

N =
∞∑

n=0

np(n) =
∞∑

n=0

(1− P (n)) =
∞∑

n=0

Q(n)

where p(n) is the probability of losing the n-th packet after (n−1)-th successful

transmission, P (n) =
∑n

l=0 p(l) is cumulative distribution function, and so

Q(n) = 1 − P (n) represents the probability of not losing any packet among

these n. If we put n as n = k(A + 1) + h, with 0 ≤ h < (A + 1) we can write

Q(n) as

Q(n) = skA+h
in sk

out

where sin = 1− pin, sout = 1− pout. The expression of N can be rewritten as

N =
∞∑

k=0

A∑

h=0

skA+h
in sk

out

and can be solved in a close form:

N =
sA+1

in − 1

sin − 1

1

1− sA
insout

(4.5.7)
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Now we compute E[Ii]. Denoting with Xi the round in the i-th period

when a packet is lost, we obtain the period length as Ii =
∑Xi+1

j=1 rij, where

ri,j is the j-th round trip time length. Supposing rij independent of the round

number j (i.e. independent of cwnd size), taking expectation we find

E[Ii] = (E[X] + 1)E[r]

where E[r] = RTT is average round trip time.

In the i-th period cwnd size grows from Wi−1/2 to Wi with linear slope

1/b, so6

Wi =
Wi−1

2
+

Xi

b
− 1

and taking expectation we get

E[W ] =
2

b
(E[X]− b)

To simplify our computations we assume Wi−1/2 and Xi/b to be integers. Now

let us count up all the packets:

Yi =

Xi/b−1∑

k=0

(
Wi−1

2
+ k

)
b + βi

=
XiWi−1

2
+

Xi

2

(
Xi

b
− 1

)
+ βi

=
Xi

2

(
Wi−1 +

Xi

b
− 1

)
+ βi

=
Xi

2

(
Wi +

Wi−1

2

)
+ βi

and taking again expectation it follows

N =
E[X]

2

(
E[W ] +

E[W ]

2

)
+ E[β]

Assuming β identically distributed between 1 and Wi− 1 we can write E[β] =

6There are actually different ways to represent cwnd linear growth above the i-th period
in the continuous; period bounds are chosen respectively at the beginning of the first round
and at the end of the last round, but while in [136] cwnd starts from Wi−1/2 at the beginning
of the period, in our analysis it reaches Wi−1/2 only after b/2 rounds.
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E[W ]/2; therefore, solving for E[X]:

E[X] =
b

2


−2 + 3b

3b
+

√
8N

3b
+

(
2 + 3b

3b

)2

+ 2




=
3b− 2

6
+

√
2bN

3
+

(
2 + 3b

6

)2

then it follows

E[Ii] = RTT


3b− 2

6
+

√
2bN

3
+

(
2 + 3b

6

)2

+ 1




Now we can write down the throughput formula:

T (N, RTT )=n
N

RTT (E[X] + 1)

=
nN

RTT

1

3b−2
6

+
√

2bN
3

+
(

2+3b
6

)2
+ 1

(4.5.8)

Throughput dependence from A, pin and pout is included in N through

eq.(4.5.7).

Note that if Aseq = A = 0 (i.e. there is only one class of packets) and

pout = p → 0 we get the well-known formula [136]:

T (p,RTT ) ' n

RTT

√
3

2bp

.

Finally, as regards the average length of the in-sequence packet burst (L),

from previous remarks it simply follows:

L = E[Yi]− 1 = N − 1 (4.5.9)

4.5.3 The Marker Model

We have discussed before about PMA in Sec. 4.3, and we have seen how the

procedure acts marking one packet OUT every Aseq IN, where Aseq is obtained

filtering Lseq with an autoregressive unitary-gain filter. Hence, given A and L
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respectively the average values of Aseq and Lseq, they are tied by the relation

A = L7. The relation between Aseq and Lseq has been chosen according to the

rationale discussed in section 4.3. Anyway the relation between A and L can

be considered a project choice:

A = a(L) (4.5.10)

A change of the a() law leads to a different marking algorithm, for example

pursuing a different target.

As regards the fixed-point approach approximation, we observe that the

previous relation looks more suitable as long as the system reaches the state

where pin ' 0 and pout ' 1. In fact, in the case of pin = 0, pout = 1 we

would have Aseq = Lseq, not simply A = L. In Sec. 4.4.2 we have shown that

the algorithm exhibits optimal performance under hard differentiation setting,

which leads to pin ' 0 and pout ' 1. Hence fixed-point approximation appears

justified for PMA.

7A closer look to the algorithm reveals that this is an approximation due to the update
A := A + 1 after each OUT-packet transmission.
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4.5.4 Network Models

As regards the network, we limited our analysis to a single bottleneck sce-

nario. We considered two different models, which are detailed in the following

sections.

The Maximum Utilization Model

Sources Network
T

pRTT ,

Figure 4.20: Interaction between the Network Model and the Sources Model.

This model appeared in [121].

The network model has been developed following the approach proposed

in [60], which presents a fixed-point model for a best-effort scenario with long-

lived flows. The system diagram in Fig. 4.16 reduces to that in Fig. 4.20,

where no marker appears and there is only one dropping probability p. The

dropping probability p and the Round Trip Time RTT can be immediately

derived from the queue size. In facts:

RTT = R0 + q/c (4.5.11)

where c is the bottleneck link capacity and R0 is the propagation and trans-

mission delay, and

p = H(q) (4.5.12)

where H() is referred in [60] as “control function” and depends on the drop

module, for example it can be the RED dropping function.

As regards q the authors assume that TCP sources achieve full bottleneck

utilization, then for each flow

T (p,RTT ) = c/n

where n is the number of TCP flows. For this reason we denote such model

as the maximum utilization network model. If we denote by T−1
RTT (p, y) the
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inverse function of T (p, RTT ) in RTT, then

RTT = T−1
RTT (p, c/n)

From eq.(4.5.11), if we consider that q is greater equal than 0 and less equal

than the maximum buffer size qx,

q = max
(
min

(
c
(
T−1

RTT (p, c/n)−R0

)
, qx

)
, 0

)
(4.5.13)

This relation is referred in [60] as the ‘queue law’. The value of q can be

obtained from eq.(4.5.12) and eq.(4.5.13). In Fig. 4.21 the solution of the two

equations is shown as the intersection of the curves q = G(p) and p = H(q).

q

)(qHp

)( pGq

sq

pps

Figure 4.21: Steady state (ps, qs) as intersection of queue and control laws.

Now we are going to present our extension to this model. In our DiffServ

scenario we have two virtual queue qin and qout, and hence two control law Hin

and Hout for IN and OUT packets respectively. According to RIO behavior:

{
pin = Hin(qin), (i)

pout = Hout(qin + qout), (ii)
(4.5.14)

The same arguments of [60] lead to the following relation:

qtot=qin + qout = (4.5.15)

=max
(
min

(
qx, c

(
T−1

RTT (N, c/n)−R0

))
, 0

)



105

where T−1
RTT (N, y) the inverse function in RTT of the eq.(4.5.8). Note that N

depends on A, pin, pout.

The model has 7 variables (qin,qout,pin,pout,N ,A,L) and 6 equations (4.5.7),

(4.5.8), (4.5.9), (4.5.10), (4.5.14) and (4.5.15). We need an equation relating

qin and qout, given the traffic offered to the network. If there are not other

sources apart from the TCP ones (as we are assuming), a simple relation can

be qout = qin/A. Usually it holds A À 1, for this reason we considered qout ≈ 0.

A further simplification allows us to get again the simple two-variables

model in [60]. In fact if Hin is invertible, pout is univocally individuated by

pin: pout = Hout(H
−1
in (pin)). The network is now characterized by the following

equations:

pin=Hin(qin) (4.5.16)

qin=G(pin) = (4.5.17)

=max
(
min

(
qx, c

(
T−1

RTT (N, c/n)−R0

))
, 0

)

Given A, the operation point (qin, pin) can be found setting up an iterative

procedure which can be implemented numerically.

As regards the assumption for a RED law of being invertible, we know there

are some intervals where this inversion cannot be accomplished (see Fig. 4.22):

p

0 qmaxthminth

Px

1

Figure 4.22: RED law.

For 0 ≤ q ≤ minth and maxth ≤ q ≤ qx is not possible to define the inverse

function q = H−1(p); we need to introduce a slight slope to eliminate flats,

creating a new “REDinv” law for IN class, which is invertible.
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About the solutions of the system under the maximum utilization

model. Summarizing, our model relies on equations (4.5.7), (4.5.8), (4.5.9),

(4.5.10), (4.5.16) and (4.5.17). In this section we afford existence and unique-

ness of solutions for this system. Let us focus on the expression of the through-

put (4.5.8). We can express the throughput as a function of qin and qout, it

appears that it is a not-increasing monotone function of the queues values. In

fact it is immediate to note that RTT is an increasing function of the queues

and that N , given A, is a not-increasing function of the dropping probabili-

ties and hence of the queues (4.5.7). N is also a not-decreasing function of

A if pin < pout. The dependence of A on the queues is more complex. From

equations (4.5.7) and (4.5.10), we obtain

A + 1 =
sA+1

in − 1

sin − 1

1

1− sA
insout

(4.5.18)

Remember that our PMA is described by A = L, i.e. A = N−1. A is solution

of the above equation. It can be shown that if pin < pout A is a decreasing

function of pin and pout, hence a not-increasing function of qin and qout.

According to the considerations in the previous section, we can consider

only dependence from qin.

The following results hold:

lim
qin→0

T (qin) = +∞

lim
qin→+∞

T (qin) = 0

If Hin and Hout are continuous functions, also T (qin) is a continuous func-

tions.

From the previous considerations and hypotheses it follows that the system

admits at least one solution, i.e. it exists always a value qin, such that T (qin) =

c/n and all the equations are satisfied. One has only to verify that qin < qx.

Being the throughput a not-increasing monotone function of the queues values,

the solutions set is an interval (eventually reducing to a single point). Finally if

Hin is a strictly increasing function of qin and 0 < pin, pout < 1, the throughput

is a strictly decreasing function of the queue and hence the solution is unique.

It is possible to set up an iterative procedure to find numerically this solution,

and this is just what we did using MATLAB.
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Now we want to address the solutions in a particular context. Let us remove

the previous hypothesis about invertibility and consider equation (4.5.18).

We consider the RIO settings in Fig. 4.23, where maxout < minin. In the

range [maxout,minin], sin = 1 and sout = 0, hence equation (4.5.18) reduces

to an identity, and the system admits as solution the whole set of values

[maxout,minin]. In Fig. 4.23 we have put in evidence this interval.

As we said, we have introduced a slight slope to RED, in order to make it

invertible. Hence the previous range should reduce to a point near the value

maxout. Despite of this, the MATLAB procedure is affected by numerical

approximations, in particular pin can be undistinguishable from 0 in the range

[maxout,minin], so also the MATLAB procedure can find different solutions

in this range, depending on the initial conditions chosen. In particular, unless

we start from a point inside the range, the system will converge to the left or

right extremity of the interval.

When the model predicts a range of solutions, the dynamics of the system

play a fundamental role to determine the final solution. Such dynamics are

not considered in a fixed point approach. According to a preliminary study

it appears that the model exhibits a higher sensitivity to state perturbations

for higher values of the queues, this could justify the simulation results and

it suggests that the system dynamics could be recovered by inserting in the

numerical procedure a sort of model noise.

qmaxout minin

Solution Interval 
minout maxin

Pout,max

1

Pin,max

p

Figure 4.23: Solution Interval.
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The Markovian Queue Model

This model appeared in [129].

In the previous section we have proposed a network submodel, extending

the approach proposed in [60] for a best-effort scenario to a DiffServ one. As

we have seen a limit of this approach is that TCP sources are intrinsically as-

sumed to achieve full bottleneck utilization, hence the model is able to predict

average queue occupation, not link utilization. Besides the model predicts a

range of solutions when maxout < minin. These problems could be overcome

introducing in the model queue variability.

Anyway here we propose a radically different approach: we consider that

the queue can be modelled as a M/M/1/K queueing system. This allows us

to evaluate the stationary distribution of the queue for a given offered load T ,

and then the average values we are interested in, i.e. RTT , pin and pout.

As regards the assumption of Markovian arrivals, it seems to be justified

when the TCP connection rate increases [36]. This issue is tackled in [14] by

an extensive simulation campaign of a bottleneck link crossed by TCP traffic.

The paper shows that the packet arrival process at the input of the bottleneck

link is close to Poisson when the number of access links is large and when the

speed of these links is slow. This observation scales well with the bandwidth

of the bottleneck and it is insensitive to the distribution of file sizes. When

short-lived flows are considered, the authors find that, for a certain number

of access links, there is some speed of access links that makes the packet

arrival process very close to Poisson. They give an empirical expression for

this threshold speed (N ∗ Cac)/C ≤ 2, where N is the number of access links,

Cac is the access link capacity, and C is the bottleneck capacity. When long-

lived flows are considered, the number of flows appears to be the key factor,

almost independently from the access link capacity. The authors justify some

deviations from the exponential interarrival time distribution. They also note

that even when interarrival times look exponential, they are correlated. One

cause of correlation are packet pairs sent in the Slow-Start phase from the

same access link.

Anyway M/M/1/K models have been widely employed in literature and

have shown good performance [107, 71, 104, 67, 153]. Some researchers sug-

gest that a refinement of such models can be obtained if batch arrivals are
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introduced in order to account for the burstiness of TCP transmissions within

the same window of data. It has been shown [66] that an M [X]/M/1/K, a

queue with a Poisson arrival of batches of packets distributed according to a

batch size distribution [X] closely related to the window size distribution of

the senders, provides a good estimate of the packet loss probability for a wide

range of values of the offered load. Unfortunately, the M [X]/M/1/K queue

does not allow a closed-form expression of the dropping probability p as a func-

tion of the offered load. In order to carry on the analysis in [111] the authors

resort to an approximation using the formula of the M/M/1/K: suppose that

all batches are of equal size b packets (of the same size), and that a batch is

completely lost if it cannot be entirely received into the queue. Hence K is the

number of complete batch that can be received by the buffer, i.e. K = bB/bc,
where B is the buffer size (in packets). In general, b = 1 provides a lower

bound to p, because TCP traffic is more bursty than a Poisson process, while

b = WM , where WM is TCP maximum window size, provides an upper bound

that roughly correspond to the behavior of earlier versions of TCP [142] before

congestion control was introduced [90]. The true behavior of TCP, whatever

version we consider, should be between the upper and lower bounds that can

be analyzed in closed form. The same approach can be found in [14] with

two main differences: the worst case is numerically computed evaluating the

window distribution under the assumption that the session does not experi-

ence any loss and that it will remain always in Slow-Start phase, if a packet

discard does not imply the whole batch discard. Despite this considerations,

the authors of [66] claim that the difference between the correct value of p and

the one obtained with a simple M/M/1/K becomes smaller and smaller as

the link becomes more congested, so that an M/M/1/K queue alone indeed

provides a good approximation of the packet loss probability (this is due to the

fact that the burstiness of the traffic is reduced because the TCP congestion

window is small).

Our framework is similar to those of [104] and [153], which model respec-

tively Token Bucket and Single Rate Three Color Marker, but it differentiates

because it assumes state dependent arrivals, rather than uniform ones.

These models take into account the presence of different class of traffic

and the effect of AQM mechanism like RIO, but they assume that dropping

probability depends only on the instantaneous queue size, disregarding the
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effect of filtering.

According to [104], the stationary distribution of the queue can be evalu-

ated as:

π(i) = π(0)

(
T

C

)i i−1∏
j=0

(1− p(j)), i = 1, 2, ...maxin

where C is the bottleneck capacity, π(0) is given by the normalization

equation

π(0) =

(
1 +

maxin∑
i=1

(
T

C

)i i−1∏
j=0

(1− p(j))

)−1

and

p(i) =
Tinpin(i) + Toutpout(i)

Tin + Tout

=
Apin(i) + pout(i)

A + 1

Note that we assumed maxout < maxin, and that it is useless considering

queue values greater than maxin because RIO drops all the incoming packets

when the instantaneous queue is equal to maxin.

Once π(i) has been obtained RTT , pin and pout can be evaluated as

RTT = R0 + q/C = R0 +
1

C

maxin∑
i=0

iπ(i) (4.5.19)

pin =

maxin∑
i=0

pin(i)π(i) (4.5.20)

pout =
maxout∑

i=0

pout(i)π(i) (4.5.21)

where R0 is the propagation and transmission delay.

We have followed such approach, but results are unsatisfactory. The phys-

ical explanation appears from figures 4.24(b) and 4.24(a), which show the

empirical distribution coming from simulations and the queue distribution

predicted by the model given the same average load, for three different config-

urations. The RIO settings in the legend are given in the form

(minout,maxout, Pmaxout) − (minin,maxin, Pmaxin). According to the model

the queue should exhibit a spread distribution, with high probability for low

queue values (in particular the queue distribution decreases if T < C), while

the empirical distribution looks like a gaussian one: the dynamic adaptive

throughput of the TCP sources, which increase their throughput when RTT

decreases and vice versa, appear to be able to create a sort of “constant bias”.
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In order to capture this behavior, we have modified the model in [104],

by introducing arrival dependence from the network status. The input to the

sub-model is

F (N)=T ∗RTT

=
N

3b−2
6

+
√

2bN
3

+
(

2+3b
6

)2
+ 1

(4.5.22)

and the arrival rate when the there are i packets in the queue is:

T (i) =
F

R0 + q
C

Now the stationary distribution can be evaluated as:

π(i) = π(0)
i−1∏
j=0

T (j)

C
(1− p(j)), i = 1, 2, ...maxin

Figure 4.24(c) shows the queue distribution evaluated by the new model.

The similarity with figure 4.24(c) is impressive, the only difference is for the

first configuration ((2, 6, 0.2)− (8, 24, 0.05)), as regards low queue occupancy.

The peak for q = 0 is probably due to timeouts, which are more common

with low RIO settings, and make TCP throughput less uniform and hence the

markovian arrival assumption less accurate.

About the solutions of the system under the markovian queue model.

Summarizing, our model has 8 variables (N ,A,T ,L,RTT ,pin,pout,F ) and 8

equations (4.5.7), (4.5.8), (4.5.9), (4.5.10), (4.5.19), (4.5.20), (4.5.21) and

(4.5.22). In this section we afford existence and uniqueness of solutions for

this system.

Firstly, let us note that F can be expressed as a function of A by equations

(4.5.7) and (4.5.22), hence, given A, the variables q(A), pin(A) and pout(A)

are determined in a univocal manner. Besides it can be proven that π(i +

1)/π(i) increases with A, and therefore q, pin and pout are continuous increasing

function of A. Hence they are invertible and one can express pin and pout as

(increasing) functions of q.

Besides, the following results hold:
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q(F = 0) = 0

lim
F→+∞

q(F ) = maxin

As regards A, we recall Eq. (4.5.18)

A + 1 =
sA+1

in − 1

sin − 1

1

1− sA
insout

Being pin < pout A is a decreasing function of pin and pout, hence a decreasing

function of q. Besides, being:

lim
q→0

N(q) = +∞,

it holds

lim
q→0

A(q) = +∞

Let us focus on the expression of F (4.5.22). It appears that it is a de-

creasing function of the queues values, because it is an increasing function of

A.

The following results hold:

lim
q→0

F (q) = +∞

lim
q→+∞

F (q) = 0

From the previous considerations and hypotheses it follows that the sim-

plified system in F and q admits only one solution, as it is qualitatively shown

in figure 4.25. Being all the function monotone, the original system admits

only one solution.

It is possible to set up an iterative procedure to find numerically this solu-

tion, and this is just what we did using MATLAB.
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Figure 4.24: (a) Queue distribution predicted by the model with uniform ar-
rivals. (b) Queue distribution obtained by simulations. (c) Queue distribution
predicted by the model with state dependent arrivals.



114

max in

F

q

F(q) q(F)

Figure 4.25: Existence and uniqueness of the solution.
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Table 4.3: Queue occupation vs RIO settings

RIO (non overlapping) predicted q measured q
(2,6)(8,24) {6;8} 8,29

(4,12)(16,48) {12;16} 12,90
(8,24)(32,96) {24;32} 27,77

(16,48)(64,192) {48;64} 54,87
(32,96)(128,384) {96;128} 108,85
RIO (contiguous) predicted q measured q

(2,6)(6,18) 6 7,59
(4,12)(12,36) 12 13,32
(8,24)(24,72) 24 23,68

(16,48)(48,144) 48 44,39
(32,96)(96,288) 96 87,77

RIO (overlapping) predicted q measured q
(2,8)(6,24) 8,00 8,87

(4,16)(12,48) 15,84 15,39
(8,32)(24,96) 30,07 27,01

(16,64)(48,192) 56,36 50,76
(32,128)(96,384) 105,61 100,69

4.6 Model Validation

In this section we do not show validation results for each submodel, but for the

global fixed point model, which join the three different submodels (for the TCP

sources, for the marker and for the network). In Sec. 4.5.4 we presented two

different models for the network. Hence it follows that we have two different

fixed point models, whose results we show in the two following subsection. For

the sake of simplicity, we refer to the two global models by the name of the

specific network submodels.

4.6.1 Maximum Utilization Model

These results appeared in [121].

To validate our model we considered the network topology showed in

Fig.4.26, which is the same encountered in [125], consisting of a single bot-

tleneck link with capacity equal to 6Mbps. The Round Trip Time goes from

128ms to 192ms, for an average value of R0=160ms. The IP packet size is

chosen to be 1500 Bytes, for a bottleneck link capacity of c = 500packets/s.

We started three different simulation sets, each one related to a different way
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Figure 4.26: Network topology

of configuring RIO thresholds.

We denote as overlapping a RIO configuration in which minin < maxout.

We set maxout = 4minout, maxin = 4minin and minin = 3minout. We denote

as contiguous a configuration where RIO thresholds are set so that maxout =

minin. We set maxout = 3minout, maxin = 3minin. Finally we denote as non

overlapping a RIO configuration in which maxout < minin, more precisely we

choose maxout = 3minout, maxin = 3minin and minin = 4maxout. For each

of this settings criteria, we have tested five different configurations, varying

minout from 2 up to 32.

We ran our simulations using ns v2.1b9a, with the Reno version of TCP.

In Table 4.3 we report the results of our analysis in terms of queue occupation

for all tested configurations, while in Fig.4.27 , 4.28 and 4.29 we can see the

same results in a more readable form.

As regards the overlapping and contiguous RIO configurations, the ana-

lytical model predicts a unique solution, according to the considerations in

Sec. 4.5.4. Figures 4.27 and 4.28 show that model results are quite accurate if

compared to simulation results.

As regards the non overlapping RIO settings, due to the small slope of the

“REDinv” curve, the solution interval coincides with the range [maxout,minin],

as it is shown in Table 4.3. According to the initial value of A our iterative

procedure converges to the lower or to the higher value of the solution interval.

Actually, with a starting value of A0 = 7 the procedure converges to the lower

value, while with A0 = 300 the higher value is held. In Fig.4.29 we reported
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Figure 4.27: Queue occupation vs RIO settings (overlapping).

for each setting the measured queue occupation (got from ns simulations) and

both lower and higher predictions (respectively horizontal and vertical lines in

the bars). The fact that the measured solutions stay between the predicted

values is a proof that our speculations are correct. Yet we cannot say anything

about the real adaptive dynamics, whose inclusion in the model will be one of

our future issues to investigate.

4.6.2 Markovian Queue Model

To validate our model we considered the network topology showed in Fig.4.30,

consisting of a single bottleneck link with capacity equal to 6Mbps. Considering

both the transmission and the propagation delay of packets and acks in the

network, the average Round Trip Time is R0
∼= 138ms. The IP packet size is

chosen to be 1500 Bytes, for a bottleneck link capacity of c = 500packets/s.

As regards RIO configurations we considered non overlapping the ones in

which maxout < minin, more precisely we choose maxout = 3minout, maxin =

3minin and minin = 4maxout. In previous performance evaluation this kind of

settings showed better results in comparison with a overlapping RIO configu-

ration in which, maxout >= minin. We tested seven different configurations,
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Table 4.4: Model vs simulation with 10 flows
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Figure 4.28: Queue occupation vs RIO settings (contiguous).

varying minout from 2 up to 24, and for each configuration we gathered statis-

tics from 10 trials of 1000 seconds each. We ran our simulations using ns

v2.1b9a, with the Reno version of TCP.

Table 4.4 compares model predictions with simulation results when the

number of flows is equal to n = 10, as regards throughput (T ), goodput8(G),

queue occupancy (q), the dropping probability for the generic packet, for IN

packets and for OUT packets (respectively Pdrop,Pdropin, Pdropout), and the

average length of IN packets bursts. The average mean error over the different

settings and the maximum error are shown in the last two rows. The model

appears to be able to predict with significant accuracy throughput, goodput

and queue occupancy, which are the most relevant performance indexes when

we consider TCP long lived performance flows. On the contrary dropping

probability estimates are very inaccurate, in particular as regards Pdropin. We

think the reason is that the model neglects the effect of filtering on dropping

probability calculation from RIO routers. In fact some preliminary results

which take into account filtering seem to suggest that filtering: i) can be

neglected in order to evaluate the dynamic of the instantaneous queue, ii) it

is significant for the evaluation of the dropping probabilities. In particular

probabilities estimates look better. At the moment we have introduced the

8The goodput is estimated as G = T (1− Pdrop).



120

0

20

40

60

80

100

120

140

(2,6)(8,24) (4,12)(16,48) (8,24)(32,96) (16,48)(64,192) (32,96)(128,384)

RIO settings (OUT)(IN)

q
u

eu
e 

o
cc

u
p

at
io

n
 (

p
ac

ke
ts

)

predicted q
measured q

Figure 4.29: Queue occupation vs RIO settings (non overlapping).

Table 4.5: Model vs simulation with 6 and 20 flows

n = 6 T (pkt/s) G (pkt/s) q (pkt) Pdrop (%) Pdropin (%) Pdropout (%) A (pkt)
mean error (%) -0.87 -0.90 -2.28 3.71 760.33 -2.87 37.33
max error (%) -1.49 -1.53 -25.96 9.47 1227.52 28.15 61.31

n = 20 T (pkt/s) G (pkt/s) q (pkt) Pdrop (%) Pdropin (%) Pdropout (%) A (pkt)
mean error (%) 1.75 -0.24 2.76 110.99 607.65 -1.37 -45.67
max error (%) 5.93 2.15 19.37 157.58 798.09 -10.19 -54.12

effect of filtering by considering a two dimensional Markov chain where the

status is the pair of instantaneous queue and filtered queue (whose values have

been quantized). This approach is particularly heavy from the computational

point of view, for this reason, at the moment, we have not adopted it.

We evaluated also the model with the same network topology with a dif-

ferent number of flows (n = 6, n = 20). The differences between model

predictions and simulation results are similar to those observed for n = 10

flows. The relative errors for these two scenarios are shown in table 4.5.
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Appendix A

Technical Background on

Self-Similarity and

Long-Range Dependence

A.1 Distributional Self-Similarity

Here we give a definition of self-similarity for continuous time processes in

the sense of finite-dimensional distributions. Let Y (t) be a continuous time

process.

Definition A.1.1. (H-ss) Y (t) is self-similar with self-similarity parameter,

that is Hurst parameter, H, denoted H-ss, if for all a > 0 and t ≥ 0,

Y (t) =d a−HY (at) for t > 0 (A.1.1)

Thus Y (t) and its time scaled version Y (at) -after normalizing by a−H-

must follow the same distribution.

By noting that1

Y (t) =d tHY (1)

1Substitute t = 1 and a = t in Eq. A.1.1.
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the limiting behavior of Y (t) as t tends to infinity and to zero can be derived.

As a consequence of such limiting behavior, Y (t) cannot be stationary, unless

Y (t) is degenerate, that is Y (t) = 0 for all t > 0, or H = 0. The exception

H = 0 is not interesting, as it implies that Y (t) = Y (1) for all t > 0. Anyway

its increment process X(t) = Y (t)− Y (t− 1) can be stationary. When Y (t) is

H-ss and has stationary increments, we say Y (t) is H-sssi. When considering

H-sssi processes the range of H can be restricted to H > 0, otherwise Y (t) is

not a measurable process. If Y (t) has finite variance, it can be checked that

E[Y (t)] = 0, E[Y 2(t)] = σ2|t|2H , and the autocovariance function is:

γ(t, s) =
σ2

2
(|t|2H − |t− s|2H + |s|2H), (A.1.2)

where σ2 is the variance of X(t). The increment process X(t) has mean 0 and

autocovariance γ(t + k, t) = γ(k):

γ(k) =
σ2

2
((k + 1)2H − 2k2H + (k − 1)2H).

Often it is more convenient to refer to the autocorrelation function ρ(k) =

γ(k)/σ2

ρ(k) =
1

2
((k + 1)2H − 2k2H + (k − 1)2H). (A.1.3)

As regards H, note that for H = 1 Eq. A.1.3 implies ρ(k) ≡ 1. This case is

hardly of any practical importance. For H > 1, ρ(k) diverges to infinity as k

diverges. This contradicts the fact that ρ(k) must be between −1 and 1. We

can conclude that if covariances exist and limk→∞ ρ(k) = 0, then

0 < H < 1.

For H = 1/2, all correlations at non-zero lags are zero, i.e. the X(t) are

uncorrelated. For 0 < H < 1 and H 6= 1/2

ρ(k) ∼
k→∞

H(2H − 1)k2H−2. (A.1.4)

Here we give the definition of a widely employed H-sssi process: the Frac-

tional Brownian Motion (FBM).

Definition A.1.2. (FBM) Y (t), t ∈ R, is called Fractional Brownian Motion

with parameter H, 0 < H < 1, if Y (t) is gaussian and H-sssi.
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The increment process of a FBM is of interest too.

Definition A.1.3. (FGN) X(t), t ∈ Z+, is called Fractional Gaussian Noise

with parameter H, 0 < H < 1, if X(t) is the increment process of FBM with

parameter H.

Note that when H = 1/2 FBM reduces to Brownian motion and FGN to

white gaussian noise.

The gaussian structure of FBM and FGN renders them especially useful as

aggregate traffic models where the aggregation of independent traffic sources

-by the central limit theorem- leads to the gaussian property.

A.2 Second-Order Self-Similarity

Let us consider a second-order stationary discrete-time process X(t) and define

the aggregated process Xm of X at aggregation level m,

Xm(i) =
1

m

mi∑

t=m(i−1)+1

X(t).

That is X(t) is partitioned into non overlapping blocks of size m, Xm(i)

is the average of the i-th block. Let ρ(k) and ρ(m)(k) respectively denote the

autocovariance functions of X and X(m). We say that

Definition A.2.1. (Second-Order Self-Similarity) X(t) is exactly second-order

self-similar with Hurst parameter H (1/2 < H < 1), if for all k ≥ 1

ρ(k) =
1

2
((k + 1)2H − 2k2H + (k − 1)2H) (A.2.1)

X(t) is asymptotically second-order self-similar if

lim
m→∞

ρ(m)(k) =
1

2
((k + 1)2H − 2k2H + (k − 1)2H) (A.2.2)

It can be checked that if condition A.2.1 holds, then ρ(k) = ρ(m)(k)

for all m ≥ 12. Thus, second-order self-similarity captures the property

2Note that in [140] there is an error in the expression of the autocovariance function γ(m)

and the incorrect relation γ(k) = γ(m)(k) is shown rather than ρ(k) = ρm(k)
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that the correlation structure is exactly -condition A.2.1- or asymptotically

-condition A.2.2- preserved under time aggregation.

A.2.1 Distributional Self-Similarity

versus Second-Order Self-Similarity

Firstly, we remark that distributional self-similarity has been defined for con-

tinuous time processes and second-order self-similarity for discrete time pro-

cesses.

It is immediate to note that if the process Y (t) is H-sssi with 1/2 < H < 1,

and we sample its increment process X(t), i.e. we consider X(t) for t ∈ Z,

this discrete time process is exactly second-order self-similar. In fact Eq. A.1.3

and Eq. A.2.1 coincide.

Besides, while for exactly second-order self-similarity ρ(k) = ρ(m)(k), the

increment process of Y (t) satisfies a stronger relation:

X =d m1−HX(m). (A.2.3)

Similarly to the distinction between exactly second-order self-similarity

and asymptotically second-order self-similarity, a discrete time process which

satisfies Eq. A.2.3 for all m ≥ 0 is called exactly self-similar, while if Eq. A.2.3

holds only in the limit as m → ∞, the process is called asymptotically self-

similar.

A.3 Long Range Dependence

Let us consider a second-order stationary discrete-time process X(t). X(t) is

long-range dependent if r(k) decays slowly. Formally:

Definition A.3.1. (Long Range Dependence, LRD) X(t) is a long-range de-

pendent if there exists α ∈ (0, 1) and a constant cρ>0 such that

ρ(k) ∼
ν→∞

cρ|k|−α (A.3.1)
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An equivalent definition can be given in the frequency domain where the

spectral density Γ(ν) = (2π)−1
∑+∞

k=−∞ γ(k)eikν has to diverge around the ori-

gin, implying ever larger contributions by low-frequency components

Γ(ν) ∼
ν→0

cf |ν|−β, β ∈ (0, 1),

where β = 1− α.

A.4 Self-Similarity

versus Long Range Dependence

Let us consider an exactly second-order self-similar process X(t), with Hurst

parameter H ∈ (1/2, 1). From Eq. A.1.4 it follows that ρ(k) behaves as cρk
−α

as k → ∞, where cρ = H(2H − 1) > 0 and α = 2 − 2H ∈ (0, 1). Hence the

process X(t) is long range dependent.

This result can be generalized.

Theorem A.4.1. A second-order stationary discrete-time process is asymptot-

ically second-order self-similar, with H ∈ (1/2, 1) if and only if it is long-range

dependent.

A.5 Heavy Tails and Long Range Dependence

Heavy-tailed distributions are strongly related to long-range dependence. From

a mathematical point of view LRD asymptotically arises when many random

variables, exhibiting heavy-tailedness are superposed, as we are going to detail

in this section. Besides heavy-tailedness of certain network-related variables

can be shown to underlie the root cause of LRD and Self-Similarity in IP

networks (Sec. 2.2).

Definition A.5.1. A random variable Z has a heavy-tailed distribution if:

Pr{Z > x} ∼
x→∞

ax−c (A.5.1)
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where 0 < c < 2 is called the tail index or shape parameter and a is a positive

constant.

Hence the tail of the distribution decays hyperbolically. In terms of the

cumulative distribution function FZ(x), Z has a heavy-tailed distribution if

FZ(x) ∼
x→∞

1− ax−c.

A distribution, which satisfies Eq. A.5.1 has the following property: if

α ≤ n ∈ N than the n− th moment of the distribution is infinite. In particular

a heavy-tailed distribution 0 < α < 2 has infinite variance, and if 0 < α ≤ 1,

it also has unbounded mean.

A frequently used heavy-tailed distribution is the Pareto distribution, which

satisfies Eq. A.5.1 exactly, i.e.:

Pr{Z > z} = ax−c =
(x

b

)−c

, for x ≥ b,

where b is called the location parameter. Sometimes one prefers to define

the Pareto variable for x ≥ 0, in this case it follows:

Pr{Z > z} =

(
x + b

b

)−c

, for x ≥ 0.

Now we are going to analytically detail the relation between heavy tails

and LRD by introducing two theorems.

Firstly let us consider N independent reward renewal processes Xi(t), i ∈
1, 2, ...N . Each process alternating takes the value 1 (on) and 0 (off) with

i.i.d. on periods (τon) and i.i.d. off periods (τoff ). Each process could model

the on/off transmission activity of a source in data networks. Let SN(t) =∑N
i=1 Xi(t) denote the aggregate traffic at time t. Consider the cumulative

process YN(Tt) defined as

YN(Tt) =

∫ Tt

0

(
N∑

i=1

Xi(s)

)
ds

Thus, following our network interpretation, YN(Tt) measures the total traf-

fic up to time Tt.
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Let us assume that τon is heavy tailed with 1 < α < 2 (hence it admits

mean value), while τoff can be either heavy tailed with 1 < α < 2 or not. It

can be shown [156, 162]:

Theorem A.5.1. (On/Off Model and FBM) As T and N diverge YN(Tt)

behaves statistically as it follows

YN(Tt) ∼
N,T→∞

E[τon]

E[τon] + E[τoff ]
NTt + CN1/2THBH(t), (A.5.2)

where H = (3 − α)/2, BH(t) is FBM with parameter H, and C > 0 is a

quantity depending only on the distributions of τon and τoff .

Thus YN(Tt) asymptotically behaves as a zero-mean fractional brownian

motion fluctuating around NTtE[τon]/(E[τon] + E[τoff ]) when suitably nor-

malized. It is long-range dependent (1/2 < H < 1) if and only if 1 < α < 2,

that is τon’s distribution is heavy tailed.

Now we consider a different model: an infinite set of processes Xi(t), i ∈
N, each process Xi(t) is equal to 1 if t belongs to a specific interval ([ti, ti +

τi), ti ∈ N, τi ∈ N) otherwise Xi(t) is equal to 0. The time instants ti

are determined by a Poisson process, τi are i.i.d.. Let us consider the process

which indicates how many connections are active at time t:

X(t) =
∑

i∈N
Xi(t).

Each process Xi(t) can model a source transmitting a single packet train

(or a single variable size packet), and X(t) denotes the aggregate traffic at

time t.

The process X(t) has been studied in [44] as an M/G/∞ queue. In this

case ti are the arrival times of packets at the queue, τi are the service times,

X(t) coincides with the number of busy servers at time t, known as the busy

server process.

Theorem A.5.2. (M/G/∞ and LRD) If the service time distribution has

heavy tails with tail index 1 < α < 2 then X(t), t ∈ N, is asymptotically

second-order self-similar with parameter H = (3− α)/2.
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X(t) is long-range dependent. Anyway it has Poisson marginals, but it can

be shown that FBM arises naturally as a limiting process by appropriately

scaling the Poisson arrival rate and service times [96].

Note that heavy-tailedness is not necessary to generate long-range depen-

dence in aggregate traffic (see for example [21]), anyway there is evidence that

LRD in data networks is caused by heavy tails (Sec. 2.2).

A.6 Statistical Analysis of Self-Similarity

The Hurst parameter H is able to quantify the degree of self-similarity (or of

LRD) of a process.

In what follows we briefly describe three methods able to provide H es-

timates: the aggregate variance, the rescaled adjusted range and the wavelet

estimators. These are the methods employed in our work (see Sec. 2.4).

A comprehensive overview of LRD statistical-parameters estimation, in-

cluding the first two methods, can be found in [21]. Aggregated variance

and rescaled adjusted range have the advantage of being simple and practical

to implement, but often exhibit poor statistical properties [157]. Maximum

Likelihood Estimator (MLE) techniques, not used in this work, have better

statistical properties, but involve minimization procedures which are complex

and slow and need parametric assumptions. The wavelet-based joint estimator

is faster than MLE techniques and, according to [2], displays statistical per-

formance comparable to MLE techniques when their parametric assumptions

are satisfied and greater robustness under departures from them.

A.6.1 Aggregate Variance

The methods relies on the following striking property of LRD processes. If

Xn = 1/n
∑n

i=1 Xi it holds

var(Xn) ∼
n→∞

cn2H−2,

where c > 0 [21].

This suggests the following method for estimating H. The original series

X(i) is divided into M blocks of size m and the aggregated series X(m)(k) is
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calculated as

X(m)(k) =
1

m

km∑

i=(k−1)m+1

X(i) k = 1, 2, . . . .

The overall mean is

X
(m)

=
1

M

M∑

k=1

X(m)(k).

The sample variance of X(m)(k),

s2(m) =
1

M − 1

M∑

k=1

(
X(m)(k)−X

(m)
)2

,

is an estimator of V ar
(
X(m)

)
, hence, asymptotically:

s2(m) ≈ cm2H−2

If we plot log(s2(m)) versus log m, for large values of m, the points in the

plot are expected to be scattered around a straight line with negative slope

2H − 2. The slope, and hence the Hurst parameter, can be estimated by

least-squares regression.

A.6.2 Rescaled Adjusted Range (R/S)

Let X(t) be discrete-time process, and Y (t) =
∑t

k=1 X(t) its partial sum. Let

us define the adjusted range as

R(t,m)= max
0≤p≤m

(
Y (t + p)− Y (t)− p

m
(Y (t + m)− Y (t))

)

− min
0≤p≤m

(
Y (t + p)− Y (t)− p

m
(Y (t + m)− Y (t))

)
.

In order to study the properties that are independent of the scale, R(t, k) is

standardized by S(t, m), where S2(t,m) is the sample (biased) variance of the

sequence (X(t + 1), X(t + 2), ...X(t + m)). The ratio

R

S
(t, m) =

R(t, m)

S(t,m)

is called the rescaled adjusted range or R/S-statistic.
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It can be shown that if X(t) is long-range dependent with Hurst parameter

H, then

R

S
(t,m) ∼

m→∞
cmH .

This suggests the following method for estimating H. Given a sample of

n observations X(1), X(2), ..., X(n), one subdivides the whole sample into M

non overlapping blocks and computes the rescaled adjusted range R/S(ti,m)

for each batch m, starting at points ti = (i − 1)n/M + 1 for i = 1, 2...M .

For values of m smaller than n/M one gets M different estimates of R/S. For

values of m approaching n, one gets fewer values, as few as 1 when t1+m > n.

If we plot log(R/S(ti,m)) versus log m, for large values of m, the points

in the plot are expected to be scattered around a straight line with positive

slope H. The slope can be estimated by least-squares regression.

A.6.3 Wavelet Estimator

We recall that the spectrum of an LRD process X(t) exhibits power-law di-

vergence at the origin:

Γ(ν) ∼
ν→0

cf |ν|−β, β ∈ (0, 1).

The method, proposed in [2] recovers the power-law exponent 1− 2H and

the coefficient cf turning to account the following relation

E
{
d2

X(j, l)
}

= 2j(1−2H)cfC

where dX(j, l) =< X,ψl,j > are the coefficients of the discrete wavelet trans-

form of the signal X(t), i.e. its projections on the basis functions ψl,j, con-

structed by the mother wavelet through scaling and translation (2j and l are

respectively the scaling and the translation factor).

If we plot log(d2
X(j, l)) versus j, for large values of j, the points in the plot

are expected to be scattered around a straight line with positive slope 1−2H.

If the process X(i) is gaussian, this estimator provides confidence intervals

for H.



Appendix B

An Overview of

Differentiated Services

The purpose of this appendix is to briefly present Differentiated Services ap-

proach and terminology. The text is mainly based on the RFCs from the

Differentiated Services IETF Group (in particular [27]) and on two overview

papers from experts in Internet Quality of Service [37, 52].

B.1 The Quality of Service Issue

in the Internet

The expression Quality of Service (QoS) does not have a universally accepted

meaning. Here we limit its meaning to a set of measurable network per-

formance parameters, such as delay, throughput, and loss rate, that can be

attached to some identifiable subset of IP traffic through a given network do-

main. The identifiable subset of traffic belongs to a “user”, where “user” spans

from a single application program to an entire company. Providing guarantees

about the values of network performance parameters requires the implemen-

tation and deployment of physical mechanisms throughout the network and

then configuring these mechanisms in such a way that their effect, when viewed

from the edges of the network, composes into the desired QoS.

132
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The wireline telephone network has often been considered as an undiscussed

high-level reference for QoS. Although the telephone network has evolved con-

siderably, a reserved circuit and a single grade of quality are the two defining

characteristics of a standard telephone call.

The situation has never been this simple in packet switching networks in-

cluding the Internet. Firstly there is no requirement in the Internet for a

reserved path from source to destination: individual packets are routed sepa-

rately according to routing tables at each hop and their paths may change due

to extraneous circumstances (though in most cases they are constant through-

out a session). At the same time, packets are of variable length, typically

between 20–4000 bytes. The arrival of packets at network links is both ran-

dom and bursty, and cannot be modeled by a Poisson distribution [99, 159].

Secondly a given link or router in the core of the Internet may be carrying

traffic for thousands or millions of sessions from a wide variety of application

types whose intrinsic QoS requirements vary enormously. Unlike the telephone

network, measurements show that the dominant traffic pattern is typified by

short sessions with a handful of packets in each direction, hence setup costs

(e.g. to instantiate circuits) are not acceptable. In summary, the Internet

has no standard QoS requirement and no analytically tractable (e.g., Poisson)

traffic model.

There have been many attempts to solve the QoS problem in IP networks,

before the proposal of the differentiated services approach, e.g. IP precedence

and type of service [141, 5], Internet stream protocol [49], integrated services

[31, 106].

B.2 The Differentiated Services Approach

Differentiated Services (DiffServ) is an architecture for implementing scalable

service differentiation in the Internet. A service defines some significant char-

acteristics of packet transmission in one direction across a set of one or more

paths within a network. These characteristics may be specified in quantitative

or statistical terms of throughput, delay, jitter, and/or loss, or may otherwise

be specified in terms of some relative priority of access to network resources.

Service differentiation is desired to accommodate heterogeneous application
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requirements and user expectations, and to permit differentiated pricing of

Internet service. DiffServ is currently being finalized by the IETF and imple-

mented by various vendors.

Diffserv approach recognizes that the relevant entity for effecting service

guarantees in the Internet is the administrative domain of a single network

operator (either an enterprise network, or a single ISP). Thus, the model is

oriented toward edge-to-edge service across a single domain, with an appro-

priate Service Level Agreement (SLA) assumed to be in place at the edges

of the domain. In this way, simple but effective QoS can be built from the

components during early deployments and Internet-wide QoS can evolve into

a more sophisticated structure as roll-outs and experience increases. Internet-

wide differentiated service levels will, of necessity, require agreements between

adjacent network providers. The technical part of these agreements will con-

sist of the edge-to-edge Service Level Specifications (SLS) to which a network

provider is committed.

Also, the emphasis has been on developing QoS building blocks first rather

than the services, recognizing the need for highly scalable mechanisms with

minimum impact on the data path elements of high-speed core routers. In facts

Diffserv uses simple mechanisms in complex composition, allowing the details

of the composition to evolve while the mechanisms, part of the network in-

frastructure, can remain the same. Such mechanisms are functional elements

implemented in network nodes, including a small set of per-hop forwarding

behaviors, packet classification functions, and traffic conditioning functions

including metering, marking, shaping, and policing. The Diffserv architecture

also recognizes the highly variable traffic profiles encountered in the Inter-

net. Unlike IP Precedence, it aims at “sophisticated simplicity” in which the

data path mechanisms are simple to implement, but allow very rich network

behaviors to be created

Finally, this architecture achieves scalability by traffic aggregation. That

is, traffic flows are not independently forwarded, but they are aggregate in a

certain number of macroflows, according to their QoS requirements. In order

to constitute traffic flow aggregates, packet marking is used. Complex classifi-

cation and conditioning functions can be implemented only at network bound-

ary nodes, and per-hop behaviors are applied to aggregates of traffic. Hence,

unlike the Internet Stream protocol and Integrated Services, per-application
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Figure B.1: The DS field in the IP v4 packet.

flow or per-customer forwarding state need not be maintained within the core

of the network. Diffserv takes the approach that connections that are visible

at the network’s edge do not necessarily mean connections that are visible in

the interior of the network.

From the previous description, it follows that a distinction is maintained

among:

• the service provided to a traffic aggregate,

• the conditioning functions and per-hop behaviors used to realize services,

• the Differentiated Services field value (DS codepoint) used to mark pack-

ets to select a per-hop behavior, and

• the particular node implementation mechanisms which realize a per-hop

behavior.

These aspects are detailed in the following sections.

B.3 The Differentiated Services Field

The DiffServ architecture is based on the use of the Differentiated Services

field (DS field, [131]) in the IP header. The DS field comes from a redefinition

of the 8-bit Type of Service (TOS) of the IPv4 header (Fig. B.1), which is

commonly unused in today’s traffic. In IPv6, there is an equivalent byte called
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the Traffic Class octet. The TOS field has been divided into two parts: the

6-bit DS field and a 2-bit ECN field. The DS field is marked with a specific

bit-pattern called a DS codepoint (or DSCP) used to indicate how each router

should treat the packet. Diffserv packets must have a suitable value in the

DSCP field. To emphasize the fact that no session information needs to be

stored, this treatment is known as a per-hop behavior (PHB).

The DSCP setting operation is called marking. It may occur in two places:

the original source of the traffic, e.g. a web server or IP telephony gateway,

or a router such as the first router the traffic encounters or the router at

the customer/ISP boundary. Marking at the source has the advantage that

the classifier may have explicit knowledge of the application in use and can

therefore mark packets in an application-dependent way. The second solution

has the advantage that no change is needed to servers, but it requires some

extra “smarts” in the router. Fortunately, many routers have a very similar

capability already, for use with IntServ/RSVP. A different solution is the pos-

sibility for the server to use the IntServ/RSVP model to communicate with

the boundary router of the DiffServ domain.

B.4 Traffic Classification and Conditioning

Differentiated services are extended across a DS domain boundary by estab-

lishing a SLA between an upstream network and a downstream DS domain.

From the SLA a Traffic Conditioning Agreement (TCA) is derived. It specifies

classifier rules and any corresponding traffic profiles and metering, marking,

discarding and/or shaping rules which are to apply to the traffic streams se-

lected by the classifier. A TCA encompasses all of the traffic conditioning rules

explicitly specified within a SLA along with all of the rules implicit from the

relevant service requirements and/or from a DS domain’s service provisioning

policy.

As we said a TCA can specify a traffic profile. Traffic profile is an optional

component of a TCA, which characterizes the temporal properties of a traffic

stream selected by a classifier. It provides rules for determining whether a

particular packet is in-profile or out-of-profile. For example, a profile could be

based on a token bucket, in this case out-of-profile packets are those packets
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Figure B.2: Logical View of a Packet Classifier and Traffic Conditioner.

in the traffic stream which arrive when insufficient tokens are available in

the bucket. The concept of in- and out-of-profile can be extended to more

than two levels, e.g., multiple levels of conformance with a profile may be

defined and enforced. Different conditioning actions may be applied to the in-

profile packets and out-of-profile packets, or different accounting actions may

be triggered.

Fig. B.2 shows the relation between a packet classifier and traffic condi-

tioner in a DS router.

B.4.1 Traffic Classifiers

The packet classification policy identifies the subset of traffic which may receive

a differentiated service by being conditioned and/or mapped to one or more

behavior aggregates (by DS codepoint re–marking) within the DS domain.

Packet classifiers select packets in a traffic stream based on the content

of some portion of the packet header. Two types of classifiers have been

identified. The Behavior Aggregate classifier classifies packets based on the

DS codepoint only. The Multi-Field classifier selects packets based on the

value of a combination of one or more header fields, such as source address,

destination address, DS field, protocol ID, source port and destination port

numbers, and other information such as incoming interface.

Classifiers are used to “steer” packets matching some specified rule to an

element of a traffic conditioner for further processing.
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B.4.2 Traffic Conditioners

Traffic conditioning performs metering, shaping, policing and/or re–marking

to ensure that the traffic entering the DS domain conforms to the rules specified

in the TCA, in accordance with the domain’s service provisioning policy. The

extent of traffic conditioning required is dependent on the specifics of the

service offering, and may range from simple codepoint re–marking to complex

policing and shaping operations.

For example in-profile packets may be allowed to enter the DS domain with-

out further conditioning; or, alternatively, their DS codepoint may be changed.

The latter happens when the DS codepoint is set to a non-Default value for

the first time [131], or when the packets enter a DS domain that uses a dif-

ferent PHB group or codepoint→PHB mapping policy for this traffic stream.

Out-of-profile packets may be queued until they are in-profile (shaped), dis-

carded (policed), marked with a new codepoint (re–marked), or forwarded

unchanged while triggering some accounting procedure. Out-of-profile pack-

ets may be mapped to one or more behavior aggregates that are “inferior”

in some dimension of forwarding performance to the behavior aggregate into

which in-profile packets are mapped.

As it is shown in Fig. B.2, a traffic conditioner may contain the following

elements:

Meters measure the temporal properties of the stream of packets selected by a

classifier against a traffic profile specified in a TCA. A meter passes state

information to other conditioning functions to trigger a particular action

for each packet which is either in- or out-of-profile (to some extent).

Markers set the DS field of a packet to a particular codepoint, adding the

marked packet to a particular DS behavior aggregate. The marker may

be configured to mark all packets which are steered to it to a single

codepoint, or may be configured to mark a packet to one of a set of

codepoints used to select a PHB in a PHB group, according to the state

of a meter. When the marker changes the codepoint in a packet it is said

to have re-marked the packet.

Shapers delay some or all of the packets in a traffic stream in order to bring

the stream into compliance with a traffic profile. A shaper usually has a
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finite-size buffer, and packets may be discarded if there is not sufficient

buffer space to hold the delayed packets.

Droppers discard some or all of the packets in a traffic stream in order to

bring the stream into compliance with a traffic profile. This process is

know as policing the stream.

B.5 Per-Hop Behaviors

When a packet enters a router, routing logic selects its output port and the

DSCP value is used to steer the packet to a specific queue or treatment at that

port. The particular handling depends on the definition of the corresponding

PHB, which is implemented in nodes by means of some buffer management

and packet scheduling mechanisms. The particular PHB is configured by a

network management mechanism setting up the QoS behavior table inside the

router.

A few PHBs have been standardized so far:

Default behavior [131]: here the DSCP value is zero and the service to be

expected is exactly today’s default Internet service (i.e., with congestion

and loss completely uncontrolled).

Class selector behaviors [131]: here seven DSCP values run from 001000

to 111000 and are specified to select up to seven behaviors, each of which

has a higher probability of timely forwarding than its predecessor. The

default behavior plus the class selectors exactly mirror the original eight

IP Precedence values.

Expedited Forwarding (EF) behavior [47]: the recommended DSCP value

is 101110 and the behavior is defined as being such that the departure

rate of EF traffic must equal or exceed a configurable rate. EF is intended

to allow the creation of realtime services with a configured throughput

rate.

Assured Forwarding (AF) behaviors [79]: an AF behavior, say AFi ac-

tually consists of three subbehaviors AFi1, AFi2 and AFi3 with increas-

ing dropping probability when congestion occurs. Thus, within the AF
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class, differential drop probabilities are available, but otherwise the class

behaves as a single PHB. The standard actually defines four independent

AF classes, hence i = 1, 2, 3, 4.

As regards packet marking schemes for the AF PHB refer to Chapter 4, in

particular Sec. 4.1. To the best of our knowledge, at the time of writing this

document, there is no published work on marking schemes for EF packets. A

simple way of marking EF packets is to meter the traffic against a token bucket

profile. Conformant packets are marked as EF and nonconformant packets are

either dropped or unmarked (default behavior, Sec. B.5).

B.6 Per-Domain Behaviors

The IETF has adopted the phrase “per domain behavior” to capture the no-

tion of a precise description, including quantitative parameters, of the service

provided to an identifiable or target group of packets between the edges of a

given differentiated services network domain [132]. A particular PHB (or, if

applicable, list of PHBs) and traffic conditioning requirements are associated

with each PDB. Each PDB has measurable, quantifiable attributes that can

be used to describe what happens to its packets as they enter and cross the

DS domain. These derive from the characteristics of the traffic aggregate that

results from application of classification and traffic conditioning during the

entry of packets into the DS domain and the forwarding treatment (PHB) the

packets get inside the domain, but can also depend on the entering traffic loads

and the domain’s topology. Despite of this, an important consideration for the

scalability of any PDB is that its attributes should be almost independent of

the amount of traffic entering the domain or the path taken by this traffic

inside the DS domain. Furthermore, the edge-to-edge attributes of a PDB

should hold regardless of any splitting or merging of the traffic aggregates in-

side the domain. The attributes of PDBs (throughput, drop rate, delay bound,

etc.) are advertised as service-level specifications (SLSs) at the edges of the

domain. They are usually listed as statistical bounds or percentiles and not as

fixed values. Note that there is no one-to-one relationship between PHBs and

PDBs. This means that more than one PDB can be based on the same PHB.

On the other hand, a PDB can only be based on one or more PHBs of the
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Figure B.3: An example of DiffServ operation.

same group within a single domain. This means that a large number of PDBs

can be constructed from a small number of PHBs depending on many factors,

such as PHB characteristics, available routes between each ingress–egress pair,

and policy.

B.7 Bandwidth Broker

A SLA contains a Service Level Specification (SLS) that characterizes aggre-

gates traffic profile and the PHB to be applied to each aggregate. To automate

the process of SLS negotiation, admission control and configuration of network

devices correctly to support the provisioned QoS, each DiffServ network may

be added with a new component called a Bandwidth Broker (BB) [158]. An

ISP, for example, can dynamically negotiate different service level agreements
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and bandwidth guarantees with a given customer. Alternatively, a server

provider could charge different rates for bandwidth depending on the demand.

To do this, the bandwidth broker will contain the ability, using standards

based protocols, to communicate with remote bandwidth broker in order to

negotiate the Service Level Specification and with local enforcers to determine

the state of the network as well as configure the network. The bandwidth

broker will take into consideration the ability of the entire network to deliver

the policy request. To do this, it will check the state of the network over

a period as well as the number of other commitments that have been made

before making any decision.

As we can see, the bandwidth broker is a complex entity that might need

integration of several technologies such as standard interface for inter/intra

domain communication, protocol entity for communication, standard protocol

and database. Organizational policies can be configured by using the mech-

anism provided by BB. On the inter domain level BB is responsible of nego-

tiating QoS parameters and setting up bilateral agreements with neighboring

domains. On intra domain level BBs responsibilities include configuration of

edge routers to enforce resource allocation and admission control.

Further information on bandwidth brokers can be found in [152].

B.8 An example

In this section we summarize DiffServ operation by a simple network example,

illustrated in Fig. B.3.

A DiffServ-aware network consists of multiple DiffServ domains (DSs) that

can be viewed as autonomous systems. The boundary routers of each domain

perform the necessary traffic conditioning at the edges. Every DS domain

makes a SLA specifying the services (in terms of SLSs) that this domain will

provide. From the SLA one can derive a traffic conditioning agreement (TCA)

that incoming traffic to this domain will be subjected to. Adjacent domains

negotiate SLAs among themselves and with customers accessing their network.

Each DS domain configures and provisions its internal nodes such that these

SLAs can be met. This distribution of configuration responsibilities adds to

the flexibility of the DiffServ architecture.
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Let us follow a typical packet in the DiffServ scenario in Fig. B.3 from the

time it leaves the source until it reaches domain B. As we said in Sec. B.4, the

packet can be first metered against a certain traffic profile negotiated between

the customer and the network service provider. The packet is then marked

with an appropriate DSCP to meet a certain service level in the ISP network.

Packet marking can be accomplished either at the host (source) or at the

first-hop router (called leaf router) or even at the boundary routers. In our

example, all the source traffic is simply marked by the leaf router, leaving to

the ISP ingress router the re–marking task, if it is needed. Once the packet has

been marked, it becomes part of a specific behavior aggregate with all other

packets marked with the same DSCP. At the ingress router of the DS domain

the packet is classified using either MF or BA classifiers. The packet is then

metered against the negotiated traffic contract and undergoes a policer/shaper,

if necessary. At this point, the packet may also be re–marked with a different

DSCP if it is non-conformant (e.g. because the source exceeded the negotiated

average throughput). The interior or core routers implement the necessary

traffic forwarding treatments for different PHBs supported by the DS domain

(Sec. B.5). At the exit of a DS domain, the packet may go through another

level of traffic conditioning in the egress router of the domain. This level

of traffic conditioning guarantees that the traffic leaving one DS domain and

entering the adjacent domain follows the traffic contract agreed upon between

the domains. Nevertheless traffic metering and conditioning can be repeated

at the ingress of domain B, and traffic can be re–marked, even if all the traffic

is conformant, because a different DSCP code has been adopted.

From the above example, it is clear that the DiffServ architecture pushes

the complexity of managing the network to the edges and leaves packet han-

dling and forwarding in the core of the network as simple and fast as possible.

This is a major improvement in scalability of DiffServ over other schemes such

as Integrated Services. Although aggregated traffic handling reduces the flex-

ibility of providing QoS guarantees to individual flows, it improves the overall

scalability of the architecture.



Appendix C

Some Remarks on the Effects of

TCP Packet Reordering

This appendix integrates results of Sec. 4.4.6 about the effect of reordering

on the proposed marking scheme. In Sec. C.1 we provide some information

about the causes of reordering in IP networks and about its effects on the

TCP performance. Although packet reordering is intuitively considered as a

negative phenomenon, which may severely affect TCP traffic performance, we

show via extensive simulation results, that a limited amount of reordering may

improve the network performance in terms of delay versus utilization. I and

other colleagues presented this odd result in [128]. In order to explain these

apparently surprising and counter-intuitive results, we carry out an analogy

with a simplified system model where TCP sources experience an artificially

induced steady-state dropping probability. This simplified scenario can be an-

alytically evaluated, and leads us to conclude that, in the presence of a “small”

(to be quantified in what follows) packet loss probability, an improvement in

terms of network performance is expected.

To the authors’ knowledge, [128] is the first paper which claims that TCP

packet reordering, rather than being harmful, may be a beneficial phenomenon

in terms of overall network performance.

In Sec. C.2 we present the simulation scenario and parameters, focusing

in particular on the way reordering has been obtained. We then, in Sec. C.3,
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follow up by presenting simulation results which show that packet reordering

may have a beneficial effect on the network performance. Then, we try to

provide a theoretical justification for the obtained results by making an anal-

ogy with a system characterized by a given steady-state dropping probability.

Finally conclusive remarks are drawn in Sec. C.4.

C.1 Introduction: Packet Reordering

Packet reordering is a phenomenon which occurs when packets belonging to a

same flow are received in a different order than the packet transmission one1.

IP networks do not provide any guarantee that packets belonging to the

same flow are delivered in the correct order, anyway packet reordering was

originally considered to be an uncommon event, occurring only in pathological

network conditions, e.g. caused by router malfunctioning, route flapping, etc.

However, recent studies have shown that in present IP networks there are

several causes of reordering under absolutely normal network operation.

Previous research work [20] has identified two major causes for the occur-

rence of packet reordering: local parallelism and load balancing.

Local parallelism implies that packets may follow multiple paths within

a device or logical link. Examples of local parallelism are link-level striping

and switches which allow packets traveling between the same source and des-

tination to take different paths through the switch. Local parallelism is an

increasing phenomenon in modern Internet devices, because it leads to reduce

the cost of equipments and trunks. It is often more cost effective to put two

components in parallel than to use one component that has twice the speed.

A concrete example of local parallelism at the data link layer is represented

by the 802.3ad link aggregation control protocol, today extensively used in

giga-ethernet switches.

Load balancing means distributing processing and communications activity

evenly across a computer network so that no single device is overwhelmed. For

example IS-IS, the Interior Gateway Protocol (IGP) used by Sprint provides a

load balancing mechanism based on link weights [86] and can cause reordering.

1Hence packet reordering refers to the disorder caused by the network and not to the
packet resequencing problem considered often in queueing theory papers like [93].
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The amount of reordering in IP networks is quite debated: early experimen-

tal results [20] suggest that the probability of a session experiencing reordering

is over 90%. More recent results [86, 87] state that the same probability ap-

pears to be below 3% and the number of packets that are reordered is no more

than 2%. Anyway, whatever the amount of reordering is, reordering is usually

considered harmful for TCP flows. In fact, in TCP, packets received out of

order cause the transmission of a duplicate ACKs, which interfere with the

normal operation of the TCP congestion control algorithm. Due to reorder-

ing, TCP flows may experience a great difficulty in opening their congestion

windows and may end up in making inefficient usage of the available link band-

width. Moreover, TCP flows may lose self-clocking and become highly bursty.

Refer to [20] for a detailed overview of the effects caused by packet reordering.

Here, we simply summarize that forward-path reordering has five side-effects:

1) it may trigger fast retransmission and cause unnecessary retransmissions; 2)

it may trigger fast recovery and cause unnecessary slowdown of TCP window

growth (cwnd and ssthresh); 3) it may obscure actual packet losses; 4) it may

cause the round-trip estimator to poorly estimate the roundtrip time; and 5)

it may reduce the efficiency of the receiving TCP. Reverse-path reordering has

one major effect: a loss of self-clocking leading to highly bursty transmission

patterns.

C.2 Simulation Scenario

We have run simulations using ns-2.1b9a [130]. In order to introduce packet re-

ordering we have modified an existing ns module (“hiccup” by Morten Schlaeger

[82], Technical University of Berlin). Hiccup provides functionalities to simu-

late link outages and segment reordering without loosing a packet. The hiccup

class is derived from the ns queue class and integrated into the ns link object.

The hiccup operates in four different modes. In HICCUP IDLE mode, all

packets are directly passed to the next link object. In HICCUP DELAY mode

packets are queued until the mode is changed back to HICCUP IDLE, then

all packets are passed to the neighbor object in a single, no time consuming,

burst. In HICCUP RESORT mode, the queueing of a single packet is delayed

until resort len later packets are queued. The last mode, HICCUP CONG,
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allows to drop packets. The hiccup module drops all packets until it is set to

a different mode.

In our study we employed hiccup only in HICCUP RESORT and HIC-

CUP CONG modes. The hiccup operation in HICCUP RESORT mode allows

one to obtain specific packet lag2 patterns. Despite of this, one can shortly

see that this behavior is not directly related to the physical phenomenon that

causes packet reordering. Besides it can produce spurious timeouts when the

hiccup module operates on a per-flow basis (as in our simulations), in fact the

hiccup module could wait for new packets before transmitting old ones, while

the TCP window do not allow the sender to transmit them.

In order to overcome this problem and to reproduce a more realistic behav-

ior we modified the HICCUP RESORT mode so that it introduces a tunable

per-packet random delay. The random delay is the sum of an exponential ran-

dom variable with expected value τ and a constant term equal to T − τ . So

τ can be changed, but the average delay introduced by hiccup is constant and

equal to T . Finally we have also modified the way the module works in HIC-

CUP CONG: packet are dropped independently with a constant probability

(ps) selected during the simulation set-up.

Our analysis has been developed on the network topology shown in figure

C.1. The central part has a simple structure, with a 6Mbps single-bottleneck

link between the core routers C1 and C2, where C1 implements RED.

We have set up 10 sources (Si, i = 1, 2, ...10), each one connected to one

of the edges E1 and E2 by a 30Mbps link. We considered long-lived flows.

The sources employ TCP Reno and have always data to transmit to destina-

tions (Di, i = 1, 2, ...10), so the throughput is determined only by the network

conditions.

A hiccup module has been located between each source and the edge. It

introduces an average delay T = 6 ms.

In order to avoid synchronization among the sources, each source starts to

transmit randomly in the interval 0-1 s, and propagation delays of the access

links are chosen so that Round Trip Time are different (from 124ms to 156ms,

2In [86] the packet lag of a reordered packet is defined as the number of packets with
a sequence number greater than the one of the reordered packet, that are seen before the
reordered packet itself; if the hiccup module operates on a per-flow basis, the packet lag
coincides with the resort len parameter.
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Figure C.1: Network topology

the average value is 140ms).

Each router deploys RED [65] as Active Queue Management. RED gate-

way calculates the average queue size (avg), using a low-pass filter with an

exponential weighted moving average of the instantaneous queue (x): avg =

wqx + (1 − wq)avg. The average queue size is compared to two thresholds,

a minimum threshold (minth) and a maximum threshold (maxth). When the

average queue size is less than the minimum threshold, no packets are dropped.

When the average queue size is greater than the maximum threshold, every

incoming packet is dropped. When the average queue size is between the

minimum and the maximum thresholds, each arriving packet is dropped with

probability p, where p is a linearly increasing function of the average queue

size. RED configuration is hence specified through three parameters: the min-

imum and the maximum threshold and the maximum dropping probability in

the region of random discard (Pmax). The thresholds and Pmax are chosen ac-

cording to [63], the filter coefficient wq according to [64], i.e. maxth = 3minth,

Pmax = 0.1 and wq = 1− exp(−M/(10 ∗ RTT ∗ C)) = 0.0012, where C is the

link capacity, M is the packet size and RTT is the Round Trip Time.

RED configuration allows the network provider to trade off link utilization
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Table C.1: RED thresholds settings

minth (packets) maxth (packets)

8 24

16 48

24 72

32 96

48 144

64 192

96 288

and delay performance: the higher the RED thresholds, the higher link uti-

lization and delay. Different settings were considered and they are reported in

table C.1.

Lastly queue physical lengths were chosen so that packet losses occurred

only in the core router C1, due to RED (not to physical queue overflow).

For each configuration at least 10 simulations with different random seeds

were run. Each simulation lasted 1000 simulated seconds, statistics were col-

lected after 50 seconds.

C.3 Simulation Results

The thorough performance evaluation of TCP traffic in the presence of RED

routers is by no means a simple task. In fact, the specific configuration of

the RED thresholds is proven to strongly affect the TCP traffic performance

in terms of throughput and delay. Rather than pre-selecting a given RED

threshold configuration (and thus evaluate the TCP traffic performance for

the very specific RED configuration chosen), we have found very useful in the

past [127] to rely on the so-called concept of “performance frontier”.

A performance frontier is a delay versus utilization plot, where different

network utilization levels are obtained via different settings of the RED thresh-

olds. As regards link utilization we have not considered the throughput of the

TCP sources, but rather the goodput, i.e. the data amount delivered to the

applications at the receivers, without losses and retransmissions, because it
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Figure C.2: Delay vs link utilization with packet reordering

is more significant from the user point of view. Fig C.2 shows the effect of

reordering on the achievable performance frontiers. Each curve represents the

average queueing delay versus the link utilization (goodput), for a specific

setting of the hiccup module. In particular τ = 0, 2, 4 ms have been chosen

respectively for the continuous curve, the dashed one and the dotted one. The

resulting percentage of packet reordering is reported in the legends of the fig-

ure3. Each point in a given curve corresponds to a specific configuration of the

RED thresholds. The arrows in the figure show the points corresponding to a

particular RED configuration (minth = 16,maxth = 48). The other points are

obtained with the RED threshold configurations summarized in table C.1.

We can note that, as reordering increases, each point moves towards lower

queuing delay and higher link utilization. At first sight, we could be surprised

seeing the frontiers moving right-down when we increase reordering, since this

appears as an overall improvement of network performance. On the contrary

we would expect a disturb like reordering to cause impairments to TCP oper-

ation.

3Actually, as τ increases, the packet reordering probability increases. Being τ constant,
the reordering probability decreases slightly as we move from left (lower RED thresholds)
to right (higher RED thresholds). Hence, to avoid complex notation, we have found simpler
to label each curve with the average value of reordering probability.
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Figure C.3: Delay vs Link Utilization with packet dropping

C.3.1 An analogy: constant dropping probability

In order to explain this counter-intuitive result, we consider the effect of an-

other form of disturb: a steady-state dropping probability independent from

the network congestion status, as it could be introduced by a wireless link.

It is advantageous because a lot of research has been done on the effect of

random losses on TCP performance and different formulas are available which

relate the throughput of a TCP source to the network dropping probability

and the average Round Trip Time (RTT).

In order to introduce an additional dropping probability we configured

the hiccup module in HICCUP CONG mode. In figure C.3, the performance

frontiers for different values of the dropping probability ps appear similar to

those in figure C.2.

The improvement for high threshold values is essentially a decrease of the

average queueing delay. This reduction can be easily explained by the relation

between throughput, average buffer occupancy (q) and packet dropping prob-

ability (p), we indicate it with T (q, p) (see for example [136] for a common

formula). T () is a decreasing function of q and p. Usually packet discards are

caused by routers, hence in well-configured AQM mechanism, dropping proba-

bility is a function of queue occupancy through the AQM law, i.e. p = fAQM(q)
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Figure C.4: Determination of equilibrium points

and T = T (q, fAQM(q)) = T (q). For high threshold values, the network equi-

librium point can be found if we consider that TCP sources are able to achieve

almost 100% utilization of the bottleneck bandwidth, i.e. T ≈ C. The equi-

librium point (pi, qi, Ti) satisfies the following relations: T (qi, fAQM(qi)) = C,

pi = fAQM(qi) and Ti = C.

When we add a steady dropping probability it holds: p = ps+fAQM(q) and

T = T (q, ps +fAQM(q)) = T (q, ps). If ps < pi, then we can assume that T ≈ C

still holds and the new equilibrium point (pf , qf , Tf ) satisfies the following

relations: T (qf , ps + fAQM(qf )) = C, pf = fAQM(qf ) and Tf = C. Being T ()

a decreasing function of q and p, from the comparison of previous equations

it follows qf < qi. Hence the queueing delay is reduced by the additional

dropping probability.

If ps > pi no solution is admissible with T = C, in particular it will be

Tf < C. These arguments are inspired to those presented in [60] and justify

the curves behavior in figure C.3 for high link utilization.

As regards low link utilization, i.e. low RED thresholds, this kind of jus-

tification is not adequate (in fact the reasoning we are going to carry out will

lead to results in contrast with simulation results), and we have to proceed in

a different way. Let us suppose that an analytical expression exists relating

the average queue value to offered TCP traffic, i.e. a relation q = q(T ) similar
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Figure C.5: cwnd probability density with packet dropping

to the relation for M/M/1 queue system q = ρ
1−ρ

, where ρ is the normalized

offered load. Using such relation and the previous one (T = T (q)) one would

obtain the network equilibrium point EPi, according to a fixed point approach.

Even if such relation is not known, it is reasonable to assume that it is an in-

creasing function of T and that q diverges as T approaches C. A qualitative

curve for q(T ) is shown in figure C.4 together with the curve T = T (q) for

RED settings (8,24) predicted by the formula in [136]. The intersection of the

two curves identifies the equilibrium point EPi. Note that for high values of

link utilization the curve q(T ) approaches the line T = C, hence this approach

recovers the above considerations. At the same time it predicts that the intro-

duction of ps would move the equilibrium point towards lower delay but also

to lower throughput. In facts, in figure C.4 the curve T = T (q, ps = 0.5%)

intersects the curve q = q(T ) in a new equilibrium point EP ′
f with q′f < qi,

T ′
f < Ti, and p′f > pi. On the contrary Fig. C.3 shows that for low link uti-

lization the throughput increases and the queueing delay is almost constant

(a bit smaller).

The error of the previous reasoning is that the average TCP throughput is

not sufficient to characterize the stochastic arrival process at the queue -as it

is for exponential arrival-, but more complex statistics are needed.

The purpose to adequately characterize the TCP packets arrival is out

of the scope of this paper. Anyway we assert that the additional dropping

probability makes TCP throughput less variable, producing better network
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Figure C.6: Probability distribution of interloss time intervals

performance. In order to support such thesis, firstly, we present some results

showing that TCP throughput is indeed more regular in the presence of the

additional packet dropping probability; secondly we justify such results by

RED operation; lastly we try to extend fixed-point argument to identify the

new equilibrium point.

Fig. C.5 shows the congestion window cwnd probability density for a fixed

RED setting and for different values of loss rate introduced by hiccup. This

figure shows that increasing the loss rate results into a restraint of cwnd values

so that the cwnd of each flow exhibits less variability and it has a lower average

value. If the dropping probability exceeds a certain threshold the consequent

average window reduction is excessive and network resources utilization is

limited by the dropping probability, hence performance dramatically collapses.

In particular, a loss rate of 5% is enough to heavily downgrade the functioning

of the network, as is visible in the figure: the corresponding curve is extremely

shrunk. We did not show the relative performance frontier in previous Fig. C.3

since it is out of range (throughput below 70%).

The different cwnd behavior can be explained looking at the packet dis-

cards pattern. Fig. C.6 shows the probability distribution of the time intervals

between two consequent losses for ps = 0 and ps = 0.5%. It appears that for

ps = 0.5% the curve resembles that for an exponential process4, while for ps = 0

4The exponential distribution may be viewed as a continuous counterpart of the geometric
distribution originating from i.i.d. losses.



155

qi

minth

minth

ps q’f

p

p

qt

t

qt

t

Figure C.7: The effect of queue oscillation on dropping probability

the curve suggests a bimodal dropping process. This can be explained by

queue oscillation5 between the region of null dropping probability (q < minth)

and the region of linear increasing dropping probability (minth < q < maxth).

Such oscillation causes the dropping probability oscillation and the consequent

variability of the TCP window.

Let us observe that this oscillation is not due to an improper RED con-

figuration: the parameters have been chosen according to commonly accepted

heuristics (see previous section) and also control theoretic analysis developed

in [83] predicts stable behavior. Simulations with Pmax = 0.05, which increases

stability margins according to [83], show similar results.

Let us consider what happens for ps 6= 0. In order to determine the new

5For the sake of simplicity we do not distinguish between the instantaneous queue
value and the filtered queue value calculated by RED in order to determine the dropping
probability.
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equilibrium point we can assume as a starting point for our consideration the

equilibrium EP ′
f shown in figure C.4, where q′f < qi, T ′

f < Ti and p′f > pi.

The queue is expected to assume lower values and to exceed minth thresh-

old less frequently. As a consequence dropping probability is more constant.

Figure C.7 illustrates qualitatively such behavior. In particular note how an

equivalent RED curve has been considered, where the dropping probability is

increased by ps all over the range of queue values, with q < maxth. These

considerations explain the quantitative results in Fig. C.6.

As we said, the lower variability of the dropping probability produces a

lower variability of the TCP cwnd. If the throughput offered to the network

is more regular, then the queue occupancy is lower, i.e. in the terms of the

previous fixed-point approach, we should consider a different relation q = q̃(T ),

where q̃(T ) < q(T ). An hypothetical curve for this new relation is shown in

Fig. C.4, and it shows that the new equilibrium point EPf is characterized by:

qf < q′f < qi and Tf > T ′
f
6. In particular from Fig. C.4 we note that Tf can

even exceed Ti, as it appears from our simulative results.

In this subsection we have presented different results showing that an ad-

ditional steady dropping probability can lead to better network performance,

basically due to a better RED operation, and we have extended a fixed point

approach in order to support such results.

C.3.2 Back to reordering

If we consider the introduction of reordering, we find similar results as regards

the TCP cwnd and the inter-loss time interval. For example figure C.8 shows

how cwnd density function varies as we introduce reordering. These results

confirm the validity of the parallel between reordering and dropping. Now we

are going to justify it in details.

In TCP Reno fast retransmit and fast recovery algorithms are implemented

[154]. According to these mechanisms if the sender receives three duplicate

acknowledgements, it assumes that the data segment indicated by the acknowl-

edgements is lost, it immediately retransmits the lost segment (fast retransmit)

6We should evaluate the new packet discards pattern in correspondence to EPf , and
repeat again the same reasoning to iteratively evaluate better approximations for the equi-
librium point, anyway the final results should satisfies the relations indicated for EPf .
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Figure C.8: cwnd probability density with packet reordering

and it halves the congestion window (fast recovery). We note that if reorder-

ing causes a packet lag greater than or equal to three, the receiver sends three

duplicate acknowledgements and the event for the TCP sources is indistin-

guishable from a loss event. This is the reason of analogous effects on network

performance.

In order to verify such hypothesis we have run some simulations where ps

has been chosen equal to the probability of a reorder with packet lag greater

than or equal to three, that has been measured in the simulations correspond-

ing to Fig. C.2. The resulting overlapping frontiers are shown in figure C.9.

We observe that corresponding performance frontiers overlap, with the excep-

tion of the utmost RED configurations for high reordering percentage, where

the frontiers branch. In particular the points obtained in HICCUP RESORT

mode are above the ones found in HICCUP CONG mode. This difference is

mainly due to the particular performance metric chosen, as we are going to

explain. Even if beyond the threshold of packet lag three the TCP sources

behave as if a packet loss happened, yet this is not the case: packets are only

shuffled, they arrive at the receiver and retransmissions are useless. In Fig. C.9

we are considering goodput, hence such useless retransmissions do not appear,

but we can note their effect on the delay. In facts, even if they constitute

a small share of the total throughput (0.69%), for high link utilization, the

delay is high dependent from the offered load, and they may produce a signif-

icantly increase of the delay. In order to support our thesis, we can plot the
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Figure C.9: Reordering frontiers versus Losses frontiers

performance frontiers considering the traffic offered to the bottleneck. In the

case of reordering the traffic offered to the bottleneck is the throughput of the

TCP sources, while in the case of dropping losses due to hiccup have to be

taken into account. For high link utilization losses due to AQM are negligible

in comparison to additional losses, hence the traffic offered to the queue is

almost equal to the goodput of the TCP sources. Fig. C.10 shows the delay

versus throughput and versus goodput respectively for the reordering case and

the dropping case. It appears that the two frontiers do not split.

In this subsection we have shown that the similarity of results for reordering

and dropping is due to the fact that packet reordering with packet lag greater

than or equal to three triggers fast retransmit and fast recovery algorithms.

Performance frontiers overlap when the dropping probability and reordering

probability are chosen according to this consideration.

C.4 Final Remarks

In this appendix it has been shown that packet reordering is not necessarily a

harmful effect in terms of network performance. In fact, our results show that

a small amount of reordering can actually improve the network performance.

Small is referred to the average dropping probability in absence of reordering.
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In the attempt to find a justification for this result, we have made an anal-

ogy with a system characterized by a constant steady-state dropping probabil-

ity not related to the congestion status of the network (as it happens in wireless

links), and we have shown (via both simulation and theoretical analysis) that

it produces the same beneficial effects.

Even if the result can appear counter-intuitive and somewhat suprising, in

reality we note three strong limitations:

• the improvement is highly dependent from the uniformity of the reorder-

ing (or dropping) probability;

• we think that the improvement is highly reduced if short lived flows are

considered, or if reverse traffic reordering is taken into account;

• the amount of helpful reordering (dropping) depends from the specific

network scenario, the same probability may be harmful for a different

configuration.

We remark that the improvement is essentially due to a better operation of

RED: basically we have shown that a RED with a different configuration, i.e.

with a small dropping probability for low queue values would have performed

better for the specific network scenario.
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