Simulated Annealing for Edge Partitioning

Hlib Mykhailenko
Université Côte d’Azur, Inria
Sophia Antipolis 06902, France
Email: hlib.mykhailenko@inria.fr

Giovanni Neglia
Université Côte d’Azur, Inria
Sophia Antipolis 06902, France
Email: giovanni.neglia@inria.fr

Fabrice Huet
Université Côte d’Azur, CNRS, I3S
Sophia Antipolis 06902, France
Email: fabrice.huet@unice.fr

Abstract—In distributed graph computation, graph partitioning is an important preliminary step, because the computation time can significantly depend on how the graph has been split among the different executors. In this paper, we propose a framework for distributed edge partitioning based on simulated annealing. The framework can be used to optimize a large family of partitioning metrics. We provide sufficient conditions for convergence to the optimum as well as discuss which metrics can be efficiently optimized in a distributed way. We implemented our partitioners in Apache GraphX and performed a preliminary comparison with JA-BE-JA-VC, a state-of-the-art partitioner that inspired our approach. We show that our approach can provide improvements, but further research is required to identify suitable metrics to optimize as well as to design a more efficient exploration phase for our algorithm without sacrificing convergence properties.

I. INTRODUCTION

Analyzing large graphs is a space intensive operation which usually cannot be performed on a single machine. Hence, there has been a lot of work dedicated to designing programming models and building distributed middleware to perform such a computation on a set of machines, often called slaves or executors. Usually, the first step consists in partitioning the graph and distributing it over the set of executors. That way, each executor processes its own part of the graph locally, and then, it shares it with other executors. A good partitioning reduces graph processing time achieving computational balance and limited communication requirements, respectively if the partitions have roughly the same size and have low intersection.

There are two approaches to partition the graph—vertex and edge partitioning—depending if vertices or edges are assigned to the partition. Recently, it has been advocated [6] [4] that edge partitioning is more effective for power-law graphs and some recent distributed computation frameworks like GraphX [11] and PowerGraph [6] rely indeed on it. Edge partitioning is also referred to as vertex-cut partitioning because a vertex is “cut,” if its edges are assigned to different partitions. These partitions will in general need to communicate during the graph processing phase to synchronize their computation.

For this reason the number of vertices cut, and the number of their pieces are two common indicators of the partition quality in terms of communication requirements.

A new edge partitioning algorithm, called JA-BE-JA-VC, has been proposed in [10] and shown to significantly outperform existing algorithms. It iteratively improves on an initial (arbitrary) edge partition assignment, by allowing two edges to swap their assignment if this seems to be beneficial to reduce the number of cuts of the corresponding vertices. In order to avoid to get stuck at local minima, JA-BE-JA-VC borrows from simulated annealing (SA) the idea to permit apparently detrimental swaps at early stages of the partitioning.

In this paper, we develop this initial inspiration and propose graph partitioners based on SA for Spark. To this purpose, we first reverse engineer JA-BE-JA-VC to show which metric it is targeting. Second, we propose a general SA framework that can optimize a large spectrum of objective functions, and for which convergence results can be proven. A naive implementation of this approach (as well as of JA-BE-JA-VC) would require a significant number of costly synchronization operations during the partitioning. Then, a third contribution of this paper, is to explain how these algorithms can be efficiently implemented in a distributed architecture as Spark. As a proof of concept, we perform some preliminary experiments considering a different objective function that takes into account both communication cost and computational balance. We show that this objective function may obtain even better partitions than JA-BE-JA-VC, but this does not happen consistently and further investigation is required to choose the edges to swap.

The rest of the paper is organized as follows. We first start by introducing the notation and tools used in this work (Section II). After we reverse-engineer JA-BE-JA-VC algorithm in Section III. Then we present SA framework for edge are presented in Section V. Finally, we conclude in Section VI.

II. BACKGROUND AND NOTATION

Apache Spark [14] [13] is a large-scale distributed framework for data processing. It is built on the notion of Resilient Distributed Dataset (RDD) [11]. RDD is an immutable lazily-evaluated distributed collections with predefined functions which can be applied to them. Apache GraphX [12] is a widely-used Spark’s API for graph processing. GraphX programs are executed as Apache Spark Jobs. In this framework, graphs are composed of two RDDs: a vertex RDD and an edge RDD and partitions are built using a vertex-cut partitioner. In this paper, we propose new edge partitioners for GraphX, in the sense that i) GraphX is used first to partition the graph, ii) the graph is later loaded in GraphX according to this partition in order to be processed.

Consider an undirected graph $G = (V, E)$ with V and E representing the set of vertices and edges respectively. The graph will be partitioned in N distinct partitions, that we...
identify with \(N \) different colors in the set \(C \). Let \(E(c) \) denote the set of edges with color \(c \in C \), then \(E = \bigcup_{c \in C} E(c) \). Given a vertex \(v \in V \), its degree is denoted by \(d_v \), and the number of its edges with color \(c \) is denoted by \(n_v(c) \).

The quality of a partition can be evaluated using multiple metrics [10], [7], [8]. We introduce 4 of them which will be used in the remaining of the paper.

- **Balance (denoted as BAL)** is the ratio between the maximum and the average number of edges in the partitions:
 \[
 \text{BAL} = \frac{\max_{c=1...N}(|E(c)|)}{|E|/N}. \tag{1}
 \]

- **STD** is the normalized standard deviation of partition sizes (in terms of number of edges):
 \[
 \text{STD} = \sqrt{\frac{\sum_{c \in C} \left(\frac{|E(c)|}{|E|/N} - 1 \right)^2}{N}}. \tag{2}
 \]

- **Vertex-cut (denoted as VC)** represents the number of pieces in which the vertices were cut:
 \[
 \text{VC} = |V| - \sum_{v \in V} \sum_{c \in C} \mathbb{1}(n_v(c) = d_v). \tag{3}
 \]

- **Communication cost (denoted as CC)** is the total number of vertices in partitioned graph excluding those vertices that were not cut:
 \[
 \text{CC} = \sum_{v \in V} \sum_{c \in C} \mathbb{1}(0 < n_v(c) < d_v). \tag{4}
 \]

The first two metrics quantify the different number of edges across partitions and indicate how balanced the partitioning is. The other two metrics are related to the vertices which are cut and will cause communication among executors during the computation phase.

JA-BE-JA-VC [10] is a recently proposed edge partitioner. Given an initial color assignment to edges (e.g. a random one), the algorithm iteratively selects two vertices \(u \) and \(u' \). For each of these two vertices, it then selects an edge among those whose color is less represented in their neighborhood. For example, considering \(u \), it will select an edge of color \(c \in \text{argmin} n_u(c) \). Let us denote these two edges as \((u, v) \) and \((u', v') \) with color respectively \(c \) and \(c' \). The algorithm always swaps the colors of the two edges if

\[
g(u, v, c) + g(u', v', c') < g(u, v, c') + g(u', v', c) + \frac{1}{d_u} + \frac{1}{d_v} + \frac{1}{d_{u'}} + \frac{1}{d_{v'}}, \tag{5}
\]

where \(g(u, v, c) \) is the number of vertices in partitioned graph excluding those vertices that were not cut: \((u, v) \) and \((u', v') \) with color \(c \). Condition (5) corresponds to greedily minimizing the function

\[
\mathcal{E}_{\text{comm}} = \frac{1}{2|E|} \left(2|E| - \sum_{v \in V} \sum_{c \in C} \frac{n_v(c)^2}{d_v} \right), \tag{7}
\]

under the constraint that at each step \(|E(c)| = m_c \) for any color \(c \). The constraint is easy to understand, because **JA-BE-JA-VC** simply swaps colors of two edges so the number of edges of a given color is always equal to the initial value. It is easy to show that a swap makes \(\mathcal{E}_{\text{comm}} \) decrease if and only if condition (5) is satisfied. Due to space constraints, the calculations are in the companion technical report [9]. We

1The additional terms on the right hand side correspond to the fact that there is one link more of color \(c' \) (resp. \(c \)) for \(u \) and \(v \) (resp. \(c' \)).
could equivalently, and more succinctly, state that JA-BE-JA-VC is maximizing $\sum_{v \in V} \sum_{c \in C} \frac{m_c(v, v')}{d_{vv}}$. The advantage of (7) is that E_{comm} belongs to $[0, 1]$ and SA algorithms are usually presented as minimizing an energy function.

Because of the above considerations, JA-BE-JA-VC can be thought as a heuristic to solve the following problem:

$$\min_{c \in C \cap E} E(c) \text{ subject to } E(c) = m_c$$

where c denotes the vectors of colors chosen for all the edges in the network.

While the greedy rule (5) would lead, in general, to a local minimum of E_{comm}, one may wonder if rule (6), together with the specific criteria to choose the edges to swap in JA-BE-JA-VC and to change the temperature, can lead to a solution of the problem stated above. Unfortunately, it is impossible to show that this is not the case in general.

A second remark is that (7) appears to be a quite arbitrary metric, and is not directly related to metrics like VC or CC. Our experiments show indeed that E_{comm} can decrease while both VC and CC increases, even if the evaluation in [10] indicates that this is not usually the case.

In the next section we address these two remarks.

IV. A GENERAL SA FRAMEWORK FOR EDGE PARTITIONING

Let us consider a general optimization problem

$$\min_{c \in C \cap E} E(c) \text{ subject to } c \in D,$$

where D is a generic set of constraints. We can solve this problem with SA as follows.

- given the current solution c, select a possible alternative $c' \in D$ with probability $q_{c,c'}$
- if $E(c') \leq E(c)$ accept the change, otherwise accept it with probability $\exp \left(\frac{E(c) - E(c')}{T} \right) < 1$.

If the selection probabilities $q_{c,c'}$ are symmetric ($q_{c,c'} = q_{c',c}$) and if the temperature decreases as $T_0 / \log(1+k)$, where $k \geq 0$ is the iteration number and the initial temperature T_0 is large enough, then this algorithm is guaranteed to converge (with probability 1) to the optimal solution of the above problem.\(^2\)

This algorithm is very general and can be applied to any energy function E including the metrics described in Section II. A practical limit is that the algorithm may not be easy to distribute for a generic function $E(c)$, because of its dependency on the whole vector c. Nevertheless, we can observe that an SA algorithm needs to evaluate only the energy differences $E(c') - E(c)$. Then, as far as such differences depend only on a few elements of the vectors c and c', the algorithm has still a possibility to be implemented in a distributed way.

More in general if the function E can be expressed as sum of potentials for the corresponding cliques (see [5, Chapter 7]). The energy function E_{comm} considered by JA-BE-JA-VC falls in this category and in fact at each step the energy difference between two states requires to count only the edges of those colors that u, v, u' and v' have (5). But, as we said, our framework is more general and can accommodate any function that can be expressed as sum of clique potentials. For example in what follows we consider the following function

$$E = E_{comm} + \alpha E_{bal}$$

$$E_{bal} = \frac{1}{|E|^2(1 - \frac{1}{N})^2} \sum_{c \in C} \left(|E(c)| - \frac{|E|}{N} \right)^2,$$\(^3\)

that allows to trade off the communication requirements associated to a partition, captured by E_{comm}, and the computational balance, captured by E_{bal}.\(^4\) The term E_{bal} indeed range from 0 for a perfectly balanced partition to 1 for a partition where all the edges have been assigned the same color. The parameter $\alpha > 0$ allows the user to tune the relative importance of the two terms.

The function E can be optimized according to the general framework we described above as follows. We select an edge uniformly at random (say it (u, v) with color c) from E and decide probabilistically if we want to swap its color with another edge ((u', v') with color c') or change the color c to another color c'' without affecting other edges. Both the edge (u', v') and the color c'' are selected uniformly at random from the corresponding sets. For a color swapping operation the difference of energy is equal to

$$\Delta E = \frac{1}{|E|(1 - \frac{1}{N})^2} \left(g(u, v, c) - g(u, v, c') + g(u', v', c') - g(u', v', c) - \frac{1}{d_u} - \frac{1}{d_u'} - \frac{1}{d_v} - \frac{1}{d_v'} \right),$$\(^5\)

similarly to the condition (5) for JA-BE-JA-VC. For a simple color change operation, the change of energy is:

$$\Delta E = \frac{1}{|E|(1 - \frac{1}{N})^2} \left(g(u, v, c) - g(u, v, c'') - \frac{1}{d_u} - \frac{1}{d_v} \right) + \alpha \frac{1}{|E|^2(1 - \frac{1}{N})^2} \left(n_u(c'') + n_v(c'') - n_u(c) - n_v(c) + 1 \right).$$\(^6\)

In both cases, only information about the nodes involved and their neighborhood is required as it was the case for JA-BE-JA-VC. At the same time, the same difficulty noted in Sec. II holds. In an edge-centric distributed framework, in general the edges for a node are processed by different executors. A naïve implementation of our SA algorithm of JA-BE-JA-VC would require each executor to propagate color updates (e.g. the new values of $n_u(c), n_v(c), etc.$) to other executors at each iteration leading to an unacceptable partitioning time.

In order to prevent this problem, we implemented the following distributed version of the algorithm. First, edges are

\(^2\) JA-BE-JA-VC does not satisfy any of these conditions, and then it is not guaranteed to converge to the optimal solution.

\(^3\) Cliques of order 1 are nodes, cliques of order 2 are edges, etc.

\(^4\) In [8] we have shown that linear combinations of similar metrics can be good predictors for the final computation time.

\(^5\) This algorithm is very general and can be applied to any energy function E including the metrics described in Section II. A practical limitation is that the algorithm may not be easy to distribute for a generic function $E(c)$, because of its dependency on the whole vector c. Nevertheless, we can observe that an SA algorithm needs to evaluate only the energy differences $E(c') - E(c)$. Then, as far as such differences depend only on a few elements of the vectors c and c', the algorithm has still a possibility to be implemented in a distributed way.

\(^6\) The term E_{bal} indeed range from 0 for a perfectly balanced partition to 1 for a partition where all the edges have been assigned the same color. The parameter $\alpha > 0$ allows the user to tune the relative importance of the two terms.

\(^5\) The function E can be optimized according to the general framework we described above as follows. We select an edge uniformly at random (say it (u, v) with color c) from E and decide probabilistically if we want to swap its color with another edge ((u', v') with color c') or change the color c to another color c'' without affecting other edges. Both the edge (u', v') and the color c'' are selected uniformly at random from the corresponding sets. For a color swapping operation the difference of energy is equal to

$$\Delta E = \frac{1}{|E|(1 - \frac{1}{N})^2} \left(g(u, v, c) - g(u, v, c') + g(u', v', c') - g(u', v', c) - \frac{1}{d_u} - \frac{1}{d_u'} - \frac{1}{d_v} - \frac{1}{d_v'} \right),$$\(^5\)

similarly to the condition (5) for JA-BE-JA-VC. For a simple color change operation, the change of energy is:

$$\Delta E = \frac{1}{|E|(1 - \frac{1}{N})^2} \left(g(u, v, c) - g(u, v, c'') - \frac{1}{d_u} - \frac{1}{d_v} \right) + \alpha \frac{1}{|E|^2(1 - \frac{1}{N})^2} \left(n_u(c'') + n_v(c'') - n_u(c) - n_v(c) + 1 \right).$$\(^6\)

In both cases, only information about the nodes involved and their neighborhood is required as it was the case for JA-BE-JA-VC. At the same time, the same difficulty noted in Sec. II holds. In an edge-centric distributed framework, in general the edges for a node are processed by different executors. A naïve implementation of our SA algorithm of JA-BE-JA-VC would require each executor to propagate color updates (e.g. the new values of $n_u(c), n_v(c), etc.$) to other executors at each iteration leading to an unacceptable partitioning time.

In order to prevent this problem, we implemented the following distributed version of the algorithm. First, edges are
randomly distributed among the executors, and each of them executes the general SA algorithm described above on the local set of edges for \(L \) iterations. No communication can take place among executors during this phase. After this phase is finished, communication is allowed, the correct values are computed and all the edges are again distributed at random among the executors. This reshuffle guarantees that any pair of edges has a probability to be considered for color swapping. We observe that during a local phase, an executor may compute erroneously the energy differences, if other executors are changing the color of local edges involving the same nodes. While the algorithm is intrinsically robust to such "errors," they can still prevent the convergence to the global optimum if they happen too often. It is then important to limit the number \(L \) of iterations during the local phase so that such errors do not happen to often.

In [9] we show that the number of nodes potentially affected by this problem during a local phase is bounded by \(L(1 + 2dN e^{-2d}) \), where \(d \) is the average degree in the graph. Imposing that this number is negligible in comparison to the total number of vertices, we obtain the configuration rule:

\[
L \ll \frac{|V|}{2 (1 + 2dN e^{-2d})}. \tag{12}
\]

Given the same number of potential changes considered, this implementation requires \(L \) times less synchronization phases among the executors. Due to the large time required for the synchronization phase, one can expect the total partitioning time to be reduced by roughly the same factor. Our experiments show that this is the case. In the setting described in the following section, with \(L = 200 \), there is no difference between the final partitions produced by the two implementations, but the partitioning time for the naive one is 100 times larger.

The detailed steps of our algorithm are described in Alg. 1.

V. Evaluation

We present here some preliminary experimental results.

All our experiments were performed on a cluster of 2 nodes (1 master and 1 slave) with dual-Xeon E5-2680 v2 @2.80GHz with 192GB RAM and 10 cores (20 threads). We used Spark version 1.4.0 and Spark standalone cluster as a resource manager. We configured 5 Spark’s properties: spark.executor.memory 20g; spark.driver.memory 40g; spark.cores.max 10; spark.local.dir "/tmp"; spark.cleaner.ttl 20. Since GraphX does not have a built-in function which provides values for the metrics introduced in II, we wrote code which extracts these metric information [1].

We used two undirected graphs: the email-Enron graph (36,692 vertices/ 367,662 edges) and the com-Amazon graph (334,863 vertices/ 925,863 edges) provided by SNAP project [3].

We implemented JA-BE-JA-VC and SA (Alg. 1) for GraphX. In both cases we considered the distributed operation described at the end of the previous section: \(L(= 200) \) steps are performed locally at each executor before performing a synchronization phase. For a fair comparison between the two algorithms, \(L \) corresponds in both cases to the number of alternative configurations considered (i.e. those for which the energy variation is computed). The source code is available online [2].

Each experiment consists of the following steps: i) launch the computational cluster; ii) load the given graph; iii) color the graph according to random partitioner (CanonicalRandomVertexCut); iv) re-color with JA-BE-JA-VC or SA; v) compute the partition metrics.

While SA is guaranteed to converge if \(T \) decreases as the inverse of the logarithm of the number of iterations, the convergence would be too slow for practical purposes. For this reason and to permit a simpler comparison of SA and JA-BE-JA-VC, in both cases the initial temperature decreases linearly from \(T_0 \) till 0 in 100 or 1000 iterations.

As we said our SA partitioner can be used to optimize different functions. We start by comparing JA-BE-JA-VC and

Algorithm 1 Implementation of SA for GraphX

```plaintext
1: procedure SIMULATEDANNEALING
2: \( G \leftarrow \) randomlyAssignColors(\( G \))
3: \( \text{round} \leftarrow 0 \)
4: while \( T > 0 \) do
5: \( G \leftarrow \) partitionRandomly(\( G \))
6: \( G \leftarrow \) propagateValues(\( G \))
7: for \( i < L \) do ▷ Executes locally on each partition
8: if tossCoin(2/3) == "head" then ▷ swapping with probability 2/3...
9: \( e \leftarrow \) randomEdge(\( \text{partition} \))
10: \( e' \leftarrow \) randomEdge(\( \text{partition} \))
11: \( \Delta E \leftarrow \) computeDelta(\( e, e' \))
12: if \( \Delta E < 0 \) then
13: swapColors(\( e, e' \))
14: else
15: swapColorsWithProb(\( e, e', e^{-\Delta E} \))
16: end if
17: \( e \leftarrow \) randomEdge(\( \text{partition} \))
18: \( e' \leftarrow \) anotherColor(\( e \))
19: \( \Delta E \leftarrow \) computeDelta(\( e, e' \))
20: if \( \Delta E < 0 \) then
21: changeColor(\( e, e' \))
22: else
23: changeColorWithProb(\( e, e', e^{-\Delta E} \))
24: end if
25: \( \text{round} \leftarrow \) round + +
26: end for
27: \( T \leftarrow \) newTemperature(\( \text{round} \))
28: end while
29: \( G = \) partitionBasedOnColor(\( G \))
30: end procedure
```
SA when they have the same target E_{comm} in (7). When the objective function is the same, the two main differences between the algorithms are i) the way to choose the edges to swap, and ii) the rule to accept a change. In particular, JA-BE-JA-VC chooses edges whose color is the rarest in a neighborhood, while SA selects them uniformly at random. JA-BE-JA-VC then decides to swap or not the colors according to the deterministic rule 6, while SA adopts the probabilistic rule (see Section IV).

The corresponding results are in Table I, row I and II, for different values of the initial temperature for email-Enron. Both the algorithms reduce the value of E_{comm}, but the decrease is larger of JA-BE-JA-VC. This is essentially due to the fact that JA-BE-JA-VC performs more swaps, although the number of pairs of links to swap considered is the same (equal to L times the number of iterations). For example for the initial temperature 5×10^{-11} SA swaps the color of 8808 edges, while JA-BE-JA-VC swaps the color of 37057 edges. In fact, SA random edge selection leads to consider a large number of pairs that is not useful to swap, while JA-BE-JA-VC only considers candidates that are more likely to be advantageous to swap. In this sense JA-BE-JA-VC is greedier than SA: JA-BE-JA-VC exploits more, while SA explore more. Adopting the same choice for SA would lead to lose the condition $q_{c,c'} = q_{c',c}$, that is required to guarantee convergence to the global minimum of the function. We plan to investigate in the future how to bias the selection process so that edges whose color is less represented are more likely to be selected, but still the condition $q_{c,c'} = q_{c',c}$ is satisfied.

Although SA seems to be less effective to reduce the energy, the results in Table I also shows that the function E_{comm} is not a necessarily a good proxy for the usual partition metrics like VC or CC. If fact, we see that for 100 iterations SA slightly outperforms JA-BE-JA-VC both in terms of VC and CC for the initial temperature values, even if its final energy is always larger. For 1000 iterations JA-BE-JA-VC performs better in terms of VC and worse in terms of CC. What is even more striking is that the increase in the number of iterations leads to a decrease of the energy value (as expected), but not necessarily to a decrease of VC and CC! These results suggest that more meaningful energy functions should probably be considered and our framework has the advantage to work for a large family of different objectives.

We now move to compare JA-BE-JA-VC with SA when the function $E = E_{comm} + \alpha E_{bal}$ is considered. Figure 1 shows the evolution of the energy after each local phase and then after $L = 200$ local iterations. While the two energies have different expression, the initial energy values are indistinguishable, because the starting point is an almost balanced partition and then $E_{bal} < \leq E_{comm}$ and $E \approx E_{bal}$. As in the previous case, JA-BE-JA-VC appears to be greedier in reducing the energy function. Table I shows that this does not lead necessarily to a better partition. Indeed, after 100

\footnote{Note that after a given iteration the energy can increase both for JA-BE-JA-VC and SA, but the figure shows that every L iterations, the energy always decrease.}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{energy_plot.png}
\caption{Energy value for JA-BE-JA-VC and SA using email-Enron graph (1000 iterations were performed)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{metric_plot.png}
\caption{Vertex-cut metric for JA-BE-JA-VC and SA using email-Enron graph (1000 iterations were performed)}
\end{figure}

iterations, SA minimizing E provides the best partitions in terms of VC, CC and BAL, while STD is slightly worse. After 1000 iterations, SA has further improved VC and CC at the expenses of the balance metrics like BAL and STD.

Figures 2 and 3 show similar results comparing the final metrics VC and CC for an even larger range of initial temperatures.

While for email-Enron we have shown how SA can improve communication metrics at the expenses of balance metrics, we show that the opposite result can be obtained on a different graph (com-Amazon) in Figs. 4 and 5. Moreover, for a given graph, it is possible to tune the relative importance of the different metrics by varying the parameter α.

\section{Conclusions}

In this paper, we have proposed a framework for distributed edge partitioning based on simulated annealing and originally inspired by JA-BE-JA-VC. Our framework is more general because it can be used to optimize a large family of partitioning metrics and convergence is guaranteed as long as the temperature is decreased slowly enough. We have discussed how our approach can be implemented in distributed computation frameworks like GraphX. Our preliminary results have revealed potential improvements in comparison to JA-BE-JA-VC, but have also shown that further research is required to
TABLE I: Shows final partitioning metrics obtained by partitioners (I - JA-BE-JA-VC partitioner; II - SA using only E_{comm} as energy function, III - SA using $E_{comm} + 0.5E_{bal}$ as energy function). Temperature decreases linearly from T_0 till 0.0 by 100 or 1000 iterations.

<table>
<thead>
<tr>
<th></th>
<th>Final ε</th>
<th>Vertex-cut</th>
<th>Comm. cost</th>
<th>Balance</th>
<th>STD</th>
<th></th>
<th>Final ε</th>
<th>Vertex-cut</th>
<th>Comm. cost</th>
<th>Balance</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$5.00E-11$</td>
<td>0.888788</td>
<td>25091</td>
<td>1.0091</td>
<td>0.0055</td>
<td>$5.00E-11$</td>
<td>0.8197</td>
<td>25685</td>
<td>1.18453</td>
<td>0.0055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.00E-10$</td>
<td>0.886338</td>
<td>25096</td>
<td>1.0091</td>
<td>0.0055</td>
<td>$1.00E-10$</td>
<td>0.8202</td>
<td>25656</td>
<td>1.18588</td>
<td>0.0055</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>$5.00E-11$</td>
<td>0.89826</td>
<td>25094</td>
<td>1.0091</td>
<td>0.0055</td>
<td>$5.00E-11$</td>
<td>0.8193</td>
<td>25603</td>
<td>1.18453</td>
<td>0.0055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.00E-10$</td>
<td>0.900026</td>
<td>25083</td>
<td>1.0091</td>
<td>0.0055</td>
<td>$1.00E-10$</td>
<td>0.8959</td>
<td>25049</td>
<td>1.20664</td>
<td>0.0055</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>$5.00E-11$</td>
<td>0.894692</td>
<td>25044</td>
<td>1.0091</td>
<td>0.0055</td>
<td>$5.00E-11$</td>
<td>0.8466</td>
<td>24795</td>
<td>1.00E-10</td>
<td>0.0055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.00E-10$</td>
<td>0.894617</td>
<td>25043</td>
<td>1.0091</td>
<td>0.0055</td>
<td>$1.00E-10$</td>
<td>0.8467</td>
<td>24794</td>
<td>1.00E-10</td>
<td>0.0055</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3: Communication cost metric for JA-BE-JA-VC and SA using email-Enron graph (1000 iterations were performed)

Fig. 4: Vertex-cut metric value for JA-BE-JA-VC and SA using com-Amazon graph (1000 iterations were performed)

identify energy functions that are good indicators of the quality of a partition. Moreover, the experiments have shown that a completely unbiased edge selection procedure (where any pair is equally likely to be drawn) can be very inefficient and we plan to investigate how a more intelligent exploration phase can be introduced without losing the theoretical guarantees about convergence.

REFERENCES
