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1 INTRODUCTION

We study network of caches, represented by an arbitrary topology, in which requests for contents

arrive in an adversarial fashion. Requests follow paths along the network towards designated servers,

that permanently store the requested items, and can be served by caches of finite capacity residing

at intermediate nodes. Responses are carried back over the same path towards the source of each

request, incurring a cost. Our objective is to propose a distributed, online algorithm determining

cache contents in a way that minimizes regret, when both items requested as well as paths they

follow are selected adversarially.

The offline version of this problem is NP-hard, but admits a (1 − 1/𝑒) polytime approximation

algorithm [73]. Ioannidis and Yeh [41] proposed a distributed Robbins Monro type algorithm that

attains the same approximation guarantee assuming stochastic, stationary request arrivals. This

model has motivated several variants [35, 43, 54–57, 79], the majority of which focus on offline

and/or stationary stochastic versions of the problem. Another thread of recent research in caching,

spurred by the seminal work of Paschos et al. [66], explores caching algorithms that come with

adversarial guarantees. The majority of these works focus either on a single cache [62, 71, 74] or

on simple, bipartite network topologies [10, 65, 66].
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The main objective of this paper is to bring adversarial guarantees to the general network model

proposed by Ioannidis and Yeh. From a technical standpoint, this requires a significant technical

departure from the no-regret caching settings studied by prior art [10, 62, 65, 66, 71, 74], both due

to its distributed nature and the generality of the network topology. For example, our objective

cannot be optimized directly via techniques from online convex optimization [39, 72, 81] to attain

sublinear regret.

We make the following contributions:

• We revisit the general cache network setting of Ioannidis and Yeh [41] from an adversarial

point of view.

• We propose DistributedTGOnline, a distributed, online algorithm that attains 𝑂 (
√
𝑇 )

regret with respect to an offline solution that is within a (1 − 1/𝑒)-approximation from the

optimal, when cache update costs are not taken into account.

• We also extend our algorithm to account for update costs. We show that an 𝑂 (
√
𝑇 ) regret

is still attainable in this setting, replacing however independent caching decisions across

rounds with coupled ones; we determine the latter by solving an optimal transport problem.

• Finally, we extensively evaluate the performance of our proposed algorithm against several

competitors, using (both synthetic and trace-driven) experiments involving non-stationary

demands.

The remainder of this paper is organized as follows. In Section 2, we review related work. Our

model and distributed online algorithm are presented in Sections 3 and 4, respectively. We present

our analysis of the regret under update costs in Section 5 and extend our results in Section 6. Our

experiments in Section 7. We conclude in Section 8.

2 RELATEDWORK

Content allocation in networks of caches has been explored in the offline setting, presuming demand

is known [12, 68, 73]. In particular, Shanmugam et al. [73] were the first to observe that caching

can be formulated as a submodular maximization problem under matroid constraints and prove its

NP-hardness. Dynamic caching policies have been mostly investigated under a stochastic request

process. One line of work relies on the characteristic time approximation [18, 27, 32, 46, 47] (often

referred to as Che’s approximation) to study existing caching policies [3, 7, 22, 31] and to design

new policies that optimize the performance metric of interest (e.g., the hit ration or the average

delay) [25, 53, 63]. Another line proposes caching policies inspired by Robbins-Monro/stochastic

approximation algorithms [40, 41].

In particular, Ioannidis and Yeh [42] present (a) a projected gradient ascent (PGA) policy that

attains (1 − 1/𝑒)-approximation guarantee in expectation when requests are stationary and (b)

a practical greedy path replication heuristic (GRD) that performs well in many cases, but comes

without guarantee. Our work inherits all modeling assumptions on network operation and costs

from [42], but differs from it (and all papers mentioned above) by considering requests that arrive

adversarially. In our experiments, we compare our caching policy with PGA and GRD, that have no
guarantees in the adversarial setting. We also prove that GRD in particular has linear regret (see

Lemma 4.3).

Sleator and Tarjan [75] were the first to study caching under adversarial requests. In order to

evaluate the quality of a caching policy, they introduced the competitive ratio, that is the ratio

between the performance of the caching policy (usually expressed in terms of the miss ratio) and

that of the optimal clairvoyant policy that knows the whole sequence of requests. This problem was

generalized under the name of 𝑘-server problem [59] and metrical task system [11] and originated

a vast literature (see, e.g., the survey [51]). In this paper, we focus on regret rather than competitive
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ratio to quantify the main performance metric. Roughly speaking, the regret corresponds to the

difference between the performance of the caching policy and the optimal clairvoyant policy (see [4]

for a thorough comparison of regret and competitive ratio). The regret metric is more popular in

the online learning literature. The goal is to design algorithms whose regret grows sublinearly with

the time horizon 𝑇 and thus have asymptotically optimal time-average performance.

To the best of our knowledge, Paschos et al. [66] were the first to apply online learning techniques

to caching. In particular, building on the online convex optimization framework [39, 72, 81], they

propose an online gradient descent caching algorithm with sublinear regret guarantees, both for a

single cache and for a bipartite network where users have access to a set of parallel caches (the

“femtocaching” scenario in [73]) and items are random linearly encoded. Si Salem et al. [74] extend

this work considering the more general family of online mirror descent algorithms [13], but only

considered a single cache. Bhattacharjee et al. [10] prove tighter lower bounds for the regret in the

femtocaching setting and proposed a caching policy based on the Follow-the-Perturbed-Leader

algorithm that achieves near-optimal regret in the single cache setting. These results have been

extended to the femtocaching setting [65]. Two recent papers [62, 71] pursued this line of work

taking into account update costs for a single cache. We provide similar (𝑂 (
√
𝑇 )) regret guarantees

for general cache networks (rather than just bipartite ones), using a different algorithm.

Asmentioned above, content placement at caches can be formulated as a submodular optimization

problem [41, 73]. The offline problem is already NP-hard, but the greedy algorithm achieves 1/2
approximation ratio [30]. Calinescu et al. [15] develop a (1 − 1/𝑒)-approximation through the so

called continuous greedy algorithm. The algorithm finds a maximum of the multilinear extension

of the submodular objective using a Frank-Wolfe like gradient method. The solution is fractional

and needs then to be rounded via pipage [2] or swap rounding [19]. Filmus and Ward [29] obtain

the same approximation ratio without the need of a rounding procedure, by performing a non-

oblivious local search starting from the solution of the usual greedy algorithm. These algorithms

are suited for deterministic objective functions. Hassani et al. [38] study the problem of stochastic

continuous submodular maximization and use stochastic gradient methods to reach a solution

within a factor 1/2 from the optimum. Mokhtari et al. [61] propose then the stochastic continuous

greedy algorithm, which reduces the noise of gradient approximation by leveraging averaging

technique. This algorithm closes the gap between stochastic and deterministic submodular problems

achieving a (1 − 1/𝑒)-approximation ratio.

There are two kinds of online submodular optimization problems. In the first one, a.k.a. competi-

tive online setting, the elements in the ground set arrive one after the other, a setting considerably

different from ours. The algorithm needs to decide whether to include revealed elements in the

solution without knowing future arrivals. Gupta et al. [34] consider the case when this decision is

irrevocable. They give a 𝑂 (log 𝑟 )-competitive algorithm where 𝑟 is the rank of matroid. Instead,

Hubert Chan et al. [17] allow the algorithm also to remove elements from the current tentative

solution. They propose a randomized 0.3178-competitive algorithm for partition matroids. In the

second kind of online submodular optimization problems, objective functions are initially unknown

and are progressively revealed over 𝑇 rounds. This setting indeed corresponds to our problem,

as our caching policy needs to decide the content allocation before seeing the requests. Streeter

et al. [76] present an online greedy algorithm, combining the greedy algorithm with no-regret

selection algorithm such as the hedge selector, operating under cardinality (rather than general

matroid) constraints. Radlinski et al. [69] also propose an online algorithm by simulating the offline

greedy algorithm, using a separate instance of the multi-armed bandit algorithm for each step of the

greedy algorithm, also for cardinality constraints. Chen et al. [21] convert the offline Frank-Wolfe

variant/continuous greedy to a no-regret online algorithm, obtaining a sublinear (1 − 1/𝑒)-regret.
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Chen et al. [20] use Stochastic Continuous Greedy [61] to achieve sublinear (1 − 1/𝑒)-regret bound
without projection and exact gradient. These algorithms however operate in a continuous domain,

producing fractional solutions that require subsequent rounding steps; these rounding steps do not

readily generalize to our distributed setting. Moreover, rounding issues are further exacerbated

when needing to handle update costs in the regret.

Our work is based on the (centralized) TGOnline algorithm by Streeter et al. [77], which solves

the so-called online assignment problem. In this problem, a fixed number of 𝐾 slots is used to store

items from distinct sets: that is, slot 𝑘 = 1, . . . , 𝐾 can store items from a set 𝑃𝑘 . The motivation

comes, from, e.g., placing advertisements in 𝐾 distinct positions on a website. Submodular reward

functions arrive in an online fashion, and the goal of the online assignment problem is to produce

assignments of items to slots that attain low regret. TGOnline, the algorithm proposed by Streeter

et al., achieves sublinear 1 − 1/𝑒-regret in this setting. We depart from Streeter et al. by considering

both objectives as well as constraints arising from the cache network design problem. We show that

(a) when applied to this problem, TGOnline admits a distributed implementation, but also (b) we

incorporate update costs, which are not considered by Streeter et al. A direct, naïve implementation

of TGOnline to our setting would require communication between all caches at every request; in

contrast, DistributedTGOnline restricts communication only among nodes on the request path.

As an additional technical aside, we exploit the fact that an adaptation step within the TGOnline

algorithm, namely, color shuffling, can in fact happen at a reduced frequency. The latter is imperative

for bounding regret when cost updates are considered: without this adjustment, the TGOnline

algorithm of Streeter et al. attains a linear regret when incorporating update costs.

3 MODEL

Following the caching network model of Ioannidis and Yeh [41], we consider a network of caches

that store items from a fixed catalog. Nodes in the network generate requests for these items, routed

towards designated servers. However, intermediate nodes can cache items and, thereby, serve such

requests early. We depart from Ioannidis and Yeh in assuming that request arrivals are adversarial,

rather than stochastic.

3.1 Notation

We use notation [𝑛] ≜ {1, 2, ..., 𝑛} for sets of consecutive integers, and 1(·) for the indicator

function, that equals 1 when its argument is true, and 0 otherwise. Given two sets 𝐴, 𝐵, we use

𝐴 × 𝐵 = {(𝑎, 𝑏)}𝑎∈𝐴,𝑏∈𝐵 to indicate their Cartesian product. For any finite set 𝐴, we denote by

|𝐴| ∈ N the size of the set. For a set 𝐴 and an element 𝑎, we use 𝐴 + 𝑎 to indicate 𝐴 ∪ {𝑎}. Notation
used across the paper is summarized in Table 1.

3.2 Caching Network

We model a caching network as a directed graph 𝐺 (𝑉 , 𝐸) of 𝑛 nodes. For convenience, we set

𝑉 = [𝑛]. Each edge 𝑒 in the graph is represented by 𝑒 = (𝑢, 𝑣) ∈ 𝐸 ⊆ 𝑉 × 𝑉 . We assume 𝐺

is symmetric, i.e., if (𝑢, 𝑣) ∈ 𝐸, then (𝑣,𝑢) ∈ 𝐸. A fixed set of nodes, called designated servers,

permanently store items of equal size. Formally, each item 𝑖 ∈ C, where set C is the item catalog, is

stored in designated servers D𝑖 ⊆ 𝑉 .
Beyond designated servers, all other nodes in𝑉 are also capable of storing items. For each 𝑣 ∈ 𝑉 ,

let 𝑐𝑣 ∈ N denote its storage capacity, i.e., the maximum number of items it can store. Let also

S𝑣 = {(𝑣, 𝑗)}𝑐𝑣
𝑗=1

be 𝑣 ’s set of storage slots; then, 𝑠 = (𝑣, 𝑗) ∈ 𝑉 × [𝑐𝑣] is the 𝑗-th storage slot on

node 𝑣 . We denote the set of storage slots in the whole network by S, where S =
⋃
𝑣∈𝑉 S𝑣 , and
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Fig. 1. A general cache network, as proposed by Ioannidis and Yeh [41]. Designated servers store items in

a catalog permanently. Requests arrive at arbitrary nodes in the network and follow predetermined paths

towards these servers; responses incur costs indicated by weights on the edges. Intermediate nodes can serve

as caches; the objective is to determine what items to store in each cache, to minimize the overall routing

cost or, equivalently, maximize the caching gain.

|S| = ∑
𝑣∈𝑉 𝑐𝑣 . We assume the slots in S are ordered lexicographically, i.e.,

(𝑣, 𝑗) ≺ (𝑣 ′, 𝑗 ′) if and only if 𝑣 < 𝑣 ′ or 𝑣 = 𝑣 ′ and 𝑗 < 𝑗 ′. (1)

We can describe content allocation as a set 𝐴 ⊂ S × C, where 𝑎 = (𝑠, 𝑖) ∈ 𝐴 indicates that item

𝑖 ∈ C is stored in slot 𝑠 ∈ S. The set of feasible allocations is

D = {𝐴 ⊆ S × C : |𝐴 ∩ ({𝑠} × C)| ≤ 1,∀𝑠 ∈ S} . (2)

This ensures that each slot is occupied by at most one item; note that the cache capacity constraint

at each node 𝑣 ∈ 𝑉 is captured by the definition of S𝑣 .

3.3 Requests and Responses

A request 𝑟 = (𝑖, 𝑝) is determined by (a) the item 𝑖 ∈ C requested, (b) the path 𝑝 along which the

request is forwarded. A path 𝑝 is a sequence {𝑝𝑘 } |𝑝 |𝑘=1
of adjacent nodes 𝑝𝑘 ∈ 𝑉 . As in Ioannidis and

Yeh [41], we assume that paths are simple, i.e., they do not contain repeated nodes, and well-routed,

i.e., they terminate at a node in D𝑖 . A request (𝑖, 𝑝) is generated at node 𝑝1 and follows the path

𝑝; when the request reaches a node storing item 𝑖 , a response is generated. This response carries

item 𝑖 to query node 𝑝1 following the reverse path. We assume that time is slotted, and requests

arrive over a total of 𝑇 ∈ N rounds. We denote by R the set of all possible requests in the system.

At each round 𝑡 ∈ [𝑇 ], a set of requests R𝑡 ⊆ R arrive in the system. Requests in R𝑡 can arrive in

any order, and at any point in time within a round.
1
However, we assume that the total number of

requests at each round is bounded by 𝑅, i.e., |R𝑡 | ≤ 𝑅. Note that, when 𝑅 = 1, at most one request

arrives per round.

3.4 Routing Costs

We assume request routing does not incur any cost, but response routing does. In particular let

𝑤𝑢𝑣 ∈ R+ denote the cost of routing the response along the edge (𝑢, 𝑣) ∈ 𝐸.

1
Our analysis readily extends to a multiset R𝑡 , whereby the same request is submitted multiple times within the same

round. We restrict the exposition to sets for notational simplicity.
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Table 1. Notation Summary

Notational Conventions
[𝑛] Set {1, . . . , 𝑛}
𝐴 + 𝑎 Union 𝐴 ∪ {𝑎}

Cache Networks
𝐺 (𝑉 , 𝐸) Network graph, with nodes 𝑉 and edges 𝐸

C The item catalog

𝑐𝑣 Cache capacity at node 𝑐 ∈ 𝑉
𝑠 = (𝑣, 𝑗) 𝑗-th storage slot on node 𝑣

S The set of storage slots

S𝑣 The set of storage slots in node 𝑣

S𝑝 The set of storage slots in path 𝑝

S𝑖,𝑝 The set of storage slots in path 𝑝 storing item 𝑖

𝐴 The set of item allocations

D The set of feasible allocations

R𝑡 The set of requests arriving at round 𝑡

𝑅 The upper bound of |R𝑡 |
|R𝑡 | Average number of requests per round

𝑤𝑢𝑣 The routing cost along edge (𝑢, 𝑣)
𝐿 The upper bound of possible routing cost

𝑓 𝑡 Caching gain at round 𝑡

Online Optimization
𝑇 The rounds horizon

𝑅𝑇 𝛼-regret

E Hedge selector

𝑊𝑊𝑊 The weight vector maintained by hedge selector

ℓℓℓ The reward vector fed to hedge selector

𝑚𝑠 The active color of slot 𝑠

𝑀 Number of colors

I Information collected by control message

𝑤
𝑝
𝑣 The cumulative cost of edges upstream of 𝑣 on path 𝑝

UC Update costs

�̃�𝑇 The extended 𝛼-regret considering update costs

Then, given an allocation 𝐴 ∈ S × C, the cost of serving a request (𝑖, 𝑝) ∈ R is:

𝐶 (𝑖,𝑝) (𝐴) =
|𝑝 |−1∑
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝐴 ∩


⋃
𝑘′∈[𝑘 ]

S𝑝𝑘′ × {𝑖}
 = ∅ª®¬ . (3)

Intuitively, Eq. (3) states that𝐶 (𝑖,𝑝) (𝐴) includes𝑤𝑝𝑘+1𝑝𝑘 , the cost of edge (𝑝𝑘+1, 𝑝𝑘 ), only if no cache

preceding 𝑝𝑘+1 in path 𝑝 stores item 𝑖 . We denote by

𝐿 = max

(𝑖,𝑝) ∈R

|𝑝 |−1∑
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘 (4)

the maximum possible routing cost; note that this upper-bounds 𝐶 (𝑖,𝑝) (𝐴), for all (𝑖, 𝑝) ∈ R,
𝐴 ∈ S × C.
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The caching gain [41] of a request (𝑖, 𝑝) due to caching at intermediate nodes is:

𝑓(𝑖,𝑝) (𝐴) = 𝐶 (𝑖,𝑝) (∅) −𝐶 (𝑖,𝑝) (𝐴) =
|𝑝 |−1∑
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝐴 ∩


⋃
𝑘′∈[𝑘 ]

S𝑝𝑘′ × {𝑖}
 ≠ ∅ª®¬ . (5)

where 𝐶 (𝑖,𝑝) (∅) is the routing cost in the network when all caches are empty. The caching gain

captures the cost reduction in the network due to caching allocation 𝐴.

3.5 Offline Problem

In the offline version of the cache gain maximization problem [41, 73], the request sequence {R𝑡 }𝑇𝑡=1

is assumed to be known in advance; the goal is then to determine a feasible allocation 𝐴 ∈ D that

maximizes the total caching gain. Formally, given an allocation 𝐴 ∈ S × C, let

𝑓 𝑡 (𝐴) =
∑
𝑟 ∈R𝑡

𝑓𝑟 (𝐴), (6)

be the caching gain at round 𝑡 . Then, the offline caching gain maximization problem amounts to:

maximize

𝐴
𝑓 (𝐴) =

𝑇∑
𝑡=1

𝑓 𝑡 (𝐴) =
𝑇∑
𝑡=1

∑
𝑟 ∈R𝑡

𝑓𝑟 (𝐴), (7a)

subject to 𝐴 ∈ D . (7b)

The following lemma implies this problem is approximable in polynomial time:

Lemma 3.1 ([41, 73]). Function 𝑓 : S × C → R+ is non-decreasing and submodular. Moreover, the
feasible region D is a partition matroid.

Hence, Problem (7) is a submodular maximization problem under matroid constraints. It is known

to be NP-hard [41, 73], and several approximation algorithms with polynomial time complexity

exist. The classic greedy algorithm [14] produces a solution within
1

2
-approximation from the

optimal. The so-called continuous greedy algorithm [15] further improves this ratio to 1 − 1

𝑒
. A

different algorithm based on a convex relaxation of Problem (7) is presented in [41, 73]. The Tabular

Greedy algorithm [77] also constructs a 1 − 1

𝑒
approximate solution in poly-time. We describe it in

details in Appendix A, as both TGOnline [77] and our DistributedTGOnline build on it.

3.6 Online Problem

In the online setting, requests are not known in advance, and we seek algorithms that make caching

decisions in an online fashion. In particular, at the beginning of round 𝑡 , an online algorithm selects

the current allocation 𝐴𝑡 ∈ D. Requests R𝑡 ⊂ R subsequently arrive, and the cache gain 𝑓 𝑡 (𝐴𝑡 ) is
rewarded, where 𝑓 𝑡 : S × C → R+ is given by Eq. (6).

As in standard online learning literature [39, 66], while choosing 𝐴𝑡 , the network has no knowl-

edge of the upcoming requests R𝑡 , but can rely on past history. Formally, we seek an online

algorithm A that maps the history of past requests H 𝑡 = {R1, ..,R𝑡−1} to a new allocation, i.e.,

𝐴𝑡 = A(H 𝑡 ). In particular, we aim for an algorithm A with sublinear 𝛼-regret, given by

𝑅𝑇 = E

[
𝛼

𝑇∑
𝑡=1

𝑓 𝑡 (𝐴∗) −
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
= 𝛼

𝑇∑
𝑡=1

𝑓 𝑡 (𝐴∗) − E
[
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
, (8)

where 𝛼 is an approximation factor, and 𝐴∗ is the optimal solution to (the offline) Problem (7). Note

that the expectation is over the (possibly) randomized choices of the algorithm A; we make no

probabilistic assumptions on request arrivals {R𝑡 }𝑇𝑡=1
, and wish to minimize regret in the adversarial

setting, i.e., w.r.t. to the worst-case sequence {R𝑡 }𝑇𝑡=1
. Put differently, our regret bounds will be
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Algorithm 1: Hedge Selector E
Input: Parameter 𝜖 ∈ R+, action set C, horizon 𝑇 ∈ N.

1 def E.initialize():
2 Set𝑊𝑖 ← 1 for all 𝑖 ∈ C
3 def E.arm():
4 return 𝑖 ∈ C with probability 𝑝𝑖 =

𝑊𝑖∑
𝑗∈C𝑊𝑗

5 def E.feedback(ℓℓℓ):
6 Set𝑊𝑖 ←𝑊𝑖𝑒

𝜖ℓ𝑖
for all 𝑖 ∈ C

against an arbitrarily powerful adversary, that can pick any sequence {R𝑡 }𝑇𝑡=1
, as long as the total

number of requests at each round is bounded by 𝑅, i.e., |R𝑡 | ≤ 𝑅 for all 𝑡 = 1, . . . ,𝑇 .

Several remarks are in order regarding Eq. (8). First, the definition of the regret in Eq. (8), which

compares to a static offline solution, is classic. Several bandit settings, e.g., simple multi-armed

bandits [6, 50, 69], contextual bandits [1, 23, 26], submodular bandits [21, 76, 80] and, of course,

their applications to caching problems [10, 62, 66, 71], adopt this definition. In all these cases, the

dynamic, adaptive algorithm is compared to a static policy that has full hindsight of the entire trace

of actions. Nevertheless, as is customary in the context of online problems in which the offline

problem is NP-hard [21], the regret is not w.r.t. the optimal caching gain, but the gain obtained

by an offline approximation algorithm. Second, from the point of view of bandits, we operate in

the full-information feedback setting [39]: upon the arrival of requests R𝑡 , the entire function
𝑓 𝑡 : S × C → R+ is revealed,2 as the latter is fully determined by request set R𝑡 . Third, Eq. (8)
captures the cost of serving requests, but not the cost of adaptation: changing an allocation from

𝐴𝑡 to 𝐴𝑡+1 changes cache content, which in turn may require the movement of items. Neglecting

adaptation costs may be realistic if, e.g., adaptation happens in off-peak hours (e.g., the end of

a round occurs at the end of a day), and does not come with the same latency requirements as

serving requests in R𝑡 . Nevertheless, we revisit this issue, incorporating update costs in the regret,

in Section 5. Finally, we stress that we seek online algorithms A that have sublinear regret but are

also distributed: each cache 𝑣 should be able to determine its own contents using past history it has

observed, as well as some limited information it exchanges with other nodes.

4 DISTRIBUTED ONLINE ALGORITHM

We describe our distributed online algorithm, DistributedTGOnline, in this section. We first give

an overview of the algorithm and its adversarial guarantees; we then fill out missing implementation

details.

4.1 Hedge Selector

Our construction uses as a building block the classic Hedge algorithm
3
for the expert advice problem

[5, 39, 77]. This online algorithm selects an action from a finite set at the beginning of a round. At

the conclusion of a round, the rewards of all actions are revealed; the algorithm accrues a reward

based on the action initially selected, and adjusts its decision.

In our case the set of possible actions coincides with the catalog C, i.e., the algorithm selects an

item 𝑖𝑡 ∈ C per round 𝑡 ∈ N. The hedge selector maintains a weight vector𝑊𝑊𝑊 𝑡 = [𝑊 𝑡
𝑖 ]𝑖∈C ∈ R |C | ,

where weight𝑊 𝑡
𝑖 corresponds to action 𝑖 ∈ C. The hedge selector supports two operations (see

2
In contrast to the classic bandit feedback model, where only the reward 𝑓 𝑡 (𝐴𝑡 ) is revealed in each round 𝑡 .

3
This is also known as the multiplicative weight algorithm.
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Algorithm 2: DistributedTGOnline
foreach 𝑠 ∈ S do

foreach𝑚 ∈ [𝑀] do
E𝑠,𝑚 .initialize().

set 𝑡𝑠 = 1, choose𝑚𝑠 uniformly at random from [𝑀]
𝑖𝑠 ← E𝑠,𝑚𝑠

.arm() ; // Sets 𝐴← {(𝑠, 𝑖𝑠 )}𝑠∈S
for 𝑡 = 1, 2, ...,𝑇 do

/* During round 𝑡: */

1 foreach 𝑟 = (𝑖, 𝑝) ∈ R𝑡 do
2 Send request upstream over 𝑝 until a hit occurs.

3 Send response carrying 𝑖 downstream, and incur routing costs.

4 Send control message upstream over 𝑝 to construct I andW, given by (12).

5 Send control message carrying I andW downstream over 𝑝 , and do the

following:foreach 𝑠 ∈ S𝑝 do
6 Use I andW to construct ℓℓℓ (𝑠,𝑚𝑠 ) ∈ R |C |+ via (15).

7 Call E𝑠,𝑚𝑠
.feedback(ℓℓℓ (𝑠,𝑚𝑠 ))

/* At the end of round 𝑡: */

8 foreach 𝑠 ∈ ⋃
(𝑖,𝑝) ∈R𝑡 S𝑝 do

9 if 𝑡𝑠 mod𝐾 = 0 then
10 Select𝑚𝑠 u.a.r. from [𝑀] ; // Shuffle color 𝑚𝑠

11 𝑖𝑠 ← E𝑠,𝑚𝑠
.arm() ; // Update allocation 𝐴 at 𝑠

12 𝑡𝑠 ← 𝑡𝑠 + 1

Alg. 1. The first, E.arm( ), selects an action from action set C. The second, E.feedback(ℓℓℓ𝑡 ), ingests
the reward vector ℓℓℓ𝑡 = [ℓ𝑡𝑖 ]𝑖∈C ∈ R

|C |
+ , where ℓ𝑡𝑖 is the reward for choosing action 𝑖 ∈ C at round 𝑡 ,

and adjusts action weights as described below. In each iteration 𝑡 , the hedge selector alternates

between (a) calling 𝑖𝑡 = E.arm( ), to produce action 𝑖𝑡 , (b) receiving a reward vector ℓℓℓ𝑡 , and using it

via E.feedback(ℓℓℓ𝑡 ) to adjust its internal weight vector. In particular, E.arm( ) selects action 𝑖 ∈ C
with probability:

𝑝𝑡𝑖 =
𝑊 𝑡
𝑖∑

𝑗 ∈C𝑊
𝑡
𝑗

, (9)

i.e., proportionally to weight𝑊 𝑡
𝑖 . Moreover, when E.feedback(ℓℓℓ𝑡 ) is called, weights are updated via:

𝑊 𝑡+1
𝑖 =𝑊 𝑡

𝑖 𝑒
𝜖ℓ𝑡

𝑖 , for all 𝑖 ∈ C, (10)

where 𝜖 > 0 is a constant. In a centralized setting where an adversary selects the vector of weights

ℓℓℓ𝑡 , the no-regret hedge selector attains an 𝑂 (
√
𝑇 ) regret for an appropriate choice of 𝜖 > 0 (see

Lemma B.1 in Appendix B). We use this as a building block in our construction below.

4.2 DistributedTGOnline Overview

To present the DistributedTGOnline algorithm, we first need to introduce the notion of “colors”.

The algorithm associates each storage slot 𝑠 = (𝑣, 𝑗) ∈ S with a “color” 𝑚𝑠 from set [𝑀] of 𝑀
distinct values (the “color palette”). The online algorithm makes selections in the extended action

space S × C × [𝑀], choosing not only an item to place in a slot, but also how to color it.
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This coloring is instrumental to attaining a 1 − 1

𝑒
-regret. In offline tabular greedy algorithm of

Streeter et al. [77], which we present in Appendix A, when 𝑀 = 1, i.e., there is only one color,

the algorithm reduces to simply the locally greedy algorithm (see Section 3.1 in [77]), achieving

only a
1

2
approximation ratio. When𝑀 →∞, the algorithm can intuitively be viewed as solving a

continuous extension of the problem followed by a rounding (via the selection of the color instance),

in the same spirit as the so-called ContinuousGreedy algorithm [15]. A finite size “color palette”

represents a midpoint between these two extremes. We give more insight into this relationship

between these two algorithms in Section 4.5.

In more detail, every storage slot 𝑠 ∈ S maintains (a) the item 𝑖𝑠 ∈ C stored in it, (b) an active

color𝑚𝑠 ∈ [𝑀] associated with this slot, and (c)𝑀 different no-regret hedge selectors {E𝑠,𝑚}𝑀𝑚=1
,

one for each color. All selectors {E𝑠,𝑚}𝑀𝑚=1
operate over action set C: that is, each such selector can

have its arm “pulled” to select an item 𝑖 to place in a slot. Though every slot 𝑠 maintains𝑀 different

selectors, one for each color, it only uses one at a time. The active colors {𝑚𝑠 }𝑠∈S are initially

selected u.a.r. from [𝑀], and remain active continuously for a total 𝐾 pull/feedback interactions,

where 𝐾 ∈ N; at that point,𝑚𝑠 is refreshed, selected again u.a.r., bringing another selector into play.

All in all, the algorithm proceeds as follows during round 𝑡 .

(1) When a request (𝑖, 𝑝) ∈ R𝑡 is generated, it is propagated over the path 𝑝 until a hit occurs; a

response is then backpropagated over the path 𝑝 , carrying 𝑖 , and incurring a routing cost.

(2) At the same time, an additional control message is generated and propagated upstream over

the entire path 𝑝 . Moving upstream, it collects information from slots it traverses.

(3) After reaching designated server at the end of the path, the control message is backpropagated

over the path 𝑝 in the reverse direction. Every time it traverses a node 𝑣 ∈ 𝑝 , storage slot
𝑠 ∈ S𝑣 fetches information stored in the control message and computes a reward vector

ℓℓℓ𝑡 (𝑠,𝑚𝑠 ). This is then fed to the active hedge selector via E𝑠,𝑚𝑠
.feedback( ℓℓℓ𝑡 (𝑠,𝑚𝑠 )).

(4) At the end of the round, we check if the arm of E𝑠,𝑚𝑠
has been pulled for a total of 𝐾 times

under active color𝑚𝑠 ; if so, a new color𝑚𝑠 is selected u.a.r. from [𝑀].
(5) Irrespective of whether 𝑚𝑠 changes or not, at the end of the round, each slot updates its

contents via the current active hedge selector E𝑠,𝑚𝑠
, by calling operation E𝑠,𝑚𝑠

.arm() to choose

a new item 𝑖𝑠 to place in 𝑠 .

We define the control messages exchanged, the information they carry, and the reward vectors fed

to hedge selectors in Section 4.3. Only slots in a request’s path need to exchange messages, provide

feedback to their selectors, and (possibly) update their contents at the end of a round. Moreover,

messages exchanged are of size 𝑂 ( |𝑝 |). We allow 𝐾 ≥ 𝑇 ; in this case, colors are selected u.a.r. only

once, at the beginning of the execution of the algorithm, and remain constant across all rounds.
4

Finally, note that updating cache contents at the end of a round does not affect the incurred cost;

we remove this assumption in Section 5.

Our first main result is that DistributedTGOnline has a (1 − 1/𝑒)-regret that grows as 𝑂 (
√
𝑇 ):

Theorem 4.1. Consider the sequence of allocations {𝐴𝑡 }𝑇𝑡=1
produced by the DistributedTGOnline

algorithm using hedge selectors determined by Alg. 1, with 𝜖 = 1

�̄�

√
log |C |
𝑇

. Then, for all 𝑇 ≥ log |C|
and all 𝐾 ≥ 1:

E

[
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
≥ 𝛽 ( |S|, 𝑀) ·max

𝐴∈D

{
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴)
}
− 2𝑅𝐿 |S|𝑀

√
𝑇 log |C|, (11)

where 𝛽 ( |S|, 𝑀) = 1 − (1 − 1

𝑀
)𝑀 −

( |S |
2

)
𝑀−1.

4
In such a case, selectors corresponding to inactive colors need not be maintained, and can be discarded.
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The main intuition behind the proof is to view DistributedTGOnline as a version of the offline

TabularGreedy that, instead of greedily selecting a single item 𝑖𝑠,𝑚 ∈ C per step, it greedily selects
an entire item vector ®𝑖𝑠,𝑚 ∈ C𝑇 across all rounds, where 𝑇 is the number of rounds. To cast the proof

in this context, we define new objective functions 𝑓 and 𝐹 whose domain is over decisions across𝑇

rounds, as opposed to the original per time-slot functions (whose domain is only over one round).

Due to the properties of the no-regret hedge selector, and the formal guarantees of the offline case

(c.f. Thm. A.1), these new objectives attain 1− 1

𝑒
bound shown in Eq. (26), yielding the bound on the

regret. The detailed proof of this theorem is provided in Appendix C. Note that for𝑀 large enough

(at least Ω( |S|2)), quantity 𝛽 ( |S|, 𝑀) can be made arbitrarily close to 1 − 1/𝑒 . Hence, Theorem 4.1

has the following immediate corollary:

Corollary 4.2. For any 𝛿 > 0, there exists an𝑀 = Θ( |S |
2

𝛿
) such that the expected (1− 1

𝑒
−𝛿)-regret

of DistributedTGOnline is 𝑅𝑇 ≤ 2𝑅�̄� |S |3
𝛿

√
𝑇 log |𝐶 |.

DistributedTGOnline is a distributed implementation of the (centralized) online tabular greedy

algorithm of Streeter et al. [77], which is itself an online implementation of the so-called tabular

greedy algorithm [77], which we present in Appendix A. We depart however from [77] in several

ways. First, the analysis by Streeter et al. requires that feedback is provided at every slot 𝑠 ∈ S .

We amend this assumption, as only nodes along a path need to update their selectors/allocations

in our setting. Second, we show that feedback provided to arms can be computed in a distributed

fashion, using only messages along the path 𝑝 , as described below in Section 4.3. These two facts

together ensure that DistributedTGOnline is indeed distributed. Finally, the analysis of Streeter

et al. assumes that colors are shuffled at every round, i.e., applies only to 𝐾 = 1. We extend this to

arbitrary𝐾 ≥ 1. As we discuss in Section 5, this is instrumental to bounding regret when accounting

for update costs; the later becomes Θ(𝑇 ) when 𝐾 = 1.

4.3 Control Messages, Information Exchanged, and Rewards

The algorithm is summarized in Alg. 2. We describe here the control messages, information ex-

changed, and reward vectors fed to hedge selectors during the generation of a request 𝑟 = (𝑖, 𝑝) ∈ R𝑡 .
Let S𝑝 =

⋃
𝑣∈𝑝 S𝑣 be the set of all slots in nodes in 𝑝 . Let also S𝑖,𝑝 = {𝑠 ∈ S𝑝 : (𝑠, 𝑖) ∈ 𝐴𝑡 } ⊆ S𝑝 be

the slots in path 𝑝 that store the requested item 𝑖 ∈ C. The control message propagated upstream

towards the designated server collects both the (a) color of every slot in S𝑖,𝑝 and (b) the upstream

cost at each node 𝑣 ∈ 𝑝 . Formally, the information collected by the upstream control message is

I = {(𝑠,𝑚𝑠 )}𝑠∈S𝑖,𝑝 , and W = {𝑤𝑝𝑣 }𝑣∈𝑝 , (12)

where𝑤
𝑝
𝑣 is the cumulative cost of edges upstream of 𝑣 on path 𝑝 , i.e.,

𝑤
𝑝
𝑣 =

∑ |𝑝 |−1

𝑘=𝑘𝑝 (𝑣) 𝑤𝑝𝑘+1𝑝𝑘 , (13)

where 𝑘𝑝 (𝑣) = {1, 2, ..., |𝑝 |} is position of 𝑣 in 𝑝 , i.e., 𝑘𝑝 (𝑣) = 𝑘 if 𝑝𝑘 = 𝑣 . Note that both |I | and
|W| are 𝑂 ( |𝑝 |).
Upon reaching the end of the path, a message carrying this collected information (I,W) is sent

downstream to every node in the path. For each slot 𝑠 ∈ S𝑝 , let:

S⪯𝑠 = {𝑠 ′ ∈ S𝑖,𝑝 :𝑚𝑠′ < 𝑚𝑠 or𝑚𝑠′ =𝑚𝑠 , 𝑠
′ ≺ 𝑠} (14)

be the slots in the path 𝑝 that store 𝑖 and either (a) are colored with a color smaller than𝑚𝑠 , or (b)

are colored with𝑚𝑠 , and precede 𝑠 in the ordering given by Eq. (1). Note that S⪯𝑠 can be computed

having access to I. Then, the reward vector ℓℓℓ𝑟 (𝑠,𝑚𝑠 ) ∈ R |C |+ fed to hedge selector E𝑠,𝑚𝑠
at slot
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𝑠 ∈ S𝑝 comprises the following coordinates:

ℓ𝑟𝑖′ (𝑠,𝑚𝑠 ) =
{

max(𝑣′, 𝑗 ′) ∈S⪯𝑠+𝑠 𝑤
𝑝

𝑣′, if 𝑖 ′ = 𝑖

max(𝑣′, 𝑗 ′) ∈S⪯𝑠 𝑤
𝑝

𝑣′, 𝑜 .𝑤 .
for all 𝑖 ′ ∈ C, (15)

which captures the marginal gain of adding an element to the allocation at time 𝑡 , assuming that

the latter is constructed adding one slot, item, and color selection at a time (following an ordering

w.r.t. colors first and slots second). This is stated formally in Lemma C.1 in Appendix C. Note again

that all these quantities can be computed at every 𝑠 ∈ S𝑝 having access to I andW.
5

4.4 A Negative Result

We conclude this section with a negative result, further highlighting the importance of Theorem 4.1.

DistributedTGOnline comes with adversarial guarantees; our experiments in Section 7 indicate

that also works well in practice. Nevertheless, for several topologies we explore, we observe that

a heuristic proposed by Ioannidis and Yeh [41], termed GreedyPathReplication, performs as

well or slightly better than DistributedTGOnline in terms of time-average caching gain. As we

observed this in both stationary as well as non-stationary/transient request arrivals, this motivated

us to investigate further whether this algorithm also comes with any adversarial guarantees.

Our conclusion is that, despite the good empirical performance in certain settings, Greedy-

PathReplication does not enjoy such guarantees. In fact, the following negative result holds:

Lemma 4.3. Consider the online policy GreedyPathReplication due to Ioannidis and Yeh [41],
which is parametererized by 𝛽 > 0. Then, for all 𝛼 ∈ (0, 1] and all 𝛽 > 0, GreedyPathReplication
has Ω(𝑇 ) 𝛼-regret.
We prove this lemma in Appendix E. The adversarial counterexample we construct in the

proof informed our design of experiments for which GreedyPathReplication (denoted by GRD in

Section 7) performs poorly, attaining a zero caching gain throughout the entire algorithm’s execution
(see Fig. 3-5). The same examples proved hard for several other greedy/myopic policies, even though

DistributedTGOnline performed close to the offline solution in these settings. Both Lemma 4.3,

as well as the experimental results we present in Section 7, indicate the importance of Theorem 4.1

and, in particular, obtaining a universal bound on the regret against any adversarially selected

sequence of requests.

4.5 Color Palette

To provide further intuition behind the “color palette” induced by𝑀 and the role it plays in our

algorithm, we describe here in more detail how it relates to the ContinuousGreedy algorithm,

the standard algorithm for maximizing submodular functions subject to a matroid constraint [15].

Intuitively, given a submodular function 𝑓 : Ω → R+ and a matroid constraint set D, the

ContinuousGreedy algorithm maximizes the multilinear relaxation of objective, given by

˜𝑓 (𝑥𝑥𝑥) = E𝑥𝑥𝑥 [𝑓 (𝐴)] =
∑
𝐴⊆Ω

𝑓 (𝐴)
∏
𝑖∈𝐴

𝑥𝑖

∏
𝑖∉𝐴

(1 − 𝑥𝑖 ) . (16)

That is, the multilinear extension
˜𝑓 : [0, 1] |Ω | → R+ is the expected value of the objective assuming

that each element in A is sampled independently, with probability given by 𝑥𝑖 ∈ [0, 1], 𝑖 ∈ Ω.
ContinuousGreedy first obtains a fractional solution in the matroid polytope of D. This is

constructed by incrementally growing the probability distribution parameters 𝑥𝑥𝑥 , starting from

5
In practice, trading communication for space, the fullW can also be just computed once, at the first time request (𝑖, 𝑝)
is generated, Each 𝑣 can store their own 𝑤

𝑝
𝑣 for paths that traverse them, and only weights of nodes storing 𝑖 need to be

included inW in subsequent requests.
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𝑥𝑥𝑥 = 000, with a variant of the so-called Frank-Wolfe algorithm. Then, ContinuousGreedy rounds

the resulting fractional solution via, e.g., pipage rounding [2] or swap rounding [19], mapping it

to set solutions. We refer the reader to Calinescu et al. [15] for a more detailed description of the

algorithm.

In comparison, the color palette also creates a distribution across item selections, as implied

by the 𝑀 colors. When the number of colors 𝑀 approaches infinity, the selection process of

DistributedTGOnline also “grows” this probability distribution (starting, again, from an empty

support) infinitesimally, by an increment inversely proportional to𝑀 (see also the offline version

TabularGreedy in Appendix A). As𝑀 goes to infinity, this recovers the 1 − 1/𝑒 approximation

guarantee of continuous greedy [64, 77]. For any finite𝑀 , the guarantee provided by Theorem 4.1

lies in between this guarantee and
1

2
approximation of the locally greedy algorithm (𝑀 = 1).

5 UPDATE COSTS

We now turn our attention to incorporating update costs in our analysis. We denote by𝑤 ′𝑠,𝑖 the cost
of fetching item 𝑖 at storage slot 𝑠 at the end of a round. Then, the total update cost of changing an

allocation 𝐴𝑡 to 𝐴𝑡+1 at the end of round 𝑡 is given by:

UC(𝐴𝑡 , 𝐴𝑡+1) =
∑

(𝑠,𝑖) ∈𝐴𝑡+1\𝐴𝑡

𝑤 ′𝑠,𝑖 . (17)

When such update costs exist, we need to account for them when adapting cache allocations. We

thus incorporate them in the 𝛼-regret as follows:

�̃�𝑇 = 𝛼

𝑇∑
𝑡=1

𝑓 𝑡 (𝐴∗) − E
[
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴𝑡 ) −
𝑇−1∑
𝑡=1

UC(𝐴𝑡 , 𝐴𝑡+1)
]
= 𝑅𝑇 + E

[
𝑇−1∑
𝑡=1

UC(𝐴𝑡 , 𝐴𝑡+1)
]
. (18)

Note that, in this formulation, the optimal offline policy 𝐴∗ has no update cost, as it is static.

We refer to �̃�𝑇 as the extended 𝛼-regret of an algorithm. This extension corresponds to adding the

expected update cost incurred by a policy A to its 𝛼-regret.

Unfortunately, the update costs of DistributedTGOnline (and, hence, its extended regret) grow

as Θ(𝑇 ) in expectation. In particular, the following lemma, proved in Appendix D, holds:

Lemma 5.1. When DistributedTGOnline is parametrized with the hedge selector in Alg. 1, it
incurs an expected update cost of Ω(𝑇 ) for any choice of 𝜖 ∈ R+.

Nevertheless, the extended regret can be reduced to 𝑂 (
√
𝑇 ) by appropriately modifying Alg. 1,

the no-regret-hedge selector used in slots E𝑠,𝑚 . In particular, the linear growth in the regret is due

to the independent sampling of cache contents within each round. Coupling this selection with

the presently selected content can significantly reduce the update costs. More specifically, instead

of selecting items independently across rounds, the new item can be selected from a probability

distribution that depends on the current allocation in the cache. This conditional distribution

can be design in a way that the (marginal) probability of the new item is the same as in Alg. 1,

thereby yielding the same expected caching gain. On the other hand, coupling can bias the selection

towards items already existing in the cache. This reduces update costs, especially when marginal

distributions change slowly.

The coupled hedge selector described in Alg. 3 accomplishes exactly this. As seen in line 9 of Alg. 3,

pulling the arm of the hedge selector is dependent on (a) the previously taken action/selected item

and (b) the change in the distribution implied by weights𝑊𝑖 , 𝑖 ∈ C. We give more intuition as to how

this is accomplished in Appendix D. In short, the coupled hedge selector solves a minimum-cost

flow problem via an iterative algorithm. The minimum-cost flow problemmodels a so-called optimal

transport or earth mover distance problem [67] from 𝑝𝑝𝑝𝑡 to 𝑝𝑝𝑝𝑡+1, the distributions over catalog C
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Algorithm 3: Coupled Hedge Selector

Input: Parameter 𝜖 ∈ R+, action set C, horizon 𝑇 ∈ N.
1 def E.initialize():
2 Set𝑊𝑖 ← 1 and 𝑝old

𝑖
← 1

|C | for all 𝑖 ∈ C
3 Pick 𝑖old u.a.r. from C
4 def E.feedback(ℓℓℓ):
5 Set𝑊𝑖 ←𝑊𝑖𝑒

𝜖ℓ𝑖
for all 𝑖 ∈ C

6 def E.correlated_arm():
7 Set 𝑝new𝑖 ← 𝑊𝑖∑

𝑗∈C𝑊𝑗
for all 𝑖 ∈ 𝐶

8 Pick 𝑖new ← coupled_movement (𝑝𝑝𝑝old,𝑝𝑝𝑝new,𝑖old) ; // Marginal is 𝑝𝑝𝑝new

9 𝑝𝑝𝑝old ← 𝑝𝑝𝑝new

10 𝑖old ← 𝑖new

11 return 𝑖new

12 def coupled_movement(𝑝𝑝𝑝old,𝑝𝑝𝑝new,𝑖old ):
13 Compute 𝐼 = {𝑖 ∈ C : 𝑝new𝑖 − 𝑝old

𝑖
> 0}.

14 Set𝑚𝑖 ← |𝑝new𝑖 − 𝑝old
𝑖
|, for all 𝑖 ∈ C

15 Compute a feasible flow [𝛿𝑖, 𝑗 ] (𝑖, 𝑗) ∈C2 , where

∑
𝑗 ∈𝐼 𝛿𝑖, 𝑗 =𝑚𝑖 for 𝑖 ∈ C \ 𝐼 , and∑

𝑖∈C\𝐼 𝛿𝑖, 𝑗 =𝑚 𝑗 for 𝑖 ∈ 𝐼 , to transport

∑
𝑖∈C\𝐼 𝑚𝑖 mass from the components in 𝐼 to the

components in C \ 𝐼 .
16 𝑝𝑝𝑝 ← 𝑝𝑝𝑝old.

17 𝑖temp ← 𝑖old

18 for 𝑖 ∈ C \ 𝐼 do
19 for 𝑗 ∈ 𝐼 do
20 𝑝𝑝𝑝, 𝑖temp ← elementary_𝛿movement(𝑝𝑝𝑝, 𝑖temp, 𝛿𝑖, 𝑗 , 𝑖, 𝑗 )

21 return 𝑖temp

22 def elementary_𝛿movement(𝑝𝑝𝑝, 𝑖temp, 𝛿, 𝑖, 𝑗):
23 if 𝑖temp = 𝑖 then

24 𝑖temp, 𝑝𝑝𝑝 ←
{
𝑖, 𝑝𝑝𝑝 + 𝛿 (𝑒𝑒𝑒 𝑗 − 𝑒𝑒𝑒𝑖 ) w.p.

𝑝𝑖−𝛿
𝑝𝑖

𝑗, 𝑝𝑝𝑝 + 𝛿 (𝑒𝑒𝑒 𝑗 − 𝑒𝑒𝑒𝑖 ) w.p. 𝛿
𝑝𝑖

25 else
26 𝑖temp, 𝑝𝑝𝑝 ← 𝑖temp, 𝑝𝑝𝑝 + 𝛿 (𝑒𝑒𝑒 𝑗 − 𝑒𝑒𝑒𝑖 )
27 return 𝑝𝑝𝑝, 𝑖temp

at rounds 𝑡 and 𝑡 + 1, respectively, The resulting solution comprises conditional distributions for

“jumps” among elements in C, which are used to determine the next item selection using the current

choice: by being solutions of the minimum-cost flow problem, they incur small update cost, while

ensuring that the posterior distribution after the “jump” is indeed 𝑝𝑝𝑝𝑡+1.
Our second main result establishes that using this hedge selector instead of Alg. 1 in Distribut-

edTGOnline ensures that the extended regret grows as 𝑂 (
√
𝑇 ).

Theorem 5.2. Consider DistributedTGOnline with hedge selectors E𝑠,𝑚 implemented via Alg. 3

parameterized with 𝜖 = 1

�̄�

√
log |C |
𝑇

. Assume also that colors are updated every 𝐾 = Ω(
√
𝑇 ) rounds.
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Table 2. Graph Topologies and Experiment Parameters. We indicate the number of nodes in each graph (|𝑉 |),
the number of edges (|𝐸 |), the number of query nodes ( |Q|), and the ranges of cache capacities 𝑐𝑣 and edge

weights𝑤 . In the last four columns we also report 𝑓𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 , 𝑓𝑠𝑙𝑖𝑑𝑖𝑛𝑔 , 𝑓𝑆𝑁 , and 𝑓𝐶𝐷𝑁 : which are the caching

gain attained by OFL with Stationary Request, Sliding Popularity, Shot Noise, and CDN trace, respectively.

topologies |𝑉 | |𝐸 | |Q| 𝑐𝑣 𝑤 𝑓𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑓𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑓𝑆𝑁 𝑓𝐶𝐷𝑁
ER 100 1042 5 1-5 1-100 1569.93 1123.76 72.03 976.65

BT 341 680 5 1-5 1-100 5547.89 3211.63 220.58 3504.58

HC 128 896 5 1-5 1-100 2453.66 2045.69 152.38 1895.41

dtelekom 68 546 5 1-5 1-100 969.55 772.53 49.55 1005.24

GEANT 22 66 5 1-5 1-100 1564.02 981.60 66.50 1185.56

abilene 9 26 2 0-5 100 81.21 81.21 41.39 -

path 4 6 1 0-5 100 20.00 20.00 10.00 -

Then, the standard regret 𝑅𝑇 is again bounded as in Corollary 4.2. Moreover, the update cost of
DistributedTGOnline is such that

E

[
𝑇−1∑
𝑡=1

UC(𝐴𝑡 , 𝐴𝑡+1)
]
= 𝑂 (
√
𝑇 ), (19)

and, as a consequence, the extended regret is �̃�𝑇 = 𝑂 (
√
𝑇 ).

The proof can be found in Appendix F. We note that the theorem requires that 𝐾 = Ω(
√
𝑇 ),

i.e., that colors are shuffled infrequently. Whenever a color changes, DistributedTGOnline, the

corresponding change in the active hedge selector can lead to sampling vastly different allocations

than the current ones. Consequently, such changes can give rise to large update costs whenever a

color is changed. The requirement that 𝐾 = Ω(
√
𝑇 ) allows for some frequency in changes, but not,

e.g., at a constant number of rounds (as, e.g., in Streeter et al. [76], where 𝐾 = 1). Put differently,

Theorem 5.2 allows for experiencing momentarily large update costs, as long as we do not surpass

a budget of 𝑂 (
√
𝑇 ) color updates overall. We note that the couple hedge selector in Alg. 3 has the

same time complexity as the hedge selector given in Alg. 1, which is 𝑂 ( |C|) per iteration.

6 EXTENSIONS

Jointly Optimizing Caching and Routing. Our model can be extended to consider joint op-

timization of both cache and routing decisions, following an extended model by Ioannidis and

Yeh [43]. Under appropriate variable transformations, the new objective is still submodular over the

extended decision space. Moreover, the constraints over the routing decisions can similarly be cast

as assignments to slots. Together, these allow us to directly applyDistributedTGOnline and attain

the same 1 − 1/𝑒 approximation guarantee. We describe this extension in detail in Appendix H.

Anytime Regret Guarantee. Our algorithm assumes prior knowledge of the time horizon 𝑇 ; this

is necessary to set parameter 𝜖 in Theorem 4.1. Nevertheless, we can use the well-known doubling
trick [16] to obtain anytime regret guarantees. In short, the algorithm starts from a short horizon;

at the conclusion of the horizon, the algorithm restarts, this time doubling the horizon. We show in

Appendix I that, by using this doubling trick, DistributedTGOnline indeed attains an 𝑂 (
√
𝑇 )

regret, without requiring prior knowledge of 𝑇 . This remains true when update costs are also

considered in the regret.
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(a) Stationary Requests (b) Sliding Popularity

(c) Shot Noise (d) CDN trace

Fig. 2. Request traces for different scenarios. Each dot indicates an access to an item in the catalog; items are

ordered in an overall increasing popularity from top to bottom. In Sliding Popularity, popularity changes at

fixed time intervals, through a cyclic shift (most popular items become least popular). In Shot Noise, each
item remains active for a limited lifetime.

7 EXPERIMENTS

7.1 Experimental Setting

Networks. We use four synthetic graphs, namely, Erdős-Rényi (ER), balanced tree (BT), hypercube
(HC), and a path (path), and three backbone network topologies: [70] Deutsche Telekom (dtelekom),
GEANT, Abilene. The parameters of different topologies are shown in Tab. 2. For the first five

topologies (ER–GEANT), weights𝑤 for each edge is uniformly distributed between 1–100. Each item

𝑖 ∈ C is permanently stored in a designated servers D𝑖 which is designated uniformly at random

(u.a.r.) from 𝑉 . All nodes in 𝑉 are also has 𝑐𝑣 storage space, which is u.a.r. sampled between 1 to

5. Requests are generated from nodes Q u.a.r. selected from 𝑉 . Given the source 𝑝1 ∈ Q and the

destination 𝑝 |𝑝 | ∈ D𝑖 of the request 𝑟 , path 𝑝 is the shortest path between them. For the remaining

two topologies (abiline and path), we select parameters in a way that is described in Appendix G.

Demand. We consider three different types of synthetic request generation processes, and one

trace-driven. In the Stationary Requests scenario (see Fig. 2(a), each 𝑟 = (𝑖, 𝑝) ∈ R is associated with

an exogenous Poisson process with rate 1.0, and 𝑖 is chosen from C via a power law distribution

with exponent 1.2. In the Sliding Popularity scenario, requests are again Poisson with a different

exponent 0.6, and popularities of items are periodically reshuffled (see Fig. 2(b)). In the Shot Noise
scenario, each item is assigned a lifetime, during which it is requested according to a Poisson

process; upon expiration, the item is retired (see Fig. 2(c)). In the CDN scenario (see Fig. 2(d)), we
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Fig. 3. TACG of different algorithms over different topologies with Stationary Requests. The total simulation

time is 1000 time units. TBGRD, GRD, and PGA perform well in comparison to path replication policies. However,

GRD and other myopic strategies attain zero TACG over abilene and path, the round-robin scenarios. In

comparison, TBGRD and PGA still perform well.

generate requests using a real-life trace from a CDN provider. The trace spans 1 week, and we

extract from it about 10 × 10
5
requests for the 𝑁 = 10

3
most popular files.

For abiline and path, we replace the Poisson arrivals on the three synthetic traces (Stationary
Requests, Sliding Popularity, Shot Noise) with requests generated in a round-robin manner, as

described in Appendix G.2. This is designed in an adversarial fashion, that leads to poor performance

for greedy/myopic algorithms.

Algorithms.We implement the following online algorithms
6
:

• Path replication with least recently used (LRU), least frequently used (LFU), first-in-first-
out (FIFO), and random-replacement (RR) eviction policies: In all these algorithms, when

responses are back-propagated over the reverse path, all nodes they encounter store requested

item, evicting items according to one of the aforementioned policies.

• Projected gradient ascent (PGA): This is the distributed, adaptive algorithm oringinally pro-

posed by Ioannidis and Yeh [41]. This is attains an (1 − 1/𝑒)-approximation guarantee in

expectation when requests are stationary, but comes with no guarantee against adversarial

requests. Similar to our setting, it also operated in rounds, at the end of which contents are

shuffled.

• Greedy path replication (GRD): This is a heuristic, also proposed by Ioannidis and Yeh [41].

Though it performs well in many cases, we prove in Appendix D that its (1 − 1/𝑒)-regret is
Ω(𝑇 ) in the worst case.

• DistributedTGOnline (TBGRD): this is our proposed algorithm. We implement it with both

independent hedge selector shown in Algorithm 1 and coupled hedge selector in Algorithm 3.

Unless indicated otherwise, we set 𝜖 = 0.005, number of colors 𝑀 = 100, 𝑅 = 1, and 𝐾 = 𝑇 for

TBGRD. For PGA and GRD, we explore parameters 𝛾 and 𝛽 range from 0.005-5 and 0.005-1 individually,

and pick the optimal values. In experiments where we do not measure update costs, we implement

TBGRDwith the independent hedge selector (Alg. 1), as it yields the same performance as the coupled

hedge selector (Alg. 3) in expectation (see also Fig. 9(a) and 9(b)).

Finally, we also implement the offline algorithm (OFL) by Ioannidis and Yeh [41], and use the

resulting (1 − 1/𝑒)-approximate solution as baseline (see metrics below).

Performance Metrics. We use normalized time-average cache gain (TACG) as the metric to

measure the performance of different algorithms. More specifically, leveraging PASTA [78], we

measure 𝑓 𝑡𝑠 (𝐴𝑡𝑠 ) at epochs 𝑡𝑠 generated by a Poisson process with rate 1.0 for 5000 time slots, and

average these measurements. To compare performance across different topologies, we normalize

6
Our code is publicly available at https://github.com/neu-spiral/OnlineCache.
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Fig. 4. TACG of different algorithms over different topologies with Sliding Popularity. The total simulation

time is 1000 time units. TBGRD, GRD, and PGA again outperform path replication algorithms; GRD sometimes

even outperforms the (static) OFL solution, attaining a normalized TACG larger than one. However, GRD and
several path replication algorithms again fail catastrophically over the abilene and path scenarios, while
TBGRD and PGA again attain a normalized TACG close to one.

Fig. 5. TACG of different algorithms over different topologies with Shot Noise. We again observe TBGRD, GRD,
and PGA perform well in this non-stationary request arrival setting. Moreover, several algorithms outperform

the (static) offline solution OFL in this setting. Again, GRD and other myopic path replication policies fail over

abilene and path, while TBGRD and PGA still attain a non-zero TACG.

Fig. 6. TACG of different algorithms over different topologies with CDN trace. The total simulation time is

2000 time units. We again observe that TBGRD, GRD, and PGA outperform path replication policies.

the average by 𝑓OFL, the caching gain attained by OFL, yielding:

TACG = 1

𝑇𝑠 𝑓OFL

∑𝑇𝑠
𝑡𝑠=1

𝑓 𝑡𝑠 (𝐴𝑡𝑠 ). (20)

The corresponding 𝑓OFL values are reported in Table 2. We also measure the cumulative update cost

(CUC) of TBGRD over time under the hedge and coupled hedge selectors, i.e.,

CUC =
∑𝑇−1

𝑡=1
UC(𝐴𝑡 , 𝐴𝑡+1), (21)

where we measure the instantaneous update cost UC using (17) with weights set to 1.
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(a) Average number of requests |R𝑡 | (b) Number of colors𝑀

(c) Parameter 𝜖 (d) Color update period 𝐾

Fig. 7. TACG vs. different parameters under Stationary Request. As the average number of requests increases,

TACG decreases. Number of colors does not affect a lot. As 𝜖 increases, TACG decreases. As color update

period increases, TACG increases.

7.2 Results

TACG Comparison. Figures 3-5 show the performance of different algorithms w.r.t. TACG across

multiple topologies, for different synthetic traces (Stationary, Sliding Popularity, and Shot Noise,
respectively). For GRD here, we explore parameters 𝜖 range from 0.0001-1, and pick the optimal

values. We observe that TBGRD, GRD, and PGA have similar performance across topologies on all

three traces for the first five topologies, with GRD being slightly higher performing than the other

two; nevertheless, on the last two topologies, that have been designed to lead to poor performance

for myopic/greedy strategies, both GRD and other myopic strategies (e.g., LFU, LRU, and FIFO) are
stymied, attaining a zero caching gain throughout. This also verifies the suboptimality of GRD
stated in Lemma 4.3. In contrast, TBGRD and PGA still attain a TACG close to the offline value; not

surprisingly RR also has a suboptimal, but non-zero gain in these scenarios as well.

The more a trace departs from stationarity, the more the performance of OFL degrades: As seen

in Tab. 2, the caching gain obtained by OFL consistently across the different topologies has the

highest value in the Stationary trace, then decreases as we change to CDN, Sliding Popularity SN
traces, in that order.

We also note that in the Shot Noise case several algorithms attain a normalized TACG that is

higher than 1. This indicates that the dynamic algorithms beat the static offline policy in this setting.

The above observations largely carry over to the CDN trace, shown in Figure 6, for which however

we do not consider the two round-robin demand scenarios (abilene and path), as the demand is

driven by the trace.
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(a) Average number of requests |R𝑡 | (b) Number of colors𝑀

(c) Parameter 𝜖 (d) Color update period 𝐾

Fig. 8. TACG v.s. different parameter with Sliding Popularity scenario. The average number of requests and

number of colors do not affect performance significantly. The optimal 𝜖 is at about 0.01 for multiple topologies;

this selection corresponds to a decay rate of the item selection probability that is most appropriate for the

popularity refreshing period of these traces. As the color update period increases, TACG increases.

Impact of Different Parameters.We explore the effect of different parameters in TBGRD with

both stationary and sliding popularity requests in Figures 7 and 8, respectively, for five different

topologies. We plot the normalized TACG with different values of colors 𝑀 , parameter 𝜖 , color

update period 𝐾 , and average number of requests per round |R𝑡 |. For the latter, we select a round
duration of 𝐵 time units, and group all requests within a duration together in to a single request

set R𝑡 ; note that, due to stochasticity, the number of requests varies at each round 𝑡 . In general,

the normalized TACG for stationary requests is slightly higher than for sliding popularity. This

is expected, as stationary requests are easier to learn. The number of colors does not affect the

performance of algorithm a lot, shown in Fig. 7(b) and 8(b). From both Fig. 7(a), we see that smaller

request set size leads to better TACG, which again makes sense: that more frequent cache updates

are, the faster they adapt to current requests. Besides this, we see that |R𝑡 | has bigger impact under

stationary requests, while the sliding window scenario is less affected by varying this parameter.

We also observe in Fig. 7(c) that greater 𝜖 values lead to worse performance in the stationary setting;

however in the sliding popularity setting, shown in 8(c), the optimal 𝜖 is at about 0.01 for multiple

topologies; this selection corresponds to a decay rate of the item selection probability that is most

appropriate for the popularity refreshing period of these traces. Finally, even though higher 𝐾

is better on both Fig. 7(d) and 8(d), we see more variability/bigger impact of this selection in the

sliding popularity trace.

Update Costs. Recall from Theorem 5.2 both the (independent) hedge selector and the coupled

hedge selector lead to same caching gain in expectation. This also verified experimentally by results
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(a) TACG of independent hedge selector

Alg. 1

(b) TACG of coupled hedge selector

Alg. 3

(c) Cumulative update cost (CUC) of in-

dependent hedge selector Alg. 1

(d) Cumulative update cost (CUC) of

coupled hedge selector Alg. 3

Fig. 9. TACG and CUC of DistributedTGOnline over Sliding Popularity trace/dtelekom. The learning rate is

𝜖 = 5 × 10
4
. Values reported are averaged over 30 experiments with different random seeds.

of Fig. 9 (a) and (b): we observe that both hedge selectors lead to almost identical TACG on the

sliding popularity trace. We also observe that the cumulative update cost (CUC), shown 9(c) and

Fig. 9(d), is vastly different across the two selectors: within the duration of the simulation, the CUC

of the hedge selector is more than 15× the CUC of the coupled hedge selector.

8 CONCLUSION

We propose a distributed, online algorithm that achieves sublinear (1−1/𝑒)-regret for the adversarial
caching gain maximization problem, even when accounting for update costs. An interesting future

research direction is to provide regret guarantees for the class of path replication algorithms. These

algorithms are appealing precisely because they do not involve updates that happen separately from

the normal response traffic: whenever a response packet carrying an item traverses a cache, the

latter makes a decision of whether to cache this content or not on the spot. This restricts the type

of allocations that an online algorithm can construct at any point in time, but does not incur any

additional cost beyond the one generated by response traffic. This property makes path replication

algorithms quite popular in practice [24, 44, 52]. Our proof that GreedyPathReplication has

linear regret (see Lemma 4.3) is a negative result in this direction. Nevertheless, determining

whether a path replication algorithm that has sublinear 𝛼-regret exists remains an interesting open

problem, from both a theoretical and practical point of view. Another important future research

direction is to consider dynamic regret [81], whereby the performance of a policy is compared

to a dynamic optimum. Dynamic regret was studied under different settings of online convex

optimization [8, 36, 37, 81], multi-armed bandits [9, 48, 49, 58], and non-stationary reinforcement

learning [28, 45, 60], and would be interesting to apply to our setting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.



35:22 Yuanyuan Li et al.

9 ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the National Science Foundation (grants 1718355,

2107062, and 2112471), as well as from Inria under the exploratory action MAMMALS.

REFERENCES

[1] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. 2014. Taming the monster: A

fast and simple algorithm for contextual bandits. In International Conference on Machine Learning. PMLR, 1638–1646.

[2] Alexander A Ageev and Maxim I Sviridenko. 2004. Pipage rounding: A new method of constructing algorithms with

proven performance guarantee. Journal of Combinatorial Optimization 8, 3 (2004), 307–328. https://doi.org/10.1023/b:

joco.0000038913.96607.c2

[3] Sara Alouf, Nicaise Choungmo Fofack, and Nedko Nedkov. 2016. Performance models for hierarchy of caches:

Application to modern DNS caches. Performance Evaluation 97 (2016), 57–82.

[4] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson, Alan Roytman, and Adam

Wierman. 2013. A Tale of Two Metrics: Simultaneous Bounds on Competitiveness and Regret. SIGMETRICS Perform.
Eval. Rev. 41, 1 (June 2013), 329–330. https://doi.org/10.1145/2494232.2465533

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights update method: a meta-algorithm and

applications. Theory of Computing 8, 1 (2012), 121–164.

[6] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. 2009. Exploration–exploitation tradeoff using variance

estimates in multi-armed bandits. Theoretical Computer Science 410, 19 (2009), 1876–1902.
[7] Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. 2014. Exact analysis of TTL cache networks. Performance

Evaluation 79 (2014), 2–23. https://doi.org/10.1016/j.peva.2014.07.001

[8] Omar Besbes, Yonatan Gur, and Assaf Zeevi. 2015. Non-stationary stochastic optimization. Operations research 63, 5

(2015), 1227–1244.

[9] Lilian Besson and Emilie Kaufmann. 2019. The generalized likelihood ratio test meets klucb: an improved algorithm

for piece-wise non-stationary bandits. Proceedings of Machine Learning Research vol XX 1 (2019), 35.

[10] Rajarshi Bhattacharjee, Subhankar Banerjee, and Abhishek Sinha. 2020. Fundamental Limits on the Regret of Online

Network-Caching. Proc. ACM Meas. Anal. Comput. Syst. 4, 2, Article 25 (June 2020), 31 pages. https://doi.org/10.1145/

3392143

[11] Allan Borodin, Nathan Linial, and Michael E. Saks. 1992. An Optimal On-line Algorithm for Metrical Task System. J.
ACM 39, 4 (Oct. 1992), 745–763. https://doi.org/10.1145/146585.146588

[12] Sem Borst, Varun Gupta, and Anwar Walid. 2010. Distributed caching algorithms for content distribution networks. In

IEEE Conference on Computer Communications (INFOCOM 2010). 1–9. https://doi.org/10.1109/INFCOM.2010.5461964

[13] Sébastien Bubeck. 2015. Convex Optimization: Algorithms and Complexity. Foundations and Trends in Machine
Learning 8, 3-4 (2015), 231–357.

[14] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. 2007. Maximizing a submodular set function subject

to a matroid constraint. In International Conference on Integer Programming and Combinatorial Optimization. Springer,
182–196.

[15] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. 2011. Maximizing a monotone submodular function

subject to a matroid constraint. SIAM J. Comput. 40, 6 (2011), 1740–1766.
[16] Nicolo Cesa-Bianchi and Gabor Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press. https:

//doi.org/10.1017/CBO9780511546921

[17] TH Hubert Chan, Zhiyi Huang, Shaofeng H-C Jiang, Ning Kang, and Zhihao Gavin Tang. 2017. Online submodular

maximization with free disposal: Randomization beats for partition matroids. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1204–1223.

[18] HaoChe, Ye Tung, and ZhijunWang. 2002. Hierarchical web caching systems:Modeling, design and experimental results.

IEEE Journal on Selected Areas in Communications 20, 7 (2002), 1305–1314. https://doi.org/10.1109/JSAC.2002.801752

[19] Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. 2010. Dependent randomized rounding via exchange properties

of combinatorial structures. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE, 575–584.
[20] Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. 2018. Projection-Free Online Optimization with

Stochastic Gradient: From Convexity to Submodularity. In International Conference on Machine Learning. 814–823.
[21] Lin Chen, Hamed Hassani, and Amin Karbasi. 2018. Online Continuous Submodular Maximization. In International

Conference on Artificial Intelligence and Statistics. 1896–1905.
[22] Weibo Chu, Mostafa Dehghan, John CS Lui, Don Towsley, and ZhiLi Zhang. 2018. Joint cache resource allocation

and request routing for in-network caching services. Computer Networks 131 (2018), 1–14. https://doi.org/10.1016/j.

comnet.2017.11.009

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.

https://doi.org/10.1023/b:joco.0000038913.96607.c2
https://doi.org/10.1023/b:joco.0000038913.96607.c2
https://doi.org/10.1145/2494232.2465533
https://doi.org/10.1016/j.peva.2014.07.001
https://doi.org/10.1145/3392143
https://doi.org/10.1145/3392143
https://doi.org/10.1145/146585.146588
https://doi.org/10.1109/INFCOM.2010.5461964
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1109/JSAC.2002.801752
https://doi.org/10.1016/j.comnet.2017.11.009
https://doi.org/10.1016/j.comnet.2017.11.009


Online Caching Networks with Adversarial Guarantees 35:23

[23] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual bandits with linear payoff functions. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and

Conference Proceedings, 208–214.

[24] Edith Cohen and Scott Shenker. 2002. Replication strategies in unstructured peer-to-peer networks. In ACM SIGCOMM
Computer Communication Review, Vol. 32. ACM, 177–190.

[25] Mostafa Dehghan, Laurent Massoulie, Don Towsley, Daniel Menasche, and YC Tay. 2016. A utility optimization

approach to network cache design. In IEEE Conference on Computer Communications (INFOCOM 2016).
[26] Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and Tong Zhang. 2011.

Efficient optimal learning for contextual bandits. In Proceedings of the Twenty-Seventh Conference on Uncertainty in
Artificial Intelligence. 169–178.

[27] Ronald Fagin. 1977. Asymptotic miss ratios over independent references. J. Comput. System Sci. 14, 2 (1977), 222 – 250.

[28] Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. 2020. Dynamic Regret of Policy Optimization in

Non-Stationary Environments. In Advances in Neural Information Processing Systems (NeurIPS).
[29] Yuval Filmus and Justin Ward. 2014. Monotone submodular maximization over a matroid via non-oblivious local

search. SIAM J. Comput. 43, 2 (2014), 514–542.
[30] Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. 1978. An analysis of approximations for maximizing

submodular set functions—II. In Polyhedral combinatorics. Springer, 73–87.
[31] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. 2014. Performance evaluation of

hierarchical TTL-based cache networks. Computer Networks 65 (2014), 212 – 231. https://doi.org/10.1016/j.comnet.

2014.03.006

[32] Christine Fricker, Philippe Robert, and James Roberts. 2012. A versatile and accurate approximation for LRU cache

performance. In 2012 24th International Teletraffic Congress (ITC 24). IEEE, 1–8.
[33] Daniel Golovin, Andreas Krause, and Matthew Streeter. 2014. Online submodular maximization under a matroid

constraint with application to learning assignments. arXiv preprint arXiv:1407.1082 (2014).
[34] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. 2010. Constrained non-monotone submodular

maximization: Offline and secretary algorithms. In International Workshop on Internet and Network Economics. Springer,
246–257.

[35] Salah Eddine Hajri and Mohamad Assaad. 2017. Energy efficiency in cache-enabled small cell networks with adaptive

user clustering. IEEE Transactions on Wireless Communications 17, 2 (2017), 955–968.
[36] Eric Hall and Rebecca Willett. 2013. Dynamical models and tracking regret in online convex programming. In

International Conference on Machine Learning. PMLR, 579–587.

[37] Eric C Hall and Rebecca M Willett. 2015. Online convex optimization in dynamic environments. IEEE Journal of
Selected Topics in Signal Processing 9, 4 (2015), 647–662.

[38] Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. 2017. Gradient methods for submodular maximization. In

Advances in Neural Information Processing Systems. 5841–5851.
[39] Elad Hazan et al. 2016. Introduction to online convex optimization. Foundations and Trends® in Optimization 2, 3-4

(2016), 157–325.

[40] Stratis Ioannidis, Laurent Massoulié, and Augustin Chaintreau. 2010. Distributed caching over heterogeneous mobile

networks. In Proceedings of the ACM SIGMETRICS international conference on Measurement and modeling of computer
systems. 311–322.

[41] Stratis Ioannidis and Edmund Yeh. 2016. Adaptive caching networks with optimality guarantees. ACM SIGMETRICS
Performance Evaluation Review 44, 1 (2016), 113–124.

[42] Stratis Ioannidis and Edmund Yeh. 2018. Adaptive caching networks with optimality guarantees. IEEE/ACM Transactions
on Networking 26, 2 (2018), 737–750. https://doi.org/10.1109/TNET.2018.2793581

[43] Stratis Ioannidis and Edmund Yeh. 2018. Jointly Optimal Routing and Caching for Arbitrary Network Topologies. IEEE
Journal on Selected Areas in Communications 36, 6 (2018), 1258–1275. https://doi.org/10.1109/JSAC.2018.2844981

[44] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H Briggs, and Rebecca L Braynard. 2009.

Networking named content. In Proceedings of the 5th International Conference on Emerging Networking Experiments
and Technologies. ACM, 1–12. https://doi.org/10.1145/1658939.1658941

[45] Thomas Jaksch, Ronald Ortner, and Peter Auer. 2010. Near-optimal Regret Bounds for Reinforcement Learning. Journal
of Machine Learning Research 11, 4 (2010).

[46] Predrag R. Jelenkovic. 1999. Asymptotic Approximation of the Move-to-Front Search Cost Distribution and Least-

Recently Used Caching Fault Probabilities. The Annals of Applied Probability 9, 2 (1999), 430–464.

[47] Bo Jiang, Philippe Nain, and Don Towsley. 2018. On the Convergence of the TTL Approximation for an LRU Cache

Under independent Stationary Request Processes. ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS) 3, 4 (2018), 1–31. https://doi.org/10.1145/3239164

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.

https://doi.org/10.1016/j.comnet.2014.03.006
https://doi.org/10.1016/j.comnet.2014.03.006
https://doi.org/10.1109/TNET.2018.2793581
https://doi.org/10.1109/JSAC.2018.2844981
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/3239164


35:24 Yuanyuan Li et al.

[48] Zohar S Karnin and Oren Anava. 2016. Multi-armed bandits: Competing with optimal sequences. Advances in Neural
Information Processing Systems 29 (2016), 199–207.

[49] N Bora Keskin and Assaf Zeevi. 2017. Chasing demand: Learning and earning in a changing environment. Mathematics
of Operations Research 42, 2 (2017), 277–307.

[50] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. 2008. Multi-armed bandits in metric spaces. In Proceedings of the
fortieth annual ACM symposium on Theory of computing. 681–690.

[51] Elias Koutsoupias. 2009. The k-server Problem. Computer Science Review 3, 2 (May 2009), 105–118. https://doi.org/10.

1016/j.cosrev.2009.04.002

[52] Nikolaos Laoutaris, Sofia Syntila, and Ioannis Stavrakakis. 2004. Meta algorithms for hierarchical Web caches. In IEEE
International Conference on Performance, Computing, and Communications, 2004. 445–452. https://doi.org/10.1109/

PCCC.2004.1395054

[53] Emilio Leonardi and Giovanni Neglia. 2018. Implicit Coordination of Caches in Small Cell Networks Under Unknown

Popularity Profiles. IEEE Journal on Selected Areas in Communications 36, 6 (June 2018), 1276–1285. https://doi.org/10.

1109/JSAC.2018.2844982

[54] Jian Li, Truong Khoa Phan, Wei Koong Chai, Daphne Tuncer, George Pavlou, David Griffin, and Miguel Rio. 2018.

Dr-cache: Distributed resilient caching with latency guarantees. In IEEE Conference on Computer Communications
(INFOCOM 2018). 441–449. https://doi.org/10.1109/INFOCOM.2018.8486316

[55] Yuanyuan Li and Stratis Ioannidis. 2020. Universally Stable Cache Networks. In IEEE INFOCOM 2020-IEEE Conference
on Computer Communications. IEEE.

[56] Boxi Liu, Konstantinos Poularakis, Leandros Tassiulas, and Tao Jiang. 2019. Joint Caching and Routing in Congestible

Networks of Arbitrary Topology. IEEE Internet of Things Journal 6, 6 (2019), 10105–10118. https://doi.org/10.1109/

JIOT.2019.2935742

[57] Yuezhou Liu, Yuanyuan Li, Qian Ma, Stratis Ioannidis, and Edmund Yeh. 2020. Fair caching networks. Performance
Evaluation (2020). https://doi.org/10.1016/j.peva.2020.102138.

[58] Haipeng Luo, Chen-Yu Wei, Alekh Agarwal, and John Langford. 2018. Efficient contextual bandits in non-stationary

worlds. In Conference On Learning Theory. PMLR, 1739–1776.

[59] Mark Manasse, Lyle McGeoch, and Daniel Sleator. 1988. Competitive Algorithms for On-Line Problems. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing (Chicago, Illinois, USA) (STOC ’88). Association for

Computing Machinery, New York, NY, USA, 322–333. https://doi.org/10.1145/62212.62243

[60] Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar. 2021. Near-Optimal Model-Free

Reinforcement Learning in Non-Stationary Episodic MDPs. In International Conference on Machine Learning. PMLR,

7447–7458.

[61] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. 2018. Conditional Gradient Method for Stochastic Submodular

Maximization: Closing the Gap. In International Conference on Artificial Intelligence and Statistics. 1886–1895.
[62] Samrat Mukhopadhyay and Abhishek Sinha. 2021. Online Caching with Optimal Switching Regret. In 2021 IEEE

International Symposium on Information Theory (ISIT). 1546–1551. https://doi.org/10.1109/ISIT45174.2021.9517925

[63] Giovanni Neglia, Emilio Leonardi, Guilherme Iecker Ricardo, and Thrasyvoulos Spyropoulos. 2021. A Swiss Army

Knife for Online Caching in Small Cell Networks. IEEE/ACM Transactions on Networking (2021).

[64] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis of approximations for maximizing

submodular set functions. Mathematical Programming 14, 1 (1978), 265–294.

[65] Debjit Paria, Krishnakumar, and Abhishek Sinha. 2020. Caching in Networks without Regret. arXiv:2009.08228 [cs.IT]

[66] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis. 2019. Learning to Cache With No Regrets. In IEEE INFOCOM
2019 - IEEE Conference on Computer Communications. 235–243.

[67] Gabriel Peyré, Marco Cuturi, et al. 2019. Computational Optimal Transport: With Applications to Data Science.

Foundations and Trends® in Machine Learning 11, 5-6 (2019), 355–607.

[68] Konstantinos Poularakis, George Iosifidis, Vasilis Sourlas, and Leandros Tassiulas. 2016. Exploiting caching and

multicast for 5G wireless networks. IEEE Transactions on Wireless Communications 15, 4 (2016), 2995–3007.
[69] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse rankings with multi-armed bandits.

In Proceedings of the 25th international conference on Machine learning. 784–791.
[70] Dario Rossi and Giuseppe Rossini. 2011. Caching performance of content centric networks under multi-path routing

(and more). Relatório técnico, Telecom ParisTech (2011), 1–6.

[71] Tareq Si Salem, Giovanni Neglia, and Stratis Ioannidis. 2021. No-Regret Caching via Online Mirror Descent.

arXiv:2101.12588 [cs.LG]

[72] Shai Shalev-Shwartz. 2012. Online Learning and Online Convex Optimization. Found. Trends Mach. Learn. 4, 2 (Feb.
2012), 107–194. https://doi.org/10.1561/2200000018

[73] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F Molisch, and Giuseppe Caire. 2013.

Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.

https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1109/PCCC.2004.1395054
https://doi.org/10.1109/PCCC.2004.1395054
https://doi.org/10.1109/JSAC.2018.2844982
https://doi.org/10.1109/JSAC.2018.2844982
https://doi.org/10.1109/INFOCOM.2018.8486316
https://doi.org/10.1109/JIOT.2019.2935742
https://doi.org/10.1109/JIOT.2019.2935742
https://doi.org/10.1016/j.peva.2020.102138
https://doi.org/10.1145/62212.62243
https://doi.org/10.1109/ISIT45174.2021.9517925
https://arxiv.org/abs/2009.08228
https://arxiv.org/abs/2101.12588
https://doi.org/10.1561/2200000018


Online Caching Networks with Adversarial Guarantees 35:25

Algorithm 4: TabularGreedy
Input: Integer𝑀 , set C, function 𝑓 .

1 set �̃�← ∅.
2 for𝑚 ← 1 to𝑀 do
3 foreach 𝑠 ∈ S do
4 Find 𝑖𝑠,𝑚 s.t. 𝐹 (�̃� + (𝑠, 𝑖𝑠,𝑚,𝑚)) ≥ max𝑖∈C 𝐹 (�̃� + (𝑠, 𝑖,𝑚)) − 𝜖𝑠,𝑚
5 �̃�← �̃� + (𝑠, 𝑖𝑠,𝑚,𝑚)

6 foreach 𝑠 ∈ S do
7 independently choose𝑚𝑠 uniformly at random from𝑀

8 return sample𝑚𝑚𝑚 (�̃�)
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A TABULAR GREEDY ALGORITHM

We present here TabularGreedy [77], a polynomial time algorithm for solving Problem (7) within

a (1 − 1/𝑒)-approximation. This differs from the (more common) continuous greedy algorithm [15]

in that it operates in the discrete rather than continuous domain, even though both algorithms

involve randomization. It serves as the basis for the online algorithm by Streeter et al. [77]. A key

departure from continuous greedy is the use of randomization via colors assigned to each slot,

which also manifest in the online version of the algorithm.

For any set �̃� ⊆ S × C × [𝑀] and vector𝑚𝑚𝑚 = [𝑚𝑠 ]𝑠∈S ∈ [𝑀] |S | , let:

sample𝑚𝑚𝑚 (�̃�) =
{
(𝑠, 𝑖) ∈ S × C : (𝑠, 𝑖,𝑚𝑠 ) ∈ �̃�

}
. (22)

Intuitively, the colored allocation �̃� ⊆ S × C × [𝑀] is an allocation of items to slots, additionally

parameterized by colors. Given the color vector 𝑚𝑚𝑚, assigning colors to slots, sample𝑚𝑚𝑚 acts as

a selector, producing an (uncolored) allocation 𝐴 ⊆ S × C. Let 𝐹 (�̃�) be the expected value of

𝑓 (sample𝑚𝑚𝑚 (�̃�)) when each color𝑚𝑠 is selected independently and u.a.r. from [𝑀]; formally,

𝐹 (�̃�) = E
[
𝑓 (sample𝑚𝑚𝑚 (�̃�))

]
=

1

𝑀 |S |

∑
𝑚𝑚𝑚′∈[𝑀 ] |𝑆 |

𝑓 (sample𝑚𝑚𝑚′ (�̃�)) . (23)
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The procedure is summarized in Algorithm 4. TabularGreedy constructs a set of triplets

�̃� ⊆ S × C × [𝑀] greedily; that is, starting from an empty set, it iterates over all colors and storage

slots in an arbitrary order, and places items to (colored) slots by greedily maximizing the extended

function 𝐹 . Formally, in the iteration over color𝑚 ∈ [𝑀] and slot 𝑠 ∈ 𝑆 , the algorithm extends �̃�

via:

𝑖𝑠,𝑚 = arg max

𝑖∈C
{𝐹 (�̃� + (𝑠, 𝑖,𝑚))} (24a)

�̃�← �̃� + (𝑠, 𝑖𝑠,𝑚,𝑚), (24b)

where, for legibility, we use �̃� + 𝑜 to indicate �̃� ∪ {𝑜}. Finally, the algorithm returns allocation

𝑆 = sample𝑚𝑚𝑚 (�̃�), where colors in vector𝑚𝑚𝑚 are selected u.a.r. from [𝑀].
Note that the same node would not cache the same content multiple times. Indeed, as shown in

Eq. (24), the algorithm extends the set of triplets �̃�, in the iteration over color𝑚 and slot 𝑠 , by the

maximizer (𝑠, 𝑖,𝑚) of 𝐹 (�̃� + (𝑠, 𝑖,𝑚)). To be more specific, in the same node, if it is possible that an

item 𝑖 is repeatedly cached, then one of the triplets (𝑠, 𝑖,𝑚) could not be the maximizer in some

iteration, since a different item 𝑖 ′ could achieve greater or equal cache gain than 𝑖 . This internally

avoids duplicate cache in one nodes.

The following theorem characterizes the approximation guarantee of the solution produced by

TabularGreedy; the theorem allows for the case where the greedy item selection 𝑖𝑠,𝑚 by (24a) is

inexact, and the selected item is suboptimal by an offest 𝜖𝑠,𝑚 . Let �̃�
−
𝑠,𝑚 equal �̃� just before (𝑠, 𝑖𝑠,𝑚,𝑚)

is added at iteration𝑚, 𝑠 , i.e., �̃�−𝑠,𝑚 = {(𝑠 ′, 𝑖𝑠′,𝑚′,𝑚′) : 𝑠 ′ ∈ S,𝑚′ < 𝑚} ∪ {(𝑠 ′, 𝑖𝑠′,𝑚,𝑚) : 𝑠 ′ ≺ 𝑠}:

Theorem A.1. (Theorem 13 in [33]) Suppose 𝑓 is monotone submodular. Consider an arbitrary order-
ing of colors𝑚 ∈ [𝑀] and slots 𝑠 ∈ S, and consider the sequence of sets constructed by TabularGreedy
when 𝑖𝑠,𝑚 ∈ C in Eq. (24a) is such that:

𝐹 (�̃� + (𝑠, 𝑖𝑠,𝑚,𝑚)) ≥ max

𝑖∈C
𝐹 (�̃�−𝑠,𝑚 + (𝑠, 𝑖,𝑚)) − 𝜖𝑠,𝑚, (25)

for some 𝜖𝑠,𝑚 ≥ 0. Then, the final set in the sequence �̃� ⊆ S × C × [𝑀] satisfies:

𝐹 (�̃�) ≥ 𝛽 ( |S|, 𝑀) ·max

𝐴∈D
𝑓 (𝐴) −

∑
𝑠∈S

𝑀∑
𝑚=1

𝜖𝑠,𝑚, (26)

where 𝛽 ( |S|, 𝑀) = 1 − (1 − 1

𝑀
)𝑀 −

( |S |
2

)
𝑀−1.

The importance of accounting for inexact greedy selection lies in the fact that expectation 𝐹 is hard

to compute exactly, and is typically approximated by sampling, i.e., via 𝐹 (�̃�) = 1

𝐿

∑𝐿
𝑙=1

𝑓 (sample𝑚𝑚𝑚𝑙
(𝑆)),

were𝑚𝑚𝑚𝑙 are sampled u.a.r. The theorem implies that by selecting a large enough 𝑀 (in particular,

larger than Θ( |S|2), and 𝐿, the approximation guarantee can get arbitrarily close to 1 − 1/𝑒 .

B FORMAL GUARANTEES OF HEDGE SELECTOR ALG. 1

Recall that, at each time 𝑡 , the hedge selector E defined by Alg. 1 picks an action 𝑖𝑡 from finite set C
and subsequently observes an adversarially selected vector of rewards ℓℓℓ𝑡 = [ℓ𝑡𝑖 ]𝑖∈C ∈ R

|C |
+ , where

ℓ𝑡𝑖 is the reward for choosing action 𝑖 ∈ C at round 𝑡 . The selector then accrues reward ℓ𝑡
𝑖𝑡
, i.e., the

reward associated with the action 𝑖𝑡 it selected previously. We note that the hedge selector operates

in the full-information (rather than the classic bandit) setting: all action rewards in C are observed.

The regret 𝑅𝑇 of hedge selector E is:

𝑅𝑇 =

𝑇∑
𝑡=1

ℓ𝑡𝑖∗ − E[
𝑇∑
𝑡=1

ℓ𝑡
𝑖𝑡
], (27)
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where 𝑖∗ is the best selection in hindsight, i.e., 𝑖∗ = arg max𝑖∈C
∑𝑇
𝑡=1

ℓ𝑡𝑖 .

The following lemma is classic; we note that it follows immediately from Theorem 1.5 in Hazan

[39]. We reprove it here for completeness.

Lemma B.1 ([5, 39]). Assume that every action’s reward is bounded by 𝐿 ∈ R+. Let 𝜖 = 1

�̄�

√
log |C |
𝑇

.
Then, for all 𝑇 ≥ log |C|, the regret of hedge selector E defined by (9) and (10) is s.t.:

𝑅𝑇 ≤ 2𝐿
√
𝑇 log |C|. (28)

Proof. Observe that for 𝑇 ≥ log |C|, we have that

𝜖 =
1

𝐿

√
log |𝐶 |
𝑇

∈ [0, 1

𝐿
] . (29)

Let Φ𝑡 =
∑
𝑖∈C𝑊

𝑡
𝑖 , 𝑝𝑝𝑝

𝑡 = [𝑝𝑡𝑖 ]𝑖∈C ∈ R |C | .

Φ𝑡+1 =
∑
𝑖∈C

𝑊 𝑡+1
𝑖

(10)

=
∑
𝑖∈C

𝑊 𝑡
𝑖 𝑒
𝜖ℓ𝑡

𝑖 ,

(29)

≤
∑
𝑖∈C

𝑊 𝑡
𝑖 (1 + 𝜖ℓ𝑡𝑖 + 𝜖2ℓ𝑡𝑖 )2), 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2,∀𝑥 ∈ [0, 1]

= Φ𝑡
∑
𝑖∈C

𝑝𝑡𝑖 (1 + 𝜖ℓ𝑡𝑖 + 𝜖2 (ℓ𝑡𝑖 )2), 𝑝𝑡𝑖 =
𝑊 𝑡
𝑖∑

𝑗 ∈C𝑊
𝑡
𝑗

=
𝑊 𝑡
𝑖

Φ𝑡

= Φ𝑡 (1 + 𝜖 ⟨𝑝𝑝𝑝𝑡 , ℓℓℓ𝑡 ⟩ + 𝜖2⟨𝑝𝑝𝑝𝑡 , (ℓℓℓ𝑡 )2⟩), (ℓℓℓ𝑡 )2 = [(ℓ𝑡𝑖 )2]𝑖∈C
≤ Φ𝑡𝑒𝜖 ⟨𝑝𝑝𝑝

𝑡 ,ℓℓℓ𝑡 ⟩+𝜖2 ⟨𝑝𝑝𝑝𝑡 ,(ℓℓℓ𝑡 )2 ⟩, 1 + 𝑥 ≤ 𝑒𝑥 .

(30)

So, at round 𝑇 ,

𝑒𝜖
∑𝑇

𝑡=1
ℓ𝑡
𝑖∗ =𝑊𝑇

𝑖∗ ≤ Φ𝑇 ≤ Φ0𝑒𝜖
∑𝑇

𝑡=1
⟨𝑝𝑝𝑝𝑡 ,ℓℓℓ𝑡 ⟩+𝜖2

∑𝑇
𝑡=1
⟨𝑝𝑝𝑝𝑡 ,(ℓℓℓ𝑡 )2 ⟩,

𝜖

𝑇∑
𝑡=1

ℓ𝑡𝑖∗ ≤ ln |C| + 𝜖
𝑇∑
𝑡=1

⟨𝑝𝑝𝑝𝑡 , ℓℓℓ𝑡 ⟩ + 𝜖2

𝑇∑
𝑡=1

⟨𝑝𝑝𝑝𝑡 , (ℓℓℓ𝑡 )2⟩, take logarithm

𝑇∑
𝑡=1

ℓ𝑡𝑖∗ −
𝑇∑
𝑡=1

⟨𝑝𝑝𝑝𝑡 , ℓℓℓ𝑡 ⟩ ≤ ln |C|
𝜖
+ 𝜖

𝑇∑
𝑡=1

⟨𝑝𝑝𝑝𝑡 , (ℓℓℓ𝑡 )2⟩, divided by 𝜖 and rearrange.

(31)

Thus,

𝑅𝑇 =

𝑇∑
𝑡=1

ℓ𝑡𝑖∗ − E[
𝑇∑
𝑡=1

ℓ𝑡
𝑖𝑡
] =

𝑇∑
𝑡=1

ℓ𝑡𝑖∗ −
𝑇∑
𝑡=1

⟨𝑝𝑝𝑝𝑡 , ℓℓℓ𝑡 ⟩

(31)

≤ ln |C|
𝜖
+ 𝜖

𝑇∑
𝑡=1

⟨𝑝𝑝𝑝𝑡 , (ℓℓℓ𝑡 )2⟩ ≤ ln |C|
𝜖
+ 𝜖𝐿2𝑇, 𝑝𝑝𝑝𝑡 is probability, and ℓ𝑡𝑖 ∈ [0, 𝐿] .

(32)

The latter inequality yields 𝑅𝑇 ≤ 2𝐿
√
𝑇 log |C| as 𝜖 = 1

�̄�

√
ln |C |
𝑇

. □

C PROOF OF THEOREM 4.1

We first introduce some auxiliary lemmas to describe the properties of reward vectors. For any set

�̃� ⊆ S × C × [𝑀] and given color𝑚𝑚𝑚 = [𝑚𝑠 ]𝑠∈S at round 𝑡 , let 𝐹
𝑡 (�̃�,𝑚𝑚𝑚) = 𝑓 𝑡 (sample𝑚𝑚𝑚 (�̃�)). Let𝑚𝑚𝑚𝑡
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be the vector of colors at the beginning of round 𝑡 . Let also

𝑖𝑡𝑠,𝑚 =

{
the item returned by E𝑠,𝑚 .arm() the last time it was called (including 𝑡 ), or

an arbitrary item if the selector has never been called.

(33)

Note that, at time 𝑡 , the selector E𝑠,𝑚 .arm() is indeed called for all slots 𝑠 on a path of a request

𝑟 ∈ R𝑡 when𝑚 =𝑚𝑡
𝑠 . Let �̃�

𝑡 ⊆ S × C × [𝑀] be the triplet set constructed by Alg. 2 at round 𝑡 , i.e.,

the set comprising triplets

(𝑠, 𝑖𝑡𝑠,𝑚,𝑚) for all 𝑠 ∈ S and𝑚 ∈ [𝑀] .

Note that such triplets are updated at all slots in paths of requests in timeslot 𝑡 ; all other triplets

remain unaltered. We impose an ordering over all such triplets, defined by an ordering over colors

first and slots second (the latter given by Eq. (1)). Under this ordering, similar to �̃�−𝑠,𝑚 defined before

Thm. A.1, let �̃�𝑡−𝑠,𝑚 equal �̃�𝑡 just “before” (𝑠, 𝑖𝑡𝑠,𝑚,𝑚) is added at round 𝑡 ; this addition is conceptual,

presuming these triplets are “added” one-by-one under the aforementioned ordering to construct

�̃�𝑡 . Under this convention,

�̃�𝑡−𝑠,𝑚 = {(𝑠 ′, 𝑖𝑡𝑠′,𝑚,𝑚) : 𝑠 ′ ∈ S,𝑚′ < 𝑚} ∪ {(𝑠 ′, 𝑖𝑡(𝑠′,𝑚) ,𝑚) : 𝑠 ′ ≺ 𝑠}.

Lemma C.1. At round 𝑡 , for all storage slot 𝑠 ∈ ⋃
(𝑖,𝑝) ∈R𝑡 S𝑝 , the reward vector computed by Eq. (15),

i.e., the vector ℓℓℓ𝑟 (𝑠,𝑚𝑡
𝑠 ) ∈ R

|C |
+ with coordinates:

ℓ𝑟𝑖′ (𝑠,𝑚𝑡
𝑠 ) =

{
max(𝑣′, 𝑗 ′) ∈S⪯𝑠+𝑠 𝑤

𝑝

𝑣′, 𝑖
′ = 𝑖

max(𝑣′, 𝑗 ′) ∈S⪯𝑠 𝑤
𝑝

𝑣′, 𝑜 .𝑤

where 𝑟 = (𝑖, 𝑝) ∈ R𝑡 and S⪯𝑠 = {𝑠 ′ ∈ S𝑖,𝑝 : 𝑚𝑠′ < 𝑚𝑠 or𝑚𝑠′ = 𝑚𝑠 , 𝑠
′ ≺ 𝑠}, satisfies the following

property: ∑
𝑟=(𝑖,𝑝 )∈R𝑡 :

𝑠∈S𝑝

ℓ𝑟𝑖′ (𝑠,𝑚𝑡
𝑠 ) = 𝐹

𝑡 (�̃�𝑡−
𝑠,𝑚𝑡

𝑠
+ (𝑠, 𝑖 ′,𝑚𝑡

𝑠 ),𝑚𝑚𝑚𝑡 ), for all 𝑖 ′ ∈ C. (34)

Proof. From the definition Eq. (5) of 𝑓𝑟 , we have that for 𝑟 = (𝑖, 𝑝) ∈ R𝑡 :

𝑓𝑟 (𝐴) =
|𝑝 |−1∑
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝐴 ∩


⋃
𝑘′∈[𝑘 ]

S𝑝𝑘′ × {𝑖}
 ≠ ∅ª®¬

=

|𝑝 |−1∑
𝑘=min{𝑘′: ∃𝑗∈S𝑝𝑘′
s.t. ( (𝑝𝑘′ , 𝑗 ),𝑖 )∈𝐴}

𝑤𝑝𝑘+1𝑝𝑘 = max

𝑣∈𝑝 :∃ 𝑗 s.t. ( (𝑣,𝑗),𝑖) ∈𝐴
𝑤
𝑝
𝑣 ,

(35)

where𝑤
𝑝
𝑣 is the cumulative upstream cost defined in Eq. (13). Then,

𝐹
𝑡 (�̃�,𝑚𝑚𝑚) = 𝑓 𝑡 (sample𝑚𝑚𝑚 (�̃�))

(22)

=
∑
𝑟 ∈R𝑡

𝑓𝑟 (
{
(𝑠, 𝑖) ∈ S × C : (𝑠, 𝑖,𝑚𝑠 ) ∈ �̃�

}
)

(35)

=
∑
(𝑖,𝑝) ∈R𝑡

|𝑝 |−1∑
𝑘=min{𝑘′: ∃𝑗∈S𝑝𝑘′
𝑠.𝑡 . ( (𝑝𝑘′ , 𝑗 ),𝑖,𝑚𝑠 )∈�̃�}

𝑤𝑝𝑘+1𝑝𝑘 =
∑
(𝑖,𝑝) ∈R𝑡

max

𝑣∈𝑝 :∃ 𝑗 s.t. ( (𝑣,𝑗),𝑖,𝑚 (𝑣,𝑗 ) ) ∈�̃�
𝑤
𝑝
𝑣 .

(36)
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Then, for �̃�′ = �̃�𝑡−
𝑠,𝑚𝑡

𝑠
+ (𝑠, 𝑖 ′,𝑚𝑡

𝑠 ), we have

𝐹
𝑡 (�̃�𝑡−

𝑠,𝑚𝑡
𝑠
+ (𝑠, 𝑖 ′,𝑚𝑡

𝑠 ),𝑚𝑚𝑚𝑡 ) (36)=
∑
(𝑖,𝑝 )∈R𝑡 :

𝑠∈S𝑝

max

( (𝑣′, 𝑗 ′),𝑖,𝑚𝑠′ ) ∈�̃�′
𝑤
𝑝

𝑣′

=


∑
(𝑖,𝑝 )∈R𝑡 :

𝑠∈S𝑝
max(𝑣′, 𝑗 ′) ∈S⪯𝑠+𝑠 𝑤

𝑝

𝑣′, 𝑖
′ = 𝑖∑

(𝑖,𝑝 )∈R𝑡 :

𝑠∈S𝑝
max(𝑣′, 𝑗 ′) ∈S⪯𝑠 𝑤

𝑝

𝑣′, 𝑜 .𝑤
=

∑
𝑟=(𝑖,𝑝 )∈R𝑡 :

𝑠∈S𝑝

ℓ𝑟𝑖′ (𝑠,𝑚𝑡
𝑠 ).

(37)

The second equality holds because of the definition of accumulate weights by Eq. (13) and the

fact that 𝑣 = arg min𝑣 𝑘𝑝 (𝑣) = arg max𝑣𝑤
𝑝
𝑣 . The Third equality holds by the definitions of �̃�′ and

S⪯𝑠 . □

If the requests in R𝑡 do not cross, it behaves same as the one request scenario. If requests do

cross each other, the reward vector calculated by storage slot (𝑣, 𝑗) is the summation of separate

reward vectors deriving from each request 𝑟 𝑡 ∈ R𝑡 . Actually, it is equivalent to calculating the

reward vector and calling operation feedback(ℓℓℓ𝑡 (𝑠,𝑚𝑠 )) separately when each request arrives. We

prove the above statement by the following lemma:

Lemma C.2. Calling feedback() with reward vector
∑𝑘
𝑖=1
ℓℓℓ𝑖 is equivalent to a sequence of 𝑘 feedback

calls, with reward vectors ℓℓℓ𝑖 .

Proof. If we feedback a reward:

∑
𝑖 ℓℓℓ𝑖 , the weight vector in it is: ∀𝑖 ∈ C,𝑊 𝑡+1

𝑖 = 𝑊 𝑡
𝑖 𝑒
𝜖
∑

𝑖 ℓ𝑖 .

If we feedback rewards ℓℓℓ𝑖 for all 𝑖 separately, in the end, the weight vector in it is: ∀𝑖 ∈ C,
𝑊 𝑡+1
𝑖 =𝑊 𝑡

𝑖

∏
𝑖 𝑒
𝜖ℓ𝑖
. These two feedback scenario lead to same state in hedge selector. □

Lemma C.3. At round 𝑡 , given selected color𝑚𝑚𝑚, for 𝑠 ∉
⋃
(𝑖,𝑝) ∈R𝑡 S𝑝 or 𝑚 ≠ 𝑚𝑠 , all 𝑖 ′, 𝑗 ′ ∈ C,

𝐹
𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖 ′,𝑚),𝑚𝑚𝑚) = 𝐹

𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑗 ′,𝑚),𝑚𝑚𝑚).

Proof. When 𝑠 ∉
⋃
(𝑖,𝑝) ∈R𝑡 S𝑝 or𝑚 ≠𝑚𝑠 , according to Eq. (37), for all 𝑖 ′ ∈ C,

𝐹
𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖 ′,𝑚),𝑚𝑚𝑚) =

∑
(𝑖,𝑣) ∈R𝑡

max

( (𝑣′, 𝑗 ′),𝑖,𝑚𝑠′ ) ∈�̃�′
𝑤
𝑝

𝑣′ =
∑
(𝑖,𝑣) ∈R𝑡

max

(𝑣′, 𝑗 ′) ∈S⪯𝑠
𝑤
𝑝

𝑣′ . (38)

□

Finally, we can prove Theorem 4.1.

Proof. For all 𝑠 ∈ S,𝑚 ∈ [𝑀], we denote by T𝑠,𝑚 be the set of rounds where hedge selector E𝑠,𝑚
receives reward vector in our algorithm in𝑇 rounds, i.e., T𝑠,𝑚 = {𝑡 ∈ [𝑇 ] : 𝑣 ∈ 𝑝𝑡 ,𝑚 =𝑚𝑡

𝑠 }. For any
𝑠 ∈ S,𝑚 ∈ [𝑀], and 𝑖 ′ ∈ C, since hedge selectors are no-regret algorithms, let 𝑅𝑇𝑠,𝑚 be the regret of

E𝑠,𝑚 during rounds T𝑠,𝑚 . We denote 𝑙𝑡𝑖 (𝑠,𝑚) the 𝑖-th coordinate of total reward vector for hedge

selector E𝑠,𝑚 at round 𝑡 , i.e., 𝑙𝑡𝑖 (𝑠,𝑚) =
∑

𝑟=(𝑖,𝑝 )∈R𝑡 :

𝑠∈S𝑝
ℓ𝑟𝑖 (𝑠,𝑚). According to the definition of regret in

Eq. (27), we have

𝑅𝑇𝑠,𝑚 =
∑
𝑡 ∈T𝑠,𝑚

ℓ𝑡𝑖∗ (𝑠,𝑚) −
∑
𝑡 ∈T𝑠,𝑚

ℓ𝑡
𝑖𝑡𝑠,𝑚
(𝑠,𝑚) ≥

∑
𝑡 ∈T𝑠,𝑚

ℓ𝑡𝑖′ (𝑠,𝑚) −
∑
𝑡 ∈T𝑠,𝑚

ℓ𝑡
𝑖𝑡𝑠,𝑚
(𝑠,𝑚), (39)

where 𝑖∗ is the best selection in hindsight, i.e., 𝑖∗ = arg max𝑖∈C
∑
𝑡 ∈T𝑠,𝑚 ℓ

𝑡
𝑖 . Then, by Lemma C.1,∑

𝑡 ∈T𝑠,𝑚
𝐹
𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡𝑠,𝑚,𝑚),𝑚𝑚𝑚) ≥

©­«
∑
𝑡 ∈T𝑠,𝑚

𝐹
𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖 ′,𝑚),𝑚𝑚𝑚)

ª®¬ − 𝑅𝑇𝑠,𝑚 . (40)
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For 𝑡 ∈ [𝑇 ] \ T𝑠,𝑚 , all 𝑠 ∈ S,𝑚 ∈ [𝑀], 𝑖 ′ ∈ C, by Lemma C.3,

𝐹
𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡𝑠,𝑚,𝑚),𝑚𝑚𝑚) = 𝐹

𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖 ′,𝑚),𝑚𝑚𝑚). (41)

Thus, for all 𝑠 ∈ S,𝑚 ∈ [𝑀], 𝑖 ′ ∈ C,
𝑇∑
𝑡=1

𝐹
𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡𝑠,𝑚,𝑚),𝑚𝑚𝑚) ≥

(
𝑇∑
𝑡=1

𝐹
𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖 ′,𝑚),𝑚𝑚𝑚)

)
− 𝑅𝑇𝑠,𝑚 . (42)

Taking the expectation of both sides over𝑚, and over 𝑖𝑡𝑠,𝑚 and choosing 𝑖 to maximize the right

hand side, we get

𝑇∑
𝑡=1

𝐹 𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡𝑠,𝑚,𝑚)}) ≥ max

𝑖∈C

(
𝑇∑
𝑡=1

𝐹 𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖 ′,𝑚))
)
− 𝜖𝑠,𝑚, (43)

where we define 𝐹 𝑡 (�̃�) = E𝑚𝑚𝑚 [E𝑖𝑡𝑠,𝑚 [𝑓
𝑡 (sample𝑚𝑚𝑚 (�̃�))]] and 𝜖𝑠,𝑚 = E[𝑅𝑇𝑠,𝑚].

We now define some additional notation. For any set ®𝐴 of vector in S × C𝑇 , define

𝑓 ( ®𝐴) =
𝑇∑
𝑡=1

𝑓 𝑡 ({(𝑠, 𝑖𝑡 ) : (𝑠, ®𝑖) ∈ ®𝐴}), (44)

where ®𝑖 = [𝑖𝑡 ]𝑇𝑡=1
. Next, for any set

®̃
𝐴 ⊆ S×C𝑇 ×[𝑀], and given𝑚𝑚𝑚 = [𝑚𝑠 ]𝑠∈S , define sample𝑚𝑚𝑚 ( ®̃𝐴) =

{(𝑠, ®𝑖) ∈ {𝑠} × C𝑇 : (𝑠, ®𝑖,𝑚𝑠 ) ∈ ®̃𝐴}. Define 𝐹 ( ®̃𝐴) = E𝑚𝑚𝑚 [E®𝑖𝑠,𝑚 [𝑓 (sample𝑚𝑚𝑚 (
®̃
𝐴))]], where ®𝑖𝑠,𝑚 =

[𝑖𝑡𝑠,𝑚]𝑇𝑡=1
∈ C𝑇 . By linearity of expectation,

𝐹 ( ®̃𝐴) =
𝑇∑
𝑡=1

𝐹 𝑡 ({(𝑠, 𝑖𝑡 ,𝑚) : (𝑠, ®𝑖,𝑚) ∈ ®̃𝐴}). (45)

Analogously to �̃�𝑡−𝑠,𝑚 , define
®̃
𝐴−𝑠,𝑚 = {(𝑠 ′, ®𝑖𝑠′,𝑚′,𝑚′) : 𝑠 ′ ∈ S,𝑚′ < 𝑚} ∪ {(𝑠 ′, ®𝑖𝑠′,𝑚,𝑚) : 𝑠 ′ ≺ 𝑠}. Thus,

for any (𝑠, ®𝑖,𝑚) ∈ S ×C𝑇 × [𝑀], we have 𝐹 ( ®̃𝐴−𝑠,𝑚 + (𝑠, ®𝑖,𝑚)) =
∑𝑇
𝑡=1

𝐹 𝑡 (�̃�𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡 ,𝑚)). Combining

this with (43) , we get:

𝐹 ( ®̃𝐴−𝑠,𝑚 + (𝑠, ®𝑖𝑠,𝑚,𝑚)) ≥ max

𝑖′∈C

(
𝐹 ( ®̃𝐴−𝑠,𝑚 + (𝑠, [𝑖 ′]𝑇 ,𝑚))

)
− 𝜖𝑠,𝑚 . (46)

Having proved (46), we can now use Thm. A.1 to complete the proof. Define a new partition matroid

over ground set {S × C𝑇 } with feasible solution
®D := { ®𝐴 ⊂ S ×C𝑇 : | ®𝐴∩ ({𝑠} × C𝑇 ) | = 1,∀𝑠 ∈ S}.

Let
®̃
𝐴 = {(𝑠, ®𝑖𝑠,𝑚,𝑚) : 𝑠 ∈ S,𝑚 ∈ [𝑀]}. It is easy to verify that 𝐹 𝑡 is monotone submodular, and 𝐹

is also monotone submodular by linearity. Thus, by Thm. A.1,

𝐹 ( ®̃𝐴) ≥ 𝛽 (𝑀, |S|) ·max

®𝐴∈ ®D
{𝑓 ( ®𝐴)} −

∑
𝑠∈S

𝑀∑
𝑚=1

𝜖𝑠,𝑚 . (47)

By definition, 𝐹 ( ®̃𝐴) = E[∑𝑇
𝑡=1

𝑓 𝑡 (𝐴𝑡 )], and max ®𝐴∈ ®D{𝑓 ( ®𝐴)} ≥ max𝐴∈D{
∑𝑇
𝑡=1

𝑓 𝑡 (𝐴)}, we get

E

[
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
≥ 𝛽 ( |S|, 𝑀) ·max

𝐴∈D

{
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴)
}
−

∑
𝑠∈S

𝑀∑
𝑚=1

𝜖𝑠,𝑚 . (48)

According to Lemma B.1, 𝜖𝑠,𝑚 = E[𝑅𝑇𝑠,𝑚] ≤ 2𝑅𝐿
√
|T𝑠,𝑚 | log |C| ≤ 2𝑅𝐿

√
𝑇 log |C|, then

E

[
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
≥ 𝛽 ( |S|, 𝑀) ·max

𝐴∈D

{
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴)
}
− 2𝑅𝐿 |S|𝑀

√
𝑇 log |C|. (49)
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Fig. 10. A simplified instance of GRD with linear regret. The cache can only store a single file, and at any given

moment the adversary requests the file that is not stored in the cache. GRD updates its state greedily to store

the requested file and oscillates between the two possible states. The optimal static strategy stores one of the

files permanently incurring a total cost of 𝑇 /2, while GRD incurs a total cost 𝑇 .

□

D PROOF OF LEMMA 5.1

Proof. Consider a cache network of two nodes 𝑢 and 𝑣 and a catalog of two files represented by

the set {1, 2}. The cache node 𝑢 has capacity 1 and the node 𝑣 is a repository node containing the

files 1 and 2. The hedge selector is initialized with a distribution of the possible states𝑝𝑝𝑝1 = (1/2, 1/2).
According to Alg. 1, the hedge selector adds 𝜖 = Θ

(
1√
𝑇

)
fraction to the component corresponding

to the requested file, and reduces the same quantity from the other component. When the requested

files sequence is {1, 2, 1, 2, . . . }, this gives the following distributions:

{𝑝𝑝𝑝1, 𝑝𝑝𝑝2, 𝑝𝑝𝑝3, 𝑝𝑝𝑝4, . . . } = {(1/2, 1/2), (1/2 + 𝜖, 1/2 − 𝜖), (1/2, 1/2), (1/2 + 𝜖, 1/2 − 𝜖), . . . }.
The distribution 𝑝𝑝𝑝1

, gives two integral states (1, 0) w.p. 1/2 and (0, 1) w.p. 1/2, and 𝑝𝑝𝑝2
can give two

integral states (1, 0) w.p 1/2 + 𝜖 and (0, 1) w.p. 1/2 − 𝜖 . The expected update cost experienced in

expectation from 𝑡 = 1 to 𝑡 = 2 is:

E
[
UC(𝐴1, 𝐴2)

]
= 1/2 (1/2 − 𝜖) + 1/2 (1/2 + 𝜖) = 1/2.

The decomposition of 𝑝𝑝𝑝3
is the same as 𝑝𝑝𝑝1

. The update cost experienced in expectation from 𝑡 = 2

to 𝑡 = 3 is:

E
[
UC(𝐴2, 𝐴3)

]
= (1/2 − 𝜖) 1/2 + (1/2 + 𝜖) 1/2 = 1/2.

The sequence repeats and the same costs are obtained. The total update cost is:

E

[
𝑇∑
𝑡=1

UC(𝐴𝑡 , 𝐴𝑡+1)
]
=

𝑇∑
𝑡=1

E
[
UC(𝐴𝑡 , 𝐴𝑡+1)

]
=
𝑇

2

(50)

This is an update cost of Ω(𝑇 ) paid in expectation.

□

E PROOF OF LEMMA 4.3

Proof. Assume a cache network formed of a designated server 𝑣 and a cache with storage

capacity 𝑐𝑢 ∈ N. The catalog C contains 2𝑐𝑢 items and, without lack of generality we assume that

cache 𝑢 initially contains the set of items {𝑐𝑢 + 1, . . . , 2𝑐𝑢}. Requests arrive only at node 𝑢, and we

can identify a request with the requested item because there is only one possible path ({𝑢, 𝑣}). The
forwarding cost between 𝑢 and 𝑣 is𝑤 ∈ R+.

We consider request sequences with one request every Δ time units and one request per round

(𝑅 = 1) and we denote by 𝑖𝑡 he item requested at time 𝑡 . Moreover, for simplicity, we assume the

time horizon 𝑇 to be proportional to 2𝑐𝑢 (𝑇 =𝑚 × 2𝑐𝑢 ). The service cost without caching is𝑤𝑇 .
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The policy GRD maintains a vector 𝑧𝑧𝑧𝑡 and updates it after every request as follows [41, Eq. (22)]:

𝑧𝑧𝑧𝑡+1 = 𝑧𝑧𝑧𝑡𝑒
−Δ𝛽 +𝑤𝛽𝑒𝑒𝑒𝑖𝑡 , (51)

where 𝑒𝑒𝑒𝑖𝑡 =
[
1{𝑖=𝑖𝑡 }

]
𝑖∈C and 𝑧𝑧𝑧0 = 000. After the request time 𝑡 GRD stores in the cache the 𝑐𝑢 items in

C that correspond to the largest 𝑐𝑢 components of 𝑧𝑧𝑧𝑡+1 at time 𝑡 . Consider the request sequence

{1, 2, . . . , 2𝑐𝑢, 1, 2, . . . , 2𝑐𝑢, . . . , 1, 2, . . . , 2𝑐𝑢}. (52)

Under this request sequence, GRD behaves as LRU and simply stores at any time the 𝑐𝑢 most recently

requested items. In fact, item 𝑗 is requested at time instants ℎ𝑇 + 𝑗 for ℎ ∈ {0, 1, . . . ,𝑚 − 1}. At time

𝑡 = 𝑘𝑇 + 𝑖 , item 𝑗 has been requested for the last time (𝑖 − 𝑗) mod 2𝑐𝑢 time instants earlier. The

corresponding component of the vector 𝑧𝑧𝑧𝑡+1 has the value

(𝑧𝑧𝑧𝑡+1) 𝑗 = 𝑒−𝛽Δ( (𝑖−𝑗) mod 2𝑐𝑢 ) ×
∑

ℎ∈{0,1,...,𝑚−1},
ℎ𝑇+𝑗≤𝑘𝑇+𝑖

𝑒−𝛽Δℎ .

The maximum value is achieved for 𝑗 = 𝑖 . The component becomes progressively smaller as 𝑗

decreases from 𝑖 to 1, because the first term in the product becomes smaller while the second terms

does not change. It keeps decreasing as 𝑗 decreases from 2𝑐𝑢 to 𝑖 + 1, not only because the first term

decreases, but also because the second term decreases as less addends are considered in the sum.

As GRD behaves as LRU, when a new request 𝑖𝑡 arrives at node 𝑢, it is never found in the cache.

GRD incurs then a total service cost𝑤𝑇 and null caching gain. At the same time, the caching gain

of any cache allocation 𝐴 (with 𝑐𝑢 different items stored at 𝑢) is 𝑤
2
𝑇 , because it is able to serve half

of the requests. Then, the 𝛼-regret of GRD is at least equal to 𝛼 𝑤𝑇
2
. A simplified instance of GRD is

shown in Fig. 10 to provide some intuition of our proof.

□

F PROOF OF THEOREM 5.2

We begin by giving some intuition behind our approach. The hedge selector in Alg. 1 effectively

maintains a distribution 𝑝𝑝𝑝𝑡 =

[
𝑊 𝑡

𝑖∑
𝑗∈C𝑊

𝑡
𝑗

]
𝑖∈C

for every round 𝑡 . The randomized action 𝑖𝑡 taken at

time 𝑡 by the selector always satisfies E[𝑒𝑒𝑒𝑖𝑡 ] = 𝑝𝑝𝑝𝑡 by definition, where 𝑒𝑒𝑒𝑖 is the 𝑖-th basis vector.

Consider for instance, that the rewards given to the hedge selector are always uniform. Since each

action is equally important, then the distribution 𝑝𝑝𝑝𝑡 is fixed and it is the uniform distribution. Thus,

the hedge selector controlling item placements, will evict and fetch a new content with probability

1 − 1

|𝐶 |2 at each time step. Clearly, since the distribution is fixed for every time step, then these

movements are unnecessary. An optimal strategy in this scenario is to pick an action u.a.r at the

start and stick with it.

We generalize this concept by taking minimal probabilistic jumps to a new state, only when

it is necessary to maintain a change of distribution from 𝑝𝑝𝑝𝑡 to 𝑝𝑝𝑝𝑡+1. This concept is known in

the literature as optimal transport or the earth mover distance [67]. The objective is to transport

probability mass from a distribution to another, while minimizing the associated metric. In this

scenario, it corresponds to a minimum-cost flow problem. We propose an iterative algorithm that

builds the optimal flow (joint distribution). By building a feasible flow at time 𝑡 from 𝑝𝑝𝑝𝑡 to 𝑝𝑝𝑝𝑡+1.
Then, the algorithm takes elementary steps that generates a sequence of random variables whose

marginal distribution is progressively closer to 𝑝𝑝𝑝𝑡+1

The proof is split in multiple parts. We first introduce Lemma F.1 that links the hedge selector

update rule to online mirror descent [13]. This allows us to use convex optimization techniques to

provide the proof of Lemma F.2, that gives a family of coupling schemes with sublinear update cost.
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In section F.3, we dissect the hedge selector and bound the update cost of its two components,

the coupled_movement and elementary_𝛿movement subroutines.
In some parts of the proof we switch to vector notation rather than the set notation for al-

locations. For any allocation 𝐴 ∈ S × C the corresponding allocation vector is denoted by

𝑥𝑥𝑥 = [1{(𝑠,𝑖) ∈𝐴}] (𝑠,𝑖) ∈S×C , and 𝑥𝑥𝑥𝑠 = [1{(𝑠,𝑖) ∈𝐴}] (𝑠,𝑖) :𝑖∈C . The weighted 𝑙1 norm is defined as:

| |𝑥𝑥𝑥𝑠 | |1,𝑤𝑤𝑤′ :=
∑
𝑖∈C

𝑤 ′𝑠,𝑖 |𝑥𝑠,𝑖 |. (53)

With slight abuse of notation, we consider that for any 𝑠 ∈ S:

UC(𝑥𝑥𝑥𝑡𝑠 ,𝑥𝑥𝑥𝑡+1𝑠 ) :=
∑
𝑖∈C

𝑤 ′𝑖 max(0, 𝑥𝑡+1𝑖 − 𝑥𝑡𝑖 ) (54)

= UC(𝐴𝑡 ∩ {(𝑠, 𝑖) : 𝑖 ∈ C}, 𝐴𝑡+1 ∩ {(𝑠, 𝑖) : 𝑖 ∈ C}). (55)

Also, note that UC(𝑥𝑥𝑥𝑡𝑠 ,𝑥𝑥𝑥𝑡+1𝑠 ) ≤ ||𝑥𝑥𝑥𝑡+1𝑠 − 𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤′ .

F.1 Auxiliary Lemma

We start by introducing an auxiliary lemma.

Lemma F.1. E.feedback(ℓℓℓ) for the hedge selector in Alg. 1 updates its internal weights𝑊𝑡 to𝑊𝑡+1
equivalently as ∇Φ(𝑊𝑊𝑊 𝑡+1) = ∇Φ(𝑊𝑊𝑊 𝑡 ) + 𝜖ℓℓℓ𝑡 where Φ(𝑊𝑊𝑊 ) = ∑

𝑖∈C𝑊𝑖 log(𝑊𝑖 ) and 𝜖 ∈ R+ is the step
size.

Proof. We know that

𝜕Φ(𝑊𝑊𝑊 )
𝜕𝑊𝑖

= 1 + log(𝑊𝑖 ) (56)

From ∇Φ(𝑊𝑊𝑊 𝑡+1) = ∇Φ(𝑊𝑊𝑊 𝑡 ) + 𝜖ℓℓℓ𝑡 we have:
1 + log(𝑊 𝑡+1

𝑖 ) = 1 + log(𝑊 𝑡
𝑖 ) + 𝜖ℓ𝑡𝑖 , (57)

then,

𝑊 𝑡+1
𝑖 =𝑊 𝑡

𝑖 𝑒
𝜖ℓ𝑡

𝑖 , (58)

which is exactly E.feedback(ℓℓℓ) □

F.2 Family of Coupling Schemes with Sublinear Update Cost

The following Lemma provides a sufficient condition on the joint distribution of (𝑥𝑥𝑥𝑡𝑠 ,𝑥𝑥𝑥𝑡+1𝑠 ) (the
family of coupling schemes), that leads to sublinear update cost for DistributedTGOnline.

Lemma F.2. Consider a hedge selector, shown in Alg. 1, and a joint distribution of (𝑥𝑥𝑥𝑡𝑠 ,𝑥𝑥𝑥𝑡+1𝑠 ) that
satisfies for all 𝑡 ∈ [𝑇 − 1]:
(1) E[𝑥𝑥𝑥𝑡𝑠 ] = 𝑝𝑝𝑝𝑡 and E[𝑥𝑥𝑥𝑡+1𝑠 ] = 𝑝𝑝𝑝𝑡+1.
(2) E[| |𝑥𝑥𝑥𝑡+1𝑠 − 𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤′] = 𝑂 ( | |𝑝𝑝𝑝𝑡+1 − 𝑝𝑝𝑝𝑡 | |1,𝑤𝑤𝑤′).

This algorithm incurs an expected update cost of the same order of the update cost of probabilities.
Selecting 𝜖 = Θ( 1√

𝑇
), 𝐾 = Ω(𝑇 ), gives a 𝑂 (𝑅𝐿

√
𝑇 ) expected update cost.

Proof. We know Φ(𝑊𝑊𝑊 ) =
∑
𝑖∈C𝑊𝑖 log(𝑊𝑖 ) is 1-strong convex w.r.t. | | · | |1 on the simplex

△ |C | = {𝑝𝑝𝑝 ∈ R |C |+ :

∑
𝑖∈C 𝑝𝑖 = 1} [13]. Thus, Φ(𝑥) − Φ(𝑦) ≤ ∇Φ(𝑥)⊤ (𝑥 − 𝑦) − 1

2
| |𝑥 − 𝑦 | |2

1
.

Then, we will prove the Lemma F.2. Recall that, as shown in Alg. 2, at every 𝐾 times, each storage

slot will choose a color𝑚𝑡
𝑠 uniformly at random from [𝑀]. At every rounds, the corresponding

hedge selector E𝑠,𝑚𝑡
𝑠
will be fed a reward vector ℓℓℓ𝑡 (𝑠,𝑚𝑡

𝑠 ), and call E.feedback(ℓℓℓ) to update its weight
vector. In the following proof, we assume that at round 𝑡 and 𝑡 + 1, color𝑚𝑡

𝑠 and𝑚
𝑡+1
𝑠 are chosen.
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The weight vector𝑊𝑊𝑊 𝑡
is the weight vector maintained by hedge selector E𝑠,𝑚𝑡

𝑠
. The probability 𝑝𝑝𝑝𝑡

is the normalized𝑊𝑊𝑊 𝑡
. With the assumptions in Lemma. F.2, there exist constants 𝛼, 𝛽,𝛾 > 0, such

that:

E[UC(𝑥𝑥𝑥𝑡𝑠 ,𝑥𝑥𝑥𝑡+1𝑠 )] ≤ E[| |𝑥𝑥𝑥𝑡+1𝑠 −𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤′] ≤ 𝛼 | |𝑝𝑝𝑝𝑡+1 −𝑝𝑝𝑝𝑡 | |1,𝑤𝑤𝑤′ ≤ 𝛽 | |𝑝𝑝𝑝𝑡+1 −𝑝𝑝𝑝𝑡 | | ≤ 𝛾 | |𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 | |, (59)
where | | · | | here is 𝑙1 norm, the second to last inequality holds because norms can bound each

other, and the last inequality holds because the inexpensive property of projection. For round 𝑡

without color update:

E[| |𝑥𝑥𝑥𝑡+1𝑠 − 𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤′] ≤ 𝛾 | |𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 | |

≤𝛾
√

2(Φ(𝑊𝑊𝑊 𝑡 ) − Φ(𝑊𝑊𝑊 𝑡+1) + ∇Φ(𝑊𝑊𝑊 𝑡+1)⊤ (𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 )), 1-strong convexity

≤𝛾
√

2

√
Φ(𝑊𝑊𝑊 𝑡 ) − Φ(𝑊𝑊𝑊 𝑡+1) − ∇Φ(𝑊𝑊𝑊 𝑡 )⊤ (𝑊𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡+1) + (∇Φ(𝑊𝑊𝑊 𝑡+1) − ∇Φ(𝑊𝑊𝑊 𝑡 ))⊤ (𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 ),

≤𝛾
√

2

√
−1

2

| |𝑊𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡+1 | |2 + (∇Φ(𝑊𝑊𝑊 𝑡+1) − ∇Φ(𝑊𝑊𝑊 𝑡 ))⊤ (𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 ), 1-strong convexity

≤𝛾
√

2

√
−1

2

| |𝑊𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡+1 | |2 + 𝜖𝑅(ℓℓℓ𝑡 )⊤ (𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 ), Lemma F.1

≤𝛾
√

2

√
−1

2

| |𝑊𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡+1 | |2 + 𝜖𝑅 | |ℓℓℓ𝑡 | |∞ · | |𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 | |, Cauchy–Schwarz inequality

≤𝛾
√

2

√
(𝜖𝑅 | |ℓℓℓ𝑡 | |∞)2

2

, 𝑎𝑧 − 𝑏𝑧2 ≤ 𝑎2

4𝑏
, 𝑎, 𝑏 > 0

=𝛾𝜖𝑅 | |ℓℓℓ𝑡 | |∞.
For round 𝑡 with color update, the cache update cost is bounded by the most expensive cache

update, i.e.,:

E[| |𝑥𝑥𝑥𝑡+1𝑠 − 𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤′] ≤ ||𝑤𝑤𝑤 ′ | |∞. (60)

The total update cost experienced for the hedge selector associated with slot 𝑠:

𝑇−1∑
𝑡=1

E[UC(𝑥𝑥𝑥𝑡𝑠 ,𝑥𝑥𝑥𝑡+1𝑠 )] ≤
𝑇−1∑
𝑡=1

𝛾
𝜖𝑅 | |ℓℓℓ𝑡 | |∞

𝜌
+

∑
𝑡=𝐾,2𝐾,...

| |𝑤𝑤𝑤 ′ | |∞ ≤ 𝛾𝜖𝑅𝐿𝑇 +
𝑇

𝐾
| |𝑤 ′ | |∞, (61)

where 𝐿 = max(𝑖,𝑝) ∈R{
∑ |𝑝 |−1

𝑘=1
𝑤𝑝𝑘+1𝑝𝑘 } ≥ max𝑡 ≤𝑇 {| |ℓℓℓ𝑡 | |∞}. Assume that 𝐾 = Ω(

√
𝑇 ), then ∃𝑐 ′ > 0,

𝑇−1∑
𝑡=1

E[UC(𝑥𝑥𝑥𝑡𝑠 ,𝑥𝑥𝑥𝑡+1𝑠 )] ≤ 𝛾𝜖𝑅𝐿𝑇 +
||𝑤𝑤𝑤 | |′∞
𝑐 ′
√
𝑇 . (62)

In order to keep the hedge selectors regret sublinear 𝑂 (
√
𝑇 ) with 𝜖 = Θ( 1√

𝑇
). The update cost for

all the slots:

𝑇−1∑
𝑡=1

∑
𝑠∈S
E[UC(𝑥𝑥𝑥𝑡𝑠 ,𝑥𝑥𝑥𝑡+1𝑠 )] ≤ |S|𝛾𝑅𝐿

√
𝑇 + |S| | |𝑤

𝑤𝑤 | |′∞
𝑐 ′
√
𝑇 . (63)

□

F.3 Dissection of the Coupled Hedge Selector

Assume at round 𝑡 , storage slot 𝑠 , item allocation 𝑥𝑥𝑥𝑡𝑠 with E[𝑥𝑥𝑥𝑡𝑠 ] = 𝑝𝑝𝑝𝑡 has a particular allocation
𝑥𝑥𝑥𝑡𝑠 . We introduce the coupling scheme modification to the hedge selector in Alg.1 given in Alg. 3,

which could produce 𝑥𝑥𝑥𝑡+1𝑠 satisfying conditions in Lemma. F.2. We first provide expected update

cost of an elementary_𝛿movement subroutine call.
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Lemma F.3. The elementary_𝛿movement subroutine outputs a random integral cache configuration
𝑋 ′ with E[𝑒𝑒𝑒𝑋 ′] = 𝑝𝑝𝑝 − 𝛿𝑒𝑒𝑒𝑖 + 𝛿𝑒𝑒𝑒 𝑗 . If its input is sampled from a random variable 𝑋 with E[𝑒𝑒𝑒𝑋 ] = 𝑝𝑝𝑝 ,
then:

E
[
| |𝑒𝑒𝑒𝑋 − 𝑒𝑒𝑒𝑋 ′ | |1,𝑤𝑤𝑤′

]
= 𝛿 (𝑤 ′𝑠,𝑗 +𝑤 ′𝑠,𝑖 ). (64)

Proof.

First part. Showing that E [𝑒𝑒𝑒𝑋 ′] = 𝑝𝑝𝑝 − 𝛿𝑒𝑒𝑒𝑖 + 𝛿𝑒𝑒𝑒 𝑗 .

E [𝑒𝑒𝑒𝑋 ′] =
∑

𝑙 ∈C\{𝑖 }
𝑝𝑙E [𝑒𝑒𝑒𝑋 ′ |𝑋 = 𝑙] + 𝑝𝑖E [𝑒𝑒𝑒𝑋 ′ |𝑋 = 𝑖] (65)

=
∑

𝑙 ∈C\{𝑖 }
𝑝𝑙𝑒𝑒𝑒𝑙 + 𝑝𝑖E [𝑒𝑒𝑒𝑋 ′ |𝑋 = 𝑖] , Line 26,Algorithm 3 (66)

=
∑

𝑙 ∈C\{𝑖 }
𝑝𝑙𝑒𝑒𝑒𝑙 + 𝑝𝑖

(
𝑝𝑖 − 𝛿
𝑝𝑖

𝑒𝑒𝑒𝑖 +
𝛿

𝑝𝑖
𝑒𝑒𝑒 𝑗

)
, Line 23,Algorithm 3 (67)

=
∑
𝑙 ∈C

𝑝𝑙𝑒𝑒𝑒𝑙 − 𝛿𝑒𝑒𝑒𝑖 + 𝛿𝑒𝑒𝑒 𝑗 = 𝑝𝑝𝑝 − 𝛿𝑒𝑒𝑒𝑖 + 𝛿𝑒𝑒𝑒 𝑗 . (68)

Second part. The only movement that can be caused by running the subroutine is at line 23, given

that 𝑋 = 𝑖 with probability 𝑝𝑖 , we replace this value by 𝑗 with probability
𝛿
𝑝𝑖
. Hence, the expected

update cost is given by:

E[| |𝑒𝑒𝑒𝑋 − 𝑒𝑒𝑒𝑋 ′ | |1,𝑤𝑤𝑤′] =
𝑝𝑖𝛿

𝑝𝑖
(𝑤 ′𝑠,𝑗 +𝑤 ′𝑠,𝑖 ) = 𝛿 (𝑤 ′𝑠,𝑗 +𝑤 ′𝑠,𝑖 ). (69)

□

We now introduce lemma F.4 providing the expected update cost of a coupled_movement

subroutine call.

Lemma F.4. If the input to coupled_movement subroutine in Alg.3 is 𝑖𝑡𝑠 with E[𝑒𝑒𝑒𝑖𝑡𝑠 ] = 𝑝𝑝𝑝
𝑡 , then it

outputs an item 𝑖𝑡+1𝑠 , where E[𝑒𝑒𝑒𝑖𝑡+1𝑠
] = 𝑝𝑝𝑝𝑡+1, and E𝑖𝑡𝑠 [E𝑖𝑡+1𝑠 |𝑖𝑡𝑠 [| |𝑒𝑒𝑒𝑖𝑡𝑠 − 𝑒𝑒𝑒𝑖𝑡+1𝑠

| |1,𝑤𝑤𝑤′]] = | |𝑝𝑝𝑝𝑡 − 𝑝𝑝𝑝𝑡+1 | |1,𝑤𝑤𝑤′ .

Proof. The distribution over the catalog changes from a fractional state 𝑝𝑝𝑝𝑡 ∈ Δ |C | to 𝑝𝑝𝑝𝑡+1 ∈ Δ |C | .
The set 𝐼 =

{
𝑖 ∈ C : 𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖 > 0

}
in line 1 of Algorithm 3 is the set of components that have a

fractional increase, then we get:

𝑝𝑝𝑝𝑡+1 = 𝑝𝑝𝑝𝑡 +
∑
𝑗 ∈𝐼
𝑚 𝑗𝑒 𝑗 −

∑
𝑖∈C\𝐼

𝑚𝑖𝑒𝑖 , (70)

where𝑚𝑖 , 𝑖 ∈ C is the absolute fractional change in component 𝑖 of the cache. The fractional update

cost is the following:

| |𝑝𝑝𝑝𝑡 − 𝑝𝑝𝑝𝑡+1 | |1,𝑤𝑤𝑤′ =
∑
𝑗 ∈𝐼
𝑚 𝑗𝑤

′
𝑠,𝑗 +

∑
𝑗 ∈C\𝐼

𝑚𝑖𝑤
′
𝑠,𝑖 . (71)

A flow [𝛿𝑖, 𝑗 ] (𝑖, 𝑗) ∈C2 is constructed to transport

∑
𝑖∈C\𝐼 𝑚𝑖 mass from the components in 𝐼 to the

components in C \ 𝐼 in line 15. The expected value of the allocation generated by output variable

𝑖𝑡+1𝑠 is given by:

E[𝑒𝑒𝑒𝑖𝑡+1𝑠
] (68)= E[𝑒𝑒𝑒𝑖𝑡𝑠 ] +

∑
𝑖∈C\𝐼

∑
𝑗 ∈𝐼

𝛿𝑖, 𝑗 (𝑒𝑒𝑒 𝑗 − 𝑒𝑒𝑒𝑖 ) (72)

= 𝑝𝑝𝑝𝑡 −
∑
𝑖∈C\𝐼

𝑚𝑖𝑒𝑒𝑒𝑖 +
∑
𝑗 ∈𝐼
𝑚 𝑗𝑒𝑒𝑒 𝑗 = 𝑝𝑝𝑝

𝑡+1. (73)
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(a) Abilene topology (b) Path topology

Fig. 11. Topologies used for adversarial requests.

(a) Stationary Adversarial trace (b) Sliding Popularity Adversarial
trace

(c) SN Adversarial trace

Fig. 12. Adversarial Request models for abilene and path. Each dot indicates an access to an item/ a request.

The expected movements incurred when Algorithm 3 is executed is the following:

E[| |𝑒𝑒𝑒𝑖𝑡𝑠 − 𝑒𝑒𝑒𝑖𝑡+1𝑠
| |1,𝑤𝑤𝑤′]

(69)

=
∑
𝑖∈C\𝐼

∑
𝑗 ∈𝐼

𝛿𝑖, 𝑗 (𝑤 ′𝑠,𝑗 +𝑤 ′𝑠,𝑖 ) =
∑
𝑗 ∈𝐼
𝑚 𝑗𝑤

′
𝑠,𝑗 +

∑
𝑗 ∈C\𝐼

𝑚𝑖𝑤
′
𝑠,𝑖

(71)

= | |𝑝𝑝𝑝𝑡 − 𝑝𝑝𝑝𝑡+1 | |1,𝑤𝑤𝑤′ .

□

G ADVERSARIAL INSTANCES

In this section, we provide additional details about the topologies path and abilene. These are
motivated by the proof of Lemma 4.3, using round-robin schemes for which greedy/myopic online

algorithms would perform poorly.

G.1 Topology Configuration

The abilene and path topologies are shown in Fig. 11 (a) and (b) respectively.

Adversarial setup of abilene.We set the weight of each edge to be𝑤 = 100. The query nodes

are {0, 5}. We put a cache at each node with a capacity selected u.a.r from the set {0, 1}, except for
nodes {0, 5} that have capacity 5. For every item in the catalog we select its source node u.a.r to be

7 or 8.

Adversarial setup of path. We set the weight of each edge to be 𝑤 = 100. The query node is 0.

We put two caches at nodes 0 and 1 with capacity 5. The whole catalog is stored at node 1.
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G.2 Adversarial Traces

The adversarial traces patterns are shown in Fig. 12. The Stationary Adversarial trace is generated
using the sequence

{0, 25, 1, 26, . . . , 24, 49, 0, 25, . . . }. (74)

The Sliding Popularity Adversarial trace is generated by mixing the two sequences

𝑠1 = {𝑖 mod 5 + 5𝑘 : 𝑖 ∈ [100], 𝑘 ∈ [5]}, (75)

𝑠2 = {𝑖 mod 5 + 5𝑘 + 25 : 𝑖 ∈ [100], 𝑘 ∈ [5]}. (76)

We generate requests from 𝑠1 and 𝑠2 starting at the same time, except that we generate requests

from 𝑠1 twice as fast as 𝑠2. When we finish generating requests from a sequence we alternate the

speed. This is done once, then at the final stage we generate requests with at the same speed. The SN
Adversarial trace is generated using the same cyclic pattern as in the Sliding Popularity Adversarial
trace, with the difference that a group of 5 items arrive according to according to a homogeneous

Poisson process of rate 𝛾 = 1.

H JOINTLY OPTIMIZING CACHING AND ROUTING

In the extended model by Ioannidis and Yeh [43], a request 𝑟 = (𝑖, 𝑏) ∈ R is determined by (a) the

item 𝑖 ∈ C requested, (b) the source node 𝑏 ∈ 𝑉 of the request. For each request 𝑟 = (𝑖, 𝑏), there
exists a set of paths P(𝑖,𝑏) , which the request can follow towards a designated server in D𝑖 . The
goal is to jointly determine the content allocation as well as the paths that requests follow.
In particular, the path assignment is represented by 𝑃 = {𝑝𝑟 }𝑟 ∈R ∈

∏
𝑟 ∈R P𝑟 , where 𝑝𝑟 ∈ P𝑟

indicates that request 𝑟 = (𝑖, 𝑏) ∈ R follows path 𝑝𝑟 to fetch item 𝑖 . It is easy, and natural, to write

the cost objective in terms of the content allocation 𝐴 and the routing assignment 𝑃 . However, to

show that it is a submodular assignment problem, with constrains similar to the ones we encounter

in caching, we deviate from [43] and express the objective in terms of the complementary path
assignment 𝑃 . Formally, let

𝑃 =
⋃
𝑟 ∈R
(P𝑟 \ {𝑝𝑟 }) ⊂

⋃
𝑟 ∈R
P𝑟 . (77)

Intuitively, given a path assignment 𝑃 , the complementary path assignment 𝑃 consists of all the

paths not taken. We can see the routing optimization constraints as a slotted assignment problem

akin to the caching problem we have studied so far in the following way. Each request 𝑟 ∈ R is

associated with exactly |P𝑟 | −1 slots. These slots are to be occupied by paths not taken. That is, each
such slot is to be occupied by a path 𝑝 in P𝑟 ; whenever such a path 𝑝 is stored in a slot, it is added

in the complementary path assignment 𝑃 . We denote byD ′ the set of feasible complementary path

assignments under this setting, that is:
7

D ′ =
{
𝑃 ⊂

∏
𝑟 ∈R
P𝑟 : |𝑃 ∩ P𝑟 | ≤ |P𝑟 | − 1

}
. (78)

Then, given a content allocation 𝐴 and complementary path assignment 𝑃 , the cost of serving a

request 𝑟 = (𝑖, 𝑏) is:

𝐶𝑟 (𝐴, 𝑃) =
∑

𝑝∈P𝑟 \𝑃

|𝑝 |−1∑
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝐴 ∩


⋃
𝑘′∈[𝑘 ]

S𝑝𝑘′ × {𝑖}
 = ∅ª®¬ . (79)

7
To better cast this as an assignment problem, we would need to introduce notation for slots per request, but this is

equivalent to Eq. (78).
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Similarly, the caching gain of a request 𝑟 = (𝑖, 𝑏) due to caching at intermediate nodes and path

assignment is:

𝑓𝑟 (𝐴, 𝑃) = 𝐶𝑟 (∅, ∅) −𝐶𝑟 (𝐴, 𝑃)

=
∑
𝑝∈P𝑟

|𝑝 |−1∑
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝑝 ∈ 𝑃 ∨𝐴 ∩


⋃
𝑘′∈[𝑘 ]

S𝑝𝑘′ × {𝑖}
 ≠ ∅ª®¬ . (80)

The caching gain maximization problem amounts to:

maximize

𝐴,𝑃

𝑓 (𝐴, 𝑃) =
𝑇∑
𝑡=1

𝑓 𝑡 (𝐴, 𝑃) =
𝑇∑
𝑡=1

∑
𝑟 ∈R𝑡

𝑓𝑟 (𝐴, 𝑃), (81a)

subject to 𝐴 ∈ D, 𝑃 ∈ D ′. (81b)

which is a submodular maximization over an (assignment) partition matroid w.r.t. both 𝐴 and 𝑃

(complementary set of 𝑃 ). The assingment nature of the matroid follows from the representation of

complementary paths as slots “taken”; we prove submodularity below:

Lemma H.1. Function 𝑓 : S × C ×∏
𝑟 ∈R P𝑟 → R+ is monotone and submodular w.r.t. both 𝐴 and

𝑃 .

Proof. In this proof, we switch to vector notation rather than the set notation. For any content

allocation 𝐴 ∈ S × C, the corresponding allocation vector is denoted by 𝑥𝑥𝑥 = [1{(𝑠,𝑖) ∈𝐴}] (𝑠,𝑖) ∈S×C =

[𝑥 (𝑠,𝑖) ] (𝑠,𝑖) ∈S×C . For any complementary path assignment 𝑃 ∈ ∏
𝑟 ∈R P𝑟 , the corresponding comple-

mentary path assignment 𝑃 is represented by vector ¯ℎℎℎ = [1{(𝑟,𝑝)∉𝑃 }] (𝑟,𝑝) ∈∏𝑟∈R P𝑟 = [ ¯ℎ𝑟,𝑝 ] (𝑟,𝑝) ∈∏𝑟∈R P𝑟 .
The caching gain of a request (𝑖, 𝑏) is:

𝑓(𝑖,𝑏) (¯ℎℎℎ,𝑥𝑥𝑥) =
∑

𝑝∈P(𝑖,𝑏)

|𝑝 |−1∑
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘

(
1 − (1 − ¯ℎ (𝑖,𝑏),𝑝 )

𝑘∏
𝑘′=1

(1 − 𝑥𝑝𝑘′𝑖)

)
, (82)

which has the same form as Eq. (5). By Lemma 3.1, 𝑓 is also monotone (non-decreasing) and

submodular w.r.t. both 𝑥𝑥𝑥 and
¯ℎℎℎ. The feasible set for ¯ℎℎℎ is:∑

𝑝∈P𝑟

¯ℎ𝑟,𝑝 = |P𝑟 | − 1,∀𝑟 ∈ R, (83)

which is also a partition matroid. □

The monotonicity of the objective implies that an optimal solution exists in which all routing slots

of the complementary path assignment are taken, so that indeed only one path is truly selected.
8

This submodular maximization assignment problem can be tackled by the modified Distribut-

edTGOnline with 1 − 1/𝑒 guarantee through Cor. 4.2 as follows. Following [43], for each request

(𝑖, 𝑏), source node 𝑏 maintains an extra slot 𝑠 = (𝑏, 0) determining its path assignment. Correspond-

ingly, the information needed to compute the reward is from all possible paths due to Eq. (80),

besides its own path. The second step in the online algorithm is, thus, modified as:

• When a request (𝑖, 𝑏) is generated, (rather than one additional control message is generated

to collect and transmit information,) |P𝑖,𝑏 | additional control messages are generated, one

over one path 𝑝 ∈ P𝑖,𝑏 to collect and transmit information.

8
Note that if an optimal solution contains fewer occupied slots, one with higher caching gain can be constructucted by

adding more paths.
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Note that the communication cost increases linearly with |P𝑖,𝑏 |. Nevertheless, it is possible that
randomization approaches akin to the ones used in [43], can lower this dependency with a corre-

sponding increase in regret; exploring this is beyond our scope.

I ANYTIME REGRET GUARANTEE

Under the doubling trick [16], the algorithm proceeds in phases. In the first phase, it sets its (short-

term) horizon to a time-window𝑊0 = 1. Whenever a phase ends (i.e., the short-term horizon

expires), the algorithm resets its state, and doubles the time window, so that the short term horizon

at phase 𝑛 + 1 satisfies:

𝑊𝑛+1 = 2𝑊𝑛, for all 𝑛 ∈ {0, 1, . . . , 𝑘}.
For the sake of notational simplicity, assume that 𝑇 = 2

𝑘+1 − 1 for some 𝑘 ∈ N. By Theorem 4.1,

DistributedTGOnline has bounded regret 𝑐
√
𝑊𝑛 at the end of each short-term horizon𝑊𝑛 , where

𝑐 is a constant independent of𝑊𝑛 . Thus,

𝑘∑
𝑛=0

𝑐
√
𝑊𝑛 = 𝑐

𝑘∑
𝑛=0

2
0.5𝑛 = 𝑐

2
0.5(𝑘+1) − 1

√
2 − 1

= 𝑐
2

0.5 log
2
(𝑇+1)

√
2 − 1

= 𝑐

√
𝑇 + 1

√
2 − 1

≤
√

2

√
2 − 1

𝑐
√
𝑇 . (84)

In other words, using this doubling trick, we can obtain an anytime regret bound for any algorithm

designed for a fixed time horizon, while worsening the bound by a constant factor (namely,

√
2√

2−1

).

The same argument can be used to show that the update cost is sublinear when taking update

costs in to account. In particular, the modified policy resets its state at most 𝑘 − 1 times and 𝑘 is

logarithmic in 𝑇 , thereby contributing at most an 𝑂 (log𝑇 ) term to the overall update cost.
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