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Abstract

Facebook News Feed personalization algorithm has a significant impact, on a
daily basis, on the lifestyle, mood and opinion of millions of Internet users.
Nonetheless, the behavior of such algorithm lacks transparency, motivating
measurements, modeling and analysis in order to understand and improve its
properties. In this paper, we propose a reproducible methodology encompassing
measurements, an analytical model and a fairness-based News Feed design. The
model leverages the versatility and analytical tractability of time-to-live (TTL)
counters to capture the visibility and occupancy of publishers over a News Feed.
Measurements are used to parameterize and to validate the expressive power of
the proposed model. Then, we conduct a what-if analysis to assess the visibil-
ity and occupancy bias incurred by users against a baseline derived from the
model. Our results indicate that a significant bias exists and it is more promi-
nent at the top position of the News Feed. In addition, we find that the bias is
non-negligible even for users that are deliberately set as neutral with respect to
their political views, motivating the proposal of a novel and more transparent
fairness-based News Feed design.
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1. Introduction

Background. Online social networks (OSNs) have an increasingly important
influence in the life of millions of Internet users, shaping their mood, tastes and
political views [1, 2]. In essence, the goal of OSNs is to allow users to connect
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and to efficiently share meaningful information. To this aim, one of the key
building blocks of OSNs is their filtering algorithm, which personalizes content
made available to each user of the system. Facebook, for instance, developed
the News Feed algorithm for that purpose [3, 4].

Challenges. The News Feed algorithm is a recommendation system that
shows posts to users based on inferred users’ preferences, trading among possi-
bly conflicting factors while prioritizing posts [5, 6, 7]. Hence, the News Feed
algorithm shares common features with traditional recommender systems, such
as those used by Netflix and Spotify, to recommend movies and music. For
instance, in all such systems users typically do not provide explicit feedback
about recommendations. Nonetheless, due to the nature of OSNs, the News
Feed algorithm also poses its own set of challenges, related to the measurement,
modeling and control of publishers’ visibilities.

Facebook users may be unaware of the influence of the filtering they are
subject to [8]. Such lack of awareness favors the creation of a filter bubble that
reinforces users’ opinions by selecting the users information diets [9, 10, 11].
While researchers are willing to understand the influence of Facebook through
users’ News Feed [12], the News Feed algorithm uses sensitive data about pref-
erences, which precludes the sharing of datasets. Public datasets, in turn, are
needed in order to parameterize models to reason about how the News Feed is
populated.

Models are instrumental to perform what-if analysis, e.g., to understand how
the News Feed would behave in the presence of different filtering algorithms.
In addition, analytical models can also serve as building blocks towards novel
mechanisms to design News Feed algorithms. Such foundational development of
principled mechanisms to populate the News Feed is key to build transparency
into the system.

Prior art. The literature on the News Feed algorithm includes measure-
ments [13, 14, 15, 16], models [17, 18] and user awareness surveys [19]. Nonethe-
less, most of the prior work that quantifies the effect of OSNs on information
diffusion with large datasets [20, 21, 22, 23, 1] relies on measurements obtained
through restrictive non-disclosure agreements that are not made publicly avail-
able to other researchers and practitioners. As the data analyzed in such studies
is very sensitive, and their sources are not audited, there are multiple potential
factors and confounding variables that are unreachable to the general public.

Goals. Our goal is to provide insights on the filtering that occurs in OSNs
through a reproducible methodology and a dataset made publicly available.!
Given such measurements, we pose the following questions:

1. what would be the occupancies of the various sources under alternative
scenarios wherein different filtering algorithms are in place?

2. how to design mechanisms to populate timelines in a principled fashion,
accounting for users preferences and providing content diversity, e.g., un-
der a fairness-based framework?

Thttps://github.com/EduardoHargreaves /Effect-of-the-OSN-on-the-elections



To address the first question above, we propose an analytical model for
the News Feed. The model allows us to derive the occupancy and visibility
of each publisher at users’ timelines, as a function of the considered filtering
process. Using the model, we conduct what-if analysis, e.g., to assess publishers’
visibilities in a scenario without filters.

Then, we use the proposed model to build fairness-driven mechanisms to
populate timelines. Utilities are used to capture the preferences of users with
respect to the exposure to posts from different publishers. The mechanism
leverages results on utility-based cache design [24], and accounts for fairness
among publishers through utility functions.

Contributions. In this paper we take important steps towards measuring,
modeling, auditing and designing timelines. Our key contributions are summa-
rized as follows.

A measurement methodology is introduced to publicly and transpar-
ently audit the OSN ecosystem, focusing on the Facebook News Feed algorithm.
The methodology encompasses an Internet browser extension to autonomously
and independently collect information on the posts presented to users by the
News Feed algorithm (Section 2). Such information is not available through the
Facebook API.

Empirical findings are reported using data collected from a measurement
campaign conducted during the 2018 Italian elections. We observed that a) the
filtering algorithm is impacted by the profile of pages that a user “likes”, b) this
effect is more prominent at the topmost News Feed position and ¢) neutral users
are also exposed to non-uniform filtering (Section 3).

An analytical model is proposed to quantify the visibility and occupancy
of publishers in the users’ News Feeds. The model allows us to conduct a what-if
analysis, to assess the metrics of interest under different filtering mechanisms
and is validated using data from the Italian election experiment (Sections 4
and 5).

A fairness-driven mechanism design is proposed, leveraging the pro-
posed model and measurements (Section 6). Given a user profile, that “likes”
a certain subset of publishers, the measurements are used to parameterize a
simple instance of the model. Then, a family of a-fair utility functions are used
to allocate resources to publishers subject to users preferences under a utility
maximization framework.

A model-based bias assessment is conducted where the News Feed
occupancies are contrasted against an unfiltered resource allocation baseline to
quantify the bias, i.e., how publishers’ occupancies are affected by the News
Feed algorithm (Section 6.5).

2. Measurement methodology

The goal of our experiments is to assess the bias experienced by OSN users
through a reproducible method. To this aim, we created controlled virtual
users that have no social ties and that follow the same set of publishers. By



considering minimalistic user profiles, we can assess how preferences towards
publishers affect posts presented to users removing, for instance, the effect of
social connections.

2.1. Terminology

Next, we introduce some basic terminology. Publishers produce posts that
are fed into users’ News Feeds. Each user consumes posts from his/her News
Feed. A News Feed is an ordered list of posts, also referred to as a timeline, pre-
sented to a given user. News Feed may refer to the algorithm used by Facebook
to fill the timeline, or to the timeline itself.

Users follow publishers that they are interested in. The News Feed of a user
is filled up with posts from publishers that they follow. A user may follow a
publisher to have posts from that publisher in the user’'s News Feed. A user
who likes a publisher automatically follows that publisher. A user likes a pub-
lisher to show general support for its posts. In our work, users orientations are
established by letting them like a subset of the preselected publishers.

2.2. Data collection methodology

Next, we present our measurement methodology. Although this method-
ology is general, for concreteness our description is based on the 2018 Italian
Parliament election, which constitutes the key case study considered in this
paper. The Italian election was held on March 4, 2018, and our experiment
was conducted between January 10, 2018 and March 6, 2018, encompassing the
preparation for the election campaign and the reactions to its outcome.

We asked some Italian voters to select a set of thirty representative public
Facebook pages, six for each of the following five political orientations: center-
left, far-right, left, five-star movement (Mb5S) and right. Appendix Appendix
A contains the selection of representative pages and their respective political
orientations mapping. The classification of publishers into political categories
is debatable, but our focus in this paper is on the methodology rather than on
specific political conclusions. Moreover, most of our results are detailed on a
per-publisher basis, as a measurement-based political orientation classification is
out of scope of this paper(see, e.g [25]). Then, we created six virtual Facebook
users, henceforth also referred to as bots. Each bot followed all the thirty
selected pages. We gave to five bots a specific political orientation, by making
each of them “like” pages from the corresponding publishers. The sixth bot does
not “like” any page, i.e., it has no political orientation. We call it undecided.

Each bot kept open an Internet browser window (Firefox or Chrome) access-
ing the Facebook page. The bots were instrumented to collect data on the posts
to which they were exposed. To that aim, a browser extension named Facebook
Tracking Exposed [26] was developed. The extension auto-scrolls the Facebook
window at pre-established instants of the day. Every auto-scroll produces a set
of posts which are stored at a local database. Each set of posts is referred to
as a snapshot. Each bot was scheduled to collect thirteen snapshots per day.
Snapshots were collected once every hour, from 7 am to 7 pm (Italian local



time). Each post appearing in a snapshot counts as a post impression. At each
bot, the developed browser extension collects all impressions and records their
corresponding publisher, publication time, impression time, content, number of
“likes” and number of shares. We also have a second dataset which contains the
set of all posts published by the thirty pages during the interval of interest, as
provided by the Facebook API. This dataset is used to study what users would
experience in the absence of filters, or in the presence of alternative filters.

Information about impressions used to be available in 2015, in a deprecated
version of the Facebook API. In any case, that information was not necessarily
reliable as recognized by Facebook itself [27]. For such reasons, we believe that
the developed browser extension and the methodology described in this section
constitute important building blocks to promote transparency in the Facebook
ecosystem.

2.83. Measurement challenges

Gaps in measurements: During our measurement campaign, we experienced
measurement gaps due to two reasons: 1) the computer running a bot went
down, due to unforeseen glitches such as lack of power and 2) at random points
in time, either Facebook or related applications, such as the browser itself,
solicit human interaction (e.g., by showing a pop-up requiring users to answer
simple questions before proceeding). We denote by S; the number of snapshots
collected by the i-th bot. In our experiments, the bots are indexed from 1 to 6,
denoting center-left, far-right, left, M5S, right and undecided orientations. The
values of S; equal 577, 504, 623, 674, 655, 576, for ¢ = 1,...,6. To account
for the different number of snapshots, all the reported results rely on values
averaged across snapshots rather than quantities that depend on the absolute
number of snapshots.

Small number of bots: we use six bots to capture different perspectives on
the Facebook dynamics. Each bot provides a personal perspective on the system,
which is well aligned with our goals. Although we considered a small population
size, we believe that the limited points of view provided by the six bots already
shed important insights on the biases introduced by Facebook. In particular, the
consistent biases observed in our dataset, reported in the sections that follow,
indicates that the collected sample is representative.

2.4. Metrics of interest

We define our key metrics of interest that will be obtained from the dataset
generated by the experiment. We consider the top K positions of the News Feed
of each user.

Definition 1 (visibility). Let m;; be the fraction of snapshots from user i that
contain at least one post from publisher j.

Definition 2 (occupancy). Let N;; be the average number of posts of publisher
j in the News Feed of user i.



We refer to m;; and IV;; as the wvisibility and the occupancy of publisher j
at News Feed i, respectively. The normalized occupancy is given by N;;/K.
The visibility and the (normalized) occupancy are two metrics of exposure of
publishers to users [21].

Definition 3 (hit probability). Let h;; be the probability that user i sees (or
clicks) on a post of publisher j.

We refer to h;; as the hit probability of publisher j at user i. Then, h;; =
N;;j/K if user i goes through all the top posts in the News Feed, and h;; = m;;
if he/she picks uniformly at random a single post in the News Feed.

3. Empirical findings

In the following two sections, we report our empirical findings from the
perspective of publishers and users.

3.1. The effects of filtering on publishers

Next, we report findings on the behavior of the publishers and their general
effect on users’ News Feeds. Figure 1(a) shows the number of unique posts
per publisher. We denote by C; the number of posts of publisher j. This
information was collected directly from the Facebook API. A few publishers
generated thousands of posts during the considered time frame, whereas the
majority generated tens of posts.

Figure 1(b) shows the number of impressions per publisher. This information
was collected from our Facebook extension. Publishers are ordered based on the
number of posts generated and seen in Figures 1(a) and 1(b), respectively. It is
worth noting that the distinct order at which publishers appear in those figures
is fruit of the filtering experienced by the users. In what follows, such filtering
is further analyzed through measurements (Section 3.2), models (Section 4) and
a combination of the two (Sections 5 and 6).

3.2. The effects of filtering on users

The effect of filtering is stronger at the topmost News Feed position. Figures 2(a)
and 2(b) show the normalized publisher occupancy, as a function of the News
Feed size (the corresponding visibilities are reported in Appendix Appendix B).
The publishers are colored according to their political orientation (Fig. 2(a)) and
user preferences (Fig. 2(b)). Figure 2(a) shows that the occupancy distribution
over the five orientations changes with the considered News Feed size.

In Figure 2(b), a publisher is colored in blue (resp., red) at a given bot if
the bot “likes” (resp., does not “like”) the corresponding publisher. Note that,
except for the right and far-right bots, the normalized occupancy of publishers
that users “like” is maximum at the topmost position, achieving more than
70% at the center-left oriented bot. The right-oriented bot achieved a similar
normalized occupancy when K = 10. The noteworthy bias on the topmost
position must be placed under scrutiny, as there is a strong correlation between
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post positions and click rates [21, 28]. These figures also reveal that the amount
Occupancy is impacted by orientation. Figure 2(a) also shows that the oc-

of exposure to cross-cutting contents depends on the size of the News Feed.

Figure 1:
our bots.
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Figure 2: Normalized occupancy as a function of K, classified by (a) publisher orientations
and (b) user preferences.

cupancies are impacted by the orientation of the bots. For instance, the News
Feed of the bot with a center-left orientation was occupied mostly by center-



left (red) publishers. As a notable exception, center-left posts were prevalent
in the News Feed of the bot with a far-right orientation, where far-right posts
are responsible for roughly 25% of the normalized occupancy. Nonetheless, the
occupancy of far-right posts in that bot was still the highest among all bots.

Noticeable publishers selection. The bars in Figure 3 show the total number
of impressions per publisher in the topmost position of the News Feed of each
bot (the color of the bars indicates orientation). For the sake of readability, only
publishers that achieved a normalized occupancy larger than 5% are represented
in this figure. The black dots correspond to the number of posts created by
each publisher (the publishers are ordered by the number of posts generated).
Figure 3 shows that only a small subset of publishers are represented in topmost
positions. For example, the center-left bot sees primarily posts from two of the
publishers that it “likes”. Moreover, the number of impressions per publisher
is not proportional to the number of posts the publisher generated, a further
indication of a filtering effect from News Feed algorithm.

Neutral users are also exposed to non-uniform filtering. It is worth not-
ing that filtering affects also the “undecided” bot, with some publishers over-
represented in the News feed.
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Figure 3: Publishers impressions at the six bots (bars colored by preferences) and number
of created posts (black dots). The number of created posts is represented when at least one
impression from the corresponding publisher was observed.

4. News Feed model

Next, we present the proposed News Feed model to derive occupancy and
visibility metrics. We start by presenting the basic rationale behind the model



in Section 4.1. Then, the model is introduced in Section 4.2.

4.1. Insights on News Feed modeling

Next, we introduce some of the key ideas that inspire the analytical model
introduced in the following section.

4.1.1. Queues, caches and the News Feed

In the simplest setting, posts are organized at each News Feed in a first in,
first out (FIFO) fashion. Then, the personalization algorithm at the News Feed
of user i filters posts from each of the publishers. Given the rate A; at which
publisher j creates posts, we denote by A;; the corresponding effective arrival
rate at which posts from publisher j are published at the News Feed of user 1.

We assume that a News Feed has K slots. Under the FIFO approximation
described above, new posts are inserted at the top of the News Feed and each
new arrival shifts older posts one position lower. A post is evicted from the
News Feed when it is shifted from position K. Although this is a preliminary
step to capture the real News Feed operation, it cannot capture the stronger
filtering at the topmost News Feed positions that we observed in Section 3.

In the remainder of this paper, we consider a generalization of the FIFO
model, which accommodates different residence times for different posts using
time-to-live (TTL) counters [24, 29, 30]. Under the TTL model, every time a
post is inserted into a News Feed, it is associated to a timer (TTL), and the
content remains in the News Feed until its timer expires. In what follows, we
further detail the similarities and differences between TTL caches and the News
Feed.

4.1.2. The News Feed is a publisher-driven cache

Next, we leverage a recently established connection between timelines in
OSNs and caches [30], as summarized in Table 1.

Triggering events In the News Feed, the insertion of new posts is triggered
by their creation. In caches, in contrast, user requests typically lead to content
insertion and eviction. When proactive caching and prefetching of content is
considered, the proactive caching is still usually fruit of content requests [31,
32, 33].

Nature of contents and requests When News Feed users search for user-
generated content, they are typically interested in a class of items related to
a given category. The demand for News Feeds posts is elastic. Consider, for
instance, a user interested in the latest headlines from his favorite newspaper, or
a college student willing to learn about the latest developments of his football
team. There may be multiple posts that satisfy the demands of such users.
The literature of caches, in contrast, presumes that each of the cached items is
uniquely identified and non-substitutable, and that demand is inelastic.

Classes of items The occupancy of caches is given by the items that it stores,
where each item is uniquely identified. Caches do not store repeated items.
For the purposes of this work, in contrast, posts stored in a News Feed are
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Table 1: Comparison between News Feed and caches

H News Feed [ Cache
Trigger event post publishing content request
Insertions and after a post creation after a miss
evictions or user engagement
Nature of contents and requests

Cache stores multiple items of content at most one copy

from given class of a specific item
Requests for general content classes specific content items

Classes of items
Control of items by of specific content
occupancy given publisher items
Capacity

Capacity infinite (average K topmost | finite

positions more relevant)

distinguished solely by their publisher, and the News Feed may store multiple
posts from the same publisher. Whereas the News Feed behaves as a cache that
can store multiple copies of items of the same class, in traditional caches each
item corresponds to its own class.

Capacity For all practical purposes, the News Feed can be assumed to be in-
finite in size, i.e., the News Feed can admit all the published posts. Nonetheless,
it is well known that the topmost positions of the News Feed receive higher vis-
ibility. This, in turn, motivates our study of the (average) topmost K positions
of the News Feed.

4.2. TTL News Feed model

Next, we introduce the proposed News Feed model. To each content posted
in a News Feed we associate a time-to-live (TTL) timer. The timer is set to T'
when the content is inserted, and is decremented at fixed time intervals. Once
the timer reaches zero, it expires and the associated content is removed from
the News Feed.

4.2.1. Why TTL model?

It is well known that Facebook uses recency as a parameter to show posts
to users [34, 35]. TTL counters are a natural way to capture the perishable
nature of posts. Furthermore, TTL counters are a flexible way to extend FIFO
schemes. In general, TTL-based models are well-suited to represent objects with
expiration times [36].

While proposing the TTL model of a News Feed, our aim is not to argue
whether Facebook deploys TTL counters, which is out of the scope of this pa-
per. Instead, our goal is to show that a simple model can already capture the
dynamics of Facebook News Feed. Then, we leverage the flexibility of TTL
counters to propose novel News Feed algorithms.

4.2.2. Model description
Let Z be the set of I users, and let 7 be the set of J publishers: J; denotes
the set of publishers followed by user ¢ € Z. Publisher j € J publishes posts

11



according to a Poisson process with rate A;. The total publishing rate is A =
ijl A;. Whenever a content is generated, it is immediately sent to the News
Feed of all users. In what follows, we provide further details about how user i
reacts to the content arrival.

Content and publisher classes We consider C' content classes. Each content
class corresponds to a set of posts published at a given user News Feed. In the
most general case, each user-publisher pair is associated to a given content class.
In that case, the class associated to the i-th user and j-publisher is denoted by
the ordered pair (i, j).

Alternatively, we associate each user-publisher pair to one of two classes.
Class I; (resp., [;) is the class of contents generated by publishers that the i-th
user “likes” (resp., does not “like”). We denote by L(%,j) the indicator variable
which characterizes the set of publishers that a user likes,

(1)

.. 1, if user ¢ “likes” publisher j
L(i,j) = { 0, otherwise

Order of posts The simplest instance of the proposed model corresponds to a
FIFO queue, wherein contents are ordered in the News Feed based on the instant
at which they are posted, and new arrivals shift older posts (Section 4.1.1).
The TTL model, in contrast, does not presume any pre-established ordering
of posts in the News Feed. In particular, it is flexible to account for eventual
rearrangements of posts. Note that the TTL model can be parameterized to
capture the behavior illustrated in Figure 2, wherein the bias present in the
topmost positions is different from that seen in the remainder of the News Feed.
This occurs, for instance, if posts with larger TTL are placed on the top of the
News Feed, producing different biases at different News Feed positions.

Timer classes We consider per-class content dynamics. For concreteness,
except otherwise noted we let L(i, 7) be the class of contents generated by pub-
lisher j at the News Feed of the i-th user.

Whenever a content from class L(i, j) is generated, it is inserted in the News
Feed of the i-th user and a timer with value T7; ;) is associated to that content.
Even though we assume, for simplicity, that the initial timer values are set to
a fixed constant, our analysis also holds if the initial values of the timers are
sampled from a probability distribution with mean 77, ;.

We expect that T > Ty, i.e., contents generated by publishers that the user
“likes” remain longer in the News Feed, when compared against those that the
user does not “like”. Nonetheless, we do not explicitly assume any relationship
between 77 and Ty. Instead, we perform simple consistency checks using the
collected measurement data (Section 5).

4.2.3. Metrics of interest

Next, we derive the metrics of interest corresponding to an infinite capacity
News Feed. Recall that we assume that users scroll up to an average of K
News Feed positions, i.e., we study the visibility and occupancy of an average
of K topmost positions. To simplify notation we drop the explicit dependence

12



of metrics and corresponding variables on the value of K, e.g., denoting N;;(K)
and T(; j)(K) simply as N;; and Tp; ;).

The occupancy of the j-th publisher at the i-th News Feed, NV;;, follows from
Little’s Law and is given by

The expected number of slots occupied in a News Feed is given by the sum of
N;;, for all j,

ZNU =K. (3)

JjeET
The visibility of publisher j at the News Feed of user 7, m;;, is given by
Ti5 = 1-— G_N”. (4)

The equation above follows from the observation that the dynamics of posts by
the j-th publisher at the News Feed of user i are given by an M/G/co queue.
Arrivals of posts occur with rate A;, and each arrival remains in the News Feed
for an average of T7(; ;) time units. The probability that there is at least one
customer in the M/G/oco equals the probability that there is at least one post
from publisher j at the News Feed of user ¢, and is given by (4).

4.2.4. Special case: FIFO News Feed

When all posts are associated to the same TTL 7', and contents are inserted
in the News Feed in the order that they are created, the TTL model behaves
as a FIFO queue, as described in Section 4.1.1. If we further allow posts to be
filtered, we refer to the resulting model as a filtered FIFO model. Let p;; be the
filtering probability. In a filtered FIFO model, we let T' = 0 with probability
1—pij,and T = T otherwise, where T is a fixed and given constant, T > 0.

As before, we assume that publisher j € J publishes posts according to a
Poisson process with rate A;. Recall that the total publishing rate is given by
A= Z;]:l A;. In the filtered model, let A;; < A; be the effective arrival rate of
posts published by j in the News Feed of user i. Then, A\;; = p;;A;.

Under the filtered FIFO model, (2) together with (3) imply that

K
Dok ik

The visibility m;; is given by (4), where

T= (5)

>\in
Zl Ait
If we further assume that p;; = p for all user-publisher pairs, we obtain the
uniformly filtered FIFO model, where

Ni; = (6)

ANK
Ny = S (7)
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As we assume that all users follow the same set of sources, under the uniformly
filtered FIFO model the expected occupancy of publisher j at user 7, IV;;, is the
same for all users. Therefore, in this case we denote it simply as IN;.

4.2.5. Finite size FIFO News Feed

The analysis presented above assumes an infinite size News Feed, wherein
users are interested, on average, at the topmost K positions. Alternatively,
consider a finite size FIFO News Feed, which can accommodate up to K posts.
We assume that a News Feed has K slots, new posts are inserted at the top
of the News Feed and each new arrival shifts older posts one position lower. A
post is evicted from the News Feed when it is shifted from position K.

We denote by \; the aggregate rate of posts published in the News Feed of
user i, A\; = ijl Aij. We further let \; _; be the arrival rate of posts in the
News Feed of user ¢ from all publishers other than j, A\; —; = A; — Ayj.

The occupancy of contents of publisher j follows from Little’s law and is
given by

Nij = XNij K /. (8)

The visibility of publisher j is given by

N\ N\ ¥

and the rationale goes as follows. After every new arrival, with probability
Ai,—j/A; the topmost post of publisher j will be shifted down by one unit. After
K consecutive shifts, which occur with probability (\; —;/;)*, publisher j will
not be visible at the News Feed of user i. When K =1 we have N;; = 7;;. For
large values of K, (9) can be approximated by (4).

Under the FIFO instances of the model presented above, posts are filtered
uniformly at random. For this reason, such instances yield simple baselines
against which the filtering effects introduced by the News Feed algorithm can
be compared. In Section 6 we revisit the FIFO model under this perspective.

5. A Model-based perspective at the measurement findings

In this section, we take a model-based perspective at the measurement find-
ings. First, we implicitly account for user “likes” through their impact on the
effective arrival rates in Section 5.1. Then, we explicitly account for “likes” in
Section 5.2.

5.1. Indirectly accounting for “likes”: a multi-class perspective on measurements

We validate the proposed model using data from the 2018 Italian elections,
through a multi-class perspective on the measurements. Each user-publisher
pair is associated to a class. Class (i,j) is associated to the i-th user and
the j-th publisher, and corresponds to an effective arrival rate of \;; posts per
snapshot.
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Variable description
j j-th publisher

i i-th News Feed user

Aj post creation rate by publisher j
Aij arrival rate of posts from j at user ¢
Ai total arrival rate of posts at user i

L(3,j) 1 if user 7 likes publisher j, 0 otherwise
TTL model variables

T expected TTL for posts from class I, I = L(i, j)
Ti(l) expected TTL for posts from class [,

with user discrimination, I = L(i, j)
T;s expected TTL for posts from publisher j at user 4
WL (i) weight associated to class-L(i, )

Metrics of interest as estimated by the model
hij hit probability of publisher j at user i
Tij visibility of publisher j at user 4
Ni; occupancy of publisher j at user @
Metrics of interest as obtained from measurements
Tij measured visibility of j at 4
Z\Nfij measured occupancy of j at 4
Measurements

I;; number of impressions from publisher j at user 4

(counting repeated posts multiple times)
Qij number of unique posts from publisher j at user ¢
S; number of snapshots collected by user ¢
Cj number of unique posts created by publisher j
G number of user-publisher-post tuples

corresponding to user-publisher pairs in class [
I number of impressions with user-publisher in class [

Table 2: Table of notation

We start by introducing some additional notation regarding our measure-
ments. The notation is summarized in Table 2. Let Q;; be the measured
numbered of unique posts from publisher j at user i. Let S; be the number of
snapshots taken by user ¢. Then, the measured effective arrival rate is given by

S\ij _ Qij
Si

. (10)

Note that S\ij is modulated through “likes”. In this section, at each bot i we
assume that the same timer is used for all the publishers. Then, the TTL model
is equivalent to FIFO (see Section 4.2.4). Publishers’ presence in the News
Feed is discriminated upstream by filtering their posts before they arrive to the
News Feed, i.e., through rates \;;. For this reason, in this section we use model
equations (4)-(6) with the arrival rate at a bot, \;;, set to the measured one,
Xij. “Likes” are indirectly taken into account through rates.
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Figure 4: Model validation of occupancies for K = 1: (a) multi-class and (b) two-class.

Figure 4(a) compares measured occupancies against model predictions at
the News Feed topmost position (K = 1). Each point corresponds to a user-
publisher pair. A point (z = N;j,y = ]\N/'”) indicates that, for the given pair,
an occupancy N;; estimated by the proposed model using eq. (6) corresponds
to a measured occupancy Nij. Most of the points are close to the Nij = Ny
line, indicating the expressive power of the model. Appendix Appendix C.1
contains results for K > 1, accounting for visibility in addition to occupancy as
the target metric.

Next, our goal is to quantitatively assess the expressive power of the multi-
class model. To this aim, we conduct a linear regression followed by an hypoth-
esis test on the coefficients produced by the linear regression. Let the measured
occupancy be given as a function of the model-based occupancy as follows,

Nij = BiNyj + Bo. (11)
The null and alternative hypotheses are given by
e Hj: there is no relationship between Nij and N;j, i.e., 81 = 0;
e H,: there is relationship between Z\?ij and Ny, ie., B1 #0

The p-value for 31 = 0 is less than 2716, allowing us to reject the null hypothesis.
We repeated the test for all values of K ranging from 1 to 30, and obtained
similar results as indicated in Table 3.

5.2. Directly accounting for “likes”: a two-class measurement analysis

In this section, we explicitly account for user “likes” in the News Feed oc-
cupancies. To this aim, we divide the publisher-user pairs into two classes,
and show the expressive power of the model through a simple parameterization
which involves only two parameters, 77 and Ty, corresponding to the TTL of
posts from publishers that users “like” and do not “like”, respectively.
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Occupancy Visibility
Model | K | p-value  RMSE R? | p-value RMSE R?
Multi- <2716 0.01 0.98 | <271 0.02 0.98
-class | 30 | <2716 0.28 0.93 | <2716 0.04 0.98
Two- |1 | 1.66°7 0.07 0.13 | 4.56=8  0.06 0.15
-class | 30 | <2716 0.90 0.51 | <2716 025 0.49

—_

Table 3: Summary of hypotheses test results

Let I;; be the number of impressions from publisher j at user 7. Let I; be
the number of impressions at News Feeds of users who “like” the publishers of
the corresponding impressions (I is similarly defined). Then,

L= Y L (12)

V(@) 1L (i,5) =1

Correspondingly, let G; (resp. Gg) be the number of posts generated, counted
as many times as the number of users who “like” (do not “like”) the publishers
who generated these posts. Recall that C; is the number of unique posts created
by publisher j. Then,
Gi= Y C (13)
V(i,5) | L(4,5)=l

The estimate of the TTL associated to class [ is given by
T, =1,/G;, 1€{0,1}. (14)

In Figure 4(b) each point corresponds to a user-publisher pair. As in Fig-
ure 4(a), we let K =1 (results for K = 30 are presented in Appendix Appendix
C.1). In Figure 4(b), a point (z = N;j,y = N;;) indicates that, for the given
pair, an occupancy N;; estimated by the proposed model using eq. (2) cor-
responds to a measured occupancy of Nz‘j. We also resort to the same sort of
hypothesis tests described in the previous section, and reject the null hypothesis
according to which there is no relationship between the model and the measure-
ments. A summary of the measurement results, for K = 1 and K = 30, is
presented in Table 3.

The accuracy of the model can also be assessed through the R? score, which
ranges between 1 and 0. An R? score of 1 indicates that the variance in the
target variable is fully explained by the model. As expected, the R? scores
(resp., p-values) of the two-class model are smaller (resp., larger) than those of
the multi-class model. In addition, we observe that the predictive power of the
two-class model when applied to the topmost position (K = 1) is significantly
lower when compared against its application to the remainder of the News Feed
(K = 30). This is partly explained by the fact that the bias is stronger at the
topmost position (Section 3.2). We leave a more detailed analysis of simple
models for the topmost position as subject for future work.
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Summary In this section, we evaluated the explanatory power of the model in
light of the measurements collected during the Italian 2018 elections. In particu-
lar, we have shown that a very simple instance of the model with two parameters
is already able to capture the occupancies experienced by users (Section 5.2).
In addition, we indicated that a multi-class instance of the model, wherein the
number of parameter equals the number of publishers times the number of bots
(180 in the experiment), produces occupancy estimates with higher accuracy, at
the expense of additional complexity (Section 5.1). In the sections that follow,
we leverage the proposed model for mechanism design purposes.

6. A fairness-based News Feed mechanism

Next, we leverage the proposed News Feed model to derive a fairness-based
mechanism to design News Feeds. We present the problem formulation (Sec-
tion 6.1), followed by its general solution (Section 6.2) and by an analysis of
a-fair utility functions (Section 6.3). Then, we bridge the utility maximization
framework and measurements to illustrate the applicability of the mechanism
(Section 6.5).

6.1. Utility maximization formulation

We associate to each user-publisher pair a utility function U;;(h,;) which
is an increasing, strictly concave and continuously differentiable function of h;;
over the range 0 < h;; < 1. Recall from Section 2.4 that h;; denotes the
hit probability of publisher j at user i, where the hit probability captures the
exposure of publishers to users.

We further assume that utilities are additive. Then, the goal is to maximize
the sum of the utilities for each of the individual publishers [29, 24]. The
optimization problem is posed as follows,

J

max ZUij(hij) (15)
j=1
J

st. > Ny=K,  Nj>0 (16)
j=1

where h;; are concave and non-decreasing functions of N;;. As discussed in
Section 2.4, we consider two possible instantiations of the hit probability, corre-
sponding to the normalized occupancy, given by N;;/K, and the visibility 7;;,
given by (4) and (9) under the TTL and finite capacity FIFO models, respec-
tively. In summary,

N;;/K, for normalized occupancy,
hij(Ny) = { 1—e N, for visibility (TTL model),
1—(1—Ny/K)®,  for visibility (finite FIFO).

In all cases above, h;;(N;;) is an increasing and concave function of N;;. Let
Uij (N”) = U”(hzj (NIJ)) It follows that
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° Uij(Nij) is non-decreasiing, as U;; and h;; are so;

o U;;(N;;) is concave, as U;; is concave and non-decreasing and h;; is con-
cave.

Therefore, the objective function (15) is equivalent to
J
maxz Uij(Nij)- (18)
j=1
The general solution to the unified problem formulation introduced above is
presented in the sequel.

6.2. Problem solution
To solve the convex optimization problem posed above, we introduce its
corresponding Lagrangian,

L(N,B) = Uij(Nij) = B (Nij = K) (19)

where N is the vector of IV;; values, and j is the Lagrange multiplier. Taking
the derivative of the Lagrangian with respect to N;;,

= Uj;(Nij) — 8. (20)

An allocation N is a global optimizer if and only if there exists 8* such
that N* is feasible and
/ * * M *
{5 & Mo @)
ij\tVij =5 ij :

At the optimum, all the publishers that appear in the News Feed have as-
signed a space that equalize their marginal utilities (i.e. N;; > 0 and Ny > 0
imply that Uz’j (Ng) = 7! (N#)). The publishers that not appear have smaller
marginal utility (i.e., U, (N};) < Q{J(NZ*J) if N7 >0and Nj =0). Remark
that if U'(0) = +oo (e.g. if U;(h) o log(h)), then necessarily N > 0 for each
j.

The solution can be found by a water-filling type algorithm: we start from
the null vector where no publisher appears in the timeline (N;; = 0 for all j) and
we gradually allocate space to the publisher(s) with largest marginal utility(ies).

6.2.1. Occupancy vs rate-based fairness

In the problem formulation and solution presented above, we accounted for
occupancy-based rather than rate-based fairness [37]. To appreciate the dis-
tinction between the two sorts of fairness, consider the problem of setting the
same average space to different publishers. Such occupancy-based allocation
will penalize prolific publishers more strongly than a rate-based allocation where
publisher rates are uniformly multiplied by a constant factor. In Section 6.5 we
numerically contrast the effect of occupancy-based fairness against a baseline
wherein occupancies are proportional to content generating rates.
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6.3. News Feed fairness: a-fair utilities

The optimal allocation of News Feed space to publishers through prob-
lem (15) depends on the shape of the utility functions. The use of a given
family of utility functions corresponds to the selection of a fairness criterion. In
this section we characterize the optimal allocation under the usual concept of
a-fairness as it is considered in communication networks [38, 29, 39, 24].

hi-e
Usj(hij) = { Y 1=a > <0071 (22)
Wy log(hij), a=1.

In what follows we will consider the case where the hit probability coincides
with the normalized occupancy.

6.3.1. Proportional fairness
Choosing o = 1 yields proportional fairness. In this case U;;(hi;) = w;; log(N;;/K),
implying that N7, > 0 for each publisher. From the first equation in (21), it
follows that B
Ui (Nij) = wiy /Ny = B*. (23)

Imposing the constraint (16) we obtain
J
5* = Z w”/K
j=1

Once the value of 5* is known, it can be substituted in (23) to yield

N* — win T — ’Ll)in
ij ’ ij .
T wik A Y wik

6.3.2. Potential delay fairness
If o = 2, Uyj(hij) = —wij/hij, U'(hij) = wi;/h; and in a similar way we
obtain

(24)

Wiy K Jwy
Zj:l VWi J Zj:l v/ Wij

6.3.3. Max-min fairness

Max-min fairness is the limiting case of a-fairness in the limit when « di-
verges [40]. In our case a max-min fair allocation corresponds to provide the
same occupancy to each publisher. Then, we have:

N =K/, TS =K/(AJ), (26)

Note that the max-min fairness allocation is independent of the weights wj;.
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6.3.4. Summary

In this section, we presented expressions for publishers occupancy and visibil-
ity, under three fairness criteria. In the following section we show how to extend
the obtained expressions to account for class-based metrics, and in Section 6.5
we compare the derived class-based metrics against baselines, illustrating a way
to quantify biases from real measurements.

6.4. Class-based optimization

The framework introduced in the previous section for per-publisher optimiza-
tion can be easily adapted to a per-class optimization. In this case we divide
the user-publisher pairs into classes, and parameters are set in a per-class basis.
To simplify presentation, we specialize the presentation to classes determined
by user’s “likes”, where for each user i, we distinguish the class of publishers ¢
likes (identified by L(7,5) = 1 in (1)), and the class of publishers that 4 follows
without expressing likes (identified by L(¢,j) = 0). We denote by )\l(-l) (resp.,
Ni(;)) the aggregate arrival rate (resp., occupancy) of posts of class [ in the News
Feed of user i,

l l
W= 5N n, NP= Y N (27)

JIL(i,5)=l JIL(,5)=1
Let Ti(l) denote the TTL of posts of class [ in the News Feed of user i. Then,
Ny = MNTY ) where | = L(i, ). (28)

The expression of Ti*(l) for the three special fairness criteira considered in the
previous section can be similarly derived, leading to:

K me
ﬁ%(k)’ proportional fairness, (29a)
Ai" k=0 W
U]
l K w; . .
Ti*( = NONEEE potential delay fairness, (29Db)
A leczo wz(k)
K oo
Ok max-min fairness. (29¢)
2);

6.4.1. Class-based vs publisher-based allocation

In a class-based fair allocation, space is allocated fairly across classes: class
occupancies are determined by the specific fairness criteria, while, inside while
inside a given class publisher occupancies are proportional to publishing rates as
indicated by (28). Consider, for instance, a max-min fairness allocation. Then
the class of “liked” publishers is posed to have the same average occupancy
as the remaining publishers, but this does not translate into equal publisher
occupancies. For example, in our experimental setting, each of the 6 publishers
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Figure 5: Publishers’ occupancies under proportional fairness (bars colored by preferences),
Facebook measured occupancies (crosses and lines) and publishing rates (circles), for the
topmost position, at the six bots. At the undecided bot, proportional fairness occupancies
decrease with respect to publishing rates, but measured occupancies deviate from baseline.

“liked” by bot ¢ will on average occupy 1/12-th of bot-i timeline, while any
of the other 24 publishers will on average get 1/48-th of it. Hence, the “liked
publishers” are overall advantaged under max-min fairness allocation.

6.5. Italian election case study

Next, we illustrate how the proposed utility-based framework can shed fur-
ther insights into the Italian election dataset. Throughout this section, we
consider a proportional fairness allocation for the two-class model (Section 6.4).
In particular here we show results for the topmost position and w,gl) = 1 for
each 7 and [, while in Appendix Appendix E we report results for a broader set
of weights and values of K.As discussed in Section 6.4.1, in this case the “liked”
publishers get collectively as much timeline space as all the others.

Figure 5 shows different publishers’ occupancies at the 6 bots when K = 1:
occupancies measured at the bots (crosses and lines), occupancies computed
by our model to maximize 2-class proportional fairness (bars) and publishers’
posting rates (circles).

At the undecided bot, all publishers belong to the same class. Then, an
allocation under proportional fairness yields occupancies proportional to pub-
lishing rates. In our measurements, in contrast, we observed that occupancies
aren’t proportional to rates (Sec 3.2), which indicates that the filtering effects
are non-trivial even for neutral users. For all the other bots (except the right-
oriented one), we observe that the “liked publishers” are favored under the
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2-class fairness model. This is due to the fact that the 6 “liked” publishers get
collectively as much space as all other 24 bots. Under each class, occupancies
are split proportionally to publishing rates. Therefore, the “liked” publishers
end up having less competition for space than other “non-liked” publishers with
similar publishing rates. The situation is different at the right bot. Among the
6 right-oriented publishers “liked” by the right-oriented bot, we find some of
the most prolific publishers in our dataset: their aggregate rate is almost equal
to the aggregate rate of all the other 24 publishers. As a consequence, all the
publishers get occupancies almost proportional to their publishing rate.

We observe that our simple 2-class model already qualitatively predicts some
of the results observed in our traces: most of the “liked” publishers indeed also
have larger measured occupancies (crosses and lines in Fig. 5). Nonetheless,
there are still a number of exceptions. For example, “La Repubblica” exhibits
a quite large occupancy independently of the orientation of the corresponding
bot. This may be justified by the fact that “La Repubblica” is a newspaper,
rather than a party or a candidate, and Facebook News Feed algorithm may
be filtering less news. The same, however, does not hold for other newspapers
appearing in the list. The occupancy of “Il Giornale” at the different News
Feeds, for instance, is quite small (except at the right bot), even though it is
the source with the largest publishing rate.

In order to quantify the discrimination among different providers introduced
by our utility maximization allocation or by Facebook News Feed filtering al-
gorithm we introduce a new metric. We define the (occupancy) bias as the
difference between a given normalized occupancy estimate and the normalized
occupancy that would have been obtained if timelines were operated according
to the FIFO model without content filtering. We denote by bg;n) the occu-
pancy bias of publisher j at user i. The symbol m refers to the scenario against
which the FIFO baseline model is compared. It equals Face, PropF, MaxMinF
and PotentF respectively when referring to the occupancies derived from raw
Facebook measurements, proportional fairness, max-min fairness and potential
fairness models.

Definition 4 (bias). The bias incurred by posts of publisher j at the News Feed
of user i is given by

(m) ,

pom _ Nig N

1) K :

In the definition above, IN; is the baseline occupancy under FIFO as given

by (7) and does not depend on the specific bot. We observe that Zj bl(;n) =0,
as the sum of occupancies at a given bot equals K. Note that the definition of
bias is general, and can be coupled with different baseline models for occupancy
(see Appendix Appendix D).

Discussion Statistical bias is a systemic deviation, e.g., of an estimator, with
respect to the true value of a parameter. In this paper we use the term bias with
a different, albeit intuitively related, meaning. We assume that users explicitly
express their preferences by selecting which publishers they follow and like. Any

(30)
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deviation from the unfiltered occupancy, as estimated by the proposed model,
is attributed to bias. This kind of bias is called social bias [41]. Note that our
definition of bias does not necessarily entail a negative connotation, as biasing
users towards their interests might be a desired feature.
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Figure 6: Proportional fairness bias (bars) and Facebook News Feed bias (crosses), for the six
bots

Ezxample Figure 6 numerically illustrate the behavior of bias, for the top
publishers in the 2018 Italian election dataset, letting K = 1, respectively (recall

that bgPropF) _ bEMaXMinF) _ bEPotentF) (1) =1,

J as in this section we assume w;
and see Appendix Appendix D for additional results). Figure 6 supports the
observations reported from Fig. 5. In particular we observe that bz(-PmpF) is null
or almost null for the undecided bot and for the right bot, while for the others
there are significant positive (resp., negative) biases for the “liked” (resp., “non-
liked”) contents. Facebook biases bgacc) appear to be qualitatively aligned with
those estimated through the 2-class proportional fairness model, , particularly
at the center-left and left bots. Nonetheless, there are a number of exceptions,
as discussed above.

We observe that the Facebook News Feed algorithm produces high biases
even at the undecided bot. In addition, the bias at the topmost position does
not reflect user preferences, specially at the far-right, right and undecided bots.
Our analysis sheds light on some peculiar choices of Facebook that are difficult to
explain even taking into account users’ preferences as expressed through “likes.”
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6.6. Practical implications

The proposed mechanisms evidence the challenges involved in building a fair
News Feed. Any fair solution must trade between conflicting goals such as 1)
giving more exposure to favorite publishers, 2) reserving space for non-preferred
publishers, 3) penalizing publishers that produce irrelevant content at high rates
(e.g., spam) and 4) avoiding bias towards publishers that produce at low rates.
We believe that the proposed mechanisms constitute a principled way to cope
with such conflicting goals, through the use of utility functions.

Ultimately, users should be aware of the filtering that they are exposed to,
and tune their utilities based on their needs. By promoting user awareness, the
risk of amplifying filter bubbles should be mitigated. A brief discussion of the
compliance of the proposed methodology to Facebook policies is presented in a
short preliminary version of this work [42].

One way to implement the proposed mechanisms is through tools such as
MIT Gobo [43] or FeedVis [8]. Such social media aggregators can be fed by
posts from different sources, e.g., Facebook, Twitter and Youtube, providing
filters that users can control. Therefore, users can explicitly set mechanisms to
decide what is edited out of their News Feed. We envision that these tools can
be coupled with variants of the News Feed control mechanisms proposed in this
paper. Then, A /B tests may be used to select which mechanisms are best suited
to different users based on their explicit and implicit feedback, e.g., obtained
through questionnaires and click-rates.

7. Related work

The literature on Facebook News Feed includes topological aspects related
to cascading structures and growth [44, 45, 13] and its effects on the creation
of echo chambers and polarization [14, 15].

7.1. Social networks, TTL-counters and utility-based allocation

The proposed News Feed model relies on TTL counters. TTL-based caching
mechanisms are versatile and flexible, and can be used to reproduce the behavior
of traditional caching policies such as LRU and FIFO [46, 47, 24, 48, 49]. In
this paper, we leverage the analytical tractability of TTL-based caches, showing
how to adapt them for the purposes of modeling and optimization of the News
Feed.

The implications of the limited budget of attention of users in OSNs have
been previously studied by Reiffers-Masson et al. [50] and Jiang et al. [51]. In
these two papers, the authors consider the problem of optimally deciding what
to post and to read, respectively. Such works are complementary to ours. To
the best of our knowledge, none of the previous works considered the problem of
inferring the visibility of publishers from News Feed measurements, and using
such measurements to parameterize models and propose utility-based mecha-
nisms for News Feed design.
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7.2. Fairness, accountability and transparency

The literature on fairness, accountability and transparency (FAT) is rapidly
growing [52, 53, 54], accounting for its implications on social networks [55], risk
score estimation [56, 57], recommender system [7, 58, 59, 60], resource alloca-
tion [61], individuals classification in order to prevent discrimination [62] and
computational policy [63, 64], using tools such as causal analysis [65], quantita-
tive input influence [66] and machine learning [67, 68].

Surveys and books on notions of fairness include those by Moulin [69],
Zliobaite [70], Rmoei and Ruggieri [71], Narayanan [72] and Drosou et al. [73].
The later is a survey about diversity concepts from the information retrieval
literature [74]. The mechanism design proposed in this paper is both a diversity-
aware and fairness-aware allocation scheme, taking users’ and publishers’ per-
spectives, respectively.

ACM [75] introduces a set of principles intended to ensure fairness in the
evolving policy and technology ecosystem: awareness, access and redness, ac-
countability, explanation, data provenance, auditability, and validation and test-
ing. We particularly focus on awareness, explanation and auditability, as we do
not rely on the Facebook API to collect impressions. Algorithmic transparency
is one of the cornerstones of the General Data Protection Regulation (GDPR),
which stresses the importance of providing explanations for automatic recom-
mendations [76]. The measurements, models and mechanisms proposed in this
paper contribute to the development of GDPR-compliant policies, as the allo-
cations derived from the proposed model-based mechanism are built on top of
first principles.

Most of the previous literature on social fairness assumes that utility func-
tions are non-parametric [65, 77, 78] or, in classification problems, that cost func-
tions are linear combinations of false positive and false negative rates [68, 56, 79].
Convex utility functions, such as the a-fair family of utilities, are prevalent in
the literature of networking and computer systems [38, 80, 29, 24, 81, 82, 83].
In this paper, we identify how parameterized utilities can be applicable to the
analysis of social networks. We believe that such connection is a step towards
promoting more dialogue between the networking and the online social network
communities on the issue of fairness.

Algorithmic bias and forms to audit it were investigated in [41, 84, 85].
In [86, 87] it was shown that search engine rank manipulation can influence the
vote of undecided citizens. The models proposed in this paper further foster
accountability, by quantifying bias in the Facebook News Feed.

7.2.1. Public datasets and reproducible methodologies

The behavior of users searching for visibility was studied in [12, 16, 88].
Such studies are primarily based on small datasets. A notable exception is [20,
21, 22, 23, 1], who considered a massive dataset provided by Facebook through
restrictive non-disclosure agreements. Datasets to assess Facebook publishers’
visibilities are usually not made publicly available. Our work aims to contribute
by filling that gap.
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It is out of the scope of this paper to present a nuts-and-bolts perspective on
how Facebook News Feed works. Instead, our goal is to provide a simple model
that can explain the occupancy and visibility of different publishers, given a
reproducible measurement framework. We profile Facebook, which is taken as
a black box to be scientifically analyzed. This approach dates back to Skinner
tests [89], and has been gaining significant attention in the literature of social
networks [90].

8. Conclusion

We presented a framework encompassing reproducible measurements, ana-
lytical models and utility-based mechanisms for the analysis of Facebook News
Feed algorithm. The analytical model enables quantitative what-if analysis to
assess the bias introduced by the News Feed algorithm. The utility-based mech-
anisms shed light into novel directions towards the control of the News Feed.

Our measurements indicate that the News Feed algorithm currently tends
to reinforce the orientation indicated by users about the pages they “like”, by
filtering posts and creating biases among the set of followed publishers. The
effects of filtering are stronger at the topmost position where only a fraction of
the set of publishers followed by the users was represented. We observed that a
neutral user that did not “like” any page was also exposed to a noticeable bias.

Facebook mission is to “give people the power to build community.” We
believe that the measurements, model and tools presented in this work are one
step further towards that goal, as they help evaluating algorithms’ transparency
and promote user awareness about the filtering process they are submitted to.
Ultimately, such awareness is key to protect and empower Facebook users, com-
munities, society and democracy as a whole [91].
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Appendix A. List of publishers used in the experiment

Table A.4 contains a list of publishers followed in the Italian experiment
with their respective orientations. During the experiments, the page entitled
Fasciti uniti per L’italia was shutdown by Facebook and it was replaced by
Lotta Studentesca.

Appendix B. Publishers’ visibilities

In what follows we complement results presented in Section 3.2. Whereas in
Section 3.2 we showed how occupancies varied as a function of the rate at which
publishers create posts, in this appendix we focus on wisibilities. Figure B.7
shows the visibility for the top publishers, at the topmost News Feed position
(K = 1), under the six considered bots. It indicates, for instance, that even
at the undecided bot, visibilities do not vary monotonically with respect to
publishers’ post creation rates. Figure B.8 considers the case K = 30. As
expected, the visibilities increase as K grows from 1 to 30. Nonetheless, when
K = 30 we still find some top publishers that have almost negligible visibility
at a number of bots. In particular, eight out of the thirty top publishers have
negligible visibility at the undecided bot.
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Figure B.7: Publishers’ visibilities at the six bots (bars colored by preferences) and number
of created posts (black dots), for K = 1.
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Table A.4: Lists of the publishers followed in the Italian experiment with their respective
labels.

] Orientation \ Page URL \ Publisher Name
Right NoiconSalviniUfficiale Noi con Salvini
Right ilpopulista.it Il Populista
Right ilGiornale Il Giornale
Right legasalvinipremier Lega - Salvini Premier
Right rivogliobologna Lucia Borgonzoni
Right giorgiameloni.paginaufficiale Giorgia Meloni
Far-right Fascisti-uniti-per-Litalia-411675765615435 | Fascisti uniti per L’italia
Far-right Lotta-Studentesca-257153365332 Lotta Studentesca
Far-right OrdineFuturo Ordine Futuro
Far-right ilprimatonatsionale Il Primato Nazionale
Far-right ForzaNuovaPaginaUfficiale Forza Nuova
Far-right casapounditalia CasaPound Italia
Far-right RobertoFiorePaginaUfficiale Roberto Fiore
Left ArticololModempro Articolo UNO
Left sinistraitalianaSI Sinistra Italiana
Left ilmanifesto il manifesto
Left Possibile.it Possibile
Left giuseppecivati Giuseppe Civati
Left Laura-Boldrini-325228170920721 Laura Boldrini
Center-left | Adessotiinformo Adesso ti informo
Center-left | matteorenzinews Matteo Renzi News
Center-left | Repubblica la Repubblica
Center-left | democratica Democratica
Center-left | matteorenziufficiale Matteo Renzi
Center-left | partitodemocratico.it Partito Democratico
M58 news.mbs M5S news
M5S WIIM5s W IL M5S
M5S ilFattoQuotidiano Il Fatto Quotidiano
M5S movimentocinquestelle MoVimento 5 Stelle
M5S LuigiDiMaio Luigi Di Maio
M58 beppegrillo.it Beppe Grillo
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Figure B.8: Publishers visibilities at the six bots (bars colored by preferences) and number of
created posts (black dots), for K = 30.

Appendix C. Model validation

Appendiz C.1. Validation for K = 30

From Figures C.9(a) and C.9(b) to Figures C.10(a) and (b), each point
corresponds to a user-publisher pair. We let K = 30 (results for K = 1 are
presented in Section 5). In Figure C.9(a) (resp., Fig. C.9(b)), a point (z =
Nij,y = Nw) (resp., x = m;;,y = 7;;) indicates that, for the given pair, an
occupancy Nj; (resp., visibility m;;) estimated by the multi-class model using
eq. (2) (resp., (4)) corresponds to a measured occupancy of Ni; (resp., measured
visibility of 7;;). Most of the points are close to the Nij = Nj; line, indicating
the expressive power of the model. In Figure C.10(a) (resp., Fig. C.10(b)), a
point (z = Nyj,y = Ny;) (resp., = m;;,y = ;) indicates that, for the given
pair, an occupancy N;; (resp., visibility 7;;) estimated by the two-class model
using eq. (2) (resp., (4)) corresponds to a measured occupancy of Nij (resp.,
measured visibility of 7;;). The two-class model has two parameters, while
the number of parameters in the multi-class model is equal to the number of
publishers times the number of bots (180 in the experiment). For this reason,
the accuracy of the former is significantly lower than the later.

Appendiz C.2. 2017 French presidential elections

Another experiment was conducted during the 2017 French presidential elec-
tions where four Facebook bots were created and monitored. The experiments
started in April 28, 2017, and ended in May 08, 2017. Our profiles were kept
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Figure C.9: Multi-class model validation for the (a) occupancy and (b) visibility metrics, for
K = 30.
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Figure C.10: Two-class model validation for the (a) occupancy and (b) visibility metrics, for
K = 30.

with no friends, and they all followed the same group of 13 pages in a addition to
a number of random pages. We adopted the multi-class approach (Section 5.1)
to parametrize and validate the model with such dataset. Figures C.11 and
C.12 show our model validation for K = 10 and K = 1 (topmost position),
respectively. The values predicted by the model are very close to the measured
points indicating once again the expressive power of the model. The dataset
corresponding to the French elections is publicly available.?

2https://github.com/EduardoHargreaves/Effect-of-the-OSN-on-the-elections
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Figure C.11: Model Validation for the (a) occupancy and (b) visibility metrics, for K = 10
using the 2017 French Elections Dataset.
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Figure C.12: Model Validation for the (a) occupancy and (b) visibility metrics, for the topmost
position using the 2017 French Elections Dataset.

Appendix D. Potential delay and max-min fairness

Next, we report results on the potential delay, max-min and proportional
fairness. In Figure D.13 we set uniform filtering as our baseline, whereas in
Figures D.14 and D.15 we set the Facebook measurements as the baseline in
equation (30). We let wgl) =2and wgo) = 1. Figure D.13 shows the occupancy
for the top publishers, for K = 1, under the Facebook measurements, potential
fairness, max-min fairness and proportional fairness. Note that the general
trends of proportional fairness, potential delay fairness and max-min fairness are
similar. Potential delay fairness tends to favor publishers that bots “like” more
than the other fairness functions, while max-min tends to favor less. Facebook
occupancies, in contrast, do not reflect any of the two considered fairness criteria.
At the undecided bot, all fairness criteria yields the same occupancies and biases,
reflecting the lack of preferences of this bot.

Figures D.14 and D.15 show the biases of the considered fairness criteria
using the Facebook as baseline, for K = 30 and K = 1. In both cases, we note
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that potential delay fairness (green triangles) tends to favor “liked” publishers
more than proportional fairness (blue squares). When K = 1, Facebook tends
to penalize the publishers that produced more posts at the undecided bot. Note
also that there is a positive negative bias towards M5S posts at the undecided
bot, meaning that Facebook allocated far more occupancy to M5S posts than
the proposed methods would allocate.
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Appendix E. Sensitivity analysis with respect of weights and News
Feed size

In Section 6.5 we assumed w'" = 1 when considering the two-class model.

(]
Recall that wgo) (resp., wgl)) correspond to publishers that a bot does not “like”
(resp., “likes”).

In Figure E.16, we keep wgo) = 1 and vary wEl) from 1 to 10 to show the
impact of the weights on the occupancies. We consider proportional fairness al-
locations, with K = 30. Figure E.16 shows that a ten-fold increase in wz(l), from
1 to 10, may lead to an up to two-fold increase in the occupancies of publishers
that bots “like”. This is the case, for instance, with “Il Fatto Quotidiano”,
which was classified as a M5S source, and which significantly benefited from the
increase of wgl) at the M5S-oriented bot.

Next, we consider the impact of K on our results. We observe that our utility
optimization framework produces occupancies that are directly proportional
to K (see, for example, (24)), and the corresponding biases are independent
from K. For this reason b """ does not change between Figures E.17(a)
and E.17(b). In contrast, the shape of the biases accounting for the Facebook
measurements, bgﬂce), are substantially different for K = 1 and K = 30, with
stronger biases for K =1 (in agreement with the empirical findings reported in

Section 3.2).
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Figure E.16: Publishers’ occupancies under proportional fairness for K = 30 at the six bots
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