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Abstract

Similarity caching systems have recently attracted the attention of
the scientific community, as they can be profitably used in many appli-
cation contexts, like multimedia retrieval, advertising, object recogni-
tion, recommender systems and online content-match applications. In
such systems, a user request for an object o, which is not in the cache,
can be (partially) satisfied by a similar stored object o’, at the cost of a
loss of user utility. In this paper we make a first step into the novel area
of similarity caching networks, where requests can be forwarded along
a path of caches to get the best efficiency-accuracy tradeoff. The of-
fline problem of content placement can be easily shown to be NP-hard,
while different polynomial algorithms can be devised to approach the
optimal solution in discrete cases. As the content space grows large,
we propose a continuous problem formulation whose solution exhibits
a simple structure in a class of tree topologies. We verify our findings
using synthetic and realistic request traces.

1 Introduction

Similarity caching is an extension to traditional (exact) caching, whereby a
request for an object can be satisfied by providing a similar cached item, un-
der a dissimilarity cost. In some cases, user requests are themselves queries
for objects similar to a given one (similarity searching [1]). Caching at net-
work edges can drastically reduce the latency experienced by users, as well
as backbone traffic and server provisioning.

Similarity searching and caching have several applications in multime-
dia retrieval [2], contextual advertising [3], object recognition [4, 5, 6, 7],
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Figure 1: Application of similarity caching to Mobile Edge Computing.

caching of videos with different qualities/resolutions [8, 9, 10], recommender
systems [3, 11], online prediction serving systems [12, 13, 14]. Figure 1 shows
an application scenario of similarity caching in the context of Mobile Edge
Computing [15]. Mobile users accessing cloud services from an ultra-low
latency, high bandwidth cellular wireless networks (e.g., 5G) can strongly
benefit from the availability of a cache installed directly at the radio network
controller: in such a way, the need for a particular object, for example by
an Augmented Reality application, can be satisfied locally with minimum
latency by a sufficiently similar object, without having to traverse a possible
long path towards the object repository. References [4, 5, 6, 7] consider this
specific scenario for object recognition applications. In this case, the request
is an image, for which the MEC server provides some labels extracted from
similar images found in a local database. Note that several caches can be
deployed along the path from the user to the cloud (e.g., at micro regional
data centers) forming a tree-like similarity caching network (in the case of
many geographically spread users).

Despite its interesting applications, theoretical understanding of similar-
ity caching and development of related algorithms and policies are still at
their early stages.

1.1 Paper contribution

Our contributions can be summarized as follows:

1. while the content placement problem in networks of similarity caches is
NP-hard, we show that it can be formulated as the maximization of a
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sub-modular function over a matroid; therefore a polynomial Greedy
algorithm can be defined with 1/2 approximation ratio;

2. we propose the randomized LocalSwap algorithm that does not enjoy
worst-case guarantees as Greedy, but asymptotically converges to a
locally optimal solution;

3. we characterize the structure of the optimal similarity-caching place-
ment problem in special cases; in particular, we show that, under mild
assumptions, when the cache network has a regular tree structure and
requests arrive only at the leaves the optimal solution in the large
catalog regime has a relatively simple structure;

4. we show that the above structure is lost in general networks, analyzing
a simple tandem network where requests arrive at both caches;

5. we propose an online, λ-unaware policy called NetDuel, that extends
Duel [16] to the networked setting;

6. we illustrate our findings considering both synthetic and real request
processes for Amazon items.

1.2 Paper outline

We discuss related work in Section 2. In Section 3 we present the main
system assumptions and we formulate the problem. In Sections 4 and 5 we
analyse respectively the discrete content case and the continuous content
case, presenting algorithms and theoretical performance results. In Section
6 we introduce NetDuel, an efficient on-line caching policy. In Section 7 we
report simulation results, obtained both in synthetic scenarios and more re-
alistic scenarios based on Amazon traces. We conclude in Section 8, pointing
out directions of future research.

2 Related Work

Despite the multiple applications of similarity caching, our theoretical un-
derstanding of the general problem is still limited even in the single-cache
scenario, and similarity caching policies have mostly been proposed in an
ad-hoc way without taking advantage of the body of work built in the last
decades for exact caching (e.g., [17, 18, 19, 20]).
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For example the seminal papers [2, 3], which introduced the concept
of similarity caching, proposed only simple modifications to the Least Re-
cently Used policy (LRU) and evaluated them empirically. Similarly, ref-
erences [12, 4, 5, 6, 21, 7] focused more on the specific application system
(machine learning prediction serving and object recognition), without spe-
cific contributions in terms of cache management policies (e.g., they apply
minor changes to exact caching policies like LRU or LFU).

An adversarial setting was studied in [22] by competitive analysis. The
authors of [23] have proposed a similarity caching policy (for a single cache)
tailored for the case when cached objects may be embedded in Rd with a
distance that captures dissimilarity costs. The work most closely related to
this paper is [16], where we have analyzed a single similarity cache in the
offline, adversarial, and stochastic settings, proposing also some dynamic
online policies to manage the cache.

We mention that many researchers have studied networks of exact caches
(e.g., [24, 25, 17, 19, 26, 27]), however their results cannot be applied to the
similarity caching setting, which is a fundamentally different problem (in
exact caching there is no notion of distance between objects).

Networks of caches for videos with different qualities have been studied
in [8, 9, 10], but references [9, 10] consider a single layer of caches deployed
at the edge of the network (the request is served by one of these caches
or forwarded to the authoritative server), while we study more complex
architectures like trees. The authors of [8] consider a general architecture,
but, while they correctly model user’s QoE dependence on video quality, they
ignore the cost of retrieving the videos from farther caches. Moreover, video
placement is based on heuristic policies with no performance guarantees.

Similarity caches for content recommendation have been considered in [11,
28]. The authors have studied how to statically place contents in edge caches
of a cellular network, given their popularity and the utility for a user inter-
ested in content o to receive a similar content o′. In contrast to us, they
focus on the cellular scenario with spatial cache overlaps (also known as
“femtocaching” [29]).

The recent letter [30] has considered a network of similarity caches, where
requests can be forwarded along a path of caches towards a repository stor-
ing all objects, at the cost of increasing delays and resource consumption.
The authors of [30] have proposed a heuristic based on the gradient de-
scent/ascent algorithm to jointly decide request routing and caching, sim-
ilarly to what was done in [19] for exact caches but without the corre-
sponding theoretical guarantees. The proposed algorithm requires memory
proportional to the size of the catalog, and appears to be computationally
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Papers Application Architecture Catalog
[2, 3, 23, 22] generic single cache discrete

[16] generic single cache discrete/continuous
[12, 4, 5, 6, 21, 7] machine learning single cache discrete

[9, 10] video single layer caching systems discrete
[8] video network of caches discrete
[30] generic network of caches discrete

this paper generic network of caches discrete/continuous

Table 1: Schematic summary of previous work on similarity caching.

feasible only on small-scale systems. Table 1 offers a schematic summary of
previous work.

In our work, similarly to [30], we focus mainly on the offline setting, i.e.,
the problem of statically placing objects in the caches so as to minimize the
expected cost under known content request rates and routing. In contrast
to [30], we first propose algorithms with guaranteed performance, and then
we move to the continuous limit of the large requests/catalog space, where
we investigate the structure of the optimal solution.

In the recent publication [14], one of the authors has proposed the idea of
inference delivery networks, an Internet-wide architecture for fast delivery
of machine learning predictions. Inference delivery networks can be seen
as a particular network of similarity caches. Beside the focus on a specific
application, reference [14] considers an adversarial request process for a finite
number of possible objects (machine learning models in their case), while we
focus on more common stochastic request process and consider both finite
and infinite catalogs of objects.

In summary, our paper advances the state of art by providing a first
analysis of networks of similarity caches in the same spirit of works devoted
to networks of exact caches. Specifically, we focus on the offline setting
and characterize the structure of the optimal solution in the large catalog
regime.

3 Main assumptions and problem formulation

Let X be the (finite or infinite) set of objects that can be requested by the
users. We assume that all objects have equal size and cache i can store up
to ki objects.

We consider a network of caches with requests potentially arriving at
every node. Some nodes can act as content repositories, where (a subset
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of) requests can be satisfied exactly or with a small approximation cost.
Specifically, we assume that each request has at least one repository acting
as ‘authoritative server’ for it, meaning that the approximation cost at the
content repository is either zero or it is negligible as compared to the fixed
cost to reach the repository (see next). Let K be the set of all nodes in the
network (including caches and repositories).

A request r is a pair (o, i) where o is the requested object and i is the
node where the request first enters the network. Every request is issued
according to a Poisson process with rate λr.

At each cache, for any two objects x and y in X there is a non-negative
(potentially infinite) cost Ca(x, y) to locally approximate x with y. We
consider Ca(x, x) = 0. We assume that caches can efficiently compute, upon
arrival of a request for x, the closest stored object y. This is typically done
resorting to locality sensitive hashing (LSH) [3].

Moreover, there is an additional retrieval cost h(i, j) to reach node j
from cache i, which is assumed to increase as more and more hops need to
be traversed by the request. Costs h(i, j) represent the additional penalty
(in terms of network delay) incurred by requests, in addition to the approx-
imation cost Ca. If a request from i cannot be forwarded to cache j, then
h(i, j) = +∞.

We call an approximizer α a pair (o′, j), where object o′ has been placed
at cache j. If a request r = (o, i) is served by object o′ at node j, it will incur
a total cost C(r, α) = Ca(o, o

′) + h(i, j), that depends on how dissimilar o
is from o′ and how far node i is from node j. For approximizers located
at a content repository j, we take C(r, α) = h(i, j), neglecting the local
approximation cost.

We assume that each cache knows how to route each request to a cor-
responding repository. Nevertheless, deciding if a request should be served
locally or should be forwarded along the path to the repository is still a
challenging problem to solve in a distributed way: while a relatively good
approximizer can be found at a cache i, a better one may be located at
an upstream cache j, justifying the additional cost h(i, j). This is in sharp
contrast to what happens in exact caching network, where the forwarding
operation is straightforward (a request is forwarded upon a miss).

In our initial investigation, we will suppose that optimal forwarding
strategy is available at all caches, i.e., that each cache knows whether to
solve a request locally or forward it towards the repository. This assump-
tion is reasonable in two possible scenarios: i) when caches exchange meta-
data information about their stored objects (this is acceptable when content
is static or quasi-static); ii) when the dominant component of the delay is
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content download, so that, prior to download, small request messages can
go all the way up to the repository and back, dynamically finding the best
approximizer along the path. We leave to future work the challenging case
in which optimal forwarding is not available at the nodes.

A consequence of our assumptions is that each request r will be served
minimizing the total cost, i.e., given S the initial set of approximizers at
content repositories, and A the set of approximizers at the caches, we have

C(r,A) = min
α∈A∪S

C(r, α). (1)

In what follows we will consider two main instances for X and Ca(). In
the first instance, X is a finite set of objects and thus the approximation cost
can be characterized by an |X |×|X |matrix of non-negative values. This case
could well describe the (dis)similarity of contents (e.g. videos) in a finite cat-
alog. In the second instance, X is a subset of Rp and Ca(x, y) = f(d(x, y)),
where f : R+ → R+ is a non-decreasing non-negative function and d(x, y)
is a metric in Rp (e.g. the Euclidean one). This case is more suitable to de-
scribe objects characterized by continuous features, as in machine learning
applications. For example, consider a query to retrieve similar images, as
one can issue to images.google.com. The set of images the user may query
Google for is essentially unbounded, and in any case it is larger than the
catalog of images Google has indexed.

In the continuous case, we assume a spatial density of requests arriving
at each cache defined by a Borel-measurable function λx,i : X × K → R+,
i.e., for every Borel set B ⊆ X , and every cache i ∈ K, the rate with which
requests for objects in B arrive at node i is given by

∫
B λx,i dx. We will refer

to the above two instances as discrete and continuous, respectively.
Under the above assumptions, our goal is to find the optimal static

allocation A that minimizes the expected cost C(A) per time unit (or per
request, if we normalize the aggregate request arrival rate to 1):

C(A) ,

{∑
r λrC(r,A), discrete case∑
i∈K

∫
X λx,iC((x, i),A) dx, continuous case

(2)

i.e.,
minimize

A
C(A)

subject to
∑

o:(o,i)∈A

1 ≤ ki, ∀i ∈ K (3)

Having mathematically formalized the problem, in the next section we
take an algorithmic perspective to characterize and approximate its optimal
solution.
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4 Algorithms for the Discrete case

In this section, we restrict ourselves to the discrete scenario, as this allows us
to make rigorous statements about NP-hardness and algorithms’ complexity.

4.1 NP-Hardness and Submodularity

Proposition 4.1. The static off-line similarity caching problem in a net-
work (3) is NP-hard.

This is an immediate consequence of the fact that, as shown in [16,
Thm. III.1], the static off-line similarity caching problem is already NP-
hard for a single cache. Nevertheless, we will show in Sec. 5 that, when
the cache network has a regular tree structure, a simple characterization
of the optimal solution can be determined in the large catalog regime, by
exploiting a continuous approximation.

Given the initial set S of objects allocated at content repositories, we
want to pick an additional set A of objects and place them at the caches. Let
I denote the set of possible allocations that satisfy cardinality constraints
at each cache (corresponding to the constraints in (3)). Let G(A) quantify
the caching gain [31, 19] from allocation A in comparison to the case when
each request needs to be served by its content repository, i.e.,

G(A) = C(∅)− C(A). (4)

Problem (3) is equivalent to the following maximization problem

maximize
A∈I

G(A). (5)

Proposition 4.2. The static off-line similarity caching problem in a net-
work is a submodular maximization problem with matroid constraints.

The result does not rely on any specific assumption on C(r, α) but for
the cost being non-negative. In particular, we can define C(r, α) to embed
requests’ routing constraints. For example, given a request r = (o, i), we can
enforce the request to be satisfied by the repository of content o or by one of
the caches on the routing path between node i and the repository (we denote
it as Pi,o). This constraint can be imposed by selecting C((o, i), (o′, j)) =∞
for each j /∈ Pi,o. The proof is quite standard and we report it in A for
completeness.

In the next subsections we introduce two different algorithms to deal in
practice with the off-line similarity caching problem.
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4.2 Greedy algorithm and its complexity

As Problem (5) is the maximization of a monotone non-negative submodular
function with matroid constraints, the Greedy algorithm has 1/2 guaran-
teed approximation ratio, i.e., G(AGreedy) ≥ 1

2 maxA∈I G(A) [32]. We men-
tion that there exists also a randomized algorithm that combines a continu-
ous greedy process and pipage rounding to achieve a 1− 1/e approximation
ratio in expectation [33].

The Greedy algorithm proceeds from an empty allocation A = ∅ and
progressively adds to the current allocation an approximizer in argmaxαG(A∪
{α})−G(A) = argmaxα

∑
r λr(C(r,A)−C(r,A∪{α})) up to select

∑
i ki =

K objects, where K is the total cache capacity in the network (by respecting
local constraints at individual caches). The detailed pseudocode is reported
in B.

Let O, OR, and N denote the number of objects in the catalog, the
number of objects that can be requested, and the number of caches in the
network. When choosing the i-th approximizer the greedy algorithms needs
in general to evaluate ON − i + 1 possible approximizers, and how they
reduce the cost for the set of requests with cardinality at most ORN . The
time-complexity of the algorithm is then bounded by

∑K
i=1ORN(ON − i+

1) = ORN(ONK − K(K − 1)/2). A smart implementation can avoid to
evaluate the gain of all possible approximizers at each step, but despite the
optimizations, the Greedy algorithm would be too complex for catalogue
sizes O beyond a few thousands of objects. Moreover, the set of possible
requested objects OR may be much larger than O.

4.3 LocalSwap algorithm and its complexity

We now present a different algorithm, called LocalSwap, which is based
on the simple idea to systematically move to states with a smaller expected
cost (2). LocalSwap can be used both in an off-line and on-line scenario.
It works as follows. At the beginning the state of caches is populated by
random contents. Then, in the on-line scenario the algorithm adapts the
cache state upon every request. In the off-line scenario, instead, a sequence
of emulated requests is generated (satisfying the same statistical properties
of the original arrival process), and applied to drive cache state changes.
Let At be the allocation obtained by the algorithm at iteration t. Upon an
(emulated) request r for o, LocalSwap computes the maximum decrement
in the expected cost that can be obtained by replacing one of the objects
currently stored at some cache along the forwarding path with o, i.e., ∆C ,
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minα∈At C(At ∪ {r} \ {α})− C(At).

• if ∆C < 0, then cache ie replaces content ye with content o, where
(ye, ie) ∈ arg min(y,i)∈At C(At ∪ {(o, i)} \ {(y, i)});

• if ∆C ≥ 0, the cache allocation is not updated.

The detailed pseudocode is reported in C.
LocalSwap does not provide worst case guarantees as Greedy, but it

asymptotically reaches a locally optimal cache configuration, defined as a
configuration whose cost (2) is lower than the cost of all configurations that
can be obtained by replacing just one content in one cache. On the contrary,
Greedy does not necessarily reach a local optimal state (as we show below
in Sect. 4.4).

Proposition 4.3. For long enough request sequence LocalSwap converges
with probability 1 to a locally optimal cache configuration.

LocalSwap generalizes a similar algorithm proposed in [16] for a single
cache (called there “greedy”) with similar theoretical guarantees. Under
the assumption that requests are optimally forwarded, the proof of Propo-
sition 4.3 is essentially the same of [16, Thm. V.3], so we omit it. By clever
data structure design, the computational cost of each iteration can be kept
O(NOR).

Remark 1. Note that by cascading Greedy and LocalSwap it is pos-
sible to achieve a locally optimal cache configuration whose approxima-
tion ratio is guaranteed to be at least 1/2 (i.e., G(AGreedy+LocalSwap) ≥
1
2 maxA∈I G(A)).

4.4 Greedy and LocalSwap in a toy example

This example shows that 1) Greedy does not converge necessarily to a
locally optimal cache configuration, and 2) there are both settings where
Greedy finds the optimal cache configuration while LocalSwap may not,
and settings where LocalSwap finds the optimal cache configuration while
Greedy does not.

Consider a scenario with 5 contents xi for 1 ≤ i ≤ 5. Let us assume
that Ca(x2, x3) = Ca(x3, x4) = 0, Ca(x1, x2) = Ca(x4, x5) = ε > 01, while
Ca(xi, xj) =∞ otherwise. We want to solve the content placement problem
for a single cache with k = 2 and λx3 > λx2 = λx4 > λx1 = λx5 . The

1All costs are assumed to be symmetric.
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cost to retrieve the objects from the remote server is hs > 2ε. The opti-
mal placement configuration is: {x2, x4}. Greedy will reach one of the
following equivalent sub-optimal configurations {x3, x}, with x ∈ {x1, x5}.
LocalSwap, on the contrary, will reach the optimal configuration {x2, x4}
(because it is the unique locally optimal configuration). We observe that
the configurations reached by Greedy are not locally optimal: for example
if Greedy selects {x3, x1}, it is convenient to replace x3 with x4.

If we consider two caches 1 and 2 in tandem, each of size k = 1 with
requests arriving only to the first cache and retrieval cost equal to h(1, 2)
if the object is retrieved from cache 2, and h(1, 2) + hs if it is retrieved
by the server. The optimal configurations will maintain a similar struc-
ture for h(1, 2) small enough. In particular the optimal configurations will
be: {(x4, 1), (x2, 2)} and {(x2, 1), (x4, 2)}. Greedy will still reach a state
{(x3, 1), (x, 2)} with x ∈ {x1, x5}, while LocalSwap will reach an optimal
state. For h(1, 2) large enough the optimal states become {(x3, 1), (x, 2)}
with x ∈ {x1, x5} and both previous algorithms will succeed in reaching an
optimal solution. At the same time there are settings for which the config-
urations {(x3, 1), (x1, 2)} and {(x3, 1), (x5, 2)} correspond to global minima,
the configurations {(x4, 1), (x2, 2)} and {(x2, 1), (x4, 2)} correspond to local
minima, and Greedy finds one of the first configurations, while Local-
Swap may reach one of the second configurations. For example this is the
case for hs = 1, h(1, 2) = ε = 4/9, λ1 = λ5 = 1, and λ2 = λ4 = 4/3 and any
λ3 > λ2.

5 The Continuous case

When OR is much larger than O, or O is itself very large, it makes sense
to study the request space as continuous. Such continuous representation
permits us to formulate a simplified optimization problem whose solution
well approximates the optimal cost achieved in discrete scenarios with large
catalog size.

If the number of objects in the catalog is finite, one could in principle
devise a Greedy algorithm also for this case, working exactly as in the
discrete case. Indeed the problem (3) can be easily shown to be still sub-
modular even when requests lies over a continuous space. However, one now
has to evaluate, for each possible candidate approximizer α to add to the
current allocation, complex integrals over the infinite query space. It is not
simple to define in general the complexity of such operations but it is evident
that previous algorithmic approaches becomes rapidly unfeasible for large
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r

Figure 2: Perfect tessellation with square cells in a two-dimensional domain,
under the norm-1 distance.

set of requests and/or large catalog.
Hereinafter, we will assume that both the request space and the catalog

space are continuous.

5.1 Preliminary: continuous formulation for a single cache

As a necessary background, we summarize here some results obtained in [16]
for the case of a single cache with capacity k1. Let Br(y0) be the closed ball
of radius r around y0, i.e., the set of points y such that d(y, y0) ≤ r. The
authors of [16] proved:

Proposition 5.1. Under a homogeneous request process with intensity λ
over a bounded set X , any cache state A = {y1, . . . , yk1}, such that, for some
r, the balls Br(yh) for h = 1, . . . , k1 are a tessellation of X (i.e., ∪hBr(yh) =
X and |Br(yi) ∩ Bd(yj)| = 0 for each i and j), is optimal.

Such regular tessellation exists, in all dimensions, under the norm-1 dis-
tance, and corresponds to the case in which balls are squares (assuming that
k1 such squares cover exactly the domain X ).

It is then immediate to analytically compute the optimal cost for this
case. For example, in a two-dimensional domain (see Fig. 2), requests
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Figure 3: Example of perfect tessellation of a square grid with wrap-around
conditions, in the case l = 2, L = 13. Black dots correspond to a minimum
cost cache configuration under homogeneous request process.

arriving in a particular ball produce an approximation cost:

c(r) = 4

∫ r

0

∫ r−x

0
(x+ y)γλ dy dx = 4λ

rγ+2

γ + 2
(6)

and the total cost is just C(A) = k1c(r).
Equation (6) provides a simple close-form expression of the approxima-

tion cost, but it relies on the assumption that the request space is continu-
ous. To assess the extent of the approximation, we compare it to the cost
achieved in the case of a discrete request space, where requests (and catalog
objects) are constrained to lie on the points of a L× L square with unitary
step and wrap-around conditions.

For some special values of L, namely L = 1+2l(l+1), where l ∈ N , there
exists a regular tessellation of the grid with L squares, each comprising L
points. Figure 3 provides an example of such regular tessellation in the case
l = 2, L = 13. When k1 = L, the discrete versions of Proposition 5.1 allows
us to conclude that storing in the cache the central object of each square is
optimal, achieving the per-request approximation cost:

cgrid(r) =
l∑

i=1

4iγ+1

L
(7)

which can be understood by noticing that there are 4i points at hop distance
i from the central object. The optimal cost as described by Equation (7)
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for these special discrete cases can be compared to the continuous approxi-
mation (6), where we need to set r =

√
L/2, λ = 1/L.
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Figure 4: Per-request approximation cost as function of k1 = L, for different
values of γ, under uniform request process. Comparison between continuous
request space (lines) and discrete request space (marks).

Figure 4 shows the result of this comparison as function of k1 = L, for
different values of γ. We observe that the continuous approximation is very
good provided that the number of objects falling in each square is not too
small (say larger than a few tens).

If the request rate is not space-homogeneous, one can apply the results
above over small regions Xi of X where λx can be approximated by a con-
stant value λXi . Intuitively, the approximation becomes better and better
the more λx varies smoothly over each Voronoi cell of region i. This in par-
ticular occurs when λx is smooth over the entire domain, and the cache size
increases.

Under this approximation, let ki,1 be the number of cache slots devoted
to region i (with the constraint that

∑
i ki,1 = k1). Then, using standard

constrained optimization methods, it is possible to determine the optimal
value of ki,1 as function of the local request rate λXi . Without loss of gener-
ality, we can assume that domain X is partitioned into M regions of unitary
area, on which the request rate is approximately assumed to be constant
and equal to λi, 1 ≤ i ≤M .

Then, focusing for simplicity on the two dimensional case when d(x, y)
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is the norm-1, and Ca(x, y) = d(x, y)γ , each cache slot is used to approxi-
mate requests falling in a square of area 1/ki,1 and radius ri =

√
1/(2ki,1).

Following (6), the approximation cost ci within a square belonging to region
i can be easily computed as:

ci(ri) = 4λi
rγ+2
i

γ + 2
= ζλik

− γ+2
2

i,1 (8)

where ζ , 2(2−γ)/2/(γ + 2). Hence the total approximation cost in the
whole domain, which depends on the vector k of cache slots ki,1’s, is C(k) =∑M

i=1 ki,1ci,1(ki,1).
We select the values k that minimize the expected cost:

minimize
k1,1,...,kM,1

ζ

M∑
i=1

λik
−γ/2
i,1

subject to
M∑
i=1

ki,1 = k1

(9)

Employing the standard Lagrange method, one obtains that λik
−(γ+2)/2
i,1

equals some unique constant for any region i, which means that ki,1 has to

be proportional to λ
2/(γ+2)
i . After some algebra we get:

minC(k) = ζk
−γ/2
1

(
M∑
i=1

λ
2

γ+2

i

) γ+2
2

. (10)

In the limit of large M , we substitute the sum in (10) with an integral,
obtaining:

minC(k) ≈ ζk−γ/21

(∫
X
λ(x)

2
γ+2 dx

) γ+2
2

. (11)

We observe that, when the distance is the norm-1, this approach from [16]
can be extended to higher dimensions computing integrals similar to (6).2

Under other distances, things are not as simple, but in principle one can
determine the best partitioning of the domain into k1 Voronoi cells3 Vi with

2In the d dimensional case we have c(r) = adλr
γ+d, for an appropriate constant ad.

3This task is not hard when the domain X can be exactly partitioned into k1 Voronoi
cells of the same shape. Otherwise, for sufficiently large cache sizes, one can neglect border
effects and approximately consider k1 Voronoi cells of the same shape covering the entire
domain.
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center bi, such that

C(A) =
∑
i

∫
Vi

Ca(x, bi) dx (12)

is minimum, and store in the cache objects {bi}i. Similarly to [16], we prefer
to avoid such geometric complications, and stick for simplicity to the norm-1
case.

5.2 Chain topology

Here we extend the approach recalled in previous section to a chain network
of N caches, where requests arrive at the leaf cache 1, and are possibly
forwarded along the chain up to the node providing the best approximizer.
In a chain the cost incurred by request r for object x, served by approximizer
α = (o′, j) is C(r, α) = Ca(x, o

′)+h(1, j). As request originates always at the
leaf cache 1, we simplify the notation and denote h(1, j) by hj . We naturally
assume hi > hj if i > j. The N -th cache in the chain is the repository, where
the approximation cost is negligible. In the following formulas, we recover
this situation considering that the last cache has infinite cache size.

Let ki,j be the number of cache slots devoted by cache j to region i. Each
of these slots is used to approximate requests falling in a square of area 1/ki,j
and radius ri,j =

√
1/(2ki,j). Hence the cost incurred by requests falling in

a square of region i and served by cache j is:

ci,j(ri,j) = 4

∫ ri,j

0

∫ ri,j−x

0
[(x+ y)γ + hj ]λi dy dx =

4λi
rγ+2
i,j

γ + 2
+ 2λir

2
i,jhj (13)

The cost Ci,j incurred by all requests falling in region i and served by
cache j, as function of ki,j , reads:

Ci,j(ki,j) = ζλik
− γ

2
i,j + λihj (14)

In general a region i can be served by several caches along the path
(every cache for which ki,j > 0). However observe that a single request (i.e.,
a point of the region) will be always served by one specific cache, cache j∗

with j∗ = argminj Ci,j (ties can be neglected). We encode previous property
by introducing weights wi,j ∈ [0, 1], where wi,j represents the fraction of
region i served exclusively by cache j. Let wj be the vector of {wi,j}i.
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We obtain the optimization problem:

minimize
w2,...,wN

ζk
−γ/2
1

(
M∑
i=1

(
1−

N∑
j=2

wi,j

)
λ

2
γ+2

i

) γ+2
2

+

M∑
i=1

(
1−

Z∑
j=2

wi,j

)
wiλih1+

N∑
j=2

[
ζk
−γ/2
j

( M∑
i=1

wi,jλ
2

γ+2

i

) γ+2
2

+

M∑
i=1

wi,jλihj

]
subject to wi,j ≥ 0 ∀j > 1,∀i

N∑
j=2

wi,j ≤ 1 ∀i

(15)

where notice that we have separated the contribution of cache 1, and taken
as decision variables vectors wj , with j > 1, since w1 = 1 −

∑N
j=2 wj .

Moreover, notice that the constraints in (15) are sufficient to guarantee that
also the following obvious constraints hold:

wi,j ≤ 1 ∀j > 1,∀i
0 ≤ wi,1 ≤ 1 ∀i

In this form, (15) is a convex minimization problem over a convex domain,
thus it has a global minimum. Without loss of generality, let the M regions
be sorted in increasing values of λi. Employing the standard method of
Lagrange multipliers, KKT conditions imply that the global optimum is
attained when cache 1 handles all most popular regions region i > i∗ (i.e.,
wi,1 = 1, i > i∗), plus possibly a piece of region i∗ (if 0 < wi∗,1 < 1). Cache
1 does not allocate any slot to regions i < i∗.

Previous result allows us to prove the following interesting property
about the structure of the optimal solution:

Proposition 5.2. In the case of a chain topology, with requests arriving only
at the first cache, the best solution of the continuous-domain, finite-M prob-
lem (15) is characterized by a set of popularity thresholds λ∗0 = min{λi} ≤
λ∗1 ≤ λ∗2 ≤ . . . ≤ λ∗N−1 ≤ λN = max{λi}, such that cache j approximates all
requests falling in regions i with λ∗j−1 < λi < λ∗j , plus possibly a portion of
a region with λi = λ∗j−1, and a portion of a region with λi = λ∗j .
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Proof. It is sufficient to apply the above property about the regions handled
by cache 1, filtering out the requests handled by cache 1, and iteratively
applying the same result to the request process forwarded upstream to caches
2, . . . , N .

When the set of popularity values is not finite, it is possible to extend
the result in Proposition 5.2, letting M diverge. We partition X into N sub-
domains Xj , j = 1, . . . , N , stacked in vector X , such that cache j handles
only requests falling into domain Xj , and we seek to minimize:

C(X ) =
N∑
j=1

ζk−γ/2j

(∫
Xj
λ(x)

2
γ+2 dx

) γ+2
2

+ hj

∫
Xj
λ(x) dx

 (16)

In principle we would like to find the best partitioning:

X ∗ = arg min
X

C(X )

In this asymptotic case we can restate Proposition 5.2 as follows, providing
a simpler and more elegant proof.

Proposition 5.3. In the case of a chain topology with requests arriving
only at the first cache, the best partition X ∗ is characterized by the following
property: for any i < j, infX ∗i λ(x) ≥ supX ∗j λ(x).

Proof. By contradiction, let us assume that we find two non negligible areas
∆Xi ⊆ X ∗i and ∆Xj ⊆ X ∗j such that:

sup
∆Xj

λ(x) > inf
∆Xi

λ(x)

Then we can always find two non-negligible areas ∆X ′i ⊆ ∆Xi and ∆X ′j ⊆
∆Xj such that we jointly have:∫

∆X ′i
λ(x)

2
2+γ dx =

∫
∆X ′j

λ(x)
2

2+γ dx (17)

and
inf
∆X ′j

λ(x) ≥ sup
∆X ′i

λ(x) > 0 (18)

Now let us see what happens if we ‘swap’ ∆X ′i with ∆X ′j , i.e., if we take a
new partition X ′ where X ′i = (X ∗i \∆X ′i )∪∆X ′j and X ′j = (X ∗j \∆X ′j)∪∆X ′i .
Note that by construction

C(X ′) = C(X ∗) + (hj − hi)
∫

∆X ′i
λ(x) dx+ (hi − hj)

∫
∆X ′j

λ(x) dx
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Therefore, since hj > hi, we have C(X ′) ≤ C(X ∗) if we can show that∫
∆X ′j

λ(x) dx ≥
∫

∆X ′i
λ(x) dx.

Denoted with β = 2/(2 + γ) < 1 we have:∫
∆X ′j

λ(x) dx =

∫
∆X ′j

λ(x)βλ(x)1−β dx

≥ ( inf
∆X ′j

λ(x))1−β
∫

∆X ′j
λ(x)β dx

= ( inf
∆X ′j

λ(x))1−β
∫

∆X ′i
λ(x)β dx by (17)

≥ (sup
∆X ′i

λ(x))1−β
∫

∆X ′i
λ(x)β dx by (18)

=

∫
∆X ′i

(sup
∆X ′i

λ(x))1−βλ(x)β dx

≥
∫

∆X ′i
λ(x)1−βλ(x)β dx =

∫
∆X ′i

λ(x) dx

5.3 Extension to equi-depth trees

Previous results obtained for the chain topology can be easily extended to
trees with L leaves at the same depth D, where requests arrive only at the
leaves and all caches at the same level have the same size. Let hD−j be the
(equal) cost to reach the cache at level j starting from a leaf. We assume
the spatial arrival rate at leaf ` to be given by λ`(x) = β`λ(x), for some
constant β` > 0, i.e., spatial arrival rates at different caches are identical
after rescaling by a constant factor. Moreover arrival processes at different
leaves are assumed to be independent. We will call equi-depth tree a cache
network with the above characteristics. We naturally assume hi > hj if
i > j.

Proposition 5.4. In an equi-depth tree the optimal cost is achieved by repli-
cating the same allocation at each cache of the same level. The allocation
to be replicated is the one obtained in the special case of a chain topology
(L = 1).
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Proof. Suppose to increase the number of nodes in the topology, creating
a system of L parallel chain topologies. Each leaf now has an independent
path towards a dedicated copy of the root node. By doing so the total
cost in the system of parallel chains is surely not larger than the total cost
achievable in the original tree, and, in general, it might be smaller (this
because we can independently place objects in every chain so as to minimize
the cost induced by the requests arriving at the corresponding leaf). On
the other hand, the optimal allocation on each chain is the same, since the
objective function in (15) is linear with respect to parameter β`. Therefore,
by adopting such equal allocation on each cache of the same level in the
original tree, we obtain exactly the same total cost achieved in the system
of parallel chains, hence this allocation is optimal.

One crucial assumption of chain topologies (and equi-depth trees) is
that requests arrive only at the leaf (leaves). In the next section we discuss
what happens when this assumption does not hold, considering the simplest
possible case with just two caches.

5.4 A tandem network with arrivals at both nodes

In general cache networks that do not belong to the class of equi-depth trees,
the simple optimal structure described in Proposition 5.2 is, unfortunately,
lost. To see why, it is sufficient to consider the simple case of a tandem
network with two identical caches (hereinafter called the leaf and the parent),
where the same external arrival process λ(x) of requests arrives at both nodes
(see scenario 2 in Figure 7). Now, let us suppose that the cost h to reach the
parent from the leaf is large (but it does not need to be disproportionally
large). Then the leaf will not find particularly convenient to forward its
requests to the parent, unless maybe for objects very close to the ones stored
in the parent (whichever they are). On the other hand, the parent has to
locally approximate all requests, hence it will need to adequately cover the
entire domain X like an isolated cache. As a consequence, we do not expect
any clear separation of X into a sub-domain handled by the leaf, and a
sub-domain handled by the parent. In particular, the property that we had
before, according to which a single cache has to allocate slots to cover a
particular region of the domain, does not hold anymore.

A more formal explanation of what happens in this simple case can be
provided by the following model. Again, we divide the domain, both at the
leaf and at the parent cache, into M regions of unitary area. The request
rate over each region is assumed to be constant and we denote it by λi and
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βλi for the leaf and the parent cache, respectively (hence by setting β = 0
we can recover previous case in which requests arrive only at the leaf). Let
ki,1 and ki,2 be the number of slots devoted to region i by the leaf and the
parent node, respectively. Notice that now both quantities are in general
different from zero. The leaf node will forward to the parent the requests
falling in a fraction (1 − wi,1) of region i, and it is natural to assume that
these requests are those falling farther from the locally stored objects, i.e., at
a distance larger than r∗1,i =

√
w1,ir1,i, where r1,i =

√
1/(2ki,1). Therefore

the approximation cost (14) is changed to:

Ci,1(ki,1, wi,1) = ζλiwi,1
γ+2
2 ki,1

− γ
2 . (19)

Requests forwarded to the parent cache will experience an additional
movement cost h, plus a local approximation cost at the parent, that we
model by assuming that the total area of the subregion forwarded to the
parent cache ki,12r2

1,i(1−w1,i) will be served by the ki,2 points at the parent,
within squares of radius:√

ki,1r2
i,1(1− wi,1)

ki,2
=

√
1− wi,1

2ki,2
(20)

Moreover, at the parent cache the local requests will generate an approxi-
mation cost similar to (14) (with no retrieval cost).

The total approximation cost in the network is then:

C(A) = ζ
M∑
i=1

λiwi,1
γ+2
2 ki,1

− γ
2

+ ζ

M∑
i=1

λi(β + (1− wi,1)
γ+2
2 )ki,2

− γ
2 + h

M∑
i=1

λi(1− wi,1). (21)

This cost should be minimized over {wi,1}i, {ki,1}i, and {ki,2}i. By finding
the optimal values for {ki,1}i and {ki,2}i given {wi,1}i, we get

C(w) = ζk
− γ

2
1

(
M∑
i=1

λ
2

2+γ

i wi,1

) 2+γ
2

+ ζk
− γ

2
2

(
M∑
i=1

λ
2

2+γ

i (β + (1− wi,1)
γ+2
2 )

2
2+γ

) 2+γ
2

+ h

M∑
i=1

λi(1− wi,1). (22)
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Note that for β = 0 we recover the cost resulting from (15) in the case of a
tandem network. Computing the derivative of the above cost with respect
to wi,1 we get:

∂C(w)

∂wi,1
= ζk

− γ
2

1

γ + 2

2

(
M∑
i=1

λ
2

2+γ

i w1,i

) γ
2

λ
2

2+γ

j

− ζk−
γ
2

2

γ + 2

2

(
M∑
i=1

λ
2

2+γ

i (β + (1− w1,i)
γ+2
2 )

2
2+γ

) γ
2

× λ
2

2+γ

j

(1− w1,j)
γ
2

(β + (1− w1,j)
γ+2
2 )

γ
2+γ

− hλj . (23)

Imposing the optimality conditions, we find that there may be multiple
regions with different popularities λi for which w1,i∗ ∈ (0, 1), i.e., for which
the leaf forwards part of the requests to the parent. The structure of the
solution in Proposition 5.2 might be lost, leading to optimal allocations
where both caches handle portions of the same region.

To shed light into this phenomenon, we have further investigated the
special case in which λ is uniform over the whole domain. In this case it
is convenient to shift over space the two regular tessellations so that the
centroids at the leaf and at the parent are as far as possible, as shown in
Fig. 5. This allows the leaf to forward the requests farthest from its centroids
to the parent, where they are better approximated.

Requests arriving at the leaf are approximated by the leaf in the red
portion of the domain, as depicted in Fig. 5, while they are approximated
by the parent in the green portion of the domain. Distance z (in Fig. 5)
that defines the separation between the two portions can be easily computed
(for γ = 1) as z = max{0, (r − h)/2}, where r is the radius of the square of
each tessellation (note that if h > r requests are not forwarded from the leaf
to the parent). Then one can easily compute the reduction ∆c = 8

3z
3 in the

approximation cost for requests arriving at the leaf, provided by each slot
of the second cache, and compute the resulting overall approximation cost
(the approach can be generalized to γ 6= 1, but we omit the details here).

6 NetDuel: an online dynamic policy

Although in our work we have focused on the static, offline problem of
content allocation at similarity caches, we have also devised an online, λ-
unaware dynamic policy NetDuel, which is a networked version of policy
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z

Figure 5: Optimal allocation in the tandem network with uniform arrival
process at both nodes. Red areas denote the portion of the domain approx-
imated by red centroids to be stored at the leaf cache. Green areas denote
the portion of the domain approximated by green centroids to be stored at
the parent cache.
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Duel we have proposed in [16]. At high-level, it is based on the following
idea: each (real) content currently is the cache is paired to a (virtual4)
content competing with it. The cumulative saving in the total cost produced
by the real and the virtual objects are observed over a suitable time window,
and if the saving of the virtual object exceeds the saving of the real one by
a sufficient amount, the virtual replaces the real in the cache. Otherwise,
at the end of the observation window, the virtual object is discarded, and
afterwards the real object will be paired to a new virtual object taken from
the arrival process. In contrast to Greedy and LocalSwap, NetDuel
does not require information about object arrival rates {λr}r, and converges
more slowly because it needs to estimate such rates from the arrival process
itself. On the other hand, it can automatically adapt to dynamic object
popularity.

NetDuel achieves an allocation close to the optimal one, suggesting
that effective online dynamic policies can be devised for networks of simi-
larity caches, at least under the assumption that each node knows when to
forward requests upstream.

7 Numerical experiments

7.1 Methodology

We implemented using the C language the Greedy algorithm and the com-
putation of the continuous approximation (15). To run LocalSwap and
NetDuel, instead, we developed an an-hoc event driven simulator, again
using the C language, taking as input either a synthetically generated stream
of requests, or an actual trace. Our simulator can consider an arbitrary tree-
like topology, though all of our experiments were performed an a simple
tandem network of two nodes.5

7.2 Synthetic arrival process

To test our algorithms, we consider 10000 objects falling on the points of a
bi-dimensional L × L grid with L = 100, equipped with the norm-1 metric
and the local cost Ca(x, y) = d(x, y), i.e., we take (unless otherwise specified)
γ = 1. The request process follows a Gaussian distribution, such that the
request rate of object i is proportional to exp(−d2

i /(2σ
2)), where di is the hop

4The cache stores only metadata of a virtual object, not the object itself. Virtual
objects are taken from the arrival process.

5The code is available from the authors upon request.

24



 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  1  2  3  4  5  6

to
ta

l 
co

st
, 
C

cost to parent, h

NetDuel - σ = L/2
Greedy - σ = L/2

LocalSwap - σ = L/2
Continuous - σ = L/2

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  1  2  3  4  5  6

to
ta

l 
co

st
, 
C

cost to parent, h

NetDuel - σ = L/8
Greedy - σ = L/8

LocalSwap - σ = L/8
Continuous - σ = L/8

Figure 6: Total cost obtained by Greedy, LocalSwap, continuous approx-
imation and NetDuel in a tandem network with arrivals at the leaf, for
σ = L/2 (thick curves) or σ = L/8 (thin curves).

distance from the grid center. To jointly test our continuous approximations,
we assume that each grid point i is the center of a small square of area 1,
on which λ is assumed to be constant and equal to λi.

We first consider a simple tandem network with arrivals only at the leaf,
and fixed cost h to reach the parent (scenario 1 in Fig. 7). In Fig. 6 we
compare the total cost produced by Greedy, LocalSwap, the continuous
approximation (the solution of (15)) and NetDuel, as function of h, for a
larger Gaussian (σ = L/2) or a narrow Gaussian (σ = L/8). We observe
that LocalSwap performs better than Greedy, which performs better
than NetDuel. The continuous approximation does not necessarily provide
a lower bound to discrete algorithms/policy, since it is a different system
where the request space is continuous, rather than constrained on the grid
points. However, we do observe that the continuous approximation curve
gets closer to the curve produced by LocalSwap for σ = L/2 (thick curves),
since in this case λ varies more smoothly over the domain.

In Fig. 8 we show the allocations (circles for the parent, triangles for the
leaf) produced by the four approaches above in the case σ = L/8 and h = 3,
using two different colors for the sub-domains where requests arriving at the
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user requests user requests

h h

user requests

(scenario 1) (scenario 2)

Figure 7: Simple tandem networks with two identical caches, with arrivals
only at the leaf (scenario 1 on the left), or with arrivals at both caches
(scenario 2 on the right). Requests forwarded from the leaf to the parent
cache incur the additional fixed cost h.

Greedy LocalSwap

Continuous NetDuel

Figure 8: Allocations obtained by Greedy, LocalSwap, continuous ap-
proximation and NetDuel in the tandem network with σ = L/8, h = 3.
Circle marks for the parent cache and triangle marks for the leaf cache.
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Figure 9: Parent allocation obtained by LocalSwap in a tandem network
with arrivals at both nodes. Gaussian traffic (left plot) and Uniform traffic
(right plot).

leaf are approximated by the leaf or the parent.6 7

While our algorithms are completely oblivious to the threshold-based
solution predicted by the continuous approximation, they achieve, quali-
tatively, the same cache allocation structure. Differences emerge at the
boundary between the area served by the leaf and the area served by the
parent, and are more evident for Greedy and NetDuel. Next, we see
what happens when the crucial assumption underlying the above structure,
namely, the fact that requests arrive only at the leaf, is removed.

In Fig. 9 we report, for a larger system with 100000 contents, the allo-
cation produced at the parent by LocalSwap in a tandem network with
requests arriving at both nodes (scenario 2 in Fig. 7), showing also with
two different colors the regions where requests arriving at the leaf are ap-
proximated by the leaf or the parent. We consider both a Gaussian arrival
process with σ = L/8 (left plot), and a simple Uniform process (right plot),
and fixed h = 3. Notice that the parent cache covers also the central part of
the domain, in contrast to Fig. 8. Results produced by LocalSwap suggest
that now, for the requests arriving at the leaf, the regions served directly
by the leaf and the regions approximated by the parent are intertwined in a
complex way. For uniform λ, Fig. 10 shows the accuracy of the continuous
approximation based on the shifted regular square tessellations shown in
Fig. 5.

6For the continuous approximation, we do not show stored contents, and (border)
squarelets are considered as handled exclusively by the parent if wi,2 > wi,1.

7On an Intel i7 desktop computer equipped with 8GB of DDR4 RAM, the running
time of Greedy, LocalSwap and NetDuel to produce the allocations in Fig. 8 were,
respectively, 3 minutes, 5 minutes and 12 minutes.
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7.3 Amazon trace

By crawling the Amazon web-store, the authors of [34] built an image-based
dataset of users’ preferences for millions of items. Using a neural network
pre-trained on ImageNet, each item is embedded into a d-dimensional space,
on which Euclidean distance is used as item similarity. We consider as
request process the timestamped reviews left by users for the 10000 most
popular items belonging to the baby category, with d = 100. The resulting
trace, containing about 10.3M requests, is fed into a cache of size 100, with
a parent cache of the same size (a tandem network) reachable by paying an
additional fixed cost h = 150. The local approximation cost is set equal to
the Euclidean distance.

In Fig. 11 we show the allocations produced by LocalSwap in both
caches, reporting, for each stored item, the popularity rank (x axes) and the
distance from the baricenter (y axes). Across the entire catalog we found
no correlation between popularity rank and distance from the baricenter.
Nevertheless, we do observe that the leaf cache tends to store items that are
either very popular or very close to the baricenter. The resulting total cost
is C = 266 (left plot in Fig. 11).

Moreover, by computing the request density within spherical shells at
distance d ∈ [ρ, ρ + 1] from the baricenter, we found a decreasing trend in
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Figure 11: Allocations obtained by LocalSwap in a tandem network with
arrivals at the leaf according to Amazon trace. Unconstrained version (left)
and constrained version (right).
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ρ, see Fig. 12, which justifies the attempt of ‘enforcing’ the structure of the
optimal solution that we found in chain topologies fed only from the leaf.
We do so by constraining the leaf (parent) cache to store only contents at
distance from the baricenter smaller (larger) than a given threshold d∗. The
constrained LocalSwap algorithm obtains, for the best possible d∗ = 350,
a total cost C = 269 (only 1% worse than before), right plot in Fig. 11,
suggesting that a simple allocation and forwarding rule based on the distance
from the baricenter is close to optimal also in a realistic scenario.

8 Conclusions and future work

In this paper we have made a first step into the analysis of networks of
similarity caches, focusing on the offline problem of static content allocation.
Despite the NP-hardness of the problem, effective greedy algorithms can
be devised with guaranteed performance, but their implementation become
prohibitive as the system size increases. For very large request space/catalog
size, we have relaxed the problem to the continuous, obtaining for equi-depth
tree topologies an easily implementable solution with a simple structure,
which greatly simplifies the related request forwarding problem. The above
simple structure is unfortunately lost in more general networks. We have
also proposed a first online dynamic policy, NetDuel, whose effectiveness
is confirmed by preliminary simulation results. More experiments under
both synthetic and real traces could be done to confirm the findings of our
preliminary assessment of proposed algorithms and policies.

Future work will focus on: i) the design of practical, scalable algorithms
which can deal with similarity caching network having general topology, and
large catalog size; ii) the investigation of simple request forwarding strate-
gies for the online setting, in the absence of complete information about
which items are stored in upstream caches; iii) the extension of algorithms
and policies to the case in which multiple (e.g., the m closest) approximat-
ing objects are needed, so as to offer several alternatives to the user; iv)
additional numerical experiments under synthetic and real traces.
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A Proof of Proposition 4.2

Proof. We first show that constraints are matroid ones. The empty set
obviously belongs to I, and if A ⊂ B with B ∈ I, then A ∈ I. Finally,
given two allocations with |A| < |B|, there exists a cache i that stores less
elements under A than under B, i.e., such that

∑
o′:(o′,i)∈A 1 <

∑
o′:(o′,i)∈B 1.

Then, there exists an object o that is stored at i under B, but not under A.
As
∑

o′:(o′,i)∈A 1 <
∑

o′:(o′,i)∈B 1 ≤ ki, A ∪ (o, i) is still a feasible allocation.
We now prove that G(A) is a non-negative monotone submodular func-
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tion.

G(A) =
∑
r

λrC(r, ∅)−
∑
r

λrC(r,A)

=
∑
r

λr (C(r, ∅)− C(r,A))

=
∑
r

λr

(
C(r, ∅)− min

α∈S∪A
C(r, α)

)
=
∑
r

λr

(
C(r, ∅)−min

(
min
α∈A

C(r, α), C(r, ∅)
))

=
∑
r

λr

(
C(r, ∅)−min

α∈A
min (C(r, α), C(r, ∅))

)
=
∑
r

max
α∈A

λr

(
C(r, ∅)−min (C(r, α), C(r, ∅))

)
=
∑
r

max
α∈A

λr

(
max (C(r, ∅)− C(r, α), 0)

)
Then G(A) =

∑
r maxα∈AMr,α, where Mr,α ≥ 0 for all r and α. The set

function is obviously monotone (i.e., if A ⊂ B, then G(A) ≤ G(B)) and non-
negative and corresponds to the utility of a facility location problem that is
known to be submodular (e.g., [35], but it is also easy to check directly).

B Pseudocode of Greedy algorithm

After an initial initialization corresponding to the empty allocation (lines
1–3), the algorithm performs K steps (line 4), where K is the total cache
capacity in the network. In each step, we consider the addition of any pos-
sible approximizer at each cache, i.e., an approximizer not already present
in a cache which has not yet been filled up (line 6), searching for the one
that minimizes the total cost resulting from the addition of the considered
approximizer (line 7). Then we add the found approximizer to the current
allocation (lines 14–16), and proceed to the next step.

C Pseudocode of LocalSwap algorithm

We start from a random allocation of objects at the caches (line 1), and
perform at most max iter noimprov attempts to improve the current al-
location, where max iter noimprov is a parameter of the algorithm, to be
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Algorithm 1 Greedy

Require: cache sizes ki,∀i ∈ K, arrival rates {λr}r, ∀r, costs C(r, α), ∀(r, α)
1: A = ∅ . Initialize set of approximizers
2: Oi = ∅, ∀i ∈ K . Initialize set of allocated objects in each cache
3: ai = 0, ∀i ∈ K . Initialize number of allocated objects in each cache
4: for i = 1 . . .K do
5: C =∞
6: for all α = (o, i) : o /∈ Oi, ai < ki do
7: C∗ =

∑
r λrC(r,A ∪ {α}) . cost resulting from addition of α

8: if C∗ < C then
9: C = C∗

10: o∗ = o
11: i∗ = i
12: end if
13: end for
14: A ⇐ A∪ (o∗, i∗)
15: Oi∗ ⇐ Oi∗ ∪ o∗
16: ai∗ ⇐ ai∗ + 1
17: end for
18: return A . Final set of approximizers

chosen sufficiently large to achieve convergence. In each attempt, we con-
sider a real or emulated request for an object o (line 4), and evaluate what
would happen if: i) we evict an object y from a cache i along the forwarding
path of o; ii) insert o at cache i in place of y. By considering all possible
substitutions as above (line 6), we compute the largest possible negative
variation ∆C∗ in the total network cost (line 8–11) keeping track of the
substitution that produces such variation (line 10). If we indeed obtain a
negative variation (line 13) (note that ∆C is initialized to zero on line 5),
we actually perform the corresponding substitution (line 14).
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Algorithm 2 LocalSwap

Require: parameter max iter noimprov, cache sizes {ki}i, arrival rates
{λr}r,∀r, costs C(r, α),∀(r, α)

1: Allocate ki distinct random objects in each cache . Initialize A
2: iter = 0
3: while iter < max iter noimprov do
4: generate request for object o according to {λr}r . real or emulated
5: ∆C = 0
6: for all α = (y, i) ∈ A do
7: ∆C∗ = C(A ∪ {(o, i)} \ {(y, i)})− C(A)
8: if ∆C∗ < ∆C then
9: ∆C = ∆C∗

10: (ye, ie)⇐ (y, i)
11: end if
12: end for
13: if ∆C < 0 then
14: A ⇐ A∪ {(o, ie)} \ {(ye, ie)}
15: iter = 0
16: else
17: iter⇐ iter + 1
18: end if
19: end while
20: return A . Final set of approximizers
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