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Abstract—This paper focuses on similarity caching systems, in
which a user request for an object o that is not in the cache
can be (partially) satisfied by a similar stored object o′, at the
cost of a loss of user utility. Similarity caching systems can be
effectively employed in several application areas, like multimedia
retrieval, recommender systems, genome study, and machine
learning training/serving. However, despite their relevance, the
behavior of such systems is far from being well understood. In
this paper, we provide a first comprehensive analysis of similarity
caching in the offline, adversarial, and stochastic settings. We
show that similarity caching raises significant new challenges, for
which we propose the first dynamic policies with some optimality
guarantees. We evaluate the performance of our schemes under
both synthetic and real request traces.

Index Terms—Caching systems, similarity searching

I. INTRODUCTION

Caching at the network edge plays a key role in reducing
user-perceived latency, in-network traffic, and server load.
In the most common setting, when a user requests a given
object o, the cache provides o if locally available (hit), and
retrieves it from a remote server (miss) otherwise. In other
cases, a user request can be (partially) satisfied by a similar ob-
ject o′. For example, a request for a high-quality video can still
be met by a lower resolution version. In other scenarios, a user
query is itself a query for objects similar to a given object o.
This situation goes under the name of similarity searching,
proximity searching, or also metric searching [1]. Similarity
searching plays an important role in many application areas,
like multimedia retrieval [2], recommender systems [3], [4],
genome study [5], machine learning training [6], [7], [8], and
serving [9], [10]. In all these cases, a cache can deliver to
the user one or more objects similar to o among those locally
stored, or decide to forward the request to a remote server.
The answer provided by the cache is in general an approximate
one in comparison to the best possible answer the server could
provide. Following the seminal papers [2], [3], we refer to this
setting as similarity caching, and to the classic one as exact
caching.

To the best of our knowledge, the first paper introducing
the problem of caching for similarity searching was [2]. The
authors considered how caches can improve the scalabil-
ity of content-based image retrieval systems. Almost at the
same time, [3] studied caches in content-match systems for
contextual advertisement. Both papers propose some simple
modifications to the least recently used policy (LRU) to
account for the possibility of providing approximate answers.
More recently, in [6] and [7], similarity caching has been used
to retrieve similar feature vectors from a memory unit with the
goal of improving the performance of sequence learning tasks.

Previous approaches led to the concept of memory-augmented
neural networks [8]. Clipper [10]—a distributed system to
serve machine learning predictions—includes similarity caches
to provide low-latency, approximate answers. A preliminary
evaluation of the effect of different caching strategies for this
purpose can be found in [9]. Recently, [4] and a series of
papers by the same authors have studied recommendation
systems in a cellular setting, where contents can be stored
close to the users. They focus on how to statically allocate
the contents in each cache assuming to know the contents’
popularities and the utility for a user interested in content o
to receive a similar content o′.

Exact caching has been studied for decades in many areas
of computer science, and there is now a deep understanding of
the problem. Optimal caching algorithms are known in specific
settings, and general approaches to study caching policies have
been developed both under adversarial and stochastic request
processes. On the contrary, despite the many potential applica-
tions of similarity caching, there is still almost no theoretical
study of the problem, specially for dynamic policies. The only
one we are aware of is the competitive analysis of a particular
variant of similarity caching in [11] (details in Sect. IV).
Basic questions are still unanswered: are similarity and exact
caching fundamentally different problems? Do low-complexity
optimal similarity caching policies exist? Are there margins
of improvement with respect to heuristics proposed in the
literature, like in [2], [3]? This paper provides the first answers
to the above questions. Our contributions are the following:

1) we show that similarity caching gives rise to NP-hard
problems even when exact caching lends itself to simple
polynomial algorithms;

2) we provide an optimal pseudo-polynomial algorithm
when the sequence of future requests is known;

3) we recognize that, in the adversarial setting, similarity
caching is a k-server problem with excursions;

4) we propose optimal dynamic policies, both when objects’
popularities are known, and when they are unknown;

5) we show by simulation that our dynamic policies provide
better performance than existing schemes, both under
the independent reference model (IRM) and under real
request traces.

A major technical challenge of our analysis is that we allow
the object catalog to be uncountable—as it happens when
objects/requests are described by vectors of real-valued fea-
tures [10]—and the request process to be characterized by
a probability density function. Note that in this case exact
caching policies like LRU would achieve zero hit ratio.



The rest of the paper is organized as follows. Section II
introduces our main assumptions on request processes and
caching policies. Sections III and IV present results on simi-
larity caching respectively in the offline and in the adversarial
setting. Our new dynamic policies are described in Sect. V,
together with their optimality guarantees in the stochastic set-
ting. We numerically explore the performance of our policies
in Sect. VI. An extended version of this paper is available
online [12].

II. MAIN ASSUMPTIONS

Let X be the (finite or infinite) set of objects that can be
requested by the users. We assume that all objects have equal
size and the cache can store up to k objects. The state of the
cache at time t is given by the set of objects St currently
stored in it, St = {y1, y2, . . . yk}, with yi ∈ X .

We assume that, given any two objects x and y in X ,
there is a non-negative (potentially infinite) cost Ca(x, y) to
approximate x with y. We consider Ca(x, x) = 0. Given
a set A of elements in X , let Ca(x,A) denote the mini-
mum approximation cost provided by elements in A, i.e.,
Ca(x,A) = infy∈A Ca(x, y).

In what follows, we consider two main instances for X
and Ca(). In the first instance, X is a finite set of objects
and thus the approximation cost can be characterized by an
|X | × |X | matrix of non-negative values. This case could
well describe the (dis)similarity of contents (e.g. videos) in
a finite catalog. In the second instance, X is a subset of Rp
and Ca(x, y) = h(d(x, y)), where h : R+ → R+ is a non-
decreasing non-negative function and d(x, y) is a metric in
Rp (e.g. the Euclidean one). This case is more suitable for
describing objects characterized by continuous features. We
will refer to the above two instances as finite and continuous,
respectively.

Our goal is to design effective and efficient cache man-
agement policies that minimize the aggregate cost to serve
a sequence of requests for objects in X . We assume that
the function Ca : X × X → R+ ∪ {+∞} is available for
caching decisions and that the cache is able to compute the
set of best approximators for x, i.e., arg miny∈St Ca(x, y).
This can be efficiently done using locality sensitive hashing
(LSH) [3]. Moreover, we will restrict ourselves to online
policies in which object insertion into the cache is triggered
by requests (i.e., the cache cannot pre-fetch arbitrary objects).
Upon a request for object rt at time t, if the content is locally
stored (rt ∈ St), then the cache directly provides rt incurring a
null cost (Ca(rt,St) = 0) and we have an exact hit. Otherwise,
the cache can either i) provide the best approximating object
locally stored, i.e., y ∈ arg miny∈St Ca(x, y), incurring the
approximation cost Ca(rt,St) (approximate hit) or ii) retrieve
the content from the server incurring a fixed cost Cr > 0
(miss). Upon a miss, the cache retrieves the object rt, serves
it to the user, and then may replace one of the currently stored
objects with rt. We stress the caching policy is not required to
store rt. Without loss of generality, we can restrict to caching

policies providing an approximate hit only if the approxima-
tion cost is smaller than the retrieval cost (Ca(rt,St) ≤ Cr).
Indeed, one could otherwise devise a new caching policy that
retrieves content rt and then discards it, paying a smaller cost.
As a consequence, when the cache state does not change, the
cost to serve rt is equal to C(rt,St) , min(Cr, Ca(rt,St)).

We also define the movement cost from cache state T to
cache state S as

Cm(T ,S) ,


0, if S = T ,
Cr, if |S \ T | = 1,

+∞, otherwise.
(1)

Given a finite sequence of requests rT = r1, r2, . . . , rT and
an initial state S1, the average cost paid by a given caching
policy A is

CA(S1, rT ) =
1

T

T∑
t=1

[Cm(St,St+1) + C(rt,St+1)] . (2)

In fact, if St+1 6= St, the cache has retrieved rt paying
the retrieval cost Cr = Cm(St,St+1), but no approximation
cost (C(rt,St+1) = Ca(rt,St+1) = 0). If St+1 = St, the
cache has provided an approximated answer or has retrieved
(but not stored) rt, paying C(rt,St) = min(Cr, Ca(rt,St)).
Note that the average cost depends on A, because the policy
determines the evolution of the cache state St. Policies differ
in the choice of which requests are approximate hits or misses
(even if Ca(rt,St) ≤ Cr, the cache can decide to retrieve and
store rt) and in the choice of which object is evicted upon
insertion of a new one. We observe that, if Ca(x, y) = ∞
for all x 6= y, we recover the exact caching setting. If, in
addition, Cr = 1, Eq. (2) provides the miss ratio. The cost
structure (2), together with a movement cost like (1) that
satisfies the triangle inequality, defines a metrical task system,
first introduced by Borodin et al. [13] and usually studied
through competitive analysis (more in Sect. IV).

As mentioned in the introduction, similarity caching lacks
a solid theoretical understanding. From an algorithmic view-
point, it is not clear if similarity caching is a problem intrin-
sically more difficult than exact caching. From a performance
evaluation view-point, we do not know if similarity caching
can be studied resorting to the same approaches adopted for
exact caching. In this paper we provide a first answers to
these questions, which depend crucially on the nature of the
requests’ sequence. Three scenarios are commonly considered
in the literature:
Offline: the request sequence is known in advance. This

assumption is made when one wants to determine the best
possible performance of any policy. In the case of exact
caching, it is well known that the minimum cost (miss
ratio) is achieved by Bélády’s policy [14], that evicts at
each time the cached object, whose next request is further
in the future.

Adversarial: the request sequence is selected by an adver-
sary who aims at maximizing the cost incurred by a
given caching policy. This approach leads to competitive



analysis, which determines how much worse an online
policy (without knowledge of future requests) performs
with respect to an optimal offline policy.

Stochastic: requests arrive according to a stationary exoge-
nous stochastic process. One example is the classic IRM,
where requests for different objects are generated by
independent time-homogeneous Poisson processes. The
goal here is to minimize the expected cost or equivalently
the average cost in (2) over an infinite time horizon.

We separately consider the above three scenarios in the next
sections.

III. OFFLINE OPTIMIZATION

In this section we consider the offline setting in which a
finite sequence of requests rT is known in advance. We first
address the problem of finding a static set of objects to be
prefetched in the cache, so as to minimize the cost in (2), i.e.,
we want to find:

S∗ ∈ arg min
S1

T∑
t=1

C(rt,S1).

Note that the corresponding version of this (static, offline)
problem for exact caching has a simple polynomial solution
with T log T time complexity and T space complexity: one
simply needs to store in the cache the k most requested objects
in the trace. For similarity caching the problem is much more
difficult, in fact:

Theorem III.1. The static offline similarity caching problem
is NP-hard.

Proof. The result follows from a reduction of maximum cov-
erage problem (NP-hard) to a static offline similarity caching
problem. Let G = (V,E) be an undirected graph with set of
nodes V and set of edges E. We consider the static offline
similarity caching problem with X = V , Cr = 1, and
Ca(x, y) = 0 if (x, y) ∈ E and Ca(x, y) = +∞ otherwise.
The request sequence rT contains one and only one request
for each content. Minimizing the total cost of this instance of
the similarity caching problem is equivalent to finding the k
nodes that cover the largest number of nodes in V .

In the continuous case, where objects are points in Rp, and
Ca(x, y) is a function of a distance d(), one may expect that
the problem becomes simpler. The following theorem shows
that this is not the case in general.

Theorem III.2. Let X = R2, and Ca(x, y) = h(d(x, y)),
where h(z) = 0 for z ≤ 1 and h(z) = Cr = 1 otherwise.
Finding the optimal static set of objects to store in the cache
is NP-hard both for norm-2 and norm-1 distance.

Proof. We prove NP-hardness in the restricted case when
every object is requested only once. We observe that any
object y stored in the cache can satisfy requests for all the
points in a disc (resp. square) centered in y in the case of
norm-2 (resp. norm-1) distance. The problem of determining
the optimal static set of cached objects that maximizes the

number of hits is then equivalent to the problem of finding
the placement of k identical geometric shapes that covers the
largest number of points in the request sequence. These shapes
are, respectively, discs and squares in the case of norm-2 and
norm-1 distance. NP-hardness follows immediately from the
NP-hardness of the two covering problems on the plane known
as DISC-COVER and BOX-COVER [15].

We have already observed that exact caching is a particular
case of similarity caching. Theorems III.1 and III.2 show that
similarity caching is an intrinsically more difficult problem.

For the dynamic setting, we propose a dynamic program-
ming algorithm adapted from that proposed in [16] for exact
caching.

Let r denote a finite sequence of requests for m distinct
objects, and rx the sequence obtained appending to r a new
request for content x. We denote by S1 the initial cache state,
and by COPT(r,S), the minimum aggregate cost achievable
under the request sequence r, when the final cache state is S . It
is possible to write the following recurrence equations, where
ε denotes the empty sequence:

COPT(ε,S) =

{
0, if S = S1,

+∞, otherwise.

COPT(rx,S) =

{
min
T

(COPT(r, T ) + Cm(T ,S)) , if x ∈ S,

COPT(r,S) + C(x,S) otherwise.

These equations lead to a dynamic programming procedure
that iteratively computes the optimal cost for rT and determine
the corresponding sequence of caching decisions. Algorithm’s
time complexity is O

(
(m− k)k2

(
m
k

)
T
)
. Space complexity is

at least
(
m
k

)
. As this algorithm can only be applied to scenarios

with small cache/catalog sizes, we will derive more useful
bounds for the optimal cost in Sect. V-C.

IV. COMPETITIVE ANALYSIS UNDER ADVERSARIAL
REQUESTS

The usual worst case analysis is not particularly illuminating
for caching problems: if an adversary can arbitrarily select the
request sequence, then the performance of any caching policy
can be arbitrarily bad. For example, with a catalog of k + 1
objects, the adversary can make any deterministic algorithm
achieve a null hit rate.

For this reason, the seminal work of Sleator and Tarjan [17]
introduced competitive analysis to characterize the relative
performance of caching policies in comparison to the best
possible offline policy with hindsight, i.e., when the sequence
of requests selected by the adversary is known when caching
decision are taken.1 In particular, an online caching algorithm
A is said to be ρ-competitive, if its performance is within a
factor ρ (plus a constant) from the optimum. More formally,
there exists a such that

CA(S1, rT ) ≤ ρ CB(S1, rT ) +
a

T
, for all B and rT .

1 By now, competitive analysis has become a standard approach to study
the performance of many other algorithms.



A competitive analysis of similarity caching in the particular
case when Ca(x, y) = 0 if d(x, y) ≤ r, where d() is a distance
in X , is in [11] (the only theoretical study of similarity caching
we are aware of). In this section we present results for other
particular cases, relying on existing work for the k-server
problem with excursions.

The k-server problem [16] is perhaps the “most influential
online problem [. . . ] that manifests the richness of competitive
analysis” [18]. In the k-server problem, at each time instant
a new request arrives over a metric space and the user has to
decide which server to move to serve it, paying a cost equal
to the distance between the previous position of the server
and the request. It is well known that the k-server problem
generalizes the exact caching problem.

Interestingly, Manasse and McGeoch’s seminal paper on the
k-server problem [16] also introduces the following variant: a
server can perform an excursion to serve the new request and
then come back to the original point paying a cost determined
by a different function. Similarity caching problem can be
considered as a k-server problem with excursions where server
movements have uniform cost Cr and the excursion of a
server in y to serve a request for x has cost Ce(x, y) ,
min(Ca(x, y), Cr).

Unfortunately, while we have found a noble relative of our
problem in the algorithmic field, not much is known about the
k-server problem with excursions for the exact scenario we are
targeting (uniform metric space for movements and generic
metric space for excursions). We rephrase a few existing
results in terms of the similarity caching problem. The first one
applies when the cache can contain all objects but one. The
second one applies to the uniform scenario where each object
can equally well approximate any other object. We hope that
the important applications of similarity caching will motivate
further research on the k-server problem with excursions.

Theorem IV.1. [16, Sect. 6, Thm 10] Let αu be an upper
bound for the set {Ce(x, y)/Cr | x, y ∈ X}. If |X | = k + 1,
then the competitive ratio of any algorithm is bounded below
by (2k+1)(1+αu)/(1+2αu). Moreover, there exists a (2k+
1)-competitive deterministic algorithm (BAL).

Theorem IV.2. [19, Thms 4.1-2] If |X | > k and there exists
0 < α such that Ce(x, y) = αCr for all x, y ∈ X with x 6= y,
then the competitive ratio of any algorithm is at least 2k +
1. Moreover, there exists a (2k+ 1)-competitive deterministic
algorithm (RFWF).

V. STOCHASTIC REQUEST PROCESS

We now consider the case when requests arrive according
to a Poisson process with (normalized) intensity 1 and are
i.i.d. distributed. In the finite case (|X | < ∞), we have a
request rate λx for each content x and we essentially obtain
the classic IRM. In the continuous case, we need to consider
a spatial density of requests defined by a Borel-measurable
function λx : X → R+, i.e., for every Borel set A ⊆ X ,
the rate with which contents in A are requested is given by∫
A λx dx.

Under the above assumptions, for a given cache state S =
{y1 . . . yk}, we can compute the corresponding expected cost
to serve a request:

C(S) ,

{∑
x λxC(x,S), finite case∫
X λxC(x,S) dx, continuous case.

(3)

We observe that, as the sequence of future requests does
not depend on the past, the average cost incurred over time by
any online caching algorithm A is bounded with probability 1
(w.p. 1) by the minimum expected cost minS C(S),2 i.e.,

lim inf
T→∞

CA(S1, rT ) ≥ lim inf
T→∞

1

T

T∑
t=1

C(rt,St+1)

≥ min
S

C(S), w.p.1. (4)

We then say that an online caching algorithm is optimal
if its time-average cost achieves the lower bound in (4)
w.p. 1. For example, an algorithm that reaches a state S∗ ∈
arg minS C(S) and, then, does not change its state is optimal.
More in general, an optimal algorithm visits states with non
minimum expected cost only for a vanishing fraction of time.
Unfortunately, finding an optimal set of objects S∗ to store
is an NP-hard problem. In fact, minimizing (3) is a weighted
version of the problem considered in Sect. III. Despite the
intrinsic difficulty of the problem, we present some online
caching policies that achieve a global or local minimum of
the cost. We call a policy λ-aware (resp. λ-unaware), if it
relies (resp. does not rely) on the knowledge of λx.

In practice, λ-aware policies are meaningful only when
objects’ popularities do not vary wildly over time, remaining
approximately constant over time-scales in which λx can be
estimated through runtime measurements, similarly to what
has been done in the case of exact caching by various
implementations of the Least Frequently Used (LFU) policy
(see e.g. [21]). In contrast, λ-unaware policies do not suffer
from this limitation.

Sections V-A and V-B below are respectively devoted to
λ-aware and λ-unaware policies. Section V-C presents some
lower bounds for the cost of the optimal cache configuration
in the continuous scenario.

A. Online λ-aware policies

The first policy we present, GREEDY, is based on the simple
idea to systematically move to states with a smaller expected
cost (3). It works as follows. Upon a request for content
x at time t, GREEDY computes the maximum decrement
in the expected cost that can be obtained by replacing one
of the objects currently in the cache with x, i.e., ∆C ,
miny∈S C(St ∪ {x} \ {y})− C(St).
• if ∆C < 0 (x contributes to decrease the cost), then the

cache retrieves x, serves it to the user, and replaces ye ∈
arg miny∈S C(St ∪ {x} \ {y}) with x;

2This is a quite intuitive result, but a formal proof is not trivial. The
corresponding result for exact caching is in [20].



• if ∆C ≥ 0, the cache state is not updated. If Ca(x,St) >
Cr, x is retrieved to serve the request; otherwise the
request is satisfied by one of the best approximating
object in St.

Intuitively, we expect GREEDY to converge to a local
minimum of the cost. In the continuous case, special attention
is required to correctly define and prove this result.

Definition V.1. A content yc is said significant if, for any
δ > 0, it holds:

∫
B(yc,δ)

λx dx > 0, where B(yc, δ) is the ball
of volume δ centered at yc.

Definition V.2. A cache configuration S is locally optimal if
C(S) ≤ C(S ′), for all S ′ obtained from S by replacing only
one of the contents in the cache with a significant content yc.

Theorem V.3. If Ca() and λ() are smooth and X is a compact
set, the expected cost of GREEDY converges to the expected
cost of a configuration that is locally optimal w.p. 1. If X
is a finite set, the cache state converges to a locally optimal
configuration in finite time w.p. 1.

Proof. We start with the finite case. Let (tn) be the sequence
of time instants at which contents are requested, and (Sn) =
(Stn) be the corresponding sequence of cache configurations.
The sequence (C(Sn)) is non increasing and then convergent.
Therefore, there exists a finite random variable C∞ such that
limn→∞ C(Sn) = C∞ w.p. 1. Moreover, as the set of possible
cache configurations (and then the set of possible costs) is
finite, the limit is necessarily reached within a finite number
of requests. Also the sequence (Sn) converges after a finite
number of requests w.p. 1 to a random configuration S∞, such
that C(S∞) = C∞. Observe, indeed, that no configuration can
be visited more than once by construction. We prove that S∞
is locally optimal w.p. 1. Consider the event E composed of all
path trajectories of (Sn) converging to a specific configuration
S ′ that is not locally optimal. By definition, there exists a
significant object yc /∈ S ′, whose insertion in the cache strictly
reduces the cost of S ′. By construction, in E, yc can be
requested only before the convergence of (Sn) to S ′. Then,
necessarily P(E) = 0, because λyc > 0 and, therefore, w.p. 1
sample-paths contain an unbounded sequence of time-instants
at which requests for yc arrive.

The proof for the continuous case is significantly more
technical and complex. It is still possible to prove that the
sequence (C(Sn)) converges to a random variable through the
convergence theorem for super-martingales, but the sequence
(Sn) may not converge. We then use Prokhorov’s theorem to
prove that there exists a subsequence (Snk) that converges in
distribution to S∞. Working with convergence in distribution
makes the rest of the proof more involuted (see [12] for the
technical details).

The GREEDY policy converges to a locally optimal con-
figuration. In the finite catalog case, under knowledge of
content popularities, it is possible to asymptotically achieve
the global optimal configuration using a policy that mimics
a simulated annealing optimization algorithm. This policy is

adapted from the OSA policy (Online Simulated Annealing)
proposed in [20], and we keep the same name here. OSA
maintains a dynamic parameter T (t) (the temperature). Upon
a request for content x at iteration t, OSA modifies the cache
state as follows:

• If x ∈ St, the state of the cache is unchanged.
• If x /∈ St, a content y ∈ S is randomly selected according

to some vector of positive probabilities p(St), and the
state of the cache is changed to S ′ = St \{y}∪{x} with
probability min (1, exp((C(St)− C(S ′))/T (t))).

In the first case, OSA obviously serves x (a hit). In the second
case, if the state changes to S ′, the cache serves x. Otherwise,
it serves x or x′ ∈ arg minz∈S Ca(x, z), respectively, if
Ca(x,S) > Cr or Ca(x,S) ≤ Cr. OSA always stores a
new content if this reduces the cost (as GREEDY does), but
it does not get stuck in a local minimum because it can also
accept apparently harmful changes with a probability that is
decreasing in the cost increase. By letting the temperature
T (t) decrease over time, the probability to move to worse
states converges to 0 over time: the algorithm explores a larger
part of the solution space at the beginning and behaves more
and more similarly to “greedy” as time goes by. The eviction
probability vector p(S) can be arbitrarily chosen, as far as
each content in S has a positive probability to be selected. In
practice, we want to select with larger probability contents in
S, whose contribution to the cost reduction is smaller.

OSA provides the following theoretical guarantees. Let
∆Cmax be the maximum absolute difference of costs between
two neighboring states, then

Proposition V.4. When |X | < ∞, if T (t) = ∆Cmaxk/(1 +
log t), asymptotically only the states with minimum cost have
a non-null probability to be visited.

If the content to be evicted were selected uniformly at
random from the cache, then the proof would be the same as
the one of Proposition IV.2 in [20]. A key point in that proof is
that, when the temperature is constant (T (t) = T ), the homo-
geneous Markov chains induced by OSA are reversible, so that
one can easily write their stationary probability distributions.
Here, it is not the case, but we can use the more general
result for weakly-reversible time-variant Markov chains in [22,
Thm. 1] (see [12] for the proof).

As it is usual for simulated annealing results, convergence
is guaranteed under very slow decrease of the temperature
parameter (inversely proportional to the logarithm of the
number of iterations). In practice, much faster cooling rates
are adopted and convergence is still empirically observed.

Figure 1 shows a toy case with a catalog of 4 contents and
cache size equal to 2, for which GREEDY with probability
at least 9/20 converges to a suboptimal state S = {1, 3} with
corresponding cost C(S) = 17/128. On the contrary, OSA es-
capes from this local minimum and asymptotically converges
to the optimal state S∗ = {2, 4} with C(S∗) = 6/128.



Fig. 1. OSA converges to the minimum cost state. Catalog: {1, 2, 3, 4};
Ca(1, 2) = Ca(2, 1) = Ca(2, 3) = Ca(3, 2) = 1/16; for all other pairs
(x, y), Ca(x, y) = ∞; Cr = 1; λ2 = λ4 = 1/8, λ1 = λ3 = 3/8,
T (t) = 1/

√
t.

B. Online λ-unaware policies

In this section we present two new policies, qLRU-∆C
and DUEL, that, without knowledge of λx, bias admission and
eviction decisions so to statistically favour configurations with
low cost C.

Policy qLRU-∆C is inspired by qLRU-∆ proposed in [23],
which coordinates caching decisions across different base
stations so as to maximize a generic utility function. In qLRU-
∆C the cache is managed as an ordered queue as follows. Let
x be the content requested at time t.
• If Ca(x,St) > Cr, there is a miss. The cache retrieves the

content x to serve it to the user. The content is inserted
at the front of the queue, with probability q.

• If Ca(x,St) ≤ Cr, there is an approximate hit. The
cache serves a content z ∈ arg miny∈St Ca(x, y), that
is refreshed, i.e., it is moved to the front of the queue,
with probability C(x,St\{z})−Ca(x,z)

Cr
. With probability

qCa(x, z)/Cr the content x is still retrieved from the
remote server and inserted at the head of the queue.

If needed, contents are evicted from the tail of the queue. We
observe that C(x,St \{z})−Ca(x, z) corresponds to the cost
saving for the request x due to the presence of z in the cache.

When |X | is finite, the following result holds under the
characteristic time (or Che’s) approximation (CTA) [24] and
the exponentialization approximation (EA), that has been
recently proposed in [25].

Theorem V.5. Under CTA and EA, when |X | < ∞ and
q converges to 0, qLRU-∆C stores a set of contents that
corresponds to a local minimum of the cost.

Proof. We start by extending the CTA to similarity caching.
Given an object x, let T (x)

c (S) denote the time content x spends
in cache until eviction provided that 1) the cache is in state S
just after its insertion and 2) x is never refreshed (i.e., moved
to the front) during its sojourn in the cache . In general T (x)

c (S)
is a random variable, whose distribution depends both on x
and on the cache state S. The basic assumption of CTA is that
T

(x)
c (S) =d T

(x′)
c (S ′) for each x, x′, S, and S ′, i.e., we can

ignore dependencies on the content and on the state. Moreover,

for caching policies where contents are maintained in a priority
queue sorted by the time of the most recent refresh, and where
evictions occur from the tail (as in LRU, qLRU, and qLRU-
∆C), CTA approximates Tc with a constant.

The strong advantage of CTA is that the interaction among
different contents in the cache is now greatly simplified as in a
TTL-cache [26]. In a TTL-cache, upon insertion, a timer with
value Tc is activated. It is restarted upon each new request
for the same content. Once the timer expires, the content is
removed from the cache. Under CTA, the instantaneous cache
occupancy (|St|) can violate the hard buffer constraint.3 The
value of Tc is obtained by imposing the expected occupancy
to be equal to the buffer size, i.e.,∑

x∈X
πx = k, (5)

where πx is the stationary probability that x is stored in the
cache. For exact caching, it is relatively easy to express πx as
function of Tc and, then, to numerically compute the value
of Tc. For similarity caching, additional complexity arises
because the timer refresh rate for each content x depends on
the other contents in the cache (as x can be used to provide
approximate answers), i.e., dynamics of different contents are
still coupled. Nevertheless, the TTL-cache model allows us to
study this complex system as well.

The expected marginal cost reduction due to x in state S
is ∆Cx(S) , C(S \ {x}) − C(S). If the state of the cache
does not change, the expected sojourn time of content x in
the cache can be computed as:

E[TS ] =
e

∆Cx(S)
Cr

Tc − 1
∆Cx(S)
Cr

,
1

νx(S)
. (6)

EA assumes that St evolves as a Markov Chain (MC) with
transition rate from S to S \ {x} equal to νx(S) from (6),
and from S to S ∪ {x} equal to qλxCa(x,S)/Cr (if x is not
already in S). [25] shows that EA is very precise in practice
for complex systems of interacting caches.

Results for regular perturbations of Markov chains [27]
allow us to study the asymptotic behavior of the MC (St)
when q vanishes, and in particular to determine which states
are stochastically stable, i.e., have a non-null probability to
occur as q converges to 0. The proof is analogous to the one
in [23].

Reference [23] proposes a caching policy that can coor-
dinate content allocation across different caches in a dense
cellular network to maximize a performance metric. Despite
the different application scenarios, there is an analogy between
the two problems. Here, two similar/close contents interact
because they can satisfy the same requests. In [23], two copies
of the same content at two close base stations interact because
they can satisfy requests from users in the transmission range
of both base stations. In particular, we can adapt the proof

3Under CTA the number of contents stored in the cache is a Poisson random
variable with expected value equal to k. Since its coefficient of variation tends
to 0 as k grows large, CTA is expected to be asymptotically accurate.



of [23, Prop. IV.1] to our problem, and show that the stochas-
tically stable states are locally optimizers in the sense that it is
not possible to replace a content in such states while reducing
the cost [12].

Paper [3] proposes two policies for similarity caching:
RND-LRU and SIM-LRU. In RND-LRU a request produces
a miss with a probability that depends on the distance from
the best approximating object z. If it does not produce a
miss, it refreshes the timer of z. Interestingly, RND-LRU
can emulate in part qLRU-∆C, by using qCa(x,St)/Cr
as its miss probability. The only difference is the refresh
probability: in RND-LRU the best approximating content z
is refreshed with probability 1 − qCa(x,St)/Cr (instead of
(Cr − Ca(x,St))/Cr as in qLRU-∆C). Our simulations in
Sect. VI confirm that, for the same q, RND-LRU and qLRU-
∆C exhibit a very similar performance. Given our result in
Theorem V.5, it is not surprising that RND-LRU performs
better than SIM-LRU [3, Fig. 9].

As we will show in Sect. VI, qLRU-∆C approaches the
minimum cost only for very small values of q. This is
undesirable when contents’ popularities change rapidly. To
obtain a more responsive cache behavior, we propose a novel
online λ-unaware policy, that we call DUEL.

Similarly to GREEDY, upon a request at time t for a content
y′ which is not in the cache, DUEL estimates the potential
advantage of replacing a cached content y with y′, i.e., to
move from the current state St to state S ′ = St \ {y} ∪ {y′}.
As popularities are unknown, it is not possible to evaluate
instantaneously the two costs C(St) and C(S ′). Then, the
two contents engage in a ‘duel’, i.e., they are compared
during a certain amount of time (during this time we need
to store only a reference to y′). When a duel between a real
content y and its virtual challenger y′ starts, we initialize to
zero a counter for each of them. If y (resp. y′) is the best
approximating object for a following request rt̃ occurring at
time t̃ > t, then the corresponding counter is incremented by
C(rt̃,St̃ \{y})−Ca(rt̃, y) (resp. C(rt̃,St̃ \{y})−Ca(rt̃, y

′)).
The counter associated to a dueling content accumulates then
the aggregate cost savings due to that content. A duel finishes
in one of two possible ways: 1) counters get separated by
more than a fixed quantity δ (a tunable parameter), or 2) a
maximum delay τ (another parameter) has elapsed since the
start of the duel. Duellist y′ replaces y if and only if, at the
end of the duel, its counter exceeds the counter of y by more
than δ. Otherwise y′ is evicted, and y becomes available again
for a new duel.

A requested content is matched, whenever possible, with a
content in the cache that is not engaged in an ongoing duel.
At a given time, then, there can be up to k ongoing duels. A
challenger y′ is matched to a stored object y in two possible
ways: with probability α, it is matched to the closest object
in the cache; with the complementary probability 1 − α, it
is matched to a content selected uniformly at random. Duels
between nearby contents allow for fine adjustments of the
current cache configuration, while duels between far contents

enable fast macroscopic changes in the density of stored
objects. In essence, DUEL provides a distributed, stochastic
version of GREEDY with delayed decisions (due to lack of
knowledge of λx).

C. Performance bound in the continuous scenario

Besides being appropriate to describe objects/queries in
some applications, the continuous scenario is particularly
interesting, because it marks a striking difference with exact
caching.4 For this scenario, we can derive some exact bounds
and approximations of the minimum cost, exploiting simple
geometric considerations.

We start considering a homogeneous request process where
λx = λ over a bounded set X . In what follows, all integrals are
Lebesgue ones and all sets are Lebesgue measurable. Given
a set A ⊂ Rp, let |A| denote its volume (its measure), and
B(x, |A|) the ball with the same volume centered in x.5

Lemma V.6. For any y ∈ X and a set A ⊂ Rp it holds:∫
A
C(x, y) dx ≥

∫
B(y,|A|)

C(x, y) dx. (7)

The lemma provides the intuitive result that, among all sets
A with a given volume, the approximation cost for requests
falling in A is minimized when A is a ball centered in y,
since C(x, y) = min(Ca(x, y), Cr) = min(h(d(x, y)), Cr) is
a non-decreasing function of the distance between x and y.
We omit the simple proof.

Observe that the integral on the right hand size of (7) does
not depend on y, but only on the volume |A|. We then write
F (|A|) ,

∫
B(y,|A|) C(x, y) dx. We are now able to express

the following bound for the expected cost:

Theorem V.7. In the continuous scenario with constant re-
quest rate λ over X , for any cache state S ,

C(S) ≥ λkF
(
|X |
k

)
. (8)

Proof. Given S = {y1, y2, . . . , yk}, we denote by Ah the set
of objects in X having yh as closest object in the cache, i.e.,
Ah = {x ∈ X | yh ∈ arg min d(x,S)}. We have:

C(S) = λ

∫
X
C(x,S) dx = λ

k∑
h=1

∫
Ah

C(x, yh) dx

≥ λ
k∑
h=1

∫
B(yh,|Ah|)

C(x, yh)dx = λ

k∑
h=1

F (|Ah|)

≥ λkF

(∑k
h=1 |Ah|
k

)
= λkF

(
|X |
k

)
,

where the first inequality follows from Lemma V.6, and the
second one from Jensen’s inequality, since F (·) is convex (as
it can be easily checked).

4Recall that in the continuous case the rate of exact hits is null.
5The geometric shape of a ball depends on the considered distance function

d(x, y). For example, in R2, if d(x, y) is the usual norm-2, balls are circles;
if it is the norm-1, balls are squares.



Fig. 2. Example of perfect tessellation of a square grid with wrap-around
conditions, in the case l = 2, L = 13. Black dots correspond to a minimum
cost cache configuration under homogeneous popularities.

In some cases, it is possible to show that specific cache
configurations achieve the lower bound in (8) and then are
optimal:

Corollary 1. Let d∗ be the distance for which the approxi-
mation cost is equal to the retrieval cost, i.e., d∗ = inf{d :
h(d) = Cr}. Let Bd∗(x) be a ball of radius d∗ centered in x.
Any cache state S = {y1, . . . , yk}, such that the balls Bd∗(yh)
are contained in X and have intersections with null volume,
is optimal.

Corollary 2. Any cache state S = {y1, . . . , yk}, such that, for
some d, the balls Bd(yh) for h = 1, . . . , k are a tessellation
of X (i.e., ∪hBd(yh) = X and |Bd(yi)∩Bd(yj)| = 0 for each
i and j), is optimal.

If the request rate is not space-homogeneous, one can apply
the results above over small regions Xi of X where λx can
be approximated by a constant value λXi , assuming a given
number ki of cache slots is devoted to each area (with the
constraint that

∑
i ki = k). In the regime of large cache size

k, it is possible to determine how ki should scale with the local
request rate λXi , obtaining an approximation of the minimum
achievable cost through Theorem V.7. For example, if X is
a square, d(x, y) is the norm-1, Cr = ∞, and Ca(x, y) =
d(x, y)α, we obtain [12]:

minC(S) ≈ 2 k−α/2

2α/2(α+ 2)

(∫
X
λ(x)

2
2+α dx

) 2+α
2

. (9)

VI. EXPERIMENTS

To evaluate the performance of different caching policies,
we have run extensive Monte-Carlo simulations in the fol-
lowing reference scenario: a bidimensional L×L square grid
of points, with unitary step and wrap-around conditions, and
Ca(x, y) = ‖x − y‖1, i.e., the approximation cost equals the
minimum number of hops between x and y. This is a finite
scenario (with catalog size equal to L2) that approximates
the continuous scenario in which X is a square. We let
k = L = 1 + 2l(l + 1), for some positive integer l. When
L = 1 + 2l(l + 1), there exists a regular tessellation of the
grid with L balls (squares in this case), each with L points.
Figure 2 provides an example of such regular tessellation in the
case l = 2, L = 13. When k = L, we can apply (the discrete
versions of) Corollary 2 and approximation (9) to compute the
minimum cost.

Fig. 3. Performance of different policies in the case of homogeneous traffic.

Fig. 4. Performance of different policies in the case of Gaussian traffic, with
σ = L/8.

We first consider traffic synthetically generated according to
the IRM, in two cases: homogeneous, in which all objects are
requested with the same rate; Gaussian, in which the request
rate of object i is proportional to exp(−d2

i /(2σ
2)), where di

is the hop distance from the grid center. Under homogeneous
traffic, Corollary 2 guarantees that a cache configuration
storing the centers of the balls of any tessellation like the one
in Fig. 2 is optimal. The case of homogeneous popularities
then tests the ability of similarity caching policies to converge
to one of the L optimal configurations (corresponding to trans-
lated tessellations). The case of Gaussian popularities, instead,
tests their ability to reach a heterogeneous configuration richer
of stored objects close to the center of the grid.

We consider the case l = 12, L = 313, with catalog size
slightly less than 105 objects. We set Cr = 1000 > 2L =
maxx,y Ca(x, y), i.e., a setting very far from exact caching,
where any request can in principle be approximated by any
object. For a fair comparison, all algorithms start from the
same initial state, corresponding to a set of (distinct) objects
drawn uniformly at random from the catalog. For the DUEL
policy, we experimentally found that, in the general case of
grids with unitary step, a good and robust way to set its various
parameters is α = 3/4, δ = f ·minx 6=y Ca(x, y), τ = fL/λ,
which requires to choose a single parameter f .

Figures 3 and 4 show the instantaneous cost (3) achieved
by different policies as function of the number of arrived
requests, respectively for homogeneous and Gaussian traffic
(with σ = L/8). The optimal cost (approximated by (9),
and also exactly computed thanks to Corollary 2 in the
homogeneous case) is also reported as reference. In both cases,



Fig. 5. Final configuration produced by DUEL under homogeneous traffic
(left plot, with f = 300), and Gaussian traffic (right plot, with f = 100).

as expected, GREEDY outperforms all λ-unaware policies and
reaches an almost optimal cache configuration after a number
of arrivals of the order of the catalog size. For qLRU-∆C,
RND-LRU, and DUEL, we show two curves for different
settings of their parameter (either q or f ), leading to a faster
convergence to more costly states (thin dotted curves), or a
slower one to less costly states (thick dash-dotted curves).
As we mentioned in Sect. V-B, qLRU-∆C and RND-LRU
are close (provided that we match their miss probability), and
indeed they exhibit very similar performance, with a slight
advantage of qLRU-∆C for small values of q (remember that
the local optimality in Theorem V.5 holds for vanishing q).
DUEL achieves the best accuracy-responsiveness trade-off, i.e.,
for a given quality (cost) of the final configuration, it achieves
it faster than the other λ-aware policies. Figure 5 shows the
cache configuration achieved by DUEL after 108 arrivals, for
both types of traffic.

We have also evaluated the performance of the different
policies using a real content request trace collected over 5 days
from Akamai content delivery network. The trace contains
roughly 418 million requests for about 13 million objects [28].
By discarding the 116 least popular objects (all requested only
once) from the original trace, we obtain a slightly reduced
catalog that can be mapped to a square grid with L = 3643.
We tested two extremely different ways to carry out the
mapping. In the uniform mapping, trace objects are mapped to
the grid points according to a random permutation: popularities
of close objects on the grid are, then, uncorrelated. In the spiral
mapping, trace objects are ordered from the most popular to
the least popular, and then mapped to the grid points along
an expanding spiral starting from the center: popularities of
close-by objects are now strongly correlated, similarly to what
happens under synthetic Gaussian popularities.

Figure 6 shows the accumulated cost achieved by different
policies as function of the number of arrived requests, for
both mappings. For qLRU-∆C and DUEL we performed a
(coarse) optimization of their parameter (resp. q and f ), so
as to achieve the smallest final accumulated cost. To better
appreciate the possible gains achievable by similarity caching,
we have also added the curves produced by a cache whose
state evolves according to two exact caching policies: LRU
and RANDOM [29]. These policies produce a disproportionate
number of misses. As a consequence, in our experiments, their
total aggregate cost (2) is at least one order of magnitude
larger than that of qLRU-∆C or DUEL. For a fair comparison,
we only plot the aggregate approximation cost

∑
t Ca(rt,St).

Fig. 6. Performance of different policies under real traffic: uniform mapping
(left plot) and spiral mapping (right plot).

Although retrieval costs incurred are ignored, LRU and RAN-
DOM still perform between 30% and 50% worse than DUEL.

The figure also shows the performance of GREEDY, using
as λx the empirical popularity distribution measured on the
entire trace. Interestingly, under non stationary, realistic traffic
conditions, GREEDY no longer outperforms λ-unaware poli-
cies. In particular, DUEL takes the lead under both mappings,
due to its ability to dynamically adapt to shifts in contents’
popularity.

VII. CONCLUSION AND FUTURE WORK

The analysis provided in this paper constitutes a first step
toward the understanding of similarity caching, however it is
far from being exhaustive. In the offline dynamic setting, it
is unclear if and under which conditions there exists an effi-
cient polynomial clairvoyant policy corresponding to Bélády’s
one [14] for exact caching. The adversarial setting calls for
more general results about the k-server problem with excur-
sions. For exact caching, the characteristic time approximation
is rigorously justified under an opportune scaling of cache
and catalogue sizes [30], [31], [32]. It would be interesting
to understand if and to what extent analogue results hold for
similarity caching. Moreover, is it possible to use the CTA
to estimate the expected cost of a similarity caching policy,
similarly to what can be done for the miss ratio of LRU,
qLRU, RANDOM, and other policies in the classic setting?
There is still room for the design of efficient λ-unaware
policies. Interestingly, in our experiments the smallest cost
is achieved by DUEL, a novel policy that completely differs
from exact caching policies, suggesting that similarity caching
may require to depart from traditional approaches. Another
interesting direction would be to consider networks of sim-
ilarity caches. At last, the above issues should be specified
in the context of the different application domains mentioned
in the introduction, ranging from multimedia retrieval to
recommender systems, from sequence learning tasks to low-
latency serving of machine learning predictions. The design
of computationally efficient algorithms can, indeed, strongly
depend on the specific application context. In conclusion, our
initial theoretical study and performance evaluation of similar-
ity caching opens many interesting directions and brings new
challenges into the caching arena.
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