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Abstract—Data offloading from the cellular network to low-
cost WiFi has been the subject of several research works in the
last years. In-network caching has also been studied as an efficient
means to further reduce cellular network traffic. In this paper
we consider a scenario where mobile users can download popular
contents (e.g., maps of a city, shopping information, social media,
etc.) from WiFi-enabled caches deployed in an urban area. We
study the optimal distribution of contents among the caches (i.e.,
what contents to put in each cache) to minimize users’ access cost
in the whole network. We argue that this optimal distribution
does not necessarily provide geographic fairness, i.e., users at
different locations can experience highly variable performance.
In order to mitigate this problem, we propose two different cache
coordination algorithms based on gossiping. These algorithms
achieve geographic fairness while preserving the minimum access
cost for end users.

I. INTRODUCTION

The reduction of the load on the 3G/4G infrastructure by
offloading mobile traffic to low-cost WiFi has been the subject
of several research works in the last years [1], [2]. The main
idea is to redirect content requests, when it is possible, from
the mobile infrastructure to WiFi hotspots. If requests are
delay tolerant (videos, images, documents, emails, etc.), it is
indeed possible to delay them until a WiFi opportunity arises.
In [3], the authors study the performance of delaying mobile
data offloading with user-defined deadlines in the framework
of queuing models. In [4] the authors propose schemes for
the prediction of future WiFi opportunities and advocate the
gain in terms of 3G traffic reduction, while in [5] requests are
redirected to neighboring mobile devices where the operators
push the content.

In addition to traffic redirection via low-cost WiFi, in-
network caching has also been studied to further reduce
cellular network traffic [6], [7]. Indeed, because of the skewed
content popularity, even limited-size caches at the network
edges can reduce the load on the core. The authors in [8]
illustrate this benefit by the help of a measurement-based study
of 3G HTTP traffic. The idea of in-network caching is the
key principle in Information-Centric Networks (ICN), like the
Content-Centric Network (CCN) paradigm [9].

Our present work shares the same objective of mobile traffic
offloading with this set of related work taking advantage of in-
network caching. In particular we consider a scenario where
WiFi-enabled caches are deployed at different locations in a
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Fig. 1. The mobility-network model for a user.

city to provide mobile users (e.g., tourists) access to a set
of relatively static popular contents (e.g., maps of the city,
shopping information, social media, etc.). Caches are assumed
to be only loosely connected to each other and to the Internet,
e.g., through some low-rate or intermittent communication
infrastructure. For example they could take advantage of
a Delay Tolerant Network (DTN) backbone leveraging the
public transportation system [10]. Fig. 1 shows our user-caches
scenario.

Users can retrieve the contents at any time through their
3G data connection or wait to enter in the transmission range
of a cache storing the content. The user is assumed to incur
a higher cost when s/he accesses the content through the
cellular network than when s/he exploits the WiFi connection,
e.g., because of direct data charges, data roaming, reduction of
the monthly residual amount of data available, larger battery
depletion, or lower download rates. At the same time, the user
is assumed to be impatient, i.e., s/he may not be willing to
delay content fruition more than a certain time and can then
resort to use her/his cellular data connection.

Two questions arise in such scenario. First, how should
the set of contents be distributed across the caches in order
to minimize users’ cost to access the contents? Second, can
the system benefit from some form of cooperation among
the caches despite their loose connectivity? In this paper we
address both these issues. We start formulating an optimization
problem for contents’ placement in caches (i.e., which files
to put in which cache) in the presence of impatient users,
and then propose an efficient algorithm to find the placements
that minimize user’s content retrieval cost and maximize the
amount of offloaded traffic, thus relieving the cellular network.
We highlight the fact that the cost-optimal distribution of con-



tents does not guarantee in general geographical fairness, i.e.,
users experience high variability in performance at different
locations in the network. We propose then a new principle of
“content shuffling by gossiping” that takes advantage of the
limited communication infrastructure connecting the caches.
We believe the idea of local content shuffling can have
applications well beyond the scenario considered in this paper.

The rest of the paper is organized as follows. In Section II
we describe how we modeled the scenario. Section III studies
the optimal in-network caching distribution to minimize con-
tent retrieval costs for users. We then introduce the concept
of geographic fairness in Section IV and propose two caches’
coordination algorithms to improve it. Section V presents some
simulation results, and Section VI concludes the paper.

II. MODEL

A. Scenario

Consider a network of WiFi-enabled caches that are de-
ployed in a region where a set of popular contents (maps of
the city, shops information, etc.) is made available to mobile
users (e.g., tourists). The users can use their WiFi supported
devices (e.g., tablets, smartphones) while moving in that area
to connect to the closest cache. When the user requests a
content, s/he has two ways to get it: either to download the
content using her/his 3G data connection with a cost C3G, or
to wait to meet a cache storing the content and download it
through WiFi with a cost CWiFi. We assume that the cost per
content using the WiFi is smaller than that of 3G, i.e.,

C
(i)
WiFi < C

(i)
3G for every content i.

A single cache cannot store the full content catalog, hence,
while moving around the city, the user connects to different
caches that may or may not have the requested content. Note
that if a cache does not contain the content, it will not retrieve
the content for the user, but s/he can either search for the
content from another cache or download it using her/his 3G
connection. This is coherent with our assumption that caches
are poorly connected among themselves and to the Internet.
We consider impatient users, i.e., each user has a maximum
time (we call it the patience time) s/he is willing to wait to
download a content from a cache. If a cache with the content
has not been found by such time, the user will use the 3G to
get it and will then incur a higher cost.

The choice of which content to store at each cache is
fundamental to satisfy a large number of users’ queries and
reduce their costs. Intuitively, if the patience time is the
same for all the contents, highly requested contents should
be stored in more caches than the less requested ones. What
happens if patience times are heterogeneous is not clear (even
qualitatively), and in any case a model is required to determine
the exact number of replicas.

B. Contents

We suppose that the catalog size for users’ requests is K,
i.e., the total number of different contents or files requested
by the users is K (along this paper, we use the two terms
contents and files interchangeably). A request for one of the

catalog contents is a random variable R ∈ {1, . . . ,K} with
the following discrete probability distribution:

qi = Prob(R = i) i = 1, . . . ,K. (1)

Without loss of generality, we suppose that the contents are
ordered in decreasing order of popularity, i.e., the first content
has the highest popularity and the K-th content has the lowest
one, i.e., q1 ≥ q2 ≥ · · · ≥ qK . Contents are assumed to have
the same storage size.

C. Caches

The service provider has a fixed number N of identical
caches. Each cache can store up to B contents and provide
them to nearby users upon request. The caches are distributed
in different geographic places in the city.

Caches have the possibility to establish a connection with
each other from time to time using a low cost network (a
dedicated wired network, an ad-hoc network using buses or
any other mobile devices as data ferries [11], etc.). Once
two caches are connected, we assume that they can exchange
contents. Therefore, the caches form a network that can be
represented by an undirected graph G = (V, E), where the
caches are its vertices (V = 1, . . . , N ) and each edge (i, j) ∈ E
identifies that there is a recurrent communication opportunity
between cache i and j (a formal communication model is
introduced in Section IV).

In the first part of this work, we will study the optimal
content distribution among caches, in the sense that this
distribution minimizes the users’ cost to retrieve the content.
To this regard, the cache network topology does not play any
role, because the optimization problem can be solved in a
centralized way and the caches do not need to exchange any
content. However, when we study the problem of geographic
fairness later in the paper, we will propose algorithms that rely
on contents’ shuffling among the caches. Here, the inter-caches
communication infrastructure is important in determining the
performance of the algorithms.

D. Users

We consider a homogeneous set of users, so in this section
we will refer to one of them. As mentioned earlier, the
user generates requests for contents to download according
to the probability distribution introduced in Section II-B. The
user keeps moving inside the city and can get in contact
with a given WiFi cache multiple times. We say that a user
is associated to a cache if her/his WiFi device is actually
associated to the cache’s Access Point and can download
contents. During an association, the user will complete the
download of all the contents s/he is interested in and which are
stored at the cache. This holds if we assume that the user stops
moving until the download is complete, or that the download
time is smaller than the user’s association time to the cache.

Let us consider a request generated by the user at time t0.
We define the residual time between the user and cache j as
the first time after t0 when the user associates to cache j and
we denote it by Xj . Through the whole paper, we consider
valid the following assumption:



Assumption 1. The residual times X1, . . . , XN between the
user and the caches in the network are independent and
identically distributed (i.i.d.) random variables.

To highlight the generality of this mobility model for the
user, we give the following mobility model example that
satisfies our assumption.

Example: Assume that for each cache j the point process
of the instants when the user associates to cache j is a renewal
process, where the random time Zj between two consecu-
tive associations has Cumulative Distribution Function (CDF)
FZj (t). If the N renewal processes are i.i.d. and stationary,
then Assumption 1 is satisfied. The residual time Xj is the
residual time for t = 0 of the corresponding renewal process
[12, p. 116] and its CDF can then be calculated as follows:
FXj

(x) =
∫ x
0
F̄Zj

(τ)dτ/E[Zj ], where F̄Zj
(τ) = 1 − FZj

(τ)
is the complementary CDF.

While our results below hold under Assumption 1 for
generic distributions for the variables X1, . . . , XN , we often
consider the exponential distribution as an example in order
to derive closed form expressions and provide further insights
about the problem.

The user is impatient, i.e., he is willing to wait a time at
most Ti before being able to download content i. If the user
finds content i at one cache by time Ti, s/he downloads it
from the cache using the Wifi connection at a cost C(i)

WiFi. If
the timer expires and the user has not found the content, s/he
downloads it using 3G at a cost C(i)

3G. We refer to Ti as the
user’s patience time.

Let R be the (random) content requested at time t0, then
the cost CR incurred to download it is:

CR = C
(R)
3G 1file downloaded by 3G + C

(R)
WiFi1file downloaded by WiFi,

where 1 is the indicator function (equal to 1 if the condition
is satisfied and 0 otherwise). The randomness in CR comes
from two factors: 1) the identity of the requested content and
2) the instants when the user associates to the different caches
after t = t0.

III. TUNING CONTENT DISTRIBUTION FOR OPTIMAL
NETWORK PERFORMANCE

Let C be the expected cost for the request CR, i.e., C =
E[CR]. C depends obviously on the distribution of contents
among the caches. On one hand, placing more replicas of
popular contents in the network of caches reduces the costs
because it allows more frequent downloads from WiFi, which
is less costly than 3G. On the other hand, placing popular
contents everywhere reduces the remaining available space
for other, less popular, contents to be stored in the network
without bringing necessarily the same level of cost reduction.
Therefore, due to caching space constraints of the caching
network, the number of copies should be selected wisely to
reduce the costs. Let us start with the following proposition
that gives the expression of C.

Proposition 1. The expected cost per content request for any
user is

C = α+

K∑
i=1

γiqi (1− FY (i)(Ti)) , (2)

where α and γi are positive constants, Y (i) is the minimum
of the residual times between the user and any of the caches
having content i, and FY (i)(Ti) = Prob(Y (i) ≤ Ti) is its
cumulative distribution function.

Proof: Suppose that there are ni copies of a content i in
the network (i.e., ni is the number of caches storing content i).
Then the minimum of the residual times is

Y (i) = min{X1, X2, . . . , Xni},

where X1, . . . , Xni are i.i.d. random variables having the same
distribution (due to Assumption 1). The probability that the
user connects to a cache having content i within time delay
Ti (and downloads it using WiFi) is:

Prob[content downloaded by WiFi | it is content i]

= Prob[Y (i) ≤ Ti] = FY (i)(Ti), (3)

and the probability it is downloaded using 3G is:

Prob[content downloaded by 3G | it is content i]

= Prob[Y (i) > Ti] = 1− FY (i)(Ti). (4)

Let A1 be the event that the content is downloaded by WiFi
and A2 the event that the content is downloaded by 3G. Then,

E[CR] =

K∑
i=1

C
(i)
WiFiProb[A1 | R = i]× Prob[R = i]

+

K∑
i=1

C
(i)
3GProb[A2 | R = i]× Prob[R = i]

=

K∑
i=1

C
(i)
WiFi(FY (i)(Ti))qi +

K∑
i=1

C
(i)
3G(1− FY (i)(Ti))qi

=

K∑
i=1

qiC
(i)
WiFi +

K∑
i=1

qi(C
(i)
3G − C

(i)
WiFi)(1− FY (i)(Ti)),

then the proposition follows taking α =
∑K
i=1 qiC

(i)
WiFi and

γi = C
(i)
3G − C

(i)
WiFi.

For the special case when the residual time between the
user and a cache is exponentially distributed with rate λ,
then Y (i) = min{X1, X2, . . . , Xni} is also exponentially
distributed with rate niλ. Therefore the cost C can be written
in closed form as follows:

C = α+

K∑
i=1

γiqi exp(−λniTi). (5)

Proposition 1 shows that the average cost depends on the
number of replicas each content has in the network. Notice
that the average cost lies between CWiFi =

∑K
i=1 qiC

(i)
WiFi

and C3G =
∑K
i=1 qiC

(i)
3G, i.e., CWiFi < C ≤ C3G, where

C = C3G if the WiFi is not used or the caches do not store
any content (i.e., ni = 0 for all i), and C can get arbitrary
close to CWiFi if there are enough copies of every content
(i.e., limn1,...,nK→∞ C = CWiFi).



A. Optimizing Content Distribution
Due to the storage size constraints at caches, the service

provider can optimize the performance of the network by
selecting the number of replicas of each content to be placed
in the caches so that the cost is minimized. The optimal
number of replicas for each content can be derived solving
the following optimization problem:

minimize
n1,n2,...,nK

f(n1, n2, . . . , nK) = C given in (2)

subject to
K∑
i=1

ni ≤ B.N,

ni ∈ {0, 1, . . . , N}, for i = 1, . . . ,K.

(6)

The first constraint states that the total number of replicas
in the network should not exceed the available space in the
caches. The second set of constraints limits the number of
replicas of a content to the number of available caches and
restricts this number to a non-negative integer.

The result of this optimization is the number of replicas
of each content to be placed in the caches. Note that any
placement of that number of contents under the condition
that the same content is not placed more than once in the
same cache (otherwise it just consumes space without adding
any value) would provide the optimal cost. This placement
is clearly not unique in general. We will get back to this
issue later in the paper when talking about geographically
fair placements in Section IV. Before providing an efficient
algorithm to solve (6), we prove the following important
property of its objective function:

Proposition 2. The objective function f(n1, . . . , nK) is a
separable convex function in the variables of its argument.

Proof: The function f is clearly separable in its variables
because f(n1, . . . , nK) = α+

∑K
i=1 γiqi (1− FY (i)(Ti)),

and FY (i)(Ti) is a function of ni only. Then it is sufficient
to prove that each of the functions 1 − FY (i)(Ti) is
convex in ni. Denote Y (ni) = min{X1, . . . , Xni

} where
X1, . . . , Xni

are all i.i.d. (due to Assumption 1). Let us
define F̄Y (ni)(T ) = 1 − FY (ni)(T ) = Prob(Y (ni) > T ).
Then we have for every ni > 0,

F̄Y (ni+1)(T )− F̄Y (ni+2)(T )

= Pr(min{Y (ni), X} > T )− Pr(min{Y (ni + 1), X} > T )

= Prob(Y (ni) > T )× Prob(X > T )

− Prob(Y (ni + 1) > T )× Prob(X > T )

≤ Prob(Y (ni) > T )− Prob(Y (ni + 1) > T )

= F̄Y (ni)(T )− F̄Y (ni+1)(T ),

thus f is convex in the variables of its arguments.

B. A Greedy Optimal Algorithm
The optimization problem (6) gives the number of copies

of every content in the network guaranteeing minimal cost.
Let n∗1, n

∗
2, . . . , n

∗
K be this optimal allocation and let C∗ =

f(n∗1, n
∗
2, . . . , n

∗
K) be the corresponding minimum cost value.

Let us define the following function for a content i:

Di(ni) = γiqi
(
FY (ni+1)(Ti))− FY (ni)(Ti)

)

where Y (ni) = min{X1, . . . , Xni
} and, by convention,

Fmin{X1,...,Xni
}(Ti) = 0 if ni = 0. In the particular case

of an exponential mobility model with rate λ, then Di(ni)
has the following closed form:

Di(ni) = γiqi (exp(−niλTi)− exp(−(ni + 1)λTi)) .

The optimal number of replicas of each content can be given
by the following greedy algorithm:

Algorithm 1 Calculate n∗1, n
∗
2, . . . , n

∗
K of optimization (6)

1: n1 = n2 = · · · = nK = 0
2: S = {1, 2, . . . ,K}
3: Vi = Di(ni) ∀i ∈ S
4: while

∑
i ni < B.N do

5: j = Argmaxi∈SVi
6: nj ← nj + 1
7: Vj ← Dj(nj)
8: if nj = N then
9: Remove j from S

10: end if
11: end while
12: return n1, n2, . . . , nK

Proposition 3. Algorithm 1 returns the optimal solution
n∗1, n

∗
2, . . . , n

∗
K of optimization (6).

Proof: At every iteration, the algorithm is adding one
content having the maximum difference Vi (steps 5 and 6 in
the algorithm) and removing the content if ni > N (step 9).
Thus Algorithm 1 is eventually equivalent to calculating the
elements Di(m), for i = 1, . . . ,K and m = 0, . . . N − 1,
and then considering the contents corresponding to the largest
BN values among those elements. The latter can be shown
to provide the optimal solution by adapting the proof for
a similar algorithm in the context of the discrete resource
allocation problem with a separable convex function given
in [13, Chapter 4]. Also in our case, what is fundamental for
the proof is that the objective function is separable convex as
we showed in Proposition 2. Additionally, this algorithm can
be implemented efficiently using the max heap data structure
[14] with a computational complexity O(K+BN logK), and
memory complexity O(K).

We give an example of optimal content distribution in Fig. 2.
This numerical result corresponds to a mobility model with
exponentially distributed residual times with rate λ, a Zipf law
for content popularity, and two different cases of the patience
time. For the case when Ti is also assumed to follow Zipf,1

the figure shows that the replicas are not proportional to their
popularity. Less popular contents (contents 8 and 9 in the
figure) have the highest number of replicas in the network. The
reason for the different number of replicas is that it is not just
the popularity that plays a role in selecting the items, but there
are other factors. On one hand, the cost functions are convex

1A Zipf distribution for Ti may be justified if the user knows contents
popularity. For a more popular content, the user would rather be more patient
with the hope of finding it later in the network (because it is popular), but
s/he would not be as patient for a less popular one as s/he knows that s/he is
less likely to find it.



0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

Contents

P
ro

b
a

b
ili

ty
 o

f 
re

q
u

e
s
ti
n

g
 a

 c
o

n
te

n
t

 

 

0 5 10 15 20
0

10

20

30

40

50

60

N
u

m
b

e
r 

o
f 

re
p

lic
a

s

Popularity of contents

Optimal replicas T i = z ipf

Optimal replicas T i = constant

Fig. 2. The optimal distribution of contents as function of their popularity
given by Algorithm 1 for two different cases of the patience, Ti being zipf
and Ti being constant (α = 0, γi = 1, K = 10000 files, N = 50 caches,
B = 10 buffer size, qi is zipf distribution with parameter s = 1, and λ = 5
is constant).

decreasing in the number of replicas, so adding one replica
does not reduce the cost as much as it did a previous replica
of the same content. On the other hand, the cost also depends
on the patience time (Ti, for i = 1, . . . ,K) by the user for the
contents. In the first example, the patience time by users for
the more popular contents is assumed to be larger than for the
other contents which explains why less replicas are sufficient.
In the case when Ti is constant (Ti = 0.0067 in this case),
the first 4 contents have the same optimal number of replicas
(50 in this case) and then that number starts decreasing again
with the popularity. Note that contents that are not shown in
the figure (from 23 up to 10000) are not cached in the network
(i.e., n∗i = 0).

IV. FAIRNESS

In the previous section we derived the optimal number of
copies for each content to minimize the global content retrieval
cost for the user. Any placement of this number of copies (as
far as the placement ensures that the same cache does not
contain more than one replica of the same content) guarantees
the minimal cost. This is due to the implicit assumption of
homogeneous user mobility, so that residual times between
the user and each cache are identically distributed. However,
different placements could lead to the user experiencing dif-
ferent quality-of-service at different caches. For example, this
would happen for constant patience times, if one cache would
store only copies of the most popular contents and another only
copies of the least popular contents. We denote this problem
as geographical unfairness. The global optimization problem
considered until now provides minimum global cost but not
geographical fairness.

It appears natural to formulate then a different optimization
problem, where we try to optimally allocate the replicas among
the caches, so that the expected cost at each cache is almost
the same. To argue formally, let us quantify the performance
of our proposed WiFi caches network. Since the aim of this
network is to reduce the costs for users, we can define the
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Fig. 3. Variability in caches’ utilities shows that, even with optimal number
of contents, the placement of these copies in the network can cause variable
geographic performances (N = 50 caches randomly deployed, K = 10000
files, B = 10 buffer size, qi and Ti are zipf distribution with parameter
s = 1, λ = 0.04 is constant).

gain P of the network as the expected reduction of retrieval
cost per request due to in-network caching. Since γi is the
reduction in the cost when content i is downloaded from the
caches and FY (i)(Ti) is the probability of finding this content,
then P =

∑K
i=1 qiγiFY (i)(Ti). The utility of a cache would

then be its contribution to the performance,

Vj =
∑

contents i in cache j

qiγi
FY (i)(Ti)

n∗i
,

where we divided by n∗i because when a request for a content
i is satisfied, it is equally likely to be satisfied at any of the n∗i
caches having a replica of this content. Therefore, the utility
(or value) Ui of a replica of content i is given by

Ui =

{
qiγi

F
Y (i) (Ti)

n∗
i

if n∗i > 0,

0 if n∗i = 0.
(7)

For exponentially distributed residual times it is

Ui =

{
γiqi

1−exp(−n∗
i λTi)

n∗
i

if n∗i > 0,

0 if n∗i = 0,
(8)

so Ui can be considered as a measure for the importance of a
replica of a content.

A numerical example for the potential high variability of
caches’ utilities is given in Fig. 3. The figure shows that
the optimal number of copies does not necessarily provide
geographic fairness. In this specific example, the caches having
the most popular contents happen to be placed at the edges
of the geographic area, and thus users moving close to these
areas would get higher satisfaction compared to users moving
near the regions where caches have less popular contents. The
question that arises here is the following: how can we preserve
optimal performance (having always the optimal number of
copies in the caches) and at the same time get geographic
fairness (same geographic performance everywhere in the
area)?

So our goal is to achieve lower performance variability
across the area. Since there are different ways of distributing



the replicas in the network, and each replica has a different
performance value, for the purpose of fairness, it is desirable
that this distribution of replicas minimizes the variability of
values in different caches. Let us define

Vmax = max
j∈V

Vj ,

which is the maximum utility of a caches. Therefore, to
achieve fairness, we should distribute the contents in the
caches in a way that minimizes Vmax while still guaranteeing
the minimum cost. This problem can be formulated as the
following Mixed Integer Linear Program (MILP):

minimize y

subject to
∑K
i=1 Uixij ≤ y, for j = 1, . . . , N,∑K
i=1 xij = B, for j = 1, . . . , N,∑N
j=1 xij = n∗i , for i = 1, . . . ,K,

xij ∈ {0, 1}, y ∈ R,

(9)

where the variable xij indicates whether a content i is placed
in cache j or not. The newly introduced real variable y
together with the first set of constraints guarantee that Vmax
is minimized. The second set of constraints guarantees that
each router is not exceeding its buffer capacity. And the third
set of constraints is to ensure that the number of replicas for
a content does not exceed its optimal value. However, this
optimization turns out to be computationally hard,

Proposition 4. The fairness problem (9) is NP-complete.

Proof: The proof is due to a reduction from the 3-partition
problem (known to be NP-complete). The 3-partition problem
is to decide whether a given set of S integers m1, . . . ,mS

can be partitioned into triples that all have the same sum. We
show that given any 3-partition problem, it can be solved by
the formulation (9) with a particular choices Ti, qi, γi, B,
N , and K. There are different possibilities for these choices,
one of them is to take B = 3, N = S/3, K = S to be
the number of contents, and Ui = mi (obtained by taking
Ti = ∞ so that n∗i = 1 for all i = 1, . . . ,K, γi =

∑
imi

for all i, and qi = mi/
∑
imi). Thus by solving this problem

by (9) and checking, in polynomial time, if the values of the
caches are equal, we can solve the original 3-partition problem.
Therefore, the optimal placement of contents in the caches is
at least as hard as the 3-partition problem and this ends the
proof.

Given the difficulty to determine the static content distribu-
tion which maximizes fairness, an alternative approach could
be to achieve it on the long run by dynamically changing
content distribution among the caches. A naive idea is to
periodically reshuffle the copies among the caches, by cal-
culating in a centralized way a random distribution of the
copies and transmit them to each cache accordingly. This
solution guarantees that all the caches have the same time-
average utility on the long run (because of the strong law of
large numbers), but has significant communication cost, given
that NB copies should be re-transmitted at every iteration. In
order to improve on top of this idea by reducing the amount
of communication required, we consider shuffling algorithms

based only on local exchanges among caches as in gossiping
protocols [15] [16], without the need to download B copies
at each cache.

The movement of contents between caches is done by ex-
changing files through the communication network connecting
these caches. We consider an asynchronous operation, where
pairs of caches can autonomously decide to exchange some
contents taking advantage of their mutual connectivity, which,
as we mentioned before, may also be intermittent. We model
then the network as discrete-time system where at every time
slot two caches exchange files, then k exchanges occur in the
network by slot k. Let G(k) be the graph representing the
interaction at time k: this graph has the N caches as vertices
and only one edge connecting the two caches that exchange
contents at time k. We consider that the interaction among
caches can be modeled probabilistically as follows:

Assumption 2. At a given communication iteration, the prob-
ability that caches i and j exchange contents is given by the
following expression,

Prob((ij) ∈ G(k)) =

{
σij > 0 if (i, j) ∈ E
0 else;

The probabilities σij take into account both the probability
there is a communication opportunity between caches i and
j (as we said the network could be only intermittently con-
nected) and the decision of the caches to actually exchange
some contents. Given this model, the union of all possible
graphs G(k) is the connected graph G with probability one.

Once the connection between two caches is established,
these caches should choose which files (contents) to exchange.
We propose here two exchange rules for the files:
• Exchange Rule 1: Common files are not exchanged,

only different files are randomly divided between the two
caches.

• Exchange Rule 2: Common files are not exchanged. The
connected caches exchange one file (if it exists) that gives
the maximum decrease in the local objective function
V

(ij)
max = max{Vi, Vj}.

Let Vj(k) be the value of the cache j after the k-th exchange
such that Vj(0) = V 0

j are the values of the caches due to an
initial distribution of the optimal copies in the network (the
initial values vector is denoted by V0).

For both the exchange rules the total utility of the caches
(
∑
j Vj(k)) does not vary neither with k nor with the initial

placement, i.e.,
N∑
j=1

Vj(k) =

K∑
i=1

n∗iUi, ∀k, ∀V0.

This is evident if we think that the total number of copies
per content does not change or if we consider that at every
iteration, local utilities change as follows:{
Vi(k) + Vj(k) = Vi(k − 1) + Vj(k − 1) if (i, j) ∈ G(k)

Vi(k) = Vi(k − 1) else.
(10)

Utilities of caches evolve randomly under both the exchange
rules. For exchange rule 2 the randomness is only due to the



random selection of the caches which interact. For exchange
rule 1 the randomness is also due to the random reallocation
of the files among the caches. For this reason it is useful to
consider the following quantities

xj(k) =

{
V 0
j if k = 0

E(Vj(k)) if k > 1,

where the expected value is calculated over the possible
sequence of pairs of interacting caches for exchange rule 2 and
over the sequence of pairs of interacting caches and possible
re-allocations of the files for exchange rule 1. We can now
give the following definition:

Definition 1. We say that the caches achieve asymptotic
geographic fairness under a given exchange rule if for any
initial optimal distribution of contents (i.e., any V0)

1) limk→∞ xj(k) = x̄ for j = 1, . . . , N ,
2) x̄ = 1

N

∑K
i=1 n

∗
iUi.

The first condition says that all caches would have on
average the same value, i.e., it is indifferent to be in an area
or in another because the caches have the same value. The
other condition says that the distribution of contents remains
optimal and its value is independent from the initial placement
of contents (actually this corresponds to averaging the initial
utilities of caches in the network).

Although the similarities illustrated above for the two ex-
change rules, there are some evident differences. For exchange
rule 2 we have |Vi(k) − Vj(k)| ≤ |Vi(k + 1) − Vj(k + 1)|
for every iteration k. Given that the sum of the utilities is
constant, this inequality implies that the maximum over all the
utilities (maxi Vi(k)) is a non-increasing sequence and then
converges to a given value. This value is a local minimum
that the greedy local exchange rule 2 cannot improve. On
the other side, utilities in exchange rule 1 do not converge in
general, because at any time slot some contents are randomly
reallocated. Nevertheless, exchange rule 1 has the following
desirable property:

Proposition 5. Under Assumption 2 and the Exchange Rule 1,
caches achieve asymptotic fairness.

Proof: The proof is provided in the Appendix.

V. PERFORMANCE STUDY

A. Comparison of Optimal Placement with LRU Caches

An alternative approach to content placement is to use
LRU (Least Recently Used) replacement policy in a non-
coordinated way where each cache applies its own policy as a
function of the traffic it sees. For our particular scenario where
caches see the same traffic distribution, they would have the
same probability distribution of having a content (mainly most
popular contents are found everywhere). To compare with our
optimal placement, we assume that when a user does not find
a requested file in an LRU cache, it continues searching in
nearby caches (according to the mobility model) and does not
wait for the cache to download the content (even if the cache
will eventually replace one of its existing file with the recently
missed file using 3G synchronization, we don’t include this
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Fig. 4. Cost comparison between having LRU replacement policy in caches
(CLRU ) and the cost due to optimal replicas from problem (6) (C∗) while
varying the number of caches in the network from 1 to 100 (α = 0, γi = 1,
K = 10000 files, B = 10 buffer size, qi and Ti are zipf distribution with
parameter s = 1, λ = 5 is constant).

latter cost for the sake of comparison). Having said that,
similar to the derivation of the expected cost in Proposition 1,
we can write the expected cost per request CLRU for using
LRU caches with exponential mobility model of rate λ as
follows:

CLRU = α+

K∑
i=1

γiqiE[exp(−ZiλTi)], (11)

where Zi is a random variable for the number of caches
having content i. Since each of the caches are considered as
independent LRU cache, then we have E[Zi] = hiN where
hi is the probability that a file i is present in one LRU cache
(hit probability for file i). By applying Jensen’s inequality for
the convex functions φi(Zi) = exp(−ZiλTi), we can derive
a lower bound CLRU on CLRU :2

CLRU ≥ α+

K∑
i=1

γiqi exp(−hiNλTi). (12)

Notice that by comparing equations (5) and (12), ni is now
replaced by hiN , which is no other than the mean number of
replicas of content i across the network of LRU caches. To
find hi, we apply “Che approximation” [17], which is proved
to be very accurate [18], given as follows:

hi ≈ 1− exp(−qitC) for i = 1, . . . ,K, (13)

where tC is the unique root of the following equation∑K
i=1 (1− exp(−qit)) = B.
Fig. 4 shows that the average cost per request when caches

run optimization problem (6) is less than the one in the
case caches use LRU replacement policy. Moreover, when
the number of caches is small, adding one more cache in the

2Alternatively, another approach can be used to derive the same lower
bound, we observe that E[φi(Zi)] is the probability of not finding content i
in the network (i.e., probability of a miss) which can be calculated precisely
by the following formula E[φi(Zi)] = (hi exp(−λTi) + (1 − hi))

N .
Therefore, the mentioned lower bound can be also easily derived since
hi exp(−λTi) + (1− hi) ≥ exp(−hiλTi).
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Fig. 5. Utility of caches by considering different exchange rules.

network reduces quickly the cost for the optimal placement,
which does not hold for the lower bound cost CLRU for LRU
caches. At one point, it also seems from the figure that the
difference between the two costs tends to be constant. It is
important to recall that the cost given in the figure for the LRU
does not include the cost of synchronization using the 3G (i.e.,
practically speaking we should add to the LRU cost curve in
the figure the cost of downloading a new content after every
miss). Having said that, the LRU has the advantage that it will
automatically adapt to changes in the popularity distribution
(qi’s) while in our case we should rerun our optimization
problem and perform a new placement (that can be done
incrementally starting from the existing one). We leave the
study of dynamic traffic to our future research.

B. Fairness Exchange Rules

As we have seen so far, fairness is not granted, and the
caches should run an additional gossiping protocol to guaran-
tee fairness while preserving optimal performance. The two
exchange rules for gossiping the content provide two different
(orthogonal) approaches to the problem.

Fig. 5 shows the resulting utility of caches after applying
500 iterations of gossiping between caches. We consider a
random geometric graph (RGG)3 topology with n = 50 caches
that communicate according to Assumption 2. We consider
that all the edges in the network have the same rate σij = cte
for all (ij) ∈ E . Thus, each edge can be selected with the
same probability and the expression in equation (16) for the
weight matrix W = E[W (k)] reduces to:

W = I +
1

2m
(A−D),

where I is the identity matrix, A is the adjacency matrix of
the graph (having entries aij = 1 if (ij) ∈ E and 0 otherwise),
D is a diagonal matrix having the degrees of the nodes, and

3RGGs are random graphs where n nodes are placed uniformly at random
in a 1 by 1 unit square area, and any two nodes within a connectivity threshold
forms an edge in the graph.

m is the number of edges in the graph (i.e., m = |E|). We just
remind the reader that in our fairness model, the lower Vmax
achieved, the fairer is the content distribution.

Considering Exchange Rule 1, the expected utility curve
(in red) in the figure shows the expected value (or utility) of
a given cache in the network, that can be calculated using
the expected weight matrix W . The dotted (light blue) curve
shows instead the evolution of the actual utility of a given
node. If we imagine to repeat an infinite number of times the
process, and average all the value curves for the same node,
then we would get exactly the red one. The solid line curve
(dark blue) shows the maximum value in the network (Vmax).
This curve shows that Exchange Rule 1 does not provide
fairness at any time slot because Vmax always has high values.
At the same time each cache is changing its contents regularly
over time, and thus experiences different utilities such that, on
average, all caches are equivalent. Fairness is only guaranteed
by Exchange Rule 1 in this sense.

On the contrary, for Exchange Rule 2 the maximum value
Vmax (green curve) keeps decreasing. In fact, as we have
explained in the previous section, caches are performing a
sort of distributed local search, by exchanging contents only
when the total objective function Vmax can be reduced. This
gives better fairness as time goes on in comparison to the
initial placement (reduced from Vmax = 1.6 at iteration 0 till
Vmax = 1.05 at iteration 500). Nevertheless, the final value
to which Vmax converges is just a local optimum. Notice that
the static placement that optimizes Vmax should give a value
that lies between the red and the green curve (i.e., the optimal
value in this case is V ∗max ∈ [0.7, 1.05]).

VI. CONCLUSION

We have presented in this paper an optimization problem for
the optimal caching in mobile networks. Caching is supposed
to be done at WiFi hotspots that are spread across a city.
Caching is meant to offload traffic of the 3G/4G infrastructure,
and hence to reduce costs for both the operator and the users.
We showed that by an optimal replication and placement of
contents in caches accounting for their popularity, the average
cost per requested content is minimized. Replicas are then
dynamically shuffled between caches to provide a balanced
performance for users in different geographic places while
preserving optimality for global network performance. We
leveraged the theory of gossiping to realize content shuffling
between caches and developed algorithms to ensure that the
user cost is indifferent with respect to her/his place in the
network. Up to our knowledge, this work is a first attempt
to explore the problem of unfairness that might result from
content placement, and that proposes shuffling of the content
of caches to achieve fairness without compromising global
performance. For future work, we will keep investigating this
direction by focusing in particular on the effect of traffic
dynamicity and the way it interacts with our developed al-
gorithms.
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APPENDIX

PROOF OF PROPOSITION 5
To show the fairness property, let us study the dynamics and

the convergence properties of the vector x(k) where xi(k) is
its ith element. Notice that with every iteration (exchange),
we have{

xi(k + 1) = xj(k + 1) =
xi(k)+xj(k)

2 if (i, j) ∈ G(k)

xi(k + 1) = xi(k) else,
(14)

then we can write in matrix form

x(k + 1) = W (k)x(k), (15)

where W (k) is a matrix having off-diagonal elements equal
to zero except for wij = wji = 0.5 such that (i, j) ∈ G(k),
and all diagonal elements equal to 1 except for wii = wjj =
0.5. Then the matrix W (k) satisfies the following properties
for every k: W (k)1 = 1, W (k) = W (k)T , and W (k)2 =
W (k) (where 1 is the vector of all ones). These properties are
important for studying the stability of gossip algorithms (see
[15], [16]). Notice that due to Assumption 2, W (0),W (1), . . .
are all i.i.d. matrices. Let W = E[W (k)], then we have

W =
∑

(i,j)∈E

Prob[(i, j) ∈ G(k)]W (k) =
∑

(i,j)∈E

σijW
(ij),

(16)

where W (ij) is a doubly stochastic matrix having off-diagonal
elements equal to zero except for wij = wji = 0.5. Notice
that W is a positive definite matrix (having dominant diagonal
entries) and it is irreducible because we assume that the union
graph G is connected. Thus we can say that the second largest
eigenvalue (in magnitude) of W , λ2(W ), satisfies{

0 ≤ λ2(W ) < 1,

λ2(W ) = λ1(W − J),
(17)

where λ1(.) is the largest eigenvalue (in magnitude) of a
matrix, and J = 1

N 11T . To show the convergence of equa-
tion (15) under Assumption 2 and the Exchange Rule, we
define y(k) = x(k) − x̄1 such that x̄ = 1

N

∑N
j=1 V

0
j =

1
N

∑K
i=1 n

∗
iUi. We will thus show the two properties for

geographic fairness of Definition 1 by showing that y(k) con-
verges to 0 almost surely. Let αk = ||y(k)||22 = y(k)Ty(k),
then we have

E[αk+1|y(k)] = E
[
y(k)TW (k)TW (k)y(k)|y(k)

]
= E

[
y(k)TW (k)y(k)|y(k)

]
= y(k)TWy(k) = y(k)T (W − J)y(k)

≤ λ2(W )y(k)Ty(k).

Since E[αk+1] = E [E[αk+1|y(k)]], then by a simple recursive
equation we get that

E[αk] ≤ Aλk2 , (18)

where A = ||y(0)||22 is just a constant. Using the Markovian
inequality, we get that for any ε > 0,

Prob[αk > ε] ≤ E[αk]

ε
≤ Aλk2

ε
,

and thus
∞∑
k=0

Prob[αk > ε] ≤ A

ε

∞∑
k=0

λk2 =
A

ε(1− λ2)
<∞,

then since the rate of convergence of E[αk] is fast enough
(
∑∞
k=0 Prob[αk > ε] < ∞), then αk converges almost surely

to 0 [19, p. 138]. Therefore, xj(k) converges almost surely
to x̄ for j = 1, . . . , N and this ends the proof because all
properties of geographic fairness with optimality in Definition
1 are satisfied.

REFERENCES

[1] S. Dimatteo, P. Hui, B. Han, and V. Li, “Cellular Traffic Offloading
through WiFi Networks,” in Mobile Adhoc and Sensor Systems (MASS),
2011 IEEE 8th International Conference on, Oct 2011, pp. 192–201.

[2] P. Deshpande, X. Hou, and S. R. Das, “Performance Comparison of 3G
and Metro-scale WiFi for Vehicular Network Access,” in Proceedings
of the 10th ACM SIGCOMM Conference on Internet Measurement, ser.
IMC ’10. ACM, 2010, pp. 301–307.

[3] F. Mehmeti and T. Spyropoulos, “Is it worth to be patient? analysis and
optimization of delayed mobile data offloading,” in INFOCOM, 2014
Proceedings IEEE, April 2014, pp. 2364–2372.

[4] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
Mobile 3G Using WiFi,” in Proceedings of the 8th International Confer-
ence on Mobile Systems, Applications, and Services, ser. MobiSys ’10.
ACM, 2010, pp. 209–222.

[5] J. Whitbeck, Y. Lopez, J. Leguay, V. Conan, and M. D. De Amorim,
“Fast Track Article: Push-and-track: Saving Infrastructure Bandwidth
Through Opportunistic Forwarding,” Pervasive Mob. Comput., vol. 8,
no. 5, pp. 682–697, Oct. 2012.

[6] F. Neves dos Santos, B. Ertl, C. Barakat, T. Spyropoulos, and T. Turletti,
“CEDO: Content-centric Dissemination Algorithm for Delay-tolerant
Networks,” in Proceedings of the 16th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
ser. MSWiM ’13. ACM, 2013, pp. 377–386.

[7] R. Bhatia, G. Narlikar, I. Rimac, and A. Beck, “UNAP: User-Centric
Network-Aware Push for Mobile Content Delivery,” in INFOCOM 2009,
IEEE, April 2009, pp. 2034–2042.

[8] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and O. Spatscheck,
“To Cache or Not to Cache: The 3G Case,” IEEE Internet Computing,
vol. 15, no. 2, pp. 27–34, Mar. 2011.

[9] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings of
the 5th International Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’09). ACM, 2009, pp. 1–12.

[10] S. Gaito, D. Maggiorini, C. Quadri, and G. P. Rossi, “On the impact of
a road-side infrastructure for a dtn deployed on a public transportation
system,” in Proceedings of the 11th International IFIP TC 6 Conference
on Networking - Volume Part II, ser. IFIP’12, 2012, pp. 265–276.

[11] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for
data delivery in sparse mobile ad hoc networks,” in Proceedings of the
5th ACM MobiHoc ’04. ACM, 2004, pp. 187–198.

[12] S. M. Ross, Stochastic Processes (Wiley Series in Probability and
Statistics), 2nd ed. Wiley, Feb. 1995.

[13] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic
Approaches. Cambridge, MA, USA: MIT Press, 1988.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.
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