
1

On the Robustness of BitTorrent
Swarms to Greedy Peers

Damiano Carra, Giovanni Neglia, Pietro Michiardi and Francesco Albanese

Abstract—The success of BitTorrent has fostered the development of variants to its basic components. Some of the variants adopt

greedy approaches aiming at exploiting the intrinsic altruism of the original version of BitTorrent in order to maximize the benefit of

participating to a torrent.

In this work we study BitTyrant, a recently proposed strategic client. BitTyrant tries to determine the exact amount of contribution

necessary to maximize its download rate by dynamically adapting and shaping the upload rate allocated to its neighbors. We evaluate

in detail the various mechanisms used by BitTyrant to identify their contribution to the performance of the client.

Our findings indicate that the performance gain is due to the increased number of connections established by a BitTyrant client, rather

than to its subtle uplink allocation algorithm; surprisingly, BitTyrant reveals to be altruistic and particularly efficient in disseminating the

content, especially during the initial phase of the distribution process. The possible gain of a single BitTyrant client, however, disappears

in the case of a widespread adoption: our results indicate a severe loss of efficiency that we analyzed in detail.

Index Terms—Peer-to-Peer, BitTorrent, Performance analysis.

F

1 INTRODUCTION

B ITTORRENT [1] is a peer-to-peer (p2p) content distri-
bution application that has been adopted by millions

of end-users [2], [3], [4]. BitTorrent (BT) has also attracted
the attention of a large body of researchers that focused
on its building blocks (such as the incentives, as in [5])
and its performance analysis through measurement [6],
[7], [8], simulation [9], [10] and analytical [11], [12], [13]
studies. These previous works indicated that the key
of BitTorrent success can be substantially attributed to
its scalability and its greater robustness to free-riding in
comparison to previous p2p proposals.
Some recent studies [14], [15], [16] have proposed

new clients, that are compliant to BitTorrent message
protocol but adopt greedy strategies with the purpose of
optimizing the local performance of the modified client.
For example, authors in [15] designed the BitThief client,
that tries to maximize the content download rate with-
out uploading any content. Another prominent example
is that of BitTyrant [16], which tries to maximize its
download rate by shaping its contribution to remote
peers. Note that, while BitThief client is intrinsically a
free-rider, BitTyrant makes its whole upload capacity
available to spread the content.
Our research interest is twofold. First, we want to

evaluate the competitive advantage of greedy clients
over standard ones and hence the possibility of wide
adoption by the peer-to-peer community. Second, we

• D. Carra is with the Computer Science Dep., University of Verona, Italy.
E-mail: damiano.carra@univr.it

• G. Neglia is with INRIA Sophia Antipolis, Sophia Antipolis, France.
E-mail: giovanni.neglia@ieee.org

• P. Michiardi and F. Albanese are with EURECOM, Sophia Antipolis,
France.E-mail: michiard@eurecom.fr, albanese@eurecom.fr

want to investigate the possible effects that a widespread
adoption could induce to the system performance. We
first focus on a single client (we chose BitTyrant in this
work because it merges several greedy techniques dis-
cussed in the literature) and characterize its performance
gain over standard clients. We do so by isolating its
key mechanisms to quantify their contribution to the
improved performance. We then make the case for a
gradual adoption of BitTyrant by users and discuss its
implications on the whole community.

The main contributions of this work can be summa-
rized as follows:

• We generalize the analytical model presented in
[16] to identify the extent to which BitTorrent can
be exploited by greedy clients. Unlike previous re-
sults discussed in [16], our findings indicate that
exploiting the altruism of BitTorrent is effective only
during a short transient regime when the system is
bootstrapping;

• We study the different components of a prominent
example of a greedy client, BitTyrant [16], and
we evaluate to what extent each part of the pro-
posed approach is responsible for the performance
achieved; we also compare the results with the ones
obtained by the mainline BitTorrent client;

• We cast light on the subtle choke algorithm used by
BitTyrant: while we show its unexpectedly positive
impact on system performance - especially during
the startup phase of content distribution - we also
point to an undesired periodic behavior that limits
its performance;

• Finally, we make the case for a gradual adoption
of the BitTyrant client by the mass; we show that
a widespread adoption of BitTyrant clients seems

2

unrealistic, and in any case the increasing adoption
of BitTyrant progressively degrade the system per-
formance.

2 BACKGROUND

In this section we briefly outline the key algorithms used
by BitTorrent [1], BitTyrant [16] and BitThief [15].

BitTorrent. The BitTorrent (BT) protocol is designed for
bulk data transfer. A file is divided into pieces, which
can be downloaded in parallel from peers belonging to
a specific torrent. A central entity, the tracker, keeps track
of all peers sharing the content and provides new peers
a random set of peers to connect to. The neighborhood
of a peer is called the peer set.
A BT peer executes two key algorithms, one that is

used to select pieces of the content to download (piece
selection algorithm) and one that is used to select remote
peers to upload data to (the choke algorithm). In this
work we focus on the choke algorithm. With the choke
algorithm, a node builds a subset of its peer set that is
termed the active set: peers in the active set are entitled
to request pieces of the content. The choke algorithm is
executed every 10 seconds: all remote peers are ranked
based on their upload rate and only the first k top peers
are unchoked. Along with regular unchokes, every 30
seconds a peer randomly unchokes ω peers irrespectively
of their rank: this technique is termed optimistic unchoke
and allows a peer to explore its peer set and discover fast
neighbors. The choke algorithm aims at maintaining a
high level of reciprocation among peers, being that peers
uploading less have less chances to be unchoked by their
neighbors.
In the first version of BT - that we term BTold - k

and ω are empirically set parameters: generally k = 4
and ω = 1. The upload bandwidth of a peer is shared
equally (beside TCP effects) among all unchoked peers;
the portion of the bandwidth that each peer is able to
obtain is defined as equal-split. In the latest version of
the BT mainline protocol the choice of the parameters in
the choke algorithm is different: the number of regular
unchokes is determined as a function of the uplink
capacity C of a peer, that is k = ⌊

√
0.6 · C⌋ (C is

expressed in KBytes/s). Moreover, ω = 2. With these
new parameters, peers with a high uplink capacity open
more active connections.
Note that the values of the parameters k and ω in

BT and BTold are completely arbitrary; the interested
reader can find a discussion about the impact of these
parameters in [17].
In rest of the paper BT is the main reference to

evaluate the performance of greedy clients, whereas in
the online extension of this work we include the results
we obtained focusing on BTold.

BitThief. The primary aim of this client was to show the
intrinsic weakness of the optimistic unchoke adopted by
BT. BitThief continues to contact the tracker in order to

increase as much as possible its peer set size. As a con-
sequence, the probability to be optimistically unchoked
increases, and the client can receive the content without
uploading at all.

BitTyrant. BitTyrant (hereinafter BTyr) adopts the same
mechanisms of BitThief but also introduces a new peer
selection algorithm. As for BT, the number of unchoked
peers is a function of a peer’s uplink capacity. However,
BTyr uses a dynamic bandwidth allocation algorithm by
which uplink capacity is assigned on a per-connection
basis. During the initial phase of the download process, a
BTyr peer allocates the same bandwidth c = 15 KBytes/s
to all connections. This initial value has been derived
in [16] from a measured peer bandwidth distribution in
order to guarantee that the probability of reciprocation
(i.e. the probability of being unchoked) from remote
peers is high.
Subsequently, the alternative BTyr choke algorithm

works as follows: if a remote peer reciprocates for at
least 3 unchoking intervals, the bandwidth allocated for
this active connection is reduced by a factor of 0.9.
If an unchoked neighbor stops reciprocating, then the
bandwidth allocated to the active connection is increased
by a factor 1.2. Every choke interval (set to 10 sec.),
neighbors are sorted according to the ratio of the amount
of data received to the amount of data sent in the last 20
sec.; the available uplink capacity is then progressively
allocated to remote peers in descending order. Hence,
the amount of bandwidth allocated to a remote peer
should converge to the exact value required to guarantee
reciprocation.

3 MISUSE OPPORTUNITIES IN BITTORRENT:
AN ANALYTICAL PERSPECTIVE

In this section we analyze the extent to which the altru-
istic behavior of BT might be exploited by self-interested
peers. We adopt a data agnostic approach, i.e. we assume
that each peer has always pieces that every other is
missing. The analysis extends and formalize rigorously
the key observations made in [16], which are behind the
design of BTyr.
Note that the analysis is focused on the possible

exploitation of BT: how a client is going to use this
information is independent from the analysis. In the rest
of the paper we will focus only on BTyr as strategic
client, because it merges several greedy techniques dis-
cussed in the literature. We do not consider here the
BitThief scheme since the evaluation of its benefits are
straightforward.

3.1 Matching Time

As noted in prior studies [18], [19], the choke algorithm
can be seen as a distributed algorithm for the stable b-
matching problem, that converges to a (weakly) stable
state in which peers are matched based on their upload
capacity and no peer has an incentive to deviate from

3

its matches. The algorithm converges to a stable state
through a series of exploration rounds (i.e. optimistic
unchokes) in which unstable matchings are formed.
During this intermediate phase a peer may be matched
to remote peers that cannot sustain a fair reciprocation.
This implies that some peers might offer more upload
bandwidth than they receive.
The time it takes for the algorithm to converge could

be exploited by a peer striving for maximizing the recip-
rocation it receives from remote peers. In the following
we derive a rough estimation of the convergence time,
termed matching time hereinafter. Our analysis of the
matching time (i) assumes a large swarm, with a fixed
peer population, (ii) does not take into account content
availability and (iii) ignores that some remote peers
could be not willing to reciprocate. The last issue is going
to be addressed in the following section.
During a time interval equal to Topt, a peer discovers

(using optimistic unchokes) the equal split of ω new
peers and its equal split is discovered by other ω new
peers. Given peer i with equal split ui, let Ai be the set
of its active connections (i.e. the neighbors it has un-
choked). We denote with b(u) and B(u) respectively the
Probability Density Function (PDF) and the cumulative
distribution function (CDF) of the equal split. b(u) (B(u))
can be evaluated through an empirical distribution1.
The expected number of interactions peer i needs to

find a peer with higher equal split is geometrically dis-
tributed, with expected value 1/(1−B(ui)). The expected
number of interactions needed to discover a number of
peers equal to the number of active connections |Ai| is
simply |Ai|/(1−B(ui)). A peer has one interaction every
Topt/(2ω) seconds, then the matching time is:

Topt

2ω

|Ai|
1 − B(ui)

. (1)

The equation shows that the matching time increases
when the number of active connections or the equal split
increases.
We derived the matching time for BT clients with

different uploading capacities (cf. Appx.A.1). Matching
time for BT clients is as large as 10 hours and it is not
negligible with respect to typical download times.
Long matching times pave the way for clients such as

BTyr that tries to exploit high-capacity peers as long as
their discovery phase has not converged yet.

3.2 Probability of Reciprocation and Expected
Download Rate

The extremely long convergence time toward a stable
matching has encouraged the design of subtle techniques
[16] to exploit peers until a global matching is reached;
then peers would be immune to greedy strategies. A
greedy peer, however, is not guaranteed to be recipro-
cated from remote peers at all times during the matching
time.

1. In this work we use the same empirical distribution as in [16].

We show this by studying the evolution in time of
the probability of reciprocation and its impact on the
expected download rate of a peer. The following analysis
constitutes a significant extension to that sketched in
[16]. As noted above, the download rate peer i can
achieve varies over time. Indeed peer i can select its
|Ai| best uploaders from a progressively larger set, but
reciprocation from its peer set fluctuates: reciprocation
from peers with higher capacity decreases (because they
discover similar peers), while reciprocation from lower
capacity peers increases (because they are progressively
choked by their best uploaders). Being that each peer
optimistically unchokes ω new peers every Topt, we
consider a discrete time system where every Topt/(2ω)
seconds each peer discovers the equal split of a new peer.
Let us define ρ(ui, uj, k) the probability that a node with
equal split uj is willing to reciprocate with a node with
equal split ui at the k-th interaction. The probability that
a randomly selected peer is willing to reciprocate to peer
i at the k-th interaction is

∫ ∞

0

ρ(ui, v, k)b(v)dv,

and the expected number of peers not reciprocating
peer i (Ri(k)) is:

Ri(k) = k

(

1 −
∫ ∞

0

ρ(ui, v, k)b(v)dv

)

. (2)

We simplify our analysis assuming that: (i) the number
of peers not reciprocating peer i is always equal to
the integer nearest to Ri (we denote it as R̂i) and (ii)
that these peers are the best uploaders of peer i. These
assumptions are going to be justified by our asymptotic
analysis for ρ(ui, v, k). In fact we are going to show
that, as k diverges, ρ(ui, v, k) converges to 0 and 1,
respectively for ui < v and for ui > v. Hence, at least
asymptotically, peer i will not be reciprocated by all its
neighbors with higher equal split (its best uploaders).
This justifies assumption (ii). Moreover, being that the
reciprocation probability exhibits asymptotically a sharp
transition from 0 to 1 at v = ui, the number of non-
reciprocating peers is distributed approximately as a
binomial distribution with parameters k and B(ui). This
justifies assumption (i), being that a binomial distribu-
tion is concentrated (in the sense of the law of large
numbers) around its mean for large value of k.

Given these two assumptions, if we rank the uploaders
of peer i on the basis of their equal split in decreasing
order, peer i at the k-th interaction will reciprocate peers
with rank from R̂i(k) + 1 to

wi = R̂i(k) + |Ai| = ⌊Ri(k) + 0.5⌋+ |Ai|, (3)

assuming that it is willing to open up to |Ai| connections.
We use basic order statistic results [20] to derive the
equal split PDF of the z-th uploader of peer i (out
of the k neighbors peer i has interacted with by the k-th

4

interaction):

b(z)(v, k) =
k!B(v)k−z(1 − B(v))z−1

(z − 1)!(k − z)!
b(v). (4)

Note that this distribution is the same for all the
peers, because optimistic unchoking selects neighbors
uniformly at random.
We derive the expected download rate of peer j as:

R̂i(k)+|Ai|
∑

z=R̂i(k)+1

∫ ∞

0

vb(z)(v, k)dv + ω

∫ ∞

0

vb(v)dv, (5)

where the first term corresponds to the aggregated rate
from active connections, while the second one to the
aggregated rate from optimistic unchoking.
Finally we derive the reciprocation probability. The

probability that peer i is going to be reciprocated from
peer j at the following interaction is equal to the prob-
ability that peer i has a higher equal split than that of
the wj -th uploader of peer j2, then:

ρ(ui, uj , k + 1) =

∫ ui

0

b(wj)(v, k)dv. (6)

The system starts from a state where every peer has an
empty active set and it is willing to reciprocate with ev-
eryone else (ρ(ui, uj, 0) = 1), then equations 2, 3, 4 and 6
can be used to evaluate the evolution of reciprocation
probabilities.
Now we are going to deepen our understanding of

the system, by studying the asymptotic limit of the
reciprocation probability, and the relation of these results
with the matching time as defined in Sec. 3.1.
First, we are going to show that, as k diverges,

ρ(ui, v, k) converges to 0 and 1, respectively for ui < v
and for ui > v. If this is the case, then

lim
k→∞

Rj(k)

k
=

∫ uj

0

b(v)dv = B(uj).

Let us define

α(uj) = lim
k→∞

(

1 −
∫ ∞

0

ρ(uj , v, k)b(v)dv

)

,

we will then show that α(uj) = B(uj). We observe that
α(u) is a decreasing function of u (and hence in par-
ticular invertible), because the reciprocation probability
ρ(u, v, k) is increasing in u. We observe that wj behaves
asymptotically as kα(uj), hence we can apply the results
for central quantiles (or central order statistics) [20] to
bwj (v, k), concluding that it is asymptotically distributed
as a normal with mean B−1(α(uj)) and variance

α(uj)(1 − α(uj))

k [b(B−1(α(uj)))]
2 →

k,∞
0.

Being that the variance converges to zero, we can derive
from Eq. 6 that ρ(ui, uj , k) converges to 1 if B−1(α(uj))

2. If k < wj = R̂j(k) + |Aj |, peer j will be always willing to
reciprocate with a new peer.

-the mean of the Gaussian- is included in the integra-
tion range, otherwise it converges to zero. In conclu-
sion ρ(ui, uj , k) converges to 0 and 1, respectively for
ui < B−1(α(uj)) and for ui > B−1(α(uj)). Due to the
monotonicity of B() and α(), ui < B−1(α(uj)) if and
only if uj < α−1(B(ui)). From Eq. 2 it follows that

lim
k→∞

Ri(k)

k
= lim

k→∞

(

1 −
∫ ∞

0

ρ(ui, v, k)b(v)dv

)

=

∫ α−1(B(ui))

0

b(v)dv = B(α−1(B(ui))).

By definition this is equal also to α(ui):

B(α−1(B(ui))) = α(ui).

This equality holds for every value of ui, then it has
to be α() = B(). We have so concluded our proof that
ρ(ui, uj , k) converges to 0 and 1, respectively for ui < uj

and for ui > uj .
We may want to quantify the convergence time sim-

ilarly to what done in the previous section for the
simplified mode. It is natural to consider the expected
time needed for peer i to find |Ai| peers (i) with higher
equal split (as for the matching time) and (ii) willing to
reciprocate. This second requirement makes this conver-
gence time longer than the matching time (already sev-
eral hours for high capacity clients). Hence, the refined
analysis in this section points out an even longer phase
during which the system can be exploited by greedy
peers. At the same time, it shows that the duration of
the exploitable phase is not the only important aspect.
In fact, the probability to reciprocate to peers with lower
bandwidth converges to zero (the faster the lower the
bandwidth is). This limits the extent to which greedy
peers can exploit compliant ones. In Appx.A.2 we quan-
tify the possible gain by numerical simulations both of
the time evolution of the probability of reciprocation
and the expected download rate for different values of
upload capacity.

3.3 Discussion

Our data agnostic analysis indicates that exploiting BT
clients appears tempting in a first instance, if one consid-
ers the time required by the peer selection to stabilize.
However, due to the variability in time of the probability
of reciprocation, a greedy strategy would work best
during the initial stages of the download process, where
high capacity peers are still willing to serve low and
intermediate capacity peers.
This conclusion raises the legitimate question of

whether these results carry over when piece availability
is considered. Indeed, piece availability plays a crucial
role, especially during the initial phase of the download
process, when the number of pieces being exchanged by
peers is scarce. Due to the complexity of the analysis
when piece availability is taken into account, we revert
in the following to a simulation-based performance anal-
ysis.

5

4 DECONSTRUCTING BITTYRANT: THE SIN-
GLE CLIENT CASE

In the following we carry out a simulation-based analysis
of the performance of BTyr. We decided to focus on BTyr
because it merges several greedy techniques previously
discussed in [15], [14]: (i) greedy peer set size and (ii)
greedy uplink allocation:

(i) implies that peer set size in BTyr is larger than
that of a BT client (this approach is adopted also
in BitThief [15]) resulting in a higher probability of
being optimistically unchoked;

(ii) implies that the uplink capacity of a peer is not
equally split among its active connections, but
shaped according to a greedy objective; hence, the
number of active connections varies over time.

Here we characterize the contributions of the BTyr
building blocks to the performance achieved by a single
BTyr client in a torrent where all the other clients are BT.

4.1 Simulator Description, Methodology and Set-
tings

Our work is based on the publicly available BitTorrent
simulator called GPS [21], customized for our needs. In
this environment, peers have infinite downlink capacity
and a finite uplink capacity. The uplink capacity is ran-
domly chosen according to the bandwidth distribution
measured in [16].
The main performance metrics we use are:

• Download time of the single client (BT, BTyr or
BTold) in the different scenarios;

• Download time of of all peers;
• Number of pieces uploaded by the single client

during the download process.

We decided to follow the system parameters used in
[16]: we analyze torrents of 350 peers where one initial
seed shares a file of 50 MB. We chose such file size
since we noted that the gain of a strategic client is
mainly concentrated at the beginning of the distribution
process (cf. Sect. 3), so BTyr should benefit more from
downloading smaller files.
In order to verify the results against different scenar-

ios, we have also performed experiments with bigger file
size (350 MB) and bigger torrents (500 peers) obtaining
similar results.
Peers randomly start to download the content within

a small interval of time (10 sec.) and stay as seeds in the
system once they finish downloading the content. This
scenario represents the most favorable scenario for BTyr,
since peers start downloading approximately at the same
time and they do not have any knowledge of the other
peers’ bandwidth.
We carry out a comparative performance analysis of

a single peer using whether BT or BTyr client when the
rest of the torrent population use BT clients. In order to
make a fair comparison, at every change of the client of
the single peer, we leave unchanged its characteristics

(bandwidth, arrival instant), as well as the characteristics
of the other peers. We estimate the mean download time
over multiple runs (if not specified, we perform ten runs
for each experiment), along with the confidence interval
for a confidence level of 95%.

4.2 Impact of the Peer Set Size and Active Set Size

In this Section we build a baseline scenario in which a
single, fully-fledged BTyr client operates in a torrent of
BT peers. In this case BTyr keeps contacting the tracker
in order to increase the peer set as much as possible.
A similar scenario has been used in the experiments
showed in [16], with the difference that the torrent was
composed by BTold peers. We show the results for this
case (BTyr in a torrent of BTold peers) in Appx. B.1,
which are coherent to the ones found in [16].
When we consider a BTyr client in a torrent of BT

peers, the performance gain of BTyr disappears. Fig. 1
illustrates the download time of a single BT and BTyr
client for different classes of uplink capacity. The reason
is due to the large number of active connections (active
set size) established by fast peers using BT. Their uplink
capacity is over-partitioned, hence remote peers (includ-
ing the BTyr client) receive smaller download rates as
compared to the original BTold algorithm.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

D
o
n
w

lo
ad

 T
im

es
 (

se
c)

Upload Cap (KB/s)

BitTyrant
BitTorrent

Fig. 1. Mean download time of a single client with different

bandwidths (95% confidence interval).

The BTyr itself maintains a large number of active con-
nections. On the one hand, by keeping a larger number
of active connections, BTyr strives for maximizing the
chance of being reciprocated. On the other hand, since
during the initial phase of the download process the
lack of fresh pieces to serve could cause uplink capacity
underutilization, a larger active set size helps spreading
available pieces to a large number of peers that would
otherwise remain unserved. This increases the utilization
of the uplink capacity of both the BTyr peer and its
neighbors. Interestingly, the greedy strategy adopted by
BTyr has actually a hidden altruistic nature. For further
details, please refer to Appx. B.2.

6

As additional test, we obstruct the peer set construc-
tion of BTyr: the peer set size is then equal at most to
80 for every peer in the torrent. Fig. 2 shows a slightly
decreased performances of BTyr, even if we can not
exactly quatify this decrease, since the variation remains
on the order of the confidence interval size. A similar
result can be seen in Appx. B.1, where we show the same
experiment in case of BTyr in a torrent of BTold peers.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

D
o
n
w

lo
ad

 T
im

es
 (

se
c)

Upload Cap (KB/s)

BitTyrant
BitTorrent

Fig. 2. Mean download time of a single client with a

constrained peer set (95% confidence interval).

These results indicates that the increased peer set size
may constitute one of the factors influencing download
performance.

4.3 Impact of Greedy Uplink Capacity Allocation

In the previous section we focused on the peer set and
active set sizes. It remains to evaluate if the uplink
capacity allocation algorithm adopted by BTyr is actually
able to increase the performance. In particular, we now
focus on the interaction between a peer and its peer set
and ask whether peers tend to match with neighbors
with similar uplink capacity in variants of the BT client.
Fig. 3 shows the ECDF of the uplink capacity of the

neighbors unchoked during the whole file download by
a peer with an uplink capacity of 200 KB/s.3.
We observe that a single BTold client unchokes a small

subset of its neighbors (the ECDF has a few well defined
steps) and mostly reciprocates remote peers with a simi-
lar uplink capacity. Ideally, a completely stratified system
would imply a single step ECDF function centered on the
observed peer’s uplink capacity. In practice, as discussed
in Sec 3, the system requires time to converge to a stable
state, during which peers may end up cooperating with
remote peers with different uplink capacities. In contrast
to our observations on BTold, BTyr and BT interact
with any neighbor in their peer set, irrespectively of
the uplink capacity, in a manner that resembles to a
round robin approach. Although the intuition behind the

3. The figure also reports the uplink capacity distribution of all peers
that we used in our experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

E
C

D
F

Upload Cap (KB/s)

Input Distribution
BitTyrant

Old BitTorrent
BitTorrent

Fig. 3. ECDF of the upload bandwidths of the active

set seen by a BT, BTold and BTyr client with an uplink
capacity of 200 KB/s.

design of BTyr was to seek and exploit for the longest
possible time the fastest peers using a clever uplink
allocation algorithm, no stable matching appears.

In order to understand if the dynamic uplink band-
width allocation algorithm works properly, we take a
different perspective. We neglect the effect of piece avail-
ability in our simulations: we focus only on the exact
values allocated by the BTyr choke algorithm to remote
peers, rather than on the actual amount of data sent or
received.

To this aim, we show the uplink rate assigned by the
BTyr peer to each neighbor, over time: for the observed
BTyr peer we maintain a matrix E where the element
eij represents the rate assigned to peer i at choking
interval j.

Fig. 4 illustrates the matrix E for a BTyr peer k with
5000 KB/s uplink capacity. The value of rate is visualized
using shades of gray: the darker regions indicate higher
rates. During the initial phase of the download process,
peer k allocates the same uplink rate to all its neighbors.
Note that, since the initial rate for each unchoked neigh-
bor is 15 KB/s, the BTyr peer unchokes all its neighbors.

The allocated uplink capacity varies over time, and
it’s possible to observe a specific trend: the bandwidth
is initially equally divided among the peer set; then the
peer assigns an an increasing amount of bandwidth,
which degenerates into a periodic, on-off, phase. A
deeper analysis shows that not all the high capacity
neighbors are detected or maintained. For instance, in
the figure, neighbors with ID 141, 153 and 199 have high
bandwidth, and they are detected but not maintained
(after 40 rounds the BTyr peer stops unchoking them).
Moreover, the periodic trend, common to all the neigh-
bors, represents an undesired behavior that limits the
performance of the scheme: the received rate, in fact,
goes periodically to zero for three rounds, forcing BTyr
to try to be reciprocated again by the neighbors.

The existence of a periodic behavior hints at the pres-

7

Round

N
e
ig

h
b
o
r

ID

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200
more

200 and

180

160

140

120

100

80

60

40

20

0 KB/s

Fig. 4. Upload rate in the data agnostic case: snapshot

for a fast BTyr client.

ence of closed loop dynamics that the original design
has not foresee. The limited space does not allow for a
deeper analysis from a control theory viewpoint, which
we reserve for future works. Our extensive results illus-
trate an unexpected behavior of BTyr that may have an
impact on the protocol performance. As a reference, the
matrix representation of the upload algorithm in BTold
is shown in Appx. B.3.

5 THE MULTIPLE CLIENTS CASE

In this Section we study the behavior of a system in
which an initial population of BT clients is gradually
replaced by an increasingly larger fraction of greedy
variants. This study is motivated by the fact that if
the first users adopting a greedy variant experience
improved performance in comparison to BT, further
users can be attracted to adopt it. Since the BTyr clients
have problems to interact with each other, [16] suggests
to cope with this situation using a block-based Tit-For-
That (TFT) strategy: however, a number of issues related
to the BTyr block based TFT choke algorithm suggest
that this technique might be ineffective (cf. Appx.C.1).
Therefore, in the following we analyze the performance
of multiple BTyr clients that do not implement the block
based TFT mechanism.

5.1 Increasing Fraction of Greedy Variants

We consider the implications of gradual user adoption of
BTyr clients. We ask whether it is possible to predict an
equilibrium point by which there would be no incentive
for users to adopt the BTyr variant. Hence, we focus on
the effects of an increasing adoption of BTyr clients in
a swarm composed by BT clients on users’ download
times. In the following experiment, we use the same
settings described in previous sections, and introduce an
increasing percentage of BTyr clients.
Fig. 5 shows this scenario. The is no performance

improvement of clients switching from BT to BTyr, and

0

100

200

300

400

500

0 20 40 60 80 100

M
ea
n
 D
o
w
n
lo
ad
 T
im

e

Percentage of BitTyrant

BitTorrent
BitTyrant

Fig. 5. Average of the mean download times for an

increasing fraction of BTyr clients in a population of BT
peers (95% confidence interval).

no equilibrium point is found: therefore we can conclude
that BT seems to be robust against an adoption of
even a small fraction of BTyr clients. Interestingly, we
note that the increase of the percentage of BTyr clients
has a negative impact on the mean download time of
the swarm: in the next section, we dissect this issue,
considering the extreme case of a pure BTyr swarm.

In Appx.C.2 we study similar scenarios, where users
with BTold clients start adopting BTyr clients, or BT.
The interested reader is reffered to Appx.C.2 for furhter
details.

5.2 The Case of Massive Adoption

We focus on the extreme scenario of massive adoption
of BTyr. Fig. 6 illustrates the ECDF of the download
times for a torrent of all BT and BTyr clients: a glance
at the median and worst case download times indicates
that a large-scale adoption of BTyr can indeed jeopardize
the content distribution process, even with a constrained
peer set size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

E
C

D
F

Time (sec)

All BitTyrant

All BitTorrent

Fig. 6. ECDF of download times for BT and BTyr.

8

To understand exactly why system performance de-
grades when all peers use BTyr, we analyze the upload
capacity allocation of a fast BTyr peer in Appx.C.3.

5.3 PlanetLab Experiments

We summarize the results for a set of experiments ob-
tained using PlanetLab [22] as a testbed. For the details
of such experiments, we refer to Appx.C.4.
We have reproduced a similar set of experiments

shown in Fig. 5 using real BT and BTyr software distribu-
tions. We note that BTyr has no gain over BT. In any case,
the results confirm that BTyr clients need a favorable
environment, otherwise the gains seems unpredictable.

6 CONCLUSIONS

Recent days have witnessed the development of greedy
peer-to-peer clients aiming at decreasing content down-
load times by leveraging subtle techniques to exploit
generous clients. In this work we focused on BitTorrent
networks and analyzed two commonly deployed greedy
techniques (implemented in BitTyrant). We showed that
the BT protocol can be misused to gain an advantage
over standard peers by building progressively larger
peer sets.
We then deconstructed the other greedy building

blocks – which constitutes the BitTyrant clients – and
showed, on the one hand, some undesired behaviors,
such as periodic chokes/unchokes, that limit the perfor-
mance of the client; on the other hand the greedy uplink
allocation algorithm of BitTyrant has some positive im-
plications on the content distribution process, especially
during its bootstrap phase.
Furthermore, we shifted our focus from the perfor-

mance of a single BitTyrant client to the analysis of
system performance when an increasing number of such
greedy clients is adopted. Our results indicate that a
gradual “invasion” of BTYr clients progressively de-
grades the mean dowload time of the swarm, suggesting
that a massive adoption of BitTyrant has to be avoided.
Nevertheless, we studied this extreme scenario and our
results pinpoints at a severe performance degradation
for all peers as a consequence of instabilities of the choke
algorithm of BitTyrant, that was not designed to function
in competition with other similar clients.
The instability problems of subtle variations of the

choke algorithm highlighted by our work indicate that
further work is required to exploit the potential benefits
of alternative schemes to allocate the uplink capacity of
a peer. Along the same lines, our results show that the
last version of the legacy BitTorrent client is more robust
than his predecessor to BitTyrant. Moreover, we noticed
a significant performance improvement of BitTorrent
due to a larger number of active connections for high
capacity peers (cf. Appx.C.2). Hence, the adoption of the
new version of the choke algorithm of BitTorrent in all
clients supporting this protocol is highly recommended.

REFERENCES

[1] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. of
P2P-Econ, Berkeley, California, USA, June 2003.

[2] http://www.guardian.co.uk/technology/2006/oct/19/
guardianweeklytechnologysection.insideit

[3] http://www.theglobeandmail.com/servlet/story/
RTGAM.20071128.wgtbittorrent29/BNStory/Technology

[4] http://arstechnica.com/news.ars/post/20080421-study-
bittorren-sees-big-growth-limewire-still-1-p2p-app.html

[5] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent
is an auction: analyzing and improving bittorrent’s incentives,”
in Proc. of ACM SIGCOMM Seattle, WA, USA, Aug. 2008.

[6] A. Legout and G. Urvoy-Keller and P. Michiardi “Rarest first and
choke algorithms are enough,” in Proc. of IMC, Rio de Janeiro,
Brazil, October 2006

[7] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, X. Zhang, “Measure-
ments, Analysis, and Modeling of BitTorrent-like Systems”, in
Proc. of IMC, Berkeley, California, USA, October 2005

[8] M. Izal, Guillaume Urvoy-Keller, Ernst W. Biersack, Pascal Felber,
Anwar Al Hamra, Luis Garces-Erice, “Dissecting BitTorrent: Five
Months in a Torrent’s Lifetime” in Proc. of PAM Antibes, France,
April 2004

[9] X. Yang and G. de Veciana, “Performance of Peer-to-Peer Net-
works: Service Capacity and Role of Resource Sharing Policies,”
in Performance Evaluation, Vol. 63, Issue. 3, 175-194, March 2006

[10] A. R. Bharambe, C. Herley, V. N. Padmanabhan, “Analyzing and
Improving a BitTorrent Networks Performance Mechanisms,” in
Proc. of INFOCOM, Barcelona, Spain, May 2006

[11] D. Qiu and R. Srikant, “Modeling and performance analysis
of BitTorrent-like peer-to-peer networks,” in Proc. of SIGCOMM,
Band, Alberta, Canada, August 2005

[12] F. Bin, D. M. Chiu, J. C.S. Lui, “The Delicate Tradeoffs in
BitTorrent-like File Sharing Protocol Design,” in Proc. of ICNP
Santa Barbara, USA, 2006

[13] F. Bin, D. M. Chiu, J. C.S. Lui, “Stochastic Differential Equation
Approach to Model BitTorrent-like P2P Systems,” in Proc. of ICC,
Istanbul, Turkey, June 2006

[14] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting
BitTorrent For Fun (But Not Profit),” in Proc. of IPTPS, Santa
Barbara, California, USA, February 2006.

[15] T. Locher and P. Moor and S. Schmid and R. Wattenhofer “Free
Riding in BitTorrent is Cheap,” in Proc. of HotNets-V, Irivine,
California, USA, November 2006.

[16] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A.
Venkataramani, “Do incentives build robustness in BitTorrent?,”
in Proc. of NSDI, Cambridge, MA, USA, Apr. 2007.

[17] N. Laoutaris, D. Carra, P. Michardi, “Uplink Allocation Beyond
Choke/Unchoke or How to Divide and Conquer Best,” in Proc.
of ACM CoNext, Madrid, Spain, Dec 2008.

[18] A. Legout, N. Liogkas, E. Kohler, and L. Zhang “Clustering and
Sharing Incentives in BitTorrent Systems,” in Proc. of SIGMET-
RICS, San Diego, CA, USA, June 2007.

[19] A. Gai, F. Mathieu, F. de Montgolfier, J. Reynier, “Stratification
in P2P networks: Application to BitTorrent,” in Proc. of ICDCS,
Toronto, Ontario, Canada, July 2007.

[20] H. A. David and H. N. Nagaraja, “Order statistics”, John Wiley
& Sons, Inc., 2003.

[21] W. Yang and N. Abu-Ghazaleh, “GPS: A General Peer-to-Peer
Simulator and its Use for Modeling BitTorrent,” in Proc. of MAS-
COTS, Atlanta, Georgia, USA, September 2005.

[22] PlanetLab, http://www.planet-lab.org/, Dec. 2009.

9

APPENDIX A

A.1 Matching time

In Fig. 7 we show the matching time for BTold and
BT clients with different uploading capacities. Matching
times are as large as 1 and 10 hours respectively for high
capacity BTold and BT clients and they are not negligible
with respect to typical download times. The sawtooth
behavior of the BT curve is due to non-continuous
relation between the uploading capacity and the equal
split. Given two peers with similar capacities, it can
happen that the one with higher capacity opens one
additional connection. Hence it has a larger set of active
peers (|Ai| is larger), but at the same time its equal-
split is smaller and the time needed to discover a single
faster peer is shorter (1/(1 − B(ui)) is smaller). For the
specific empirical distribution, this second effect prevails
and this justifies the shape of the curve.

10
2

10
3

10
4

10
2

10
4

Capacity (kB/s)

E
x
p
e
c
te

d
 T

F
T

 m
a
tc

h
in

g
 t
im

e
 (

s
)

BTold
BT

Fig. 7. Time required for a new peer to discover a number
of peers of equal or greater equal-split to fill its active set.

A.2 Probability of Reciprocation and Expected

Download Rate

Fig. 8 shows the reciprocation probability for BTold
clients after 150 seconds and after 15 minutes, respec-
tively the time intervals needed by each peer to discover
the equal splits of 10 and 60 peers. Every point (x, y)
of the figure indicates the probability that a peer with
capacity x is going to be reciprocated by a peer with
capacity y. After 150 seconds (Fig. 8-a), peers with lower
uplink capacities are very unlikely to be reciprocated
by fast peers; however, the probability for fast peers to
reciprocate remote peers that cannot sustain their upload
rates is very close to one. This observation no longer
holds after 15 minutes, (Fig. 8-b): in this case a large
fraction of peers is willing to reciprocate only with other
peers with similar or higher capacities. In general we
notice that there is a relation between the bandwidth of
a peer and the duration of the possible exploitation of
other peers: the lower the bandwidth a peer has, the less
the probability it can exploit high bandwidth peers for
a long time.
Fig. 9 shows the corresponding results for the BT

client. BT appears to be more generous in that the

(a) After 150 seconds

(b) After 15 minutes

Fig. 8. Reciprocation probability for BTold.

(a) After 150 seconds

(b) After 15 minutes

Fig. 9. Reciprocation probability for BT.

10

10
2

10
3

10
4

10
2

10
3

10
4

Capacity (kB/s)

D
o
w

n
lo

a
d
in

g
 r

a
te

 (
k
B

/s
)

BTold
BT

Fig. 10. Expected download rate for a peer of a given

capacity after 15 minutes.

probability of an unfair reciprocation (a slow peer being
served by a fast one) is still high after 15 minutes.

Fig. 10 reports the expected download rate of a peer
with a given uplink capacity, after 15 minutes from the
beginning of the download process. Fairness is achieved
when the uplink capacity equals the expected down-
load rate (diagonal line in the figure). We recall that
both regular and optimistic unchokes contribute to the
download rate observed by a peer. In the BTold case,
Fig. 10 illustrates that low capacity peers are able to
get more then their fair rate. This is mainly due to
optimistic unchokes: focusing only on regular unchokes
would reveal that the expected download rate is parallel
to the diagonal up to roughly 200kB/s. On the contrary,
peers with capacity greater than 3000kB/s offer more
upload capacity than they receive: this is exploited by
peers with intermediate upload capacity.

While similar observations can be drawn for the BT
case, we notice that the advantage for low capacity peers
is less pronounced: this is due to the larger number
of active connections (hence lower uplink bandwidth
dedicated to each of them) of a BT client.

APPENDIX B

B.1 Impact of the Peer Set Size in BTold

Fig. 11 illustrates the download time of a single BTold,
and BTyr client for different classes of uplink capacity in
the baseline case where all the other clients are BTold. We
observe that the performance gain of BTyr over BTold
is always present and particularly pronounced on fast
peers.

Fig. 12 shows the download time for the same set
of experiments shown above when the greedy peer set
construction is obstructed. The results illustrate a per-
formance loss of BTyr in a torrent of BTold clients, cor-
roborating - along with the observations in Section 4.2 -
the hypothesis that the increased peer set size constitutes
one of the factors influencing download performance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

D
o

n
w

lo
ad

 T
im

es
 (

se
c)

Upload Cap (KB/s)

BitTyrant
BitTorrent Old

Fig. 11. Mean download time of a single client with

different bandwidths (95% confidence interval).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

D
o

n
w

lo
ad

 T
im

es
 (

se
c)

Upload Cap (KB/s)

BitTyrant
BitTorrent Old

Fig. 12. Mean download time of a single client with a

constrained peer set (95% confidence interval).

B.2 Altruistic Impact of the Active Set Size in BTyr

Fig. 13 depicts the ratio between the cumulative number
of uploaded pieces over time by the single BTyr client
with respect to the corresponding BT client. Especially
during the early stages of content distribution, BTyr
uploads up to 25 times (for a high bandwidth peer) the
number of pieces uploaded by BT. During steady state,
the ratio of the number of pieces uploaded from BTyr
and BT converges to 1.

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350

C
u

m
u

l.
 m

ea
n

 #
 o

f
u

p
lo

ad
ed

 p
ie

ce
s

Time (sec)

bw: 10000
bw: 5000
bw: 1000

bw: 80

Fig. 13. Time series of the ratio between cumulative
uploaded pieces by BTyr and BT.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

E
C

D
F

Time (sec)

All BitTorrent Old
+ one fast BitTyrant

All BitTorrent Old

Fig. 14. ECDF of download times with or without a single

standard BTyr client with bandwidth 5000 KB/s.

The unexpected altruism of BTyr has a beneficial effect
on all peers involved in the distribution process. In
Fig. 14 we show the empirical cumulative distribution
function (ECDF) of the download times of all peers in the
system. Results indicate that, when even only one fast
peer (with high bandwidth equal to 5000 KB/s) adopts
BTyr instead of BTold, there is a positive impact on the
performance of all the other peers. We also note that
similar observations can be made when introducing one
BT client in a swarm of BTold ones.
The results obtained in this section hint toward an im-

portant direction of future research, that is the study of
dynamic uplink allocation algorithms, where the number
of active connections is not an empirically set parameter
as done in BT. However, we showed in Section 4.3 that
the apparently attractive uplink allocation strategy of
BTyr cannot readily be used by all peers in a system.

B.3 Matrix Representation of BTold upload algo-

rithm

Round

N
e
ig

h
b
o
r

ID

20 40 60 80 100

10

20

30 1000

800

600

400

200

0 KB/s

Fig. 15. Upload rate in the data agnostic case: snapshot
for a fast BTold client.

We performed the same test described in Sect. 4.3 with
a BTold peer, whose matrix E is showed in Fig. 15
The matching mechanisms is evident for BTold: after 30
rounds three out of four slots are stable matches. The

optimistic unchokes then discover the last slot after 65
rounds.

APPENDIX C

C.1 Issues in torrents with multiple BTyr peers

Authors in [16] make the point that there are reasons
to assume an increasing popularity of BTyr and present
some initial results for the case of a torrent of all
BTyr clients. They argue that a wide-spread adoption
of BTyr may have a negative impact on global system
performance: when two BTyr clients meet, in fact, they
can start decreasing the rate they provide each other,
yet maintaining a good ratio between the data received
and sent. The final result is that both clients unchoke
each other, but they provide a small rate (e.g., not even
sufficient to upload one block in one chocking interval).
To cope with this problem, [16] suggests the following

fix: when peers establish a connection and perform the
initial handshake, if they realize that they both are using
BTyr, they should switch to a block based TFT strategy,
trying to increase the rate rather than decrease it. In
order to evaluate BTyr in the multiple client case, this
modification should be taken into account. However, as
we illustrate in the following, a number of issues related
to the BTyr block based TFT choke algorithm suggest
that this technique might be ineffective.
The original BTyr variant has been implemented using

the Azureus (now known as Vuze) client. An analysis of
the source code reveals that the block based TFT has
not been implemented, and a clear algorithm specifi-
cation is not discussed in the original paper [16]. We
argue that the main practical problem with a BTyr client
to implement such a strategy relates to the difficulty
of handling connections and share resources (that is,
bandwidth) with different variants of BT. Consider the
following example: a BTyr client A is interacting with
another BTyr client B and with a BT client C. Assume
that A receives from B and C a rate such that in the next
choking interval they should be both unchoked. Client
A is applying block based TFT with client B and decides
to increase the uploading rate to that client. At the same
time, client A is trying to maximize the reciprocation
from client C. When the bandwidth has to be assigned
to clients B and C, how can client A split it? If client
B requires more bandwidth (two BTyr clients should
try to increase the rate when they exchange data) is it
better to give to B more bandwidth taking away from
client C? In other words, is it better to invest in a block
based TFT (which will give back the same amount of
transferred data) or to maintain a risky connection with
C (which can choke client A, but which can provide
better reciprocation)?
In addition, clients’ identities can be easily forged in

the current BT protocol specification: regular BT clients
might consider BTyr as a threat, hence a simple “admis-
sion control” mechanism that would refuse a connection
to a BTyr peer could be implemented in future versions

12

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

M
ea

n
 D

o
w

n
lo

ad
 T

im
e

Percentage of BitTyrant

BitTorrent
BitTyrant

Fig. 16. Average of the mean download times for an

increasing fraction of BTyr clients in a population of BTold

peers (95% confidence interval).

of BT. As a consequence, BTyr peers should hide their
identities in order to exploit BT clients: however, by
doing so, they would be incapable of recognizing other
BTyr peers and fail in switching to a block based TFT
mechanism.

C.2 Increasing Fraction of Greedy Variants (BTold)

We ask whether it is possible to predict an equilibrium
point by which there would be no incentive for users to
adopt the BTyr variant. In this case, we focus on the
effects of an increasing adoption of BTyr clients in a
swarm composed by BTold clients on users’ download
times. In the following experiments, we use the same
settings described in Sect. 5.1.
Fig. 16 illustrates the average of the mean download

times respectively (with 95% confidence intervals) for the
population of BTyr and BT clients, as a function of the
percentage of BTyr clients in the swarm. For a small
fraction of BTyr (3%), the performance improvement
amounts to roughly 22% in favor of greedy clients.
However, the gap shrinks as soon as 20% of peers use the
BTyr client, and disappears at around 30% of invaders.
Our experiments show that, a fraction of 30% BT clients
seems to be a critical threshold in the system, which can
be seen as an equilibrium point, in game theoretic terms.
When 30% of the torrent is composed of greedy peers,
download times for both BT and its variant are similar,
hence there would be no incentive for a peer currently
using BT to switch to BTyr (nor the inverse).
Armed with the observations on the new version of

the BT protocol discussed in Sec. 4, we now study
the effects of a widespread adoption of BT clients. We
ask whether the update of the BT protocol brings an
actual performance improvement. Fig. 17 illustrates the
effects on the average of the mean download times of
an increasing percentage of BT peers in a population of
BTold peers. The conclusion of this experiment is that
the performance of BTold and BT are comparable, so
the single user gains a very little advantage with the
BT upgrade. Interestingly, the mean download times of

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

M
ea

n
 D

o
w

n
lo

ad
 T

im
e

Percentage of BitTorrent

BitTorrent Old
BitTorrent

Fig. 17. Average of the mean download times for an

increasing fraction of BT clients in a population of BTold

peers (95% confidence interval).

BTold and BT are highly correlated, meaning that BTold
clients benefit from an increasing fraction of BT peers:
when 50% of peers in the system adopt BT, we observe
a performance gap of roughly 25% favoring both BTold
and BT peers as compared to a swarm of BTold clients.
The gap widens to approximatively 36% when most or
all peers use BT. Our results indicate that the transition
to a swarm composed by peers adopting the new version
of BT has a sensible social benefit.

C.3 Massive Adoption

Round

N
e
ig

h
b
o
r

ID

20 40 60 80 100

10

20

30

40

50

60

70

80

more
200 and

180

160

140

120

100

80

60

40

20

0 KB/s

Fig. 18. Upload rate in the multiple clients case: snapshot

for a fast BTyr client.

We generalize the matrix E for every peer k in the
system, i.e., for every peer k we record a matrix E(k)

where the element e
(k)
ij represents the rate assigned by

peer k to peer i at choking interval j. Fig. 18 illustrates
E(k) for a peer k with 10000 KB/s uplink capacity.

It’s possible to observe two different trends: (i) some
neighbors of peer k are allocated less and less uplink

13

bandwidth; (ii) other neighbors are assigned an increas-
ing amount of bandwidth, which then degenerates into
a periodic, on-off, phase.
The decreasing allocation of bandwidth, as explained

in Appx.C.1, is related to the BTyr bandwidth allocation
algorithm: when two BTyr clients meet, in fact, they
can start decreasing the rate they provide each other,
yet maintaining a good ratio between the data received
and sent. The final result is that both clients unchoke
each other, but they provide a little rate (e.g., not even
sufficient to upload one block in one chocking interval).
When BTyr interacts with BT, a periodic pattern ap-

pears, as we observed in Sect. 4.3. In this case, instead
of providing a constant rate to almost all the neighbors,
the rate is continuously increasing. The initial increasing
trend can be explained as follows: on the one hand,
peer k has spare uplink capacity, thus it unchokes all its
neighbors; on the other hand, its neighbors may have
limited capacity, hence they choke peer k. As a conse-
quence, peer k (that follows the BTyr choke algorithm)
increases the uplink capacity to remote peers to increase
the probability of reciprocation. This behavior is visible
for the first 20-30 rounds. At this point, the rate allocated
by peer k to remote peers reaches a very high value. As
a consequence, (i) peer k starts choking some neighbors,
since it does not have enough capacity for all of them;
(ii) on the contrary, peer k’s neighbors start unchoking it.
These two phases are interleaved and concur in creating
the periodic behavior.
A close look at Fig. 18 indicates that the periodicity

is equal to three rounds4. This is a consequence of the
probing period used by BTyr (and BT) to estimate the
received/sent rate.

C.4 PlanetLab Experiments

Setting up a realistic testbed to explore different scenar-
ios as done in simulation is a non-trivial task. Neverthe-
less, it is important to understand if our most important
findings can be observed using clients deployed in more
realistic settings. In this spirit, the PlanetLab results
should be considered as additional results, not as a full
evaluation of the BTyr client.
We use approximately 300 PlanetLab nodes: part of

the nodes use the official BTyr client, while the remain-
ing use the basic BT client in order to reproduce the
experiments shown in Sect. 5.1 . The content size is the
same used for the simulations, and the seed is a well
provisioned peer hosted on dedicated machines.
As opposed to simulations settings, here we do not

control the distribution of peers’ bandwidths: the Plan-
etLab nodes are usually well provisioned, thus the band-
width distribution differs from the one used in the
simulations.
Alternatively, we could have set an upload cap to

mimic the bandwidth distribution of our simulations,

4. Similar results are obtained for a peer k with different uplink
capacity.

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

M
ea

n
 D

o
w

n
lo

ad
 T

im
e

(s
)

Percentage of BitTyrant

BitTorrent
BitTyrant

Fig. 19. Average of the mean download times for an

increasing fraction of BTyr clients in a population of BT

peers: PlanetLab experiments (95% confidence interval).

but this approach is problematic. Since this distribution
has long tails and the maximum bandwidth in PlanetLab
is limited, we would obtain a high percentage of nodes
with very small bandwidths, resulting in extremely high
download times and a too short choking interval (cf.
[10]). Scaling all the parameters – the file size, the chunk
size, the choking interval – may have unexpected effects
on the execution of the key algorithms of BT.
In Fig. 19 we show the results obtained by varying

the percentage of BTyr. For each scenario (e.g., 10% of
BTyr nodes), we perform three different experiments, we
compute the mean download time of each experiments,
and then we calculate the average of these three mean
download times, along with the confidence interval for
a 95% confidence level.

