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Abstract—In many application scenarios sensors need to

calculate the average of some local values, e.g. of local measure-
ments. A possible solution is to rely on consensus algorithms.
In this case each sensor maintains a local estimate of the global
average, and keeps improving it by performing a weighted sum

of the estimates of all its neighbors. The number of iterations
needed to reach an accurate estimate depends on the weights used
at each sensor. Speeding up the convergence rate is important also
to reduce the number of messages exchanged among neighbors
and then the energetic cost of these algorithms. While it is
possible in principle to calculate the optimal weights, the known
algorithm requires a single sensor to discover the topology of
the whole network and perform the calculations. This may
be unfeasible for large and dynamic sensor networks, because
of sensor computational constraints and of the communication
overhead due to the need to acquire the new topology after
each change. In this paper we propose a new average consensus
algorithm, where each sensor selects its own weights on the
basis of some local information about its neighborhood. Our
algorithm is tailored for networks having cluster structure, like
it is common for wireless sensor networks. In realistic sensor
network topologies, the algorithm shows faster convergence than
other existing consensus protocols.

I. INTRODUCTION

Emerging technologies as robotics, multi-vehicle cooper-

ation control, and environmental monitoring have a driving

need for wireless sensor networks. In these scenarios, sensors

often need to reach consensus, for example for sensor fusion,

coordination or optimization of algorithm parameters. We are

interested in this paper in average consensus algorithms [1],

where sensors deployed in a network, each having an initial

value, e.g. a measurement, aim to calculate the average of

all these values through a distributed linear iteration method.

Consider for instance sensors deployed to measure the tem-

perature T of a given source. Due to additive zero mean

Gaussian noise, each sensor has a different measurement of

the source temperature. It is well known that a good filter

of the Gaussian noise is the mean filter. Therefore, if we

average the values of the initial measurements we can have a

good estimation of the source temperature. The advantage of

consensus algorithms is that they can calculate iteratively this

average value in a completely distributed way through local

information exchange among neighbors and simple calculation

1The authors are given in alphabetical order.

of weighted sums at each sensor. The speed of convergence

of consensus algorithms depends on the weights used by each

sensor. This is a critical performance metric also for energetic

reasons. In fact reducing the convergence time leads to a

smaller number of transmissions among the sensors and then to

lower energetic costs for each sensor. It is known that the set of

weights that minimize the convergence time can be determined

through a Semi Definite Program ([2], [3]) that requires the

knowledge of the whole topology. This approach may be

unfeasible for large and dynamic sensor networks, because

of sensor computational constraints and of the communication

overhead due to the need to acquire the topology after each

change. In this scenario, it seems more promising to use local

average consensus algorithms, i.e. algorithms where each node

autonomously calculates its weights on the basis of some local

knowledge.

In this paper we propose a new algorithm, called neigh-

borhood algorithm, that requires less iterations than other

existing consensus algorithms on different types of graphs

having cluster structure. On these graphs the speed of con-

vergence is greatly affected by the weights given to the links

connecting different clusters. The neighborhood algorithm has

been designed to identify such links and give them higher

weights in order to speed-up information propagation among

different parts of the networks.

The outline of the paper is as follows. Section II provides a

background on average consensus algorithms, describing also

convergence conditions and the specific algorithms considered

in this paper for comparison purpose. We describe our con-

sensus algorithm in section III and we argue that it converges

faster than other known algorithms on networks having cluster

structure. In section IV we shows simulation results that

support this claim on different graph topologies such as 2-

cliques, Watts-Strogatz and random geometric graphs. Finally

section V summarizes the paper and discusses future work.

II. AVERAGE CONSENSUS ALGORITHMS

The study of average consensus algorithms has gained a lot

of interest in the last decade [1], [4], [5], [6]. We may divide

these algorithms into two main classes: synchronous and asyn-

chronous algorithms. In asynchronous algorithms, each node

in the network has an independent clock. When the node’s



clock ticks, the algorithm is applied by the node independently

from any other node. For a complete coverage of asynchronous

algorithms we recommend to read [7], [8], [9], [10], [11], [12].

On the other hand, in synchronous algorithms, all nodes in the

network use a global clock and perform every iteration of the

average consensus algorithm at the same time. In this paper

we only consider synchronous algorithms on static topologies,

but the rationale of our algorithm can be extended also to the

asynchronous case and, since the algorithm uses only local

information to select the weights, it can also operate in a

dynamic scenario.

In order to describe the operation of synchronous consensus

algorithms, we need to introduce some notation. We consider

an undirected graph G = (V, E) where the vertices in

V = {1 . . . n} correspond to the nodes in the network, and an

edge (i, j) ∈ E corresponds to a communication possibility

between nodes i and j. Let Ni be the set of neighbors of node

i and N[i] be the closed neighborhood, i.e. N[i] = {i} ∪ Ni.

Each node i initially has a local value mi ∈ R. The purpose of

an average consensus algorithm is to have nodes calculating

the average m̄ = 1
n (

∑n
i=1 mi) in an iterative and distributed

way. To this purpose, each node maintains a local estimate of

the global average m̄. Let us denote by xi(k) the estimate of

node i at time slot k such that xi(0) = mi. At time slot k+1,
each node transmits its current estimate to its neighbors and

updates its estimate as follows: xi(k+1) =
∑

j∈N[i]
wijxj(k),

or in matrix form:

x(k + 1) = Wx(k) (1)

where W is the matrix whose elements are the weights wij

and x(k) is the state vector of the system at time slot k, i.e. the
vector whose elements are the node estimates xi(k).
An average consensus algorithm has to guarantee that the

iterative procedure described by eq. (1) leads all the estimates

to converge to m̄, i.e.:

lim
k→∞

x(k) = m̄ , m̄1,

where 1 is a column vector of all ones. In [2] Xiao and Boyd

showed that the necessary and sufficient conditions for the

convergence in the case of static networks are:

W1 = 1, (2)

1
T W = 1

T , (3)

ρ

(

W −
1

n
11

T

)

< 1, (4)

where ρ(A) is the spectral radius of matrix A.

Equation (2) means that the consensus is stable, i.e. if

x(kf ) = m̄ then x(k) = m̄ ∀k > kf . Equation (3) says

that the average of all the estimates is conserved at each

iteration which guarantees the final consensus value to be the

average of the initial measurements. Finally, equation (4) is

the contraction condition, i.e. it corresponds to the fact that

the distance of the estimates from m̄ is decreasing.

Even if the matrix W has to satisfy these conditions in

order to guarantee the convergence of the estimates to m̄, the

choice of the weights is to a given extent arbitrary and different

algorithms differ in the way weights are selected. In particular

the matrix can be selected to speed up the convergence. The

convergence speed of these algorithms is related to the mixing

time of Markovian chains, it is possible to show that the “er-

ror” ||x(k)− m̄||2 can be upper bounded by cλk
2 , where λ2 is

the second largest eigenvalue of the weight matrix W and c is

a constant [3], [13]. In [2], [3], the authors address the problem

of selecting the optimal weights and formulate a semidefinite

program to determine the matrix W with the smallest value of

λ2. If the network topology is not known a priory (or changes

in time), the implementation of this optimization procedure

requires a single sensor to discover the topology of the whole

network and perform the calculations. This may be unfeasible

for large and dynamic sensor networks, because of sensor

computational constraints and of the communication overhead

due to the need to acquire the topology and recalculate all the

weigths after each change. In these cases, it seems better to

let each sensor to calculate independently its weights on the

basis of some local knowledge. In this way the computation

burden for each node is smaller and topology changes at one

location (e.g. the failure of a link or of a node) only affect the

weights of the nearby sensors.

One of the most known local average consensus algorithm

is the Local Degree algorithm (also known as Metropolis-

weight algorithm), where each sensor selects its weights on

the basis of its own degree and the degree of its neighbors. In

particular it holds

wij =

{

1
max{di,dj}

if (i, j) ∈ E and i 6= j,

0 if (i, j) /∈ E and i 6= j,
(5)

where di (dj) is the degree of vertex i (j). Then nodes select

the weight wii such that wii = 1 −
∑

j∈Ni
wij in order to

satisfy condition (2). The three convergence conditions are

satisfied.

Two other common algorithms rely instead on some global

knowledge of the network. Under the Max Degree algorithm

each node is assumed to know the maximum node degree

in the network (dmax = maxi{di}) and the same weight is

associated to each link as follows:

wij =

{

1
dmax

if (i, j) ∈ E and i 6= j,

0 if (i, j) /∈ E and i 6= j.
(6)

The weights wii are then determined as above in order to

guarantee the stochasticity of the matrix W . Also in this case

convergence conditions are satisfied, but convergence can be

very slow. It is possible to increase the convergence speed

by increasing the constant weight value, but the risk is that

condition (4) is no more satisfied. The optimal constant weight

value is used by the Best Constant algorithm, that is the

fastest one among those that use uniform weights. [2] proves

that each weight wij with i 6= j has to be selected equal to
2

ν1(L)+νn−1(L) , where L is the Laplacian of the graph and νi

is the ith largest eigenvalue.



III. THE NEIGHBORHOOD ALGORITHM

In local algorithms, each node selects its corresponding

weights on the basis of local information without the need

to know the whole network topology. Our algorithm, called

Neighborhood algorithm, falls within this category and is

tailored for networks with cluster structure, i.e. networks

where nodes tend to create tightly knit groups characterised

by a relatively high density of links. Sensor networks usually

exhibit a cluster structure. In fact, since available links are

determined by sensors being in the transmission range of each

other, there is a big chance that a node and its neighbor have

many common neighbors and form a cluster.

In general, graphs with cluster structure require a large

number of iterations for consensus algorithms to converge

because information tends to remain confined within each

cluster and it slowly propagates from a cluster to another. For

example, in the network in Fig. 1 the local estimates in each

cluster converge fast to the average of the initial values in

the cluster, but they slowly reach the global average because

communication between the two clusters is possible only

through the link (u, v). The example shows that in networks

with cluster structure, links have significantly different roles in

the spreading of the information. Intuitively, a way to speed up

the convergence is to give higher weights to links that are more

important because they connect different parts of the networks

(like the link (u, v)). The rationale of our algorithm is indeed

to let each node identify such links relying only on some local

knowledge. In particular in the Neighborhood algorithm, the

importance of the links is estimated locally by considering the

neighborhood characteristics of nodes in the network. Each

node i sets the weight of a link (i, j) depending on the

similarity between its neighborhood set and the neighborhood

of node j. In order to quantify such similarity we resort to the

Jaccard index defined in the set theory [14]. For any two sets

A, and B, the Jaccard index is:

J(A, B) =
|A ∩ B|

|A ∪ B|
. (7)

The smaller J(N[i], N[j]) (we will refer to it as Jij), the more

different the two neighborhood sets. Then the corresponding

link (i, j) is given a higher weight. The larger Jij , the more

similar the neighborhoods and the smaller the link weight.

For example, u and v in Fig. 1 must give higher weight to the

link (u, v) than to any other link as the two nodes have very

different neighborhood sets.

Algorithm 1 describes the detailed operation of the Neigh-

borhood algorithm. Nodes must first exchange their neigh-

borhood sets and then select the weights according to the

similarities between the neighborhoods. The operations in

steps 3 and 5 of the algorithm guarantee that the weights

satisfy the convergence conditions given in the section II. In

fact, the normalization in step 3 makes possible to determine

a weight matrix W stochastic, while taking the minimum

between the two values yij and yji at step 5 generates a

symmetric matrix. Finally, the way to select weights wii

Algorithm 1 Neighborhood Algorithm

1: Each node i broadcasts the set N[i] to all its neighbors.

2: After receiving all the sets from its neighbors, node i
assigns to each link (i, j), j ∈ Ni the value:

yij = 1−
|N[i] ∩ N[j]|

1 + 2 ×min{|N[i]|, |N[j]|} − |N[i] ∩ N[j]|
. (8)

3: a =
∑

j∈Ni
yij

if a > 1 then yij := yij/a.
4: Each node i sends to every neighbor j the value yij .

5: Each node i sets wij = min{yij , yji} ∀j ∈ Ni and wii =
1 −

∑

j∈Ni
wij .

Fig. 1. Example of a 2-clique graph with n = 10 nodes.

guarantees that the matrix is stochastic and then, being that

it is symmetric, doubly stochastic.

IV. PERFORMANCE EVALUATION

We have considered three different types of networks to

compare the speed of convergence of the different average

consensus algorithms:

2-Clique Graph: On these graphs, 2 cliques each having n/2
nodes are connected by only one link, see Fig. 1.

The characteristic of these graphs is the existence of

a bottleneck link. For the nodes to reach consensus,

information must flow through the link joining the

two clusters. Thus, the weight of this link is expected

to play an important role in the convergence of

average consensus algorithms.

Watts-Strogatz (WS) Graphs [15]: Small world graphs de-

fined by the number of nodes n, their average degree,
and a rewiring probability p, see Fig. 2. When

p = 0, each node on the graph has high clustering

coefficient, however, as p increases, the graph be-

comes more random, and both the diameter and the

clustering coefficient become smaller. We will study

the effect of the rewiring probability on the speed of

convergence of average consensus algorithms.

Random Geometric Graphs (RGG) [16]: Graphs where n
nodes are placed uniformly at random on a convex

unit area (we will consider a unit square area), and

any two nodes are connected by an edge if the

distance between them is less than the radius rn =
√

c × log(n)
n , where c is a constant, see Fig. 3. RGG

are well suited to model wireless sensor networks



p=0 p=0.1

p=0.6

Fig. 2. Example WS graph with n = 24 nodes, average degree 6, and p

equals 0, 0.1, and 0.6.
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Fig. 3. RGG with n = 100 nodes and different values of the connectivity
radius.

where the nodes have been deployed randomly on

a field and the transmission range of each sensor is

rn. When the transmission range rn is small, the

network presents clusters of sensors, connected by

links that play an important role for the convergence.

As the range is increased, the network becomes more

connected and converges to a complete graph. We

have studied the convergence speed of the average

consensus algorithms for different transmission range

values.

For all our simulations, we considered the graph to have n =
100 nodes.
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Fig. 4. Convergence speed on 2-Clique graphs.

The distance of the system state vector x(k) from the

average m̄ can be expressed by the normalized error:

e(k) =
||x(k) − m̄||2
||x(0) − m̄||2

. (9)

Figure 4 shows the performance of the algorithms on 2-

clique graphs in terms of the normalized error. The Max

Degree algorithm is not shown as its performance is very

similar to the Local Degree one. As initial condition we

considered one node with initial value equals to 1 and all

other nodes with initial value equal to 0. The estimate of each

sensor will then converge to the value m̄ = 1/n = 0.01 with

a different speed depending not only on the algorithm but also

on the specific node that has value 1. We have then averaged

the error at each iteration across all possible permutations

of the initial values. Our algorithm converges much faster

than the other two. In particular, the error becomes smaller

than 10−3 after 679 iterations while more than 3000 iterations

were required for the other algorithms. Thus the neighborhood

algorithm on 2-clique graph is able to identify the importance

of the bottleneck link (u, v), and as u and v have totally

different neighborhoods, more weight is given to the link (u, v)
than to any other link in the graph.

The two following metrics are used to compare the speed

of convergence of the average consensus algorithms on RGG

and WS graphs.

The convergence factor is defined as:

ν(W ) = sup
x(0) 6=m̄

lim
k→∞

e(k)
1/k

= ρ

(

W −
1

n
11

T

)

, (10)

where ρ(A) is the spectral radius of matrix A. The conver-

gence time is defined as:

Tconv =
1

log (1/ν)
. (11)

It is roughly the time for the normalized error to become

smaller than 1/e.
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Figure 5 shows the average convergence time over 1000
WS graphs with average degree 6, for different values of the
rewiring probability p between 0 and 0.6. For WS graphs,

p = 0 gives high clustered graphs; however, as the value

of p increases, the graph becomes more random, and the

diameter of the graph decreases significantly, thus giving a

random graph with reasonable convergence time for average

consensus. For small values of probability p, the Neighborhood
algorithm performs better than the Local Degree and the Max

Degree algorithms. In particular the Neighborhood algorithm

saves up to 15% of the iterations as compared to the other

two for p ≤ 0.1. The Best Constant algorithm performs even

better, but it requires, as we said, the global knowledge of

the network. For larger values of p, almost all the algorithms

achieve similar performance and in particular they have much

smaller convergence times.

Similarly, Fig. 6 shows the average convergence time of

the different algorithms over 1000 RGG graphs for different

values of the transmission range r. For small values of r, the
Neighborhood algorithm gives the best performance among

the considered algorithms, in this case even better than the

Best Constant algorithm. As RGG graphs with small r present

cluster structure, some links have a more important role for

convergence and setting a constant weight on all the links

gives a longer convergence time. It appears that the level

of similarity between the neighborhood sets (used by our

algorithm) is a good estimator of the correct weights of the

links and this is shown by the faster convergence of the Neigh-

borhood algorithms for a radius r ≤ 0.2146. For example,

on RGG with radius r = 0.1357 , the convergence time for

Neighborhood algorithm is 245, it reaches 590 for the Max

Degree algorithm, while the second shortest time is obtained

by the Local Degree algorithm that needs about 295 iterations.

Thus the Neighborhood algorithm saves approximately 17%
of the iterations and this results in 17% less messages in the
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Fig. 6. Convergence time on RGG graphs.

network. This improvement can be very important in sensor

networks because power consumption is a critical issue. As

we increase the transmission range, the graph becomes more

connected and convergence is guaranteed by any algorithm

within a reasonable number of iteration. Large transmission

ranges are in any case probably not realistic for sensor

networks because they would cause a lot of interference. For

example with r ≥ 0.3 a sensor interferes on the average with

25% of the other sensors.

V. CONCLUSION

In this paper we proposed a new average consensus al-

gorithm for wireless sensor networks, called Neighborhood

algorithm. As other local consensus algorithms, our algorithm

can operate in large dynamic networks because every sensor

calculates its weights on the basis of some local information.

The algorithm has been tailored for networks with cluster

structure, where there are groups of nodes well connected

among themselves but poorly connected with other groups.

In such scenario, consensus algorithms can achieve poor

performance and a large convergence time. Our algorithm

aims to identify the most important links for information

propagation to give them a higher weight and then speed up

the convergence. Simulation results in section IV show that

indeed the Neighborhood algorithm outperforms existing local

algorithms and even the Best Constant algorithm in Random

Geometric Graphs that are a quite realistic model for many

sensor networks.

Future research is going to follow two directions. First,

we want to provide some analytical upper bound to the

convergence time of the Neighborhood algorithm. Our main

idea is that it is possible to provide a bound on the convergence

time of a consensus algorithm in terms of the conductance

of the weighted graph corresponding to the matrix W . Then,

it is possible to interpret the operation of the Neighborhood



algorithm (or of similar variants) as an attempt to maximize the

local conductance in the neighborhood of each node. Second,

in this paper we have only considered synchronous algorithms

on static topologies, but the rationale of our algorithm can be

extended also to the dynamic network scenario, being that the

algorithm uses only local information to select the weights.

Then a next step is to extend the Neighborhood algorithm to

that case and to study its behaviour.
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