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Abstract—WiFi-enabled buses and stops may form the back-
bone of a metropolitan delay tolerant network, that exploits
nearby communications, temporary storage at stops, and pre-
dictable bus mobility to deliver non-real time information. This
paper studies the problem of how to route data from its sourceto
its destination in order to maximize the delivery probability by
a given deadline. We assume to know the bus schedule, but we
take into account that randomness, due to road traffic conditions
or passengers boarding and alighting, affects bus mobility. We
propose a simple stochastic model for bus arrivals at stops,
supported by a study of real-life traces collected in a largeurban
network. A succinct graph representation of this model allows
us to devise an optimal (under our model) single-copy routing
algorithm and then extend it to cases where several copies ofthe
same data are permitted.

Through an extensive simulation study, we compare the opti-
mal routing algorithm with three other approaches: minimizing
the expected traversal time over our graph, minimizing the
number of hops a packet can travel, and a recently-proposed
heuristic based on bus frequencies. Our optimal algorithm
outperforms all of them, but most of the times it essentially
reduces to minimizing the expected traversal time. For values
of deadlines close to the expected delivery time, the multi-copy
extension requires only10 copies to reach almost the performance
of the costly flooding approach.

I. I NTRODUCTION

A bus-based network is a convenient solution as wireless
backbone for delay tolerant applications in an urban scenario.
In fact, a public transportation system provides access to
a large set of users (e.g. the passengers themselves), and
is already designed to guarantee a coverage of the urban
area. Moreover, such a wireless backbone is not significantly
constrained by power and/or memory limitations: a throwbox
can be easily placed on a bus and connected to its power
supply, or can be put in an appropriate place in bus stops,
which are usually already connected to the power grid to
provide lights and electronic displays. Finally, travel times can
be predicted from the transportation system time-table. Even if
the actual times are affected by varying road traffic conditions
and passengers’ boarding and alighting times, such a backbone
still provides strong probabilistic guarantees on data delivery
time that are not common in opportunistic networks.

Given this scenario, this paper explores the basic question:
“how to route data over a bus-based network, from a given
source to a given destination, so that the delivery probability
by a given deadline is maximized?”. We rely on the knowledge
of bus schedule information and some stochastic characteriza-
tion of bus mobility, supported by real data traces.

Most prior work exploits the contacts between the buses.
In this paper we consider the alternative approach of relying

only on bus-stop contacts and we study both single copy and
multiple copies options to route packets to their destinations.

We start with a simple mobility model for buses (Sec. III)
that is supported by the statistical analysis of a set of real
traces of the public transportation system of Turin in Italy.
This model allows us to represent the transportation system
appropriately in terms of a graph with independent random
weights, that we call thestop-line graph(Sec. IV). Under
this representation, our original problem to identify routes
maximizing the delivery probability by a given deadline (or
maximizing theon-time delivery probability) becomes equiva-
lent to a specific stochastic shortest path problem on the stop-
line graph. We are able to find an optimal algorithm, called
ON-TIME, for the single-copy case (Sec. IV-A) and then to
extend it for the multi-copy case through a greedy approach
(Sec. IV-C). We compare the performance of these proposed
algorithms with three other heuristics (Sec. IV-B) that also
operate on the stop-line graph: an adaptation of the routing
algorithm proposed in [6] for bus-bus communications (we
refer to it as MIN-HEADWAY ), and the two naı̈ve algorithms,
M IN-DELAY , that determines the path with the least expected
weight, and MIN-HOPS, that minimizes the number of times
packets are forwarded until they are delivered to their des-
tinations. Since the number of real-life traces we obtained
is limited, the comparison (Sec. V) is based on simulations
carried on a large set of synthetic traces generated on the
basis of our bus mobility model and the schedule of Turin
bus system.

In the companion technical report [1] our analysis is ex-
tended to the case when transmissions can fail.

II. RELATED WORK

Most of the research on DTN routing has focused on bus-to-
bus communications [2], [4], [5] with the following approach:
Each vehicle learns at run time about its meeting process;
then, the vehicles exchange their local view with other vehicles
and use the information collected to decide how to route
data. Unlike these studies, we mainly focus onbus-to-stop
data transfersand derive a single-copy routing algorithm to
maximize the delivery probability by a given deadline. We
then extend the algorithm to address settings where several
copies of the same data are permitted.

The use of fixed relay nodes was also considered in [3].
The authors report that the performance of a vehicular network
is improved by adding some infrastructure, like base stations
connected to the Internet, a mesh wireless backbone, or fixed
relays (which are similar to our stops). They show that



deploying some infrastructure has a much more significant
effect on delivery delay than increasing the number of mobile
nodes. These findings support our proposed architecture that
relies on an opportunistic connectivity between vehicle nodes
and fixed relays.

We observe that we use the bus network for data transfer
as it is used for passenger transfer. Thus, one could expect
that the same problem has already been addressed in the
transportation literature (see [1] for more details). However,
this is not the case: First, the possibility to exploit multi-copy
is clearly absent in the transportation of people or merchan-
dize. Second, the probability to miss a transfer opportunity
is also not considered in transportation, while data transfer
between two nodes may fail because of insufficient contact
duration, channel noise or collisions. Third, even for single-
copy routing, bus network passenger routes usually aim to
minimize the expected traversal time(possibly limiting the
maximum number of bus changes) and not to maximize the
delivery probability by a given deadline.

In conclusion, to the best of our knowledge, this is the first
paper that proposes an optimal routing algorithm that takes
advantage of bus schedule information as well as a stochastic
characterization of bus mobility, supported by real data traces.

III. M ODEL DEFINITIONS AND ASSUMPTIONS

In this section, we formally define the terms and notation
we use to describe a transportation system, following the
terminology used in transportation literature.

A transportation systemT has a set of stops, denoted by
S, and a set of vehicles (buses), denoted byV , which travel
between the stops according to a predetermined path and a
predetermined schedule. For each vehiclev ∈ V , the schedule
allows us to determine itstrajectory, denoted traj(v), which is
the ordered sequence of stops the vehicle traverses: traj(v) =
(s0, s1, . . . sn). In addition, each vehiclev is associated with
a trip, denoted trip(v), which is a time-stamped trajectory:
trip(v) = ((s0, τ0), (s1, τ1), . . . (sn, τn)), such that a vehicle
v should arrive at stopsi along its trajectory at time1 τi =
τ(v, si). We distinguish between the scheduled timeτi and the
actual timeti = t(v, si), which is a random variable depending
on road traffic fluctuations, passengers boarding and alighting,
etc..

A key concept in bus networks is the notion oflines,
which are basically different vehicles with the same trajectory
(at different times). LetL denotes the set of lines. For
each vehiclev ∈ V we denote its corresponding line by
line(v) = {v′ ∈ V|traj(v) = traj(v′)}. Note that lines
introduce an important characteristic of a bus transportation
system: if a passenger misses a specific vehiclev, she/he can
still catch another vehiclev′ in line(v) and reach the same
set of stops.

In the sequel, we will refer to the transportation system
T as the quintuple〈S,V ,L, τ(), t()〉, where the function
τ() is a way to represent the schedule andt() denotes a

1We do not keep an explicit notation for the departure time of abus from a
stop (which is not given by our traces). Notice that departure times determine
the duration of the transmission opportunities, however these are not important
in our setting, which does not take into account bandwidth constraints.

characterization of the stochastic process of vehicle arrivals
at the stops.

The problem of maximizing the delivery probability by a
given deadline requires a realistic statistical characterization
of bus mobility patterns, which is also useful to generate a
large set of synthetic traces and evaluate the performance of
our routing algorithms.

We have performed a statistical analysis of a one-day trace,
provided by Turin’s public transportation company, with actual
bus arrival times at their corresponding stops. Due to lack
of space, the full details of this analysis appears only in the
companion technical report [1]. Here, we only present the
following two consequences of this analysis, and refer to them
as Assumptions 1 and 2. These hypotheses are going to be kept
for granted in the rest of the paper and will be fundamental
to develop our routing algorithm.

Assumption 1:Bus travel times at consecutive stops are
independent (but not necessarily identically distributed; in
particular, their distribution will depend on the corresponding
scheduled value).

Assumption 2:The distribution of the waiting time at a
stop (when switching between buses of different lines) only
depends on the stop and the characteristic of thedepartingbus
line, not on the line of the arriving bus.

IV. ROUTING ALGORITHMS IN A BUS NETWORK

As mentioned before, our routing algorithms aim to define
an offline routing for the transportation system that maximizes
data delivery probability by a given deadline.

Definition 1: Given a transportation system
T = 〈S,V ,L, τ(), t()〉, a source stopss, a destination
stop sd, a start timetstart, and a deadlinetstop, the on-time
delivery problemis to find a route betweenss and sd that
starts after timetstart and maximizes the on-time delivery
probability; namely,Pr{data is delivered before timetstop}.

Next, we describe ourstop-line graphfor a transportation
system. Note that in [1] we show that such a representation
is needed and simpler representations are not suited for our
problem. In the stop-line graphGsl = 〈Vsl, Esl〉, nodes are
(s, ℓ) pairs, wheres is a stop andℓ is a line; (s, ℓ) ∈ Vsl if
and only if lineℓ ∈ L arrives at (or, equivalently, departs from)
stop s ∈ S. In addition, we add two nodeŝss and ŝd which
are connected to all nodes that correspond to the source and
destination stops. The edges ofGsl are defined as follows: An
edge between(s, ℓ) and(s′, ℓ′) corresponds to a route between
stopss and s′ on line ℓ that continues from stops′ on line
ℓ′. If ℓ = ℓ′ we call the edge atravel edge, while if ℓ 6= ℓ′

we call it a travel-switch edge. An example ofGsl appears in
Fig. 1.

We now define the random variables associated to the edges
in Esl. The random variable of a travel edge describes the
corresponding travel time between two stops: formally, a travel
edgee = ((s, ℓ), (s′, ℓ)) is associated with the random variable
we = tt(ℓ, s, s′) describing the travel time of a lineℓ bus from
stops to stops′. The random variable of a travel-switch edge
includes the travel time between the corresponding stops and
the waiting time for the next line. Formally, a travel-switch



Fig. 1. (a) Example of bus network withS = {A, B, C, D, E, F} and
L = {1, 2, 3, 4}: the node corresponds to a stop and the label on the edge
represents the line connecting the two stops. (b) The corresponding line-stop
graphGsl. Dotted edges are travel edges, while dashed edges are travel-switch
edges.

edge e = ((s, ℓ), (s′, ℓ′)) is associated with the following
random variablewe.

we = tt(ℓ, s, s′) + wt(ℓ′, s′)

wherewt(ℓ′, s′) is the waiting time at stops′ before the arrival
of the next bus of lineℓ′. We assume that all the random
variables definingwe are known (they will be characterized in
Sec. IV-A); moreover, by Assumptions 1 and 2, they are all
independent2.

A. Single-Copy Routing Algorithm and Implementation

We now turn to define our routing algorithm, called ON-
TIME, which aims at solving the on-time delivery problem.
ON-TIME finds, in general, different paths for different values
of the (relative) deadlinetstop − tstart. For example, Fig. 2
compares the Cumulative Distribution Functions (CDF) for
the delivery times of 3 different paths. In this case, ON-
TIME chooses one of the three paths depending on the given
deadline. Nevertheless, the larger the deadline, the larger the
resulting on-time delivery probability is.

ON-TIME works by first determining a potentially good path
between the source and the destination (for example, that with
the minimum expected traversal time), and evaluating its on-
time delivery probability. This can be done by performing a
(numerical)convolutionof the different random variables dis-
tributions along the path, yielding the end-to-end traversal time
distribution. By this distribution, it is then easy to calculate
(using the corresponding CDF) the delivery probability by the
deadline.

Then, the algorithm proceeds by exploring the graph
through a breadth-first search, looking for paths with a higher
on-time delivery probability. Apruning mechanism avoids
the need to determine and evaluate all the paths. Being that
the traversal time is obtained by adding non-negative link
weigths, for any pathP and any prefixP ′ of P , Pr{tr(P) ≤
t} ≤ Pr{tr(P ′) ≤ t}. Thus, we can perform hop-by-hop
convolution and compute, for each resulting distribution,the
probability that the weight (that is, the traversal time) ofthis
path’s prefix is less thantstop − tstart; if the probability is

2In the technical report [1], we consider the case where transmissions might
not be successful. In this case, edge weights depend also on transmission
failure probabilities.
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Fig. 2. Delivery probability CDFs of three disjoint pathsP1, P2 and P3,
connecting a source and a destination with different traversal times. PathP1

has the lowest expected traversal time; the variance ofP2 is the smallest, while
P3’s variance is the largest.P1, P2 andP3 are respectively the optimal paths
computed by ON-T IME for deadlines between34 and43 minutes, larger than
43 minutes, and shorter than34 minutes. The curve labeledP1 + P2 + P3

corresponds to the success probability obtained by a multi-copy approach
exploiting all the three paths.

smaller than that of the current best path, there is no need
to consider the rest of the path. From a practical point of
view, working with a real transportation network, this simple
pruning mechanism significantly reduces the number of paths
to be considered, even if theoretically we may have a factorial
number of paths to explore.

In our implementation, we have introduced some other
simplifications, which reduce the computation time, but, at
the same time, may lead to suboptimal paths. First, we have
introduced a limit h for the exploration depth during the
search. Givenh as a constant, the algorithm is then guaranteed
to run in polynomial time. We observe that upon termination,
we are able to say if the algorithm has selected the optimal
path or there may be a better one. In fact, when we stop, if
there is still some path prefix of length not larger thanh such
that the pruning mechanism cannot discard it, then there could
be a longer path with higher on-time delivery probability. But
if this is not the case, then the current best candidate is actually
the optimal path. In our experiments on Turin transportation
network,h = 8 was enough to find all the best paths. Although
this value may change for other networks, we think that it will
remain a relatively small constant. Note that a suitableh for
each network can be found by conducting experiments similar
to ours.

A second simplification is that we restrict the set of eligible
paths such that each line can be used only in consecutive
edges. This prevents the algorithm to explore paths using line
ℓ1 then lineℓ2, and then again lineℓ1. We expect that these
paths have normally worse performance than those where a
data message just remains on lineℓ1.

Finally, we have avoided the computation burden of per-
forming numerical convolution by assuming that the end-to-
end traversal time, which is a sum of independent random
variables, can be approximated by a normal distribution. In
this case, it is sufficient to take into account the mean and the
variance of each edge weight (respectively,µe = E[we] and
σ2

e = Var[we]). Then, the CDF of the traversal time of path
P is equal to the CDF of a normal distribution with mean∑

e∈P
µe and variance

∑
e∈P

σ2
e . In the case of travel edges,

average and variance oftt(l, s, s′) can be estimated directly



on the traces. In the case of travel-switch edges, we have to
also to evaluate the average and variance ofwt(ℓ, s) using the
first three moments of the interarrival times of the lineℓ buses
to stops (which can be also measured on the traces) and some
basic Palm calculus.

In the rest of the paper, we evaluate the performance of ON-
TIME for different source-destination pairs under similar kind
of deadlines. If we had fixed a given deadline for all the pairs,
then this deadline could be unfeasible for some of them (in
the sense that there is no way to deliver the message by this
deadline, e.g. if the deadline is smaller than the time a vehicle
would take to move from the source to the destination), and
trivially satisfiable for other pairs (many different pathswould
deliver with probability almost one). For this reason, given
a sourcess, a destinationsd and a real valuex ∈ [0, 100],
let φ(x, ss, sd) be the deadlinetstop for which the on-time
delivery probability of the path fromss to sd with minimum
expected traversal time isx%. We denote by ON-TIME(x) the
on-time routing algorithm where the deadline is set equal to
φ(x, ss, sd) for every source-destination pair(ss, sd).

B. Other Routing Approaches

Although the algorithm we described is optimal under our
model assumptions, we also consider sub-optimal but simpler
heuristics.

The most intuitive approach (denoted as MIN-DELAY ) is
to route in Gsl along the path whose expected traversal
time is minimal. Note that MIN-DELAY is equivalent to ON-
TIME(50) under the Gaussian assumption on the distribution
of the traversal time. Fig. 2 shows that pathP1, found by MIN-
DELAY , does not always correspond to path with the highest
on-time delivery probability. On the other hand, MIN-DELAY

is computationally attractive, because the path with the least
expected traversal time can be easily computed with Dijkstra’s
algorithm (by linearity of expectation).

A second algorithm, MIN-HOPS, selects the path that min-
imizes the number of times a packet is forwarded until the
destination3.

Another approach, denoted MIN-HEADWAY , tries to min-
imize the sum of all lines headways along a path [6], thus
preferring frequent lines over infrequent ones; it was proposed
originally for bus-to-bus communications. In Sec. V, we show
that it has the worst performance in our settings among all the
different algorithms.

C. Extension to Multi-Copy Routing

We consider multi-copy algorithms, such that at mostk
copies of the packets are made throughout the execution.
Without this constraint a flooding scheme that can copy the
data whenever there is a contact, namely in anepidemic
manner, would achieve the best possible delivery probability.

We propose a greedy multi-copy algorithm for on-time
routing, denoted simply as MC-ONTIME. It computes the on-
time delivery probability of all paths in isolation and choose
the k best paths (without considering the interaction between

3Note that this path also maximizes the delivery probabilityon an infinite
time-horizon when packets experience a constant transmission loss probability.
In the technical report, this approach is referred to as MAX -PROB.

them). This can be easily implemented by saving the bestk
paths while enumerating all possible paths as in ON-TIME.
Moreover, our pruning mechanism is changed accordingly to
consider thek-th best value discovered so far (rather the
maximum value as in the single-copy settings)4.

However, since our algorithm works in a greedy manner,
it does not consider the interaction between the paths, and
more specifically the gain in probability over previously-
selected paths (which can be very small in case the paths
overlap). This leads to a theoretical performance degradation
with respect to an optimal, infeasible algorithm that considers
the joint-probability over all sets of paths. The following
theorem, whose proof is in [1], provides tight bounds on this
performance degradation:

Theorem 1:The MC-ONTIME algorithm always achieves
at least1/k of the on-time delivery probability of an optimal
k-copy algorithm. In addition, there is a valid transportation
graph for which MC-ONTIME achieves at most 1

(1−ε)k of
the on-time delivery probability of an optimalk multi-copy
algorithm, for arbitrarily smallε > 0.

V. PERFORMANCEEVALUATION

We consider a set of 180 source-destination (ss−sd) stop
pairs. In the first 90 pairs both the source and the destination
have been chosen uniformly at random in the entire metropoli-
tan area. In the second 90 pairs, the sourcess is located in a
main transportation hub within the city center (close to the
main train station), and all the destinationssd are chosen
uniformly at random. We generate a set of 100 traces with
the parameters obtained by the statistical analysis, covering
all 250 lines for the four hours available from the schedule.
In addition, we have developed a simulator that computes the
delivery probability of each path by averaging across these
100 traces; note that the one day real-life trace alone would
not be enough to compute this probability with any accuracy.
Data is assumed to be available at the source stop at 7 AM.

We start to compare the performance of the algorithms
defined in Sec. IV—namely, MIN-DELAY , ON-TIME, M IN-
DELAY and MIN-HEADWAY—with the EPIDEMIC algorithm
that floods the network by taking advantage of all the possible
contacts (and therefore making a very large number of copies).
We evaluate the actual on-time delivery probability of the
best path obtained by each algorithm; for each pairss−sd,
we set the deadline toφ(x) for different values ofx, and
we compute the 90% confidence interval of the delivery
probability considering all the possible 180 pairs. Due to the
lack of space, we will report the results only forx = 10 (“short
deadline”) andx = 50 (“average deadline”), since these cases
are representative.

Fig. 3 compares the delivery probability of the different
algorithms for the two deadlines. The gain of EPIDEMIC with
respect to all the other single-copy algorithms decreases as the
deadline increases: EPIDEMIC achieves a delivery probability
3 times larger than ON-TIME for deadlineφ(10), but only 1.5

4When comparing to the heuristics of Sec. IV-B, we can similarly get thek
paths with minimal expected traversal time, total headway or maximal success
probability.
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Fig. 3. Delivery probability for two deadlines and different routing algo-
rithms. MIN-DELAY is the same as ON-T IME(50).

times larger for deadlineφ(50). Indeed, when the deadline is
large enough just one copy of the data is enough in order to
reach100% delivery probability. In such a case, EPIDEMIC

does not introduce any gain in terms of performance, and the
cost in terms of copies and transmissions is much larger than
under single-copy algorithms. For example we observed on
average more than600 copies forφ(10) and more than900
copies forφ(50) under EPIDEMIC up to the deadline, while
for all single-copy algorithms the number of transmissionsfor
each data is on average 5.0, and always less than 12.

ON-TIME(10) and ON-TIME(50) obtain the maximum de-
livery probability respectively, for deadlineφ(10) andφ(50),
as expected. But comparing the corresponding confidence
intervals, they behave almost the same. A somewhat surprising
results is that in many cases (121 out of 180) ON-TIME(10)
performsexactlyas ON-TIME(50) (or, equivalently, as MIN-
DELAY ). In fact we verified by direct inspection that ON-
TIME(10) and ON-TIME(50) select exactly the same optimal
path. These results have been confirmed also for other deadline
values: The optimal route is not very sensitive to the deadline.
In most of the cases the best path computed by ON-TIME(50)
is the best for every deadlineφ(x) with x ∈ [0, 100]. Recall
the example in Fig. 2, showing that the best path does in
general depend on the deadline. Our experiments lead us to
conclude that these cases are very rare in a real transportation
system. Thus, one can choose the path solely on the basis of
the minimum expected travel time (that is, the simple MIN-
DELAY algorithm), making it redundant to run the complex
optimal algorithm ON-TIME.

We turn now to deal with multi-copy settings. Fig. 4 shows
the performance of the MC-ONTIME(x) policy, that takes
advantage of thek paths with the highest delivery probability
by the deadlineφ(x). The figure shows the results obtained
for all the 180 source-destination pairs. For deadlineφ(50),
ON-TIME with one copy reaches a delivery probability which
is about 66% of that achieved by EPIDEMIC, and a few more
copies significantly reduces the performance gap. Yet, after
10 copies we observe only a negligible improvement. This is
partially due to the fact that MC-ONTIME exploits a given
sequence of paths provided by the algorithms, whose internal
“diversity” is limited. Furthermore, EPIDEMIC exploits low-
probability paths that are efficient just for the specific trace
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instance considered in each simulation run; since the number
of these low-probability paths can be very large, due to
the redundant connectivity of the bus transportation system
metropolitan area, there is a high probability that at leastone
of them will be used to deliver to the destination. Note that
the cost in terms of transmissions for EPIDEMIC is two order
of magnitude larger than the multicopy approach using a pre-
selected subset of 10 paths.

VI. CONCLUSIONS ANDACKNOWLEDGEMENTS

This paper lays the foundations for a framework to analyze
bus-based networks, where communication is between the
mobile buses and the stops along their trajectories. Through a
statistical analysis of real bus traces, we were able to obtain
a succinct stochastic graph representation of the system, and
to devise optimal routing algorithms on this graph.

An important outcome of this study is that, although differ-
ent from the optimal but computationally-intensive algorithm,
the simple MIN-DELAY algorithm achieves excellent results
in term of success probability for all deadlines. In addition,
we show that increasing the number of data copies beyond10
does not provide any meaningful performance improvement.
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