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Abstract

The estimation of a large population’s size by means of sampling procedures
is a key issue in many networking scenarios. Their application domains
span from RFID systems to peer-to-peer networks; from traffic analysis to
wireless sensor networks; from multicast networks to WLANs. The present
contribution aims at illustrating and classifying in a coherent framework
the main approaches proposed so far in the computer networks literature to
deal with such a problem. In particular, starting from the methodologies
proposed in ecological studies since the last century, this paper surveys their
counterparts in the computer network domain, finding that many lessons can
be gained from this insightful investigation. Capture-Recapture techniques
are deeply analyzed to allow the reader to exactly understand their pros, cons,
and applicability bounds. Finally, some open issues that deserve further
investigations and could be relevant to afford estimation problems in next
generation Internet are discussed for sake of completeness.
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1. Introduction

In many networking problems, the optimization of a given service or sys-
tem requires accurate estimates of the number of involved key items (whether
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they represent nodes, users, files, packets, flows, and so forth). For example,
the estimation of the number of users sharing the same file in a peer-to-peer
network [52] can be used for allowing a fine tuning of protocols’ parame-
ters and/or for monitoring purposes; the knowledge of the number of traffic
flows handled by a router [74] is useful for enforcing Quality of Service (QoS)
differentiation techniques or for improving network reliability; counting the
number of RFID tags [68, 72] is needed for inventory management.

For the sake of generality, the present contribution will refer to the term
population to mean a large set of items (or individuals), whose cardinality
cannot be easily inferred using plain counting procedures, due to wideness
and/or variability of the set, thus requiring sophisticated estimation meth-
ods. Such terminology has been widely exploited in the computer networks
literature by analogy with similar estimation problems in biological environ-
ments [65].

As a matter of fact, statistical approaches dealing with the estimation
of the population size are based on sampling, i.e., on analyzing a subset
of the entire population. The biometric community developed many ap-
proaches [63, 65], some as old as the nineteenth century [51, 44], to face
the trade-off between the effectiveness of estimation methods and their com-
putational complexity. Most of the statistical approaches developed by the
biometric community are framed into the Capture-Recapture (CR) method-
ology [54, 17], which refers to the recognition of individuals recaptured in
more than one sample and to the exploitation of such additional information
for deriving estimators more reliable than those based on the only knowledge
of the sample size. Indeed, CR estimators could be Maximum Likelihood,
Bayesian, derived through hypothesis testing, etc. In details, the CR method-
ology assumes that the individuals caught in a sample can be captured again
in following samples. In zoological contexts, this means that all animals
captured in the first sample are marked and released in order to recognize
them in subsequent catches. The employment of marking operations is the
main reason why the Capture-Recapture approach is also referred to as Mark-
Recapture in the literature.

It is worth observing that the Capture-Recapture methodology deals with
centralized non-anonymous estimation strategies. In fact, after sampling
the population, a central controller performs an estimation based on the
knowledge of the gathered individuals. Centralized anonymous methods to
estimate the population size in computer networks have been employed in [4,
9, 40]. As a counterpart, the strategy based on Bernoulli trials presented
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in [69] shows a distributed approach to the population size estimation in
anonymous networks. It has to be noted that computability in anonymous
networks is a very big issue [11, 35] since with anonymous computations it
is only possible to count probabilistically, even if the amount of randomness
required is very little [20].

In the works introduced above, the information obtained by collected
samples pertains only to their size: indeed, the sample size depends on the
probability for each item in the population to be captured. Although these
techniques are usually not very expensive in term of computation time and
memory requirements, the convergence speed and the precision of the estima-
tion process can be very low, and unsuitable for cases when system dynamics
are fast. In fact, we point out that the information conveyed in a sample is
more than just its size: indeed, knowing the identity of the individuals in
each sample would help in improving both the accuracy and the speed of the
estimation processes. In fact, tracking the capture history of each caught
individual is useful for guessing insightful properties of the population evolu-
tion, in terms of arrivals and departures. In order to justify such evidence we
show a numerical example. Let us assume that a given population is sampled
repeatedly for performing size estimation and that the catching probability
for each individual is p = 1%. Considering the “lucky” case of all samples
having size equal to 10, one expects that a fair estimate of the population
size would be 1000. Actually, when inspecting the identity of the caught
individuals in each sample, it is possible to find that either the same 10 in-
dividuals are caught in each sample or each individual is caught in a single
sample. In both cases, a correct size estimation would be different from that
provided by accounting only for the sample size. This simple example in-
tuitively shows how the information related to the identity of the elements
caught in a sample can be exploited to provide a more reliable estimate and
a faster convergence to the actual value of the population size. The price to
pay for this performance improvement is an increase of computational and
storage requirements for handling the sampling history, which, in any case,
remains often affordable by modern computing platforms.

As matter of fact, most of the identity-based estimators used in com-
puter networks contexts are exactly framed in the Capture-Recapture ap-
proach, which is also the main focus of the present survey. Although Jesus
et al. [37] collected and described some works both related to estimation
problems in computer networks and dealing with CR sampling techniques,
the aim of their survey was to analyze a wider spectrum of data aggregation
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techniques, without a specific focus on the Capture-Recapture theory as a
whole. In this sense, the present contribution aims to shed some light on
the Capture-Recapture methodology, while surveying its application in esti-
mation problems related to computer networks and introducing those CR
solutions easily deployable in more complex scenarios.

To help in understanding at a glance the statistical properties of the esti-
mator surveyed in the following sections, Table 1 lists the network quantities
evaluated in such works together with the underneath statistical approach
exploited for the related estimation.

Table 1: Population estimates in computer networks and related statistical approach

Quantities to be estimated Section
Statistical approach

MLE Bayesian Other

Source data-rate of a flow handled by a router [14] 2.4.1 •
Peer-to-peer network size [45] 2.1 •

WSN size and Scale of event [50] 2.1 •
Number of peers in overlay networks [31] 2.2.3 •

File’s replicas in peer-to-peer networks [52, 12] 2.3 •
Detection of missing RFID tags [55] 2.3 •
Traffic flows handled by a router [14] 2.4.1 •

RFID tags over unreliable radio channels [68] 2.4.2 •
Number of RFID tags [72] 3.1 •

Membership size in multicast networks [4] 4 •
Competing terminals in IEEE 802.11 networks [9] 4 •

Network size estimation in anonymous networks [69] 4 •
Tag population size in FSA protocols [40] 4 •

Concurrent active flows in high-speed networks [74] 4 •

In order to gently introduce the Capture-Recapture methodology, firstly
we note that a given population is modeled as closed [17], if its size does not
change during the whole sampling process, or as open [53] (in the opposite
case). The key assumption for a closed population is that no element is en-
tering or leaving the population during sampling operations. Of course, it is
easier to derive an estimator for a closed population, even though, in many
circumstances, the assumption that the population is not varying during the
sampling process is unrealistic. Contrariwise, the estimation of the size of an
open population must take into account also the dynamics of the population,
i.e., the arrival/departure rate during sampling stages. At the same time, it
is worth to remark that this distinction is not always sharp, because, in some
cases, estimators conceived for closed populations can be also adapted to
dynamic contexts. Following this premise, Sec. 2 surveys Capture-Recapture
estimators for closed populations, highlighting their properties and appli-
cability in computer networks environments; afterwards, Sec. 3 introduces
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the most relevant Capture-Recapture methods for estimating the parameters
related to open populations, focusing especially on the Jolly-Seber model
[38, 64] that we strongly believe will be the basis of population models for
many future computer networks related estimation problems.

Then, Sec. 4 mentions some relevant related works, dealing with non-CR
estimators. Finally, Sec. 5 draws conclusions, describing lessons learned, and
explaining what in our humble opinion should still be done in the context of
this research topic.

2. Capture-Recapture estimators for closed populations

All in all, the strategies framed into the CR methodology for the esti-
mation of closed populations are mainly grouped in two categories: those
dealing with only two samples, and those dealing with more than two sam-
ples. The first category includes the very basic CR strategies mainly used
for a fast estimation based on a limited sampling capability. The second
category includes a wide gamut of estimation techniques exploitable when
sampling is not an issue, thus providing more accurate estimations. A first
glance perspective on this categorization is sketched in the tree diagram of
Fig. 1. A classification of CR strategies according to the capture probability
model is also represented.1

In details, each CR strategy was conceived assuming an underneath cap-
ture probability model [17]:

• The M0 model assumes all elements having the same constant prob-
ability of being caught during the sampling process; the assumptions
made for this model are too restrictive and unrealistic in most cases
[48, 53].

• The Mt model, instead, allows a time-varying catching probability but
imposes that all elements have the same probability to be caught during
each single sampling step.

• The model Mb is intended to describe the behavioral responses to cap-
ture, i.e., marked individuals have a different probability to be captured
with respect to unmarked ones.

1Each block in the diagram includes a reference to the subsection where the related
estimator is described and discussed in the present contribution.
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Figure 1: Capture-Recapture estimators for closed populations.
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• The Mh model, finally, allows heterogeneity, i.e., elements have not the
same probability of being caught.

Models based on the combinations of the above variations are also avail-
able, i.e., Mtb, Mth, Mbh, and Mtbh. Their comprehensive description and
application to biological environments is given by Chao [17]. However, the
behavioral responses to capture is in general out of the scope of estimation
problems in computer networks, hence the estimators based on Mb, Mtb, Mbh

and Mtbh models are not considered in the present contribution.

2.1. The Lincoln-Petersen Index

The corner stone of the CR methods was put by the Lincoln-Petersen
Index [44], which is suitable for estimating the size of closed populations
(the size is not changing between the two sampling phases) by means of two
sampling rounds. All elements are captured with the same probability within
each single round, although the catching probability can vary from the first
to the second sample. In this sense, the underlying mathematical model is a
Mt Capture-Recapture one.

The formulation for the Lincoln-Petersen Index is:

N̂ =
Mn

m
, m 6= 0 (1)

where N̂ is the estimator of the population size, M the number of elements
belonging to the first sample, n the amount of elements in the second sample,
and m the amount of elements found in both samples. The Lincoln-Petersen
Index is used when the catching probabilities are not known a priori and
it has an intuitive interpretation: the proportion between the size of the
first sample and the whole population should be reflected by the proportion
between the marked individuals found in the second sample and the size of
the second sample itself. At the same time, this index is the MLE estimator
based on the hypergeometric distribution.

Actually, it is possible to fix a priori the sample sizes M and n, while
assuming that the catching probability remains the same for all individuals
during each single sampling round. The accuracy of the Lincoln-Petersen
Index based estimation depends on the size of the two samples M and n
[58]. Let 1−α be the desired level of confidence that the absolute difference
between the true population size N and its estimate N̂ will be smaller than
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a chosen level of accuracy A:

1− α ≤ Pr

[
−A <

N̂ −N
N

< A

]
. (2)

The hypergeometric distribution can be approximated by a normal one for a
population size N > 100. With this outcome, an equivalent form for eq. (2)
is given [58] by:

1− α = φ

(
A

1− A

√
nM(N − 1)

(N − n)(N −M)

)
− φ

(
−A

1 + A

√
nM(N − 1)

(N − n)(N −M)

)
(3)

where φ(z) is the cumulative unit normal distribution. If a rough estimate
of the population size is available, it can be substituted to N in eq. (3) to
determine the samples’ sizes M and n with a degree of freedom.

Although the Lincoln-Petersen Index is a MLE estimator, it is undefined
when m = 0, i.e., when there is no element caught in both the samples.
This problem was addressed by Chapman [18] by finding a modification of
the Lincoln-Petersen Index able to estimate the population size also when
m = 0:

N̂m =
(M + 1)(n+ 1)

m+ 1
. (4)

Under proper conditions, i.e., nM/N > logN and n + M + 1 < N/2, such
estimator has a positive bias lower than 1, hence being essentially unbiased.

Example 1. Estimation of the size of a peer-to-peer network.

Eq. (4) has been employed for estimating the size of a peer-to-peer network
[45]. In detail, a given source node starts two consecutive random walks by
exchanging messages with other nodes on the underlying connection graph
of a peer-to-peer network. The network topology is also supposed to remain
unchanged between the two random walk explorations. Each random walk
is supposed to collect a random subset of the nodes in the network, being
therefore a sample of the set of nodes in the network. For each random
walk, the source node sends a gossip message to a subset of its neighbors
imposing a value TTL for the time-to-live of the message itself. Other nodes,
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when receiving a gossip message, decrease the time-to-live, add their ID to
the message, and decide to return a gossip-reply message (containing the
list of polled nodes) to the source node if one of the following condition is
fulfilled: (i) the number of neighbors is 1; (ii) the time-to-live is 0 and the
gossip-message was not previously received. Otherwise, they forward the
gossip message to a subset of their neighbors, except the sender one. As a
matter of fact, the TTL value plays a key role for assuring equal sampling
chance to all nodes. For this motivation, a simulation campaign has been
performed on network topologies constructed according to both Waxman [71]
and Barabasi-albert [6] models, showing that if TTL ≥ 7 in networks with
5000 nodes, the CR estimation converges to the actual network size. Finally,
the authors show that the CR approach performs better with respect to other
estimation techniques (e.g., the Inverted Birthday Paradox [8] surveyed later
in Sec. 2.2.3) in terms of accuracy.

Example 2. Estimation of WSN size and scale of an event.

A modified version of the Lincoln-Petersen Index has also been employed in
[50]. The authors consider a Wireless Sensor Network (WSN) and estimate
the number of working sensors and the scale of spatial events, e.g., the dif-
fusion of a fire or of a polluting agent (estimated as the number of nodes
sensing the event).

To this end, first an algorithm for disseminating M seed messages almost
uniformly into the network is used, according to the scheme presented in [7].
As a result, the proposed network protocol performs a capture, and the M
nodes receiving a seed message will be considered as marked (they are called
“tagged” in [50]).

Then, to estimate the size of the WSN network, an Inverse Sampling
method is used: the network is queried until a pre-determined amount m
of marked nodes have been encountered during the process (i.e., a recapture
is performed); the amount n of nodes queried during this process is also
taken into account for executing the estimation. In details: the base station
sends a message containing two fields, the first one initialized to m and the
second to 0, to a randomly chosen target; when receiving the message, the
target node increases the second field by 1 and, if it was marked during the
capture phase (i.e., it holds a seed), decreases the first one by 1; the target
node chooses another target node and forwards the message; this process
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continues until the first field in the message equals 0; finally, the last target
node queried sends the value n contained in the second field, which was
incremented hop-by-hop, to the base station. Assuming to know the number
M of marked nodes, the authors estimate the proportion P = M/N with
respect to the unknown number N of nodes in the network by means of the
unbiased estimator P̂ = (m − 1)/(n − 1), whose coefficient of variation has
an upper bound (m − 2)−1/2. Finally, an estimate of the population size N
is found:

N̂ =
M

P̂
=
M(n− 1)

(m− 1)
. (5)

It has to be noted that the previous formulation is similar to that of the
Lincoln-Petersen Index, but not the same, since the resulting estimator is
based on the Inverse Sampling technique adopted.

To infer the scale of physically-connected events, the estimate N̂ in (5)
is used. Then, through the same dissemination algorithm, n nodes are uni-
formly queried in the network. Among them, only those that sensed the event
provide a feedback to the base station. As a result, the base station will be
aware of m nodes sensing the event out of n ones queried. The estimate of
the number of nodes sensing the event is given by the following formulation:

M̂ =
N̂m

n
, (6)

which is still a MLE estimator based on the hypergeometric distribution.

2.2. The Multiple-Recapture Schnabel Census

The availability of multiple samples can be exploited for performing a
more accurate size estimation of closed populations. To this aim, the Schn-
abel Census likelihood function can be employed for describing Multiple-
Recapture experiments [24].2 Indeed, a population with size N is assumed
to be randomly sampled k times. Furthermore, the probability pi that any
individual is captured in the i-th sampling period, with i = 1, . . . , k, is not
known a priori (the set of k catching probabilities is synthetically referred
with {pi}). In this way, the Multiple-Recapture Schnabel Census is an Mt

Capture-Recapture model.

2Unless otherwise specified, the formulas in this section are derived in [24].
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We denote by ni the size of the i-th sample. If each individual can be
caught at time i with probability pi independently from all the others, then ni

is a binomial random variable with parameters N and pi. Another possibility
is that sample sizes are fixed a priori and each capture phase ends when the
target size is reached. We refer to the two situations respectively as the
random sample sizes case and the fixed sample sizes case. In [24] they are
simply called model A and model B.

In general, each individual is featured by a specific capture history, which
details in which sample the specific individual appears. Given the set of
sample indices Sk = {1, 2, . . . , k}, a capture history is then an element in
the power set P(Sk). In this sense, the set of possible histories related to
captured individuals is equal to Pc(Sk) = P(Sk) \ {∅}, whose cardinality is
equal to 2k−1. Let us define uω, with ω ∈ Pc(Sk), the number of individuals
sharing the same capture history ω. Hence, the total number, r, of captured
individuals is:

r =
∑

ω∈Pc(Sk)

uω. (7)

Given the population size N , the sample sizes {ni}, with i ∈ Sk, and the
elements belonging to the set {uω}, with ω ∈ Pc(Sk), it is easy to understand
that the following identity always holds:

ni =
∑

ω∈Pc(Sk)
i∈ω

uω for 1, . . . , k. (8)

In the random sample sizes case introduced above, the probability to
jointly obtain the sample sizes {ni} and the arrangement {uω} for the capture
histories is expressed by the following formula:

Pr({uω}, {ni}) =
N !

(N − r)!
∏

ω∈Pc(Sk)

uω!

k∏
i=1

[pni
i (1− pi)N−ni ], (9)

that can be used for a joint MLE estimate of N and of the capture prob-
abilities {pi}. Usually the capture probabilities are considered as nuisance
parameters.Interestingly, the MLE estimator of N is the same inferred in the
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fixed sample sizes case and is asymptotically featured by the same variance.3

The probability to observe the capture histories {uω} in the fixed sam-
ple sizes case is equal to the probability to observe the same histories in
the random sample sizes case conditioned on the event that the sample
sizes are equal to the fixed sizes chosen. By using Eq. (9) and Pr({ni}) =∏k

i=1

[(
N
ni

)
pni
i (1− pi)N−ni

]
, we obtain:

Pr({uω}|{ni}) =
Pr({uω}, {ni})

Pr({ni})
=

N !

(N − r)!
∏

ω∈Pc(Sk)

uω!

1
k∏

i=1

(
N
ni

) . (10)

The MLE estimator for the population size N , inferred from eq. (10) by
means of the ratio method [23], is the value N̂ solving the following equation:

h(N, r) =
k∏

i=1

(N − ni)−Nk−1(N − r) = 0. (11)

It is evident then the sample sizes {ni} and the total number of captured
individuals r are sufficient statistics to estimate N . Distinguished marks are
then not needed for each sample. At each stage, it is needed to mark only the
unmarked individuals in the sample. Eq. (11) has only one solution greater
than r maximizing the likelihood, except when r takes one of its extreme
values, i.e., r =

∑k
i=1 ni or r = maxi=1,...,k(ni), corresponding respectively to

the two cases when each individual has been captured only once and when
all the captured individuals appear in one sample. Let ρ denote the expected
value of r:

ρ = E[r] = N − 1

Nk−1

k∏
i=1

(N − ni), (12)

the asymptotic behavior of the estimator N̂ was described by Darroch [24]
in terms of bias and variance in the limit process N →∞ and each ni →∞,

3The mathematical properties of eq. (9) are used for estimation problems dealing also
with the dynamics of the population, i.e., elements leaving or entering in the population
in-between the sampling steps [25].
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in such a way that the ni/N ratios remain constant:

b(N̂) ∼

[
k − 1

N
−

k∑
i=1

(
1

N − ni

)]2

+

[
k − 1

N2
−

k∑
i=1

(
1

N − ni

)2
]

2

[
1

N − ρ
+
k − 1

N
−

k∑
i=1

(
1

N − ni

)]2 = O(1)

(13)

Var[N̂ ] ∼ 1[
1

N − ρ
+
k − 1

N
−

k∑
i=1

(
1

N − ni

)] = O(N) (14)

It is also worth to consider the confidence interval for the estimate of
N . Noting that N̂ is an increasing function of r, and assuming that r is ap-
proximately normally distributed around its expected value ρ, the confidence
interval for the estimate N̂ may be derived from the confidence interval of ρ:

1− α ≤ Pr

[
−A ≤ ρ− r√

Var[r]
≤ A

]
, (15)

according to the procedure detailed in [24] (Var[r] is the variance of r and
its expression is omitted for the sake of simplicity).

A case particularly important for the applications is when a single indi-
vidual is captured at each stage, corresponding to a continuous sampling case
[24, 21]. This model is referred to as the Direct Schnabel Census. Until now
we have assumed that the number of capture phases k is decided a priori.
With sample sizes fixed to 1, it is also possible to stop sampling when a given
number r of unique individuals is caught or when a given number l = k − r
of recaptures is reached. The corresponding models are respectively called
the Inverse Schnabel Census and the Sequential Schnabel Census. Because
of their practical importance, we devote the following sections to these vari-
ants of the Schnabel Census, highlighting their relation to other mathemat-
ical problems (i.e., the Inverse Coupon Collector and the Inverted Birthday
Paradox ) and describing some applications in computer networks.

2.2.1. Direct Schnabel Census

For the Direct Schnabel Census, all the formulas derived above hold with
ni = 1 for i = 1, 2, . . . k. Then

∏k
i=1

(
N
ni

)
=
∏k

i=1

(
N
1

)
=
∏k

i=1 N = Nk. At
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the same time, it is easy to conclude that
∏

ω∈Pc(Sk) uω! = 1, since there may

not be two individuals with the same history and then uω ∈ {0, 1}. Then,
the likelihood function in eq. (10) simplifies as follows:

Pr({uω}) =
N !

(N − r)!Nk
. (16)

The MLE estimate N̂ of the population size can be obtained from eq. (11),
which becomes:

h(N, r) = (N − 1)k −Nk−1(N − r) = 0, (17)

and it can be approximated as follows by considering (1− 1
N

)N ≈ e−1:

e−
k
N = 1− r

N
. (18)

The following formulas for bias and variance can be obtained under the same
approximation in the limit process N → ∞ and k → ∞, so that k/N is
constant:

b(N̂) ∼ k2

2N2
(
e

k
N − 1− k

N

)2 = O(1) (19)

Var[N̂ ] ∼ N(
e

k
N − 1− k

N

) = O(N). (20)

The confidence intervals can be derived according to the same formulation
of eq. (15).

Eq. (16), deriving from eq. (10), expresses the probability of a specific
capture history for each individual, even if, when each sample has unitary
size, the capture histories only play a role through the total number of in-
dividuals caught r. It is useful to derive the probability of the set of all the
capture histories where r individuals are caught. To this purpose, we can
first calculate the probability of the set of all the capture histories that show
the same number of individuals caught once, twice,. . . k times. Let fx denote
the number of individuals caught x times, i.e.,

∑
i u{i} = f1,

∑
i<j u{i,j} = f2,

and so forth. The elements in the set {fx}, with x = 1, . . . , k, must satisfy
the following relationships: r =

∑k
x=1 fx and k =

∑k
x=1 xfx. The probabil-
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ity of not catching n − r individuals and of obtaining the set {fx} can be
calculated summing the probability of eq. (16) over all values of {uω}:

N !

(N − r)!Nk

k!

(1!)f1(2!)f2 . . . f1!f2! . . .
(21)

Summing (21) over all values of {fx}, the probability of catching r individuals
with k samples is given by the following expression:

Pr(r individuals in k samples) =

=
N !

(N − r)!Nk

{
k

r

}
(22)

where
{
k
r

}
is a Stirling number of the second kind.4 For the Direct Schnabel

Census eq. (22) leads (obviously) to the same MLE estimator as eq. (16),
but the equation is useful to study the Inverse and Sequential Schnabel Cen-
sus. While the use of eq. (22) to estimate population size had already been
proposed by Craig as early as 1953 [21], it was someway rediscovered in 1991
by Dawkins [26] who defined this as the Inverse Coupon Collector Prob-
lem, where the Coupon Collector’s Problem is to find the average number
of 1-sized samples to be collected in order to see at least one time all the
individuals in a population.

2.2.2. Inverse Schnabel Census

The Inverse Schnabel Census corresponds to sampling continuously until
a fixed amount, r, of individuals is caught. Therefore, the total number of
samples needed k is a random variable. The r-th individual will be caught
in the k-th capture if and only if r − 1 individuals have been caught in the
first k− 1 captures and a new individual is caught in the k-th one. Then by
independence and using eq. (22), it follows:

Pr(k samples to find r individuals) =

=
N !

(N − r)!Nk

{
k − 1

r − 1

}
. (23)

4A Stirling number of the second kind is defined as:
{
a
b

}
=

1

b!

∑b
i=0(−1)i

(
b
i

)
(b− i)a
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The MLE estimator is the value of the population size N solving eq. (17)
also in this case, even if there is no solution N̂ ≥ r, when the following
condition is true:

k > r
r∑

i=1

1

i
(24)

Bias, and variance, in the limit process N →∞ and r →∞, so that r/N is
constant, are:

b(N̂) =

N
r−1∑
k=1

k

(N − k)3[
r−1∑
k=1

k

(N − k)2

]2 = O(1) (25)

Var[N̂ ] =
N

r−1∑
k=1

k

(N − k)2

= O(N) (26)

while confidence intervals are derived according to the same procedure of
eq. (15)), except that now N̂ is monotone decreasing function of k.

2.2.3. Sequential Schnabel Census

In Sequential Schnabel Census the capture process is carried on until a
given number of recaptures l(= k − r) is achieved. Both the number of
captures k and the number of individuals r are random variables. If the
process has discovered r individuals by the time it stops, the total number
of captures is k = r + l and the last one has to be a recapture. Then, r
individuals have been caught during the first r + l − 1 captures and one of
the r individuals is recaptured in the k-th sample. Using independence and
eq. (22), it holds

Pr(r individuals caught to observe l recaptures) =

=
N !r

(N − r)!N r+l

{
r + l − 1

r

}
. (27)

The MLE estimation remains the same as in the previous cases, with
k = r+ l and r being sufficient statistics [24]. However, a minimum variance
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unbiased estimator was derived by Goodman [33]:

N̂MV UE =
k2

2(k − r)
(28)

and expressed by Darroch [24] as follows:

N̂MV UE =

{
k
r

}{
k−1
r

} . (29)

A similar reasoning is recognizable in the work of Bawa et al. [8], who in-
verted the Birthday Paradox for obtaining a population estimator. In details,
according to the Birthday Paradox, the probability of having two persons
born in the same day of the year in a group of 23 is ∼ 50%; an alterna-
tive formulation of the problem [46] states that if an N -sized population is
repeatedly and randomly sampled with replacement, the number of trials k
required for the first repetition of a sampled value has expectation equal to√

2N . In such framework, the Inverted Birthday Paradox [8] exploits the
number k of samples required to find the first repetition for estimating the
population size as N̂IBP = k2/2.

Example 3. Estimation of the number of peers in overlay networks.

Remarkably, Ganesh et al. [31] rediscovered the MVUE estimator of eq. (28),
by extending the theoretical arguments related to the Inverted Birthday Para-
dox (e.g., N̂IBP corresponds to eq. (28) when k − r = 1), and implemented
it into the novel Sample and Collide technique for assessing the number of
peers in an overlay network. In more details, they show how to sample al-
most uniformly a network by means of a Continuous Time Random Walk
(CTRW): an initiator node delivers on the network a sampling packet, which
contains a timer value initialized to T ; the sampling packet is forwarded until
the timer value becomes less than 0, given that it is decremented at each hop
i by a quantity equal to log(1/U)/di, where U is picked uniformly in [0, 1]
and di is the degree of the traversed node; the last node that receives the
sampling packet sends its ID to the initiator node. Note that the sampling
packet encounters with greater probability nodes with a higher degree: di-
viding the value to be subtracted from the timer by the degree guarantees
that all nodes have the same chance to be caught when the timer expires. It
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is worth remarking that this trick was not used in the random walk technique
introduced by the aforementioned work of Mane et al. [45], thus incurring
the risk of non-uniform network sampling. Then, the Sample and Collide
technique collects IDs by means of repeated CTRWs, stopping when the ini-
tiator has received IDs already caught earlier for exactly l times. Finally, the
number k of performed CTRWs and l (i.e., l = k − r) are used for estimat-
ing the population size by means of eq. (28), with l chosen as index for the
estimation accuracy.

2.3. The Multiple-Recapture Schnabel’s Binomial model

The Schnabel Census can be approximated by the Schnabel’s Binomial
Model [61], when the population size N is very large compared to the sam-
ples. Indeed, the population is sampled k times and the quantities inspected
by the Schnabel’s Binomial Model for each i-th sample, with i = 1, . . . , k, are:
its size ni; the number mi of recaptures among the ni individuals; the total
number of individuals captured in the previous samples Mi =

∑i−1
j=1(nj−mj).

Focusing on the generic i-th sample, with i = 2, . . . , k, the probability of re-
capturing mi individuals, given ni and Mi as fixed parameters, is modeled
with the hypergeometric distribution and can be approximated with the bi-
nomial one, when N is very large compared to the sample size [5]:

Pr(mi|ni,Mi) =

(
Mi

mi

)(
N −Mi

ni −mi

)
(
N

ni

) ≈

≈
(
ni

mi

)(
Mi

N

)mi
(

1− Mi

N

)ni−mi

. (30)

The Schnabel’s Binomial Model is then the probability to collect a series of
recaptures m2,m3, . . . ,mk, given the knowledge of the sets {ni} and {Mi},
with i = 1, . . . , k. In other words, it is the product of the probabilities of
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recaptures in each sample (see eq. (30)) and it is expressed as follows:

Pr(m2, . . . ,mk|{ni}, {Mi}) =
k∏

i=2

Pr(mi|ni,Mi) ≈

≈
k∏

i=2

(
ni

mi

)(
Mi

N

)mi
(

1− Mi

N

)ni−mi

. (31)

The MLE estimator related to this model is the positive real root of the
following equation [61]:

k∑
i=2

(ni −mi)Mi

N −Mi

=
k∑

i=2

mi (32)

although, if the values {Mi} are very small compared to N , a first approxi-
mation to the solution of eq. (32) is given by the so called Schnabel’s estimate
[61]:

N̄ =

k∑
i=2

niMi

k∑
i=2

mi

(33)

Actually, the Schnabel’s estimate can be obtained by means of linear re-
gression methods as follows. According to the Lincoln-Petersen Index, the
ratio of marked individuals mi in a sample ni should reflect the ratio of
marked individuals Mi in the population N , and the error between these
ratios is defined as ei = mi/ni −Mi/N . A linear regression approach would
employ a least-squares minimization of the errors, i.e., it would minimize∑k

i=2wie
2
i with respect to N . The weights wi are introduced since the vari-

ances of the errors ei are not equal. The Schnabel’s estimate of eq. (33) is
obtained by setting the weights proportional to the inverse of the variances,
i.e., wi = ni/Mi [65]. When departures from uniform random sampling are
likely to occur, i.e., when the individuals are grouped or clustered, it is more
efficient to set the weights proportional to the sample sizes [65]. Setting
the weights wi = ni, the Schumacher-Eschmeyer’s [62] estimator results as
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follows:

N̄SE =

k∑
i=2

niM
2
i

k∑
i=2

miMi

(34)

The Schnabel’s Binomial Model has also been exploited for deducing the
Gazey and Staley Bayesian method [32]. According to the Bayesian ap-
proach, the likelihood probability given by eq. (31) is associated to a given
prior distribution for the population size N in order to compute the pos-
terior probability distribution Pr(N |m1, . . . ,mk). Since the distribution of
the population size is unknown before the experiment is conducted, Gazey
and Staley assume that such probability is represented by a “noninforma-
tive” discrete uniform distribution, i.e., the values for the population size in
the set {Nj}, with j = 1, . . . , J , are considered possible a priori with the
same probability Pr(Nj) = 1/J . The only condition to be imposed is that
min (Nj) ≥ Mk + nk −mk. In this sense, the posterior probability for each
population level Nj can be written as follows:

Pr(Nj|m1, . . . ,mk) =
Pr(m1, . . . ,mk|Nj) Pr(Nj)
J∑

l=1

Pr(m1, . . . ,mk|Nl) Pr(Nl)

=

=

k∏
i=1

Pr(mi|Nj)

J∑
l=1

k∏
i=1

Pr(mi|Nl)

, (35)

where the last equality follows from the probabilities Pr(Nj) being equal.
Furthermore, Gazey and Staley show how such formulation can be put in a
recursive form made by k successive steps, where, using the posterior distri-
bution calculated at step i−1, the posterior distribution in step i is estimated
based on information from the i-th step. Such result is shown in the following
expression:

Pr(Nj|m1, . . . ,mi) =
Pr(mi|Nj) Pr(Nj|m1, . . . ,mi−1)
J∑

l=1

Pr(mi|Nl) Pr(Nl|m1, . . . ,mi−1)

, (36)
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for i = 1, . . . , k and j = 1, . . . , J , and Pr(Nj|m1, . . . ,mi−1) = Pr(Nj) = 1/J
for i = 1.The advantage of the Gazey and Staley Bayesian method lies in
the explicit derivation of the probability distribution of the population size,
which can be further manipulated for obtaining the population size estimator
as N̂GS = E[N ] and the related confidence intervals as well.

Example 4. Estimation of the number of file replicas in P2P net-
works.

A network application of the Capture-Recapture methods described above is
presented in [52, 12] to estimate the numberN of replicas of the same file in an
eDonkey peer-to-peer network. By analyzing the message exchanged among
users in Nice (France) and other ones all around the world, it is assumed
that: (i) the number of users does not significantly change in the time interval
during which the estimation takes place; (ii) there is an equal probability to
observe any user outside Nice. Then, the k local users in Nice interested to the
same file f are identified and arbitrarily ordered. With reference to f , for each
i-th local user, with i = 0, . . . , k, a sample is defined as the set of non-local
users outside Nice that communicate with it. In details, for each i-th sample
the authors define: the sample size ni; the number Mi of non-local users
already seen in the previous samples 0, . . . , i− 1; the number mi of non-local
users present in bothMi and ni. A Bayesian approach derived from the Gazey
and Staley Bayesian method is then used for estimating the population size
N . More specifically, as in the Gazey and Staley method, the prior probability
is assumed to be uniformly distributed over an interval of discrete values for
the population size, although no assumptions are formulated on the width of
such interval. In this sense, eq. (35) is modified as follows:

Pr(N |m1, . . . ,mk) =
Pr(m1, . . . ,mk|N)∑Nmax

n=Nmin
Pr(m1, . . . ,mk|n)

(37)

where the minimum value for the population size isNmin = Mk+nk−mk (sim-
ilarly to the Gazey and Staley method), while the maximum population size
Nmax is computed so that Pr(Nmax|m1, . . . ,mk) < ε for a precision ε. In addi-
tion, it has been shown [12] that the likelihood probability Pr(m1, . . . ,mk|N)
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can be computed in a recursive fashion:

Pr(m1, . . . ,mk|N)

Pr(m1, . . . ,mk|N − 1)
=

N

N −Mk

k∏
i=1

(N − ni)

Nk
. (38)

Note that equating the previous relation to 1 would produce the same MLE
population size estimator as eq. (11) (i.e., it has been used the ratio method
[23]). Hence, Mk is a sufficient statistics for performing the size estima-
tion. Besides, noting that the probabilities Pr(m1, . . . ,mk|N) can be scaled
arbitrarily in eq. (37), the authors set Pr(m1, . . . ,mk|N̂SE) = 1 for avoid-
ing overflows, where N̂SE is the estimation obtained from the Schumacher
and Eschmeyer’s method ; the other probabilities Pr(m1, . . . ,mk|N), with
N ∈ [Nmin, Nmax], are computed recursively by means of eq. (38).

Example 5. Detection of missing RFID tags.

The Schnabel’s estimate is also employed in [55] for the detection of missing
RFID tags. Following the investigation made in a previous work [36], some
statistical methods are introduced to deal with the problem of missing RFID
tags, while performing k reader sessions. Each reader session draws an ni-
sized sample of the population: the number mi of recaptured tags in the
sample and the total number Mi of read individual tags are then registered.
The presence of a reliability layer is also assumed to obtain a running estimate
of the probability pM of having at least one tag missing. If the estimate p̂M is
higher than an acceptable threshold, then an additional reader session has to
be initiated. In details, defining N as the total number of tags and q as the
probability that a tag cannot be read during a session (e.g., because there
is an obstacle between the tag and the reader), the estimate p̂M is obtained
according to the following relation:

p̂M = 1− (1− q̂k)N̂ . (39)

where N̂ and q̂ are respectively the estimates of N and q. Such estimates
are obtained by means of an iterative procedure which stops at the second
iteration. Indeed, a first estimate N̄ of the number of tags is performed
according to eq. (33). Instead, noting that the probability of error for each
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individual reader session can be estimated as 1− ni/N̄ , a first estimate q̄ of
q is expressed as:

q̄ =
1

k

k∑
i=1

(
1− ni

N̄

)
. (40)

Defining r as the number of distinct tags’ IDs found in k reader sessions,
note that the expected value of r is N(1− qk). Hence, the ultimate estimate
N̂ of N is based on the estimate q̄ of q as follows:

N̂ =
r

1− q̄k
(41)

Instead, the last estimate q̂ of q depends on N̂ and it is derived by means
of the same reasoning of eq. (40). Finally, N̂ and q̂ are used in eq. (39) for
obtaining the searched estimate p̂M of having at least one tag missing.

2.4. Heterogeneous capture probabilities

If the capture probabilities are heterogeneous, i.e. elements have not the
same probability of being caught, the underlying model is referred to as a
Mh Capture-Recapture one. Several estimators have been derived in this
context. The main ones we are going to discuss have also been employed for
estimation problems in computer networks.

2.4.1. The jackknife estimator

Estimating the population size by means of a Mh Capture-Recapture
model would require a joint estimation of the capture probabilities, which
are parameters not known a priori. However, it is possible to avoid the es-
timation of the capture probabilities, by using some sufficient statistics in a
non-parametric approach. In this sense, the most known estimator employed
for a Mh Capture-Recapture model is the jackknife one [13]: after collecting
k samples of the population, the individuals found are grouped in k different
sets, with the i-th set containing the elements seen i times; let fi be the car-
dinality of the i-th set, hereafter referred to as “capture frequency” [13], and
representing a sufficient statistic aiming to ease the estimation of the popu-
lation size without estimating the capture probabilities. Then, the jackknife
estimator is computed as a linear combination of the capture frequencies fi,
with i = 1 . . . k, and its general expression is given in the following formula-
tion:

N̂JO = a(k,O)1f1 + a(k,O)2f2 + . . .+ a(k,O)kfk (42)
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where a(k,O)i are the coefficients in the linear combination, each one depend-
ing on the number of samples k and on the parameter O, which represents the
order of the estimation. In general, increasing O, the bias of N̂JO decreases,
but its variance is increased [13]. Therefore, there exist several mathematical
expressions related to a given experiment, each one derived for a given order
O of the estimation. As an example, we present the formulas corresponding
to the first four orders of estimation:

N̂J1 =
k∑

i=1

fi +
k − 1

k
f1 (43)

N̂J2 =
k∑

i=1

fi +
2k − 3

k
f1 −

(k − 2)2

k(k − 1)
f2 (44)

N̂J3 =
k∑

i=1

fi +
3k − 6

k
f1 −

3k2 − 15k + 19

k(k − 1)
f2 +

(k − 3)3

k(k − 1)(k − 2)
f3 (45)

N̂J4 =
k∑

i=1

fi +
4k − 10

k
f1 −

6k2 − 36k + 55

k(k − 1)
f2+

+
4k3 − 42k2 + 148k − 175

k(k − 1)(k − 2)
f3 −

(k − 4)4

k(k − 1)(k − 2)(k − 3)
f4 (46)

The derivation of such expressions is quite complicated and it can be
found in [13]. The right jackknife estimator is chosen by means of a hy-
pothesis testing and according to a required significance level, e.g., 0.05. In
details, one should identify the lowest order of estimation m, so that N̂Jm

has an associated significance level Pm > 0.05. However, as also suggested
in [13], an interpolated estimate should be computed as linear combination
between N̂Jm and N̂Jm−1, in order to smooth the otherwise discrete nature
of choosing exactly one among all the mathematical expressions for the jack-
knife estimator.

Example 6. Estimation of the number of flows handled by a router.

The CApture REcapture (CARE) queue management technique [14] is a
viable fair bandwidth sharing scheme, which exploits the potentialities of the
jackknife estimator among other features. Referring to the number of flows
handled by a network router with Nflows, for each flow i ∈ {1, . . . , Nflows},
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the major function of CARE is to adjust the flow rate to a fair bandwidth
share, by dropping incoming packets with a probability di. In detail, CARE
defines: the “packet count” Mi (proportional to the source rate of the flow i),
as the number of packets related to the flow i and stored in the router buffer,
having size N packets, and the “fair share size” N/Nflows (proportional to the
bandwidth fair share), as the quota of the buffer size N that should be fairly
occupied by each flow. When the rate of the flow i exceeds the bandwidth fair
share, the ideal behavior of the adjustment mechanism performed by CARE
is to drop packets with a probability given by the following formulation:

di = 1−N/(Mi ·Nflows), (47)

where the packet count Mi and the number of flows Nflows are respectively

estimated with M̂i and N̂flows according to Capture-Recapture approaches.
A circular linked list of size n is considered for capturing the incoming

packets with probability pcap = n/N . Focusing on the flow i associated with
the last captured packet, the mi packets in the circular linked list pertaining
to the flow i are counted. The probability distribution associated with the
event “the packet count is equal to a given value Mi” is hypergeometric, and
the MLE estimator M̂i of the packet count is given by the following formula:

M̂i =
Nmi

n
, (48)

whose expression is similar to that of the Lincoln-Petersen Index in eq. (1).
This is due to the fact that both formulas can be derived from the same
assumption on the probability relationship, i.e., the probability to capture
an individual in the population is equal to the probability to capture a marked
individual among all marked individuals.

Instead, the number of flows Nflows is estimated by means of the jackknife
estimator described above. This estimation is performed by identifying the
underlying model as a Mh Capture-Recapture one. Indeed, packets pertaining
to different flows have a different probability to be caught in the buffer.
Specifically, the n packets stored in the circular linked list are considered as
n samples with size equal to 1. The jackknife estimator is applied on those n
samples, after evaluating the capture frequencies fi, with i = 1 . . . n. In this
sense, the capture frequency fi is the number of flows, whose representative
packets in the circular linked list are exactly i.
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The most important feature in this paper is the use of a fixed memory size
for storing samples of the population, while applying the CR approach for
solving two estimation problems: one with the jackknife estimator, the other
one with an estimator similar to the Lincoln-Petersen Index as expressed by
eq. (48).

2.4.2. The f1f2 estimator and the Sample Coverage one

Other two estimators for Mh Capture-Recapture models are those derived
by Chao and Lee [15, 16, 42].

The jackknife estimator usually underestimates the population size if
many individuals have very small capture probabilities so that they are
caught only once or twice in the Multiple-Recapture experiments. For this
reason, using the same variable environment of the jackknife estimator, the
f1f2 estimator [15, 16] is expressed in the following formulation:

N̂12 = r +
f 2

1

2f2

(49)

where r is the total number of individuals caught in the population, as in
eq. (7). In [15, 16] the f1f2 estimator is shown to be a good approximation
to the true value of the population size if the individuals caught in k samples
are captured at most 2 times. The asymptotic variance of such estimator has
the following expression:

Var[N̂12] = f2

[
1

4

(
f1

f2

)4

+

(
f1

f2

)3

+
1

2

(
f1

f2

)2
]
. (50)

The Sample Coverage estimator for a Mh Capture-Recapture model is
given instead in the following formula [42]:

N̂SC =
r

C
+
f1

C
γ2 (51)
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where

C = 1− f1

k∑
i=1

ifi

, (52)

γ2 = max


r

C
k

k∑
i=1

i(i− 1)fi

(k − 1)
( k∑
i=1

ifi
)2
− 1, 0

 . (53)

The variance of such estimator can be computed approximately via the delta
method [47] as:

Var[N̂SC ] =
k∑

i=1

k∑
j=1

HiHj Cov[fi, fj] (54)

where Hi =
∂N̂SC

∂fi
and Cov[fi, fj] is given by:

Cov[fi, fj] =


fi(1−

fi

N̂SC

) if i = j

− fifj
N̂SC

if i 6= j
(55)

Example 7. Estimated number of RFID tags over unreliable radio
channels.

Both of these techniques have been employed [68] in the estimation process of
the number of RFID tags when communication occurs over unreliable radio
channels. The frame-slotted ALOHA model of [41] is used by assumption. A
tag receiving a query from the reader decides to advertise its presence with a
given probability q. In that case, it chooses its transmission slot among the
F ones in the frame, leveraging an hashing scheme that involves its own local
identifier and a seed received in the query. The probability that the response
is received by the reader depends also on the behavior of the radio channel.
At the same time, the reader only needs to track whether each slot in the
responding frame is idle or not, without accounting for collisions. From these
premises, the algorithm proposed in [41] uses the estimate of the expected
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number of busy frame slots to estimate the cardinality of the tags’ set.
In order to reduce the variance of the number of idle slots, the tag set

is polled k repeated times with the same seed and the positions of occupied
slots for each probe are recorded. Indeed, although the tag-to-slot mapping
is fixed, the actual occupancy of the responding frames for the k probes may
be different. In details, the probability that a slot supposed to be occupied
is idle depends both on the actual number of tags selecting the slot and
on the responding probabilities of those tags, which in turn depends also
on the radio channel behavior. Such probability being different for all non-
idle slots, a Mh Capture-Recapture model can be adopted to estimate the
expected number of frame slots occupied. Indeed, the occupancy history of
each slot in a frame across these multiple repeated probes corresponds to the
statistics of capture history of marked individuals.

Finally, in order to reduce the variance of the estimator of the tag-set car-
dinality, which is due to the pseudo-random tag-to-slot mappings, m different
seeds are used. Defining N̂j, with j = 1, . . . ,m, the estimate of the number
of occupied slots under a perfect channel for the j-th seed and performed
with one between the CR estimator presented above, the authors employ the
estimator shown in the following formula (and already presented in [41]) for
evaluating the number of RFID tags:

N̂ = −F
q

log
F − 1

m

∑m
j=1 N̂j

F
. (56)

3. Capture-Recapture estimators for open populations

A population is considered open when the employed estimation approach
assumes that individuals could join or leave the population itself during the
sampling process. In this case, the mean service rate (i.e., the departure rate
of elements from the population) and the mean input rate (i.e., the joining
rate of elements in the population) must also be evaluated, since they directly
affect the estimate of the population size.

Without loss of generality, if the population size does not change very
quickly, the models for closed population presented so far can be employed
also in contexts related to time-varying populations: the population size is
assumed to stay constant during the sampling procedure, thus CR estimators
for closed populations can be fairly applied. However, this assumption can
be not satisfactory when the variation is significant during the sampling time
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interval. To face this issue, there are two main solutions: (i) employing CR
estimators of closed populations on sliding time-windows; (ii) adopting CR
estimators of open populations provided by the biometric literature, e.g., the
Jolly-Seber model.

In the remaining part of this section we explain these two methods. For
the first we describe some applications in the field of communication net-
works. To the best of our knowledge, the second has not been considered
until now by the networking community, so we describe our personal view on
future research developments.

3.1. Closed population estimators for open populations

The time interval during which the sampling process takes place can be
considered as a sliding window over the time. Although a given population
can be time-varying, i.e., there are individuals joining or leaving the pop-
ulation itself, it is possible to set the sliding window length small enough
for considering the population size almost constant in that observation time
interval. In this case closed population Capture-Recapture techniques can be
employed for estimating the size of open populations. As a matter of fact,
this underlying assumption has been kept in some of the previously described
works [74], [31], [52].

Example 8. Estimation of the number of RFID tags.

The aim of the work [72] is to estimate the number N of items still in stock for
retailer application scenarios. In details, according to the Lincoln-Petersen
Index two samples of the population are needed. In the application scenario
described in [72], given a time window w, the samples are: (i) the number
M of RFID tags read in w, properly accounted in a readHistory list; (ii)
the number n of items sold in w, accounted in a salesHistory list. The
size of the window is sufficiently large in order to have the two sample sizes
meeting the requirements of eq. (3). The simplest estimation could be done
by counting the number m of items present in both samples and using the
Lincoln-Petersen Index for evaluating the population size. However, this is
not realistic, as shelves are constantly replenished in real scenarios: some bias
is introduced in the estimation, since the replenished items will be detected
instantaneously from a RFID tag reader, but some time will be needed for
those items appearing also in the salesHistory list. To accomplish a non-
biased estimation, the population size is properly corrected according to the
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replenishment history. The unbiasedness of the derived estimator is also
proofed with theoretical arguments. The resulting key outcome of this work
is the extension of the Lincoln-Petersen Index to the estimation of an open-
population, since item replenishment corresponds to the assumption that
individuals can enter the population.

3.2. The Jolly-Seber model

Since the last century, the estimation of open populations has been the
key focus in the work of some statisticians. Specifically, a great effort has
been spent for modelling time-varying populations in a MLE-based approach.
A meaningful first step towards this ambitious aim was done by Darroch
[25]: he exploited the Multiple-Recapture Census and its inherent properties
that had been already described in a previous work [24]. In detail, Darroch
extended the probability model of eq. (9), surveyed before in Sec. 2.2, and
derived the MLE estimators related to open populations with only departures
or only joining elements. However, a likelihood function accounting for both
deaths and immigration was unwieldy to manage.

In 1965 Jolly and Seber [38, 64] faced this problem by introducing the
model which takes their names, i.e., the Jolly-Seber model. Their approach
is able to estimate only some model parameters in a MLE fashion, while the
other parameters are reasonable combinations of the first ones. We recall that
MLE estimators hold some desirable features, like asymptotically consistency,
efficiency and normality. It is worth noting that the Jolly-Seber (JS) model
does not make any assumption on the underlying evolutionary model for the
population. In this sense, the estimation procedure provides several estimates
for any population parameter (e.g., the population size or the number of
individuals joining the population), one for each sampling time in a given
observation window.

In detail, the JS model is able to estimate some population parameters by
exploiting the information inherent to k samples randomly drawn over time
from the population itself. Specifically, for a given i -th sample, the following
quantities are measured:

• ni number of individuals caught in the i-th sample;

• mi number of marked individuals caught in the i-th sample;

• ui = ni−mi number of individuals caught for the first time in the i-th
sample;
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• Ri number of marked individuals released after the i-th sample;

• ri number of individuals from the release of Ri individuals which are
subsequently recaptured;

• zi number of different individuals caught before the i-th sample which
are not caught in the i-th sample but are caught subsequently.

The values Ri take into account the possibility for individuals to die after
being trapped. Therefore, those values are relevant in a biological setting,
but they are probably less important for communication network estimation
problems.

The population quantities estimated by the JS model are:

• Ni total number of individuals in the population until the i-th sample;

• Mi total number of marked individuals in the population just before
the i-th sample;

• Ui = Ni −Mi total number of individuals never seen before the i-th
sample;

• Bi number of new individuals joining the population in the interval
between the i-th and (i+ 1)-th samples;

• pi probability for each individual of being caught in the i-th sample;

• φi probability of every marked individual of surviving from the i-th to
the (i+ 1)-th sample.

In the remaining part of this paragraph, we will denote the related estimates
with a hat.

The JS model is defined by a likelihood probability, which has to be max-
imized jointly with respect to the unknown parameters φi, pi, and Ui, with
i = 1, . . . , k. At the same time, the quantities Bi, Ni, and Mi are treated
as random variables and they are estimated by means of moment match-
ing estimation [65]. However, the same estimators for the considered set of
parameters and random variables can be obtained by an intuitive argument
provided by Jolly [38] and herein reproduced.

As a first consideration, the proportion of the estimated marked individ-
uals Mi w.r.t the estimated total number of individuals Ni is equal to the
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found proportion of the marked individuals ni w.r.t the sample size ni at the
i-th sampling time instant, leading to:

N̂i =
M̂ini

mi

(57)

which is consistent with the Lincoln-Petersen Index, although the number of
marked individuals in the population is now an estimate, due to departures
of individuals from the population (marked individuals can die or leave the
population after being caught).

Secondly, the capture probability is the proportion of marked or total
individuals alive at i that are captured in i:

p̂i =
ni

N̂i

=
mi

M̂i

. (58)

An estimate of the actual number Mi of marked individuals at the i-
th sample (i.e., the individuals already captured and still surviving in the
population) can be obtained by an intuitive argument too. Indeed, the ra-
tio of marked individuals not seen at i and captured again at least once,
i.e., zi/(M̂i − mi), should be reflected by the ratio of individuals released
after the i-th sample and subsequently recaptured, i.e., ri/Ri. The resulting
proportion leads to:

M̂i =
Rizi
ri

+mi. (59)

The survival rate estimator is obtained instead by considering the number
of marked individuals in the population immediately after the i-th sample as
Mi−mi+Ri. This expression accounts for the marked individuals not caught
in the i-th sample (Mi − mi) and for the number of individuals caught in
the i-th sample and released (Ri). A natural survival rate estimator is then
computed as the proportion of the estimated number of marked individuals
at the (i + 1)-th sample and the estimated number of marked individuals
immediately after the i-th sample:

φ̂i =
M̂i+1

M̂i −mi +Ri

(60)

Further, the number of new individuals joining the population between
the i-th and the (i+1)-th samples is only the difference between the estimated
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population size at sample (i+ 1) and the expected number of survivors from
i to (i+ 1):

B̂i = N̂i+1 − φ̂i(N̂i − ni +Ri). (61)

Finally, the estimated total number of individuals never seen before the
i-th sample is given by:

Ûi = N̂i − M̂i. (62)

It has to be noted that eqs. (57), (58), (59), (60), (61), and (62) refer
to each step in the sampling procedure, hence they neither express any pre-
diction of the future states of the population, nor provide an evolutionary
model of the population itself. Furthermore, as pointed out in [65], the es-
timates M̂i and N̂i are not maximum-likelihood, but they are simply used
as intermediate steps in the calculation of the MLE ones, i.e., φ̂i, p̂i and
Ûi. Also the estimate B̂i is only valid if the survival probability φi is the
same for all individuals and not just for the marked ones. These are the
main reasons for considering the JS model as MLE-based more than a pure
maximum-likelihood estimation technique.

No work has dealt with the Jolly-Seber model since now in the literature
related to computer networks. As a matter of fact, a networking estimation
problem would be more keen to accept some approximations on the popula-
tion evolution description, which in turn would be quite unrealistic if adopted
in studies of animal populations. In this sense, we believe that framing an
underlying evolutionary model for a population in the Jolly-Seber approach
should be investigated, thus opening an interesting research direction ad-
dressing population estimation problems in computer networks.

4. Related works

The present section mentions some relevant estimation techniques applied
in computer networks contexts, although they do not deal with the Capture-
Recapture approach.

Firstly, Kalman filtering [39] has been widely exploited for estimation
problems in several engineering contexts, since it is the best linear filter
having the smallest unconditioned error covariance [19]. Given an actual
system, the Kalman filter reproduces it through a state model intended to
make a prediction of the evolution of the system itself. Then, the Kalman
filter works by comparing the output of the actual system with that of its
state model in order to correct the state itself and achieve the best fitting
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state estimation. This approach can be fruitfully exploited for estimating a
population. Indeed, if the state of the actual system under estimation is the
population size and the measured output of that system is some quantity
related the population itself, e.g., the size of a randomly picked sample, then
the population size prediction can be corrected according to the difference
between the measured sample size and the output of the reproduced system.
It has to be noted that the Kalman filter is able to perform an estimation
also in dynamical contexts, addressing the issues posed by the estimation of
time-varying populations.

In this sense, the Kalman filter has been also employed for estimating the
membership size in multicast networks [4]. The population of multicast ter-
minals is assumed to evolve as an M/M/∞ queuing system, hence terminals
join with a rate λT (T is a “speeding up” factor for having a heavy traffic
condition) and leave with a rate µ. A central controller polls all terminals
at times iS (i = 0, 1, . . .), with S > 0, and terminals are assumed to reply
in a synchronized fashion sending an acknowledgment with a small proba-
bility p. The found estimator for the multicast membership size has been
demonstrated to be asymptotically unbiased.

Instead, the Extended version of the Kalman filter [19] has been employed
for estimating the number of competing terminals in IEEE 802.11 networks
[9]. Although a general assumption for the Extended Kalman filter applica-
bility is that the state and the measurement noise have to be uncorrelated,
the model formulation does not allow to fit this requirement. In this sense,
the authors firstly propose the measurement noise to be non-linearly related
to the previous state value. In addition, the authors point out that modeling
the state noise as a stationary process would be not efficient in the given
application scenario: low values for the state noise variance give accurate es-
timates in stationary conditions, although with a very long transient phase;
contrariwise, a high value for the state noise variance allows a quick reaction
to state changes, while implying a reduced accuracy in the estimation. The
strategy proposed and employed by the authors to find a right trade-off in
the choice of the state noise variance is to let it be time-varying: the noise
variance is set to be 0 until the mean value of the innovation process, i.e., the
difference between the actual system’s and the observer’s outputs, gets far
from 0; in this last case, a change in the population size is detected, there-
fore the value of the state noise variance is set to a sufficiently large value,
allowing the Kalman filter to move away from the former estimate and to
quickly converge to a new one. The efficiency of the “change detector” has
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been supported by simulation results.
From a statistical point of view [19], Kalman filtering is equivalent to

adopt a Bayesian approach to estimation, thus providing asymptotically ef-
ficient and unbiased estimates [43, 10]. Although this scheme efficiently
performs on dynamic systems, it has strong guarantees only in some spe-
cific cases (e.g. linear systems with gaussian noise). In most estimation
problems related to computer network, the observations are not in gen-
eral affected by gaussian noise, so that the Maximum-Likelihood Estimation
(MLE) [27, 30, 28, 29, 3, 22, 56] approach has also been investigated in
the research literature. In fact, MLE techniques provide reliable parame-
ter estimates, regardless of the prior probability distribution inherent to the
observed phenomenon.

Other population estimation problems in computer networks have dealt
with Maximum-Likelihood Estimation [27]. An example of MLE population
estimators in computer networks is that presented in [69], where the au-
thors have proposed a general distributed network size estimation strategy
based on Bernoulli trials. This work is framed into the theory of consensus-
algorithms for anonymous networks.5 The authors have described how the
MLE estimator for such networks can be found by exploiting the implications
of the Newton-Pepys problem [66] (the probability of having at least one six
when throwing six dice is greater than the probability of having at least two
six when throwing twelve dice).

Another work dealing with an MLE approach is that presented in [40],
where a MLE estimator of the tag population size in Frame Slotted ALOHA
(FSA) protocols is derived. In particular, the authors have determined the
exact probability distribution of the observable event space in FSA systems,
thus enabling the MLE formulation of a slot-by-slot tag population estima-
tor. However, the likelihood probability found has a complex expression. By
means of graphical inspection, the authors have also shown that this likeli-
hood probability has only one maximum, which can be, as a consequence,
found using a gradient search.

For the sake of completeness, it has to be also mentioned the population
size estimation technique proposed in [74] to enhance the performance of

5Consensus algorithms aim to obtain agreement amongst a number of agents for a
single data value [57]. Besides, a network is anonymous if the agents’ IDs are either not
unique or not exploitable.
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the Stabilized Random Early Detection (SRED) [49] mechanism for queue
management. Although the estimation technique presented is classifiable as
identity-based (i.e., individuals are recognized while sampling repeatedly the
population, and this information is used for a better estimation), it is not
framed in the Capture-Recapture theory. In particular, the authors have pro-
posed a Hash-based Two-Level caching scheme (HaTCh) for estimating the
number of concurrent active flows in high-speed networks. The authors have
shown that SRED becomes inaccurate either when increasing the number of
flows to estimate, or when TCP flows are mixed with non-responsive UDP
flows; hence, to face this problem, they have proposed a two-level caching
scheme, which uses hashing and a two-level caching mechanism to accurately
estimate the number of active flows under various workloads. More specif-
ically, an additional intermediate cache has been inserted in the caching
scheme: it is conceived for isolating non-responsive UDP flows, which are
characterized by a bigger workload with respect to the TCP ones.

5. Concluding Remarks

5.1. Lessons learned

The main objective of the present contribution is to shed some light on
the effective spectrum of available techniques able to perform an efficient
estimation of populations in computer networks. As shown throughout the
paper, sampling a given population is more viable than counting individuals,
and the statistical properties of the sampling procedure can be employed for
inferring the size and the dynamics of that population. More interestingly,
the identity of caught individuals can be registered, so that the capture
history of each individual is an additional information that can be fruitfully
exploited for obtaining more effective estimates.

Noticeably, we learned that the Capture-Recapture approach has been
firstly conceived (since the last century) to afford biometric problems, such
as the estimation of animal abundance in ecological environments. The com-
puter networks scientific community has employed some Capture-Recapture
estimators for evaluating the size of large populations.

We have also learned that the Capture-Recapture framework can face
very different settings: a population can be closed or open; the probability
for an individual to be captured can vary by time or not; individuals can
have the same chance to be captured in each sampling step or not (allowing
thus heterogeneity in the latter case). The biometric literature is so wide

36



and diversified that a big research effort was required to select the works
fitting also communication network estimation problems. As attested from
the applications surveyed in this paper, the Capture Recapture approach is
very desirable in the computer networks scientific community, although, to
the best of our knowledge, no effort has been spent for collecting, selecting,
and organizing the whole theory until now. The last insight is witnessed by
considering that some works in computer networks rediscovered the same CR
estimators already featured by the biometric community.

The key lesson learned comes from the investigation that we have done on
the Jolly-Seber model for open populations. Albeit not yet used in computer
networks at the present stage, such model could be very useful for better
describing the estimation problems in computer networks surveyed in this
paper.

In general, we hope the present contribution could be appreciated as a
reference milestone for future investigations by readers interested to applying
Capture-Recapture techniques to solve emerging issues in networking litera-
ture.

5.2. Research directions and future works

The investigations presented in this manuscript clearly shows that, in the
frame of CR techniques, ML approaches can provide viable, effective, and
lightweight estimators of large populations of individuals. Among the sur-
veyed solutions, the Jolly-Seber model is the only one able to account for
open populations and multiple recaptures. As future research, this model
could be enhanced by making it able to predict the future evolution of es-
timated populations. This research task could be tackled, similarly to what
is done in [4] with the Kalman filter, by identifying the underlying model as
an M/M/∞ queueing system, and estimating jointly the size and dynamics
of the population.

Overall, the CR estimators surveyed in this paper could be fruitfully used
in future research activities related to several cutting edge research issues in
networking literature, such as: (i) distributed caching mechanisms for content
distribution networks and information centric networking protocols [73]; (ii)
autonomic management systems in pervasive machine to machine and cyber
physical systems made of billions devices [2, 34]; (iii) nano-networks commu-
nications [1]; (iv) software defined networking approaches to network control
plane [67, 60]; (v) economic models in next generation mobile systems (i.e.,
5G and beyond) [70]; (vi) cloud computing systems and applications [59].
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