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Abstract

We study the interaction among users of unstructured file sharing applications, who compete for available network
resources (link bandwidth or capacity) by opening multiple connections on multiple paths so as to accelerate data
transfer. We model this interaction with amstructured file sharing gameJsers are players and their strategies
are the numbers of sessions on available paths. We consider a general bandwidth sharing framework proposed by
Kelly [1] and Mo and Walrand [2], with TCP as a special case. Furthermore, we incorporate the Tit-for-Tat strategy
(adopted by BitTorrent [3] networks) into the unstructured file sharing game to model the competition in which
a connection can be set up only when both users find this connection beneficial. We refer to thisvaslan
formation gameWe prove the existence of Nash equilibrium in several variants of both games, and quantify the
losses of efficiency of Nash equilibria. We find that the loss of efficiency due to selfish behavior is still unbounded

even when the Tit-for-Tat strategy is believed to prevent selfish behavior.

. INTRODUCTION

Recently peer-to-peer applications (e.g., BitTorrent [3], Kazaa, eDonkey, and Gnutella [4]) have become very
popular. They can be major contributors of the Internet traffic. For example, Sprint's IP Monitoring Project [5]
shows that in April2003, 20 — 40% of total bytes corresponded to peer-to-peer traffic on one backbone link.
CacheLogic [6] estimates that peer-to-peer generédéd of all US Internet traffic at the end &004.

We refer to the networks for these peer-to-peer applications as unstructured file sharing overlay networks.
These networks are overlay networks since users forward or relay traffic for each other. These networks are also
unstructuredbecause there are no well-defined network topologies, and users are not under the control of some
central entity. For comparison, Resilient Overlay Network [7] sgracturedoverlay network. Given the increasingly
large share of Internet traffic from unstructured file sharing networks, it is important to understand the behavior
and performance of such networks, and such a fundamental understanding will certainly help ISPs and aid in the

design of future Internet architecture.



In this paper, we investigate the strategic behavior of self-interested peers/users of such unstructured file sharing
overlay networks. Our work differs from previous works on peer-to-peer applications, whose focus are on file
searching and replication [8], and topology discovery [9]. Specifically, our investigations are from two different
angles.

First, we study the interaction among users of unstructured file sharing applications, who compete for available
network resources (link bandwidth or capacity) by opening multiple connections or sessions on multiple paths
so as to accelerate data transfer. We introduceurastructured file sharing gam® model this interaction. In
this game, users are players and their strategies are the numbers of sessions on available paths. The data ra
allocated to connections are determined by the network. The mechanism of rate allocation considered by us is
a general bandwidth sharing framework proposed by Kelly [1] with TCP networks as special cases [10][2]. Our
focus is on TCP networks in which all connections/sessions are TCP connections. The unstructured file sharing
game generalizes thECP connection gammtroduced in [11] where the competition for a single bottleneck link
capacity is investigated.

Second, we incorporate the Tit-for-Tat strategy into the unstructured file sharing game. This strategy is widely
known and built into BitTorrent [3] networks. With this strategy, peers set up a connection between themselves
only when they both find it beneficial. We model this interaction scenario awartay formation gameln order
to make our model tractable, we restrict users to open either zero or one connection to another peer.

In both games, users are interested in maximizing their benefits, a combination of some utility function and the
cost associated with maintaining data transfer sessions. We assume that utility functions are increasing and concav
functions of the data throughput in bits per second. Throughput is defined as the successful packet delivery rate.
The cost incurred to users includes memory cost and CPU cost. As in [11], we consider a cost that is proportional
to the total number of connections opened by a user. We also consider another type of cost which is proportional
to a user’s packet sending rate.

We are interested in the following questions. First, does there exist a stable network state (i.e., Nash equilibrium
(NE) [12]) in both games? If so, what is the system performance at a NE? Specifically, we are interested in the loss
of efficiency of a NE and the price of anarchy [13] of NE(s). The loss of efficiency of a NE is defined as the ratio of
the optimal system performance over the system performance at the NE, and the worst loss of efficiency is referred
to as the price of anarchy [13]. These metrics capture how bad the competition can be among self-interested TCP
users. Here we focus on pure strategy NE.

We make the following contributions.

First, we give a formal formulation of unstructured file sharing game, and show by examples that multiple NEs
exist on general network topologies. We then focus on parallel link networks and star networks, which are used

to model peer-to-peer applications (similar topologies were also studied in [14][15]). We prove the existence of



NE of unstructured file sharing games on both networks, and find that, if users are not resource constrained, the
efficiency loss of NEs can be unbounded (i.e., price of anarchy is arbitrarily large). Fortunately, if there are resource
constraints for users, the efficiency loss is upper bounded. We also demonstrate the stability of NE in best-response
dynamics in several variants of the game.

Second, we model the Tit-for-Tat strategy in unstructured file sharing networks by an overlay formation game.
We show analytically the existence of equilibrium overlay networks and that the loss of efficiency can be arbitrarily
large. Tit-for-Tat is believed to prevent selfish behavior. However, our results show that the loss of efficiency due
to selfish behavior can still be unbounded.

The rest of this paper is organized as follows. Related work is presented in Section Il. The problem formulation
for unstructured file sharing game is given in Section lll. In Sections IV and V, we focus on unstructured file
sharing game on a parallel link network and star network. We address the overlay formation game in Section VI.

Conclusions are given in Section VII.

Il. RELATED WORK

Johariet al [16] study a congestion game where users of a congested resource anticipate the effect of their
actions on the price of the resource. In [16] users compete for each link independently from other links in the
network. But this independence characteristic is not true for our model, because if a user opens a connection on a
path, then all links of this path must carry this connection. [17] and [11] study the interactions among selfish TCP
users competing for a single bottleneck link. The unstructured file sharing game in this paper can be thought of as
a generalized version of the game in [11].

[18][19] propose multi-path congestion controllers by which users can coordinate the data transfer sessions on
several different paths to improve data throughput. A multi-path congestion controller chooses rates at which
to send data on all of the paths available to it. In our models, all sessions controlled by a single user are
independent congestion controllers. [14] studies how Tit-for-Tat affects selfish peers who are able to set their
uploading bandwidth. Our work differs from [14] in that we assume that a user can benefit by changing the number

of connections to open. The analytical framework for our overlay formation game is in [20].
[1l. UNSTRUCTUREDFILE SHARING GAME

A. Formulations

Consider a network consisting of links, numberedi, ..., J. Link j has a capacity given bg’; > 0; we let
C = (C1,Cy,...,Cy) denote the vector of capacities. A set of usgrs..., R} share this network. We assume that
there exists a set of paths through the network, numbgred P. By an abuse of notation, we will usé N, P to

also denote the sets of links, users, and paths, respectively. Each pathuses a subset of the set of links if



link j is used by pathp, we will denote this by writingj € p. Each user- € R has a collection of paths available
through the network; if patlp serves user, we will denote this by writingy € r.

Each user can open a number of concurrent connectipnsn each pathp with p € r. This defines a strategy
vector for user asn, = (n,,) With p € P andp € r. Then a composite strategy vector of all users is given by
n = (ny,...,ng). For a givenn, a certain rate allocation mechanism allocates a trafficyat® each connection
on pathp. We will discuss rate allocation mechanisms in the following section. For now, we simply state that,
Vp € P, y, is a function ofn. We use vectoy = (y,, p € P) to represent a rate allocation on all paths.

The total date rate or throughpGt. obtained by a user is: G, (n,) = Zper NrpYp, Wheren,,, is the number of
connections opened by usewon pathp. As y, (Vp € P) is a function ofn, the throughput of user is a function
of the number of connections of all users, namély, = f(n). Any feasible rate allocatioy must satisfy the
capacity constrainty g Zp:jep nepYp < Cj, 75 € J.

We assume that userreceives a utilityl, (G,) when obtaining throughput,. We assume thdt, is a continuous,
concave, and non-decreasing functiontgf, with domainG, > 0. A userr has some cosb, (n,) associated with
opened connections. We assume that this cost is proportional to the total number of connections opened by this
user on all its available path&; (n,) = 8} c, n-p. Note thats € [0,1], and it is interpreted as the aggressiveness
coefficient. Smalled corresponds to more powerful computation resources. This type of cost is also considered in
[11]. In general, we can assume thlt is a continuous, convex, and non-decreasing function,ofThe payoff

or benefit of a user is a linear combination of utility/,, and cost®,., defined as:
By(n;) = Uy(n,) — ®-(n;). (1)

B. Rate Allocation Mechanism

We assume that the network allocates data rates to connections based etahdwidth allocation scheme
[10][1][2]:

vy Ty o
SUbjeCt to ZTGR Zp:jep NrpYp < Cj,j cJ (3)
Np = ZT’:pGr nrpr c P. (4)

wherew, is the weight of patlp. n,, is the number of connections or sessions on patifferent values otx give
different rate allocations. For example, as— oo, this allocation mechanism corresponds to Max-Min fairness.
Rate allocation in a TCP network is well approximated with= 2 and w, = 1/(RTT,)*. Here, RTT, is the
Round Trip Time (RTT) of pathp.

In a single link case and where all paths have the same RT Tgthendwidth allocation is simplified to simple

rate allocation mechanisnThat is, for a link shared by flows with the same RTT, each flow or connection gets



an equal share of the bandwidth of the link, namely,
y=C/n. (5)
Thus if a user hasn, flows, then its throughputs, is:

Cn, v, ifny>0
Gr(nT) _ n /ZweRn n (6)

0, otherwise

Remarks. Note that thissimple rate allocation mechanisoannot be extended to a network setting. Specifically,
after we calculate the rate allocated to each user on each link according to (5), we cannot simply say that the
allocated rate on a path can be givenipy = min;c,y,;, Vr € R. An illustrative example is given in Appendix .

Note that the authors of [16] can use this rate allocation mechanism because in their case, users compete for
each link independently from other links. However, in our case, links can not be treated independently, as all links
of a path must carry the connections opened on this path. As shown in the following section, this requirement
makes the throughput of a user neither a concave nor convex in the numbers of connections opened by this user
Thus, it is difficult to apply the existing game-theoretic results (which requires concavity of utility functions) to the
unstructured file sharing game on general network topology. Thus, in this paper we focus on two specific networks:

parallel links and a star.

C. Unstructured File Sharing Game

Based on the previous formulations, we now introduceuastructured file sharing gameén this game, each
userr tries to maximize its aggregate benddit by adjustingn,., its number of connections on its available paths.

Namely, a user tries to solve the following optimization problem:

max,, Br(nT,y*(nr)) (7)
s.t. ny, €[0,n%], Vrp, € P, (8)
y* — argma)§’ Zw naM (9)

L

P
S.t. Z Z ne,yYp < Cj,5 €J

reR p:j€p
ny = Z ny,,Vp € P
ripeET

The decision variables of useris given by vectom,. The set of available paths of useiis represented by,.
(9) indicates that the throughput of each connection on a path is the solution of the optimization problem defined
in (2). If « =2 andw, = 1/(RTT,)? and the network is a single bottleneck link, this game becomes the TCP

connection game [11].



For a general network, we cannot obtain an explicit form of functitin,) because there is no closed form
solution for the rate allocation problem (9). However, as shown later, we can obtain an explicit fépugf for
some specific networks such as grid network, parallel link, and star network.

In fact, (7) is a Bi-level Programming problem which in general is NP-hard [21]. In this paper, we do not try to
obtain a general solution for (7) for each user. Instead, we focus on some special network topologies for which there
exist analytically tractable and closed form solutions to (9), and for these networks, we investigate the existence of
Nash equilibrium.

Let n} represent the solution to uses optimization problem defined above. Formally, we have:
n; = argmay, B,(n).

A Nash equilibrium (NE) is defined as a composite strategy profile or a vector of connections of all users, and no
user can gain by unilaterally deviating from it. We denote a Nash equilibriummby: (n;*, n2*, ..., ng*).
The NE of this game represents the stable network state of the interaction among all users. The network

performance at a NE is described by the loss of efficiency, defined as:

Leff = Bmaa:/Bne (10)

where B,,. is the total benefit of all users when the network is at a NE, Bpd. is the maximum benefit. The

worst efficiency loss is also known as thdce of anarchy[13].

Remarks. It is not necessarily true that the throughgit(n, ) is an increasing function ai,.. For example, in the
network shown in Figure 1, userhas three pathsi;, p» andps. p; contains two linksj; and j» with capacityC'.
po contains linkj; andpy contains linkjs. According to the simple rate allocation mechanism introduced before,

if n, =(0,1,1), thenG,(n,) = 2C. However, if user- increases its number of connections on pattirom zero

P1 w 2

= O .
(T

Fig. 1. A case where the throughput of useis not increasing im...

to one, thenG, (n,) = 3C

v

One interesting special case is that a user can only choose either zero or one connection on a given available
path. That is, (8) can be describedas < {0,1},Vr, € P.. In this case, each user only has finite number of
strategies. This variant of the game is a finite game. According to [22], this game admits a mixed strategy NE.
This NE is related to randomly choosing of connections to other peers in BitTorrent applications [3]. This is an

interesting future research topic.



route 3 route4 routeb E C

route 1 [] [] [j
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(@) (b)
Fig. 2. (a) is a grid network where squares represent links. (b) is an instance df a)F — B andC — D — A correspond to route
land2in(d.D - A— E,E— F — D,C — F — B correspond to route3, 4, 5.

D. Existence of Multiple Nash Equilibria in Grid Network

In this section, we use a simple example to illustrate the unstructured file sharing game and possible NEs. The
network topology in this example is a so called grid network introduced in [10], shown in Figure 2.(a). A possible
instance of this grid network is called “fish” network, shown in Figure 2.(b).

A closed form rate allocation based on théandwidth sharing mechanism for such a grid network is given in
[10]. Specifically, if there ards horizontal routes and. vertical routes, then the total throughput on horizontal

pathp is given by X
(ke R%n”?)l/a
(25:1 R’}Tk ”?)1/0[ + (Zszl Ril“TI ”ﬁua

wheren,, denotes the number of flows on horizontal pathy, is the throughput of a single flow on pagh

NpYp = (11)

In the following, we discuss two variants of the game by considering two users playing the game on the grid
network. Userl uses routd and user uses route. Supposex = 2 in (11), which corresponds to TCP. Suppose

that all vertical and horizontal routes have RTT50fns, and there ar#0 background flows on all vertical routes.

Benefit includes throughput only. When both users are only concerned with total throughput and have no resource
limitations, we have identified the following case where there is a unique NE, at which both players open their
maximal allowable number of connections.

There are two users. Uséruses the upper horizontal route and uderses the lower horizontal route. Suppose
that user2 opens100 connections. In Figure 3, we plot the throughput of user 1 as a function of its number of
connections on its single available path. We find that the throughput of luseneither a concave nor convex
function of its number of connections on its single available path. This suggests that the current results on the
existence of Nash equilibrium cannot be applied here because these results require the concavity of the utility
function [12][23].

However, note that the throughput of uders an increasing function ai,, which can be verified by checking
its first-order derivative. Similarly, we can also show that usgrthroughput is also an increasing function of its
number of connections. Therefore, if both users play the unstructured file sharing game, there is a unique NE.

Furthermore, at the NE both players opens their maximal allowable number of connections.
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Fig. 3. Total data raté&’ of userl as a function of the number of connections on its path, when user 2 has 100 connections.

Benefit includes both throughput and cost.n this variant of the game, not only is th&t. neither a concave nor
a convex function of its number of connections, but B, is not always increasing in,..
For example, suppose = 0.0005 in the cost function®(n,). We plot in Figures 4 and 5 the benefit of user
1 as a function of its number of connections on its single available route, given that the number of connections of

user2 is 50 and 100 respectively. Note that, depending on the number of connections opened ¥ tleeibenefit

of user1 can be either an increasing or a decreasing function, of
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Fig. 4. Benefit of uset as a function of the num- Fig. 5. Benefit of uset as a function of the num-

ber of connections when us2rhas50 connection. ber of connections when us2thas100 connection.

We define the best respons¢ of playerr as the solution of’s optimization problem given fixed strategies
of all other playersn_,.. In Figure 6, we plot the best response curves of both players. Note that there are three
intersecting points. An intersecting point is a NE because at that point, each user’s response is the best response t
the other user’s strategy. Thus, there are three NE in this game. For comparison, in the single link TCP connection
game [11], there is only one unique NE when the cost is proportional to the number of connections.

It is also interesting to note that these two players do not share any common link (Figure 2), so, their interaction
arises because they share links with other common sessions.

This simple example indicates that the interaction among multiple users on a general network topology can be
much more complex than the single link TCP connection game. The existence and uniqueness of Nash equilibrium
can depend on network topologies and the utility functions adopted by users.

In the following, we focus on two special networks: a parallel link network and a star network. Both can be used
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Fig. 6. Best response curves of both player 1 and player 2.

to model peer-to-peer networks.

IV. PARALLEL LINK NETWORK

In this section, we investigate an unstructured file sharing game on a parallel-link network where all users
share a common source and a common destination node interconnected by a number of parallel links. Parallel-link
networks can be used as simple models for unstructured file sharing. For example, in eDonkey networks [4], a peer
can download a file from multiple other peers providing this file. There are possibly many peers simultaneously
downloading the same file, and they can be thought of as associated with a common destination node. Each of
the file-providing peers can be thought of as a “link” or “path” connecting the common destination node with a
common super virtual file-providing source node. Those downloading peers compete for these parallel links/paths
for bandwidth. This scenario can be approximated by a parallel link network.

In this section, we first show the existence of stable network states (NEs) on a parallel-link network. We then

present the results on the efficiency loss of NE and the stability of NE in the best-response dynamics.

A. Nash equilibrium

Suppose that there afe links and R users. By an abuse of notation, we will useand R to denote the set of
links and the set of users respectively. An example of a parallel link network is shown in Figure 7. The throughput
G.; obtained by user on link j is given by the simple rate allocation mechanism introduced in the previous section:
Gri(nrj) = Cingi | RT T,/ (S5, i/ RTTy;), where RT'T,; is the Round Trip Time of user on link/pathj, C;
is the capacity of linkj, andn,; is the number of connections of useon link j. The strategy of user is a vector
of the number of connections on its available paths or limks= (n,1, ..., n,1) andn,; € (0,n"**],Vj € L. n***
is the maximum allowable number of connections for use¥ote that this game is a continuous kernel game [12]
as we assume that a user’s strategy is a real-valued vector.
In this section, we only consider the case wh&r¢n,) = G,(n,). The benefit or payoff obtained by useis:
B,(n,) = G,(n,) — ,(n,).
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Fig. 7. A parallel-link network topology.

We consider two scenarios: an unconstrained game and a constrained game. In an unconstrained game, there
no upper limit on the total number of connections a user can open. In a constrained game, each user must choos:
a certain total number of connectidndVe have shown the existence of a unique NE in both constrained and

unconstrained games.

B. Unconstrained Game

In an unconstrained game, users essentially play an independent game on each distinct path/link. Since a NE
exists and is unique on a single link game [11], we know that a NE also exists and is unique on this parallel link
network. This is summarized in the following theorem.

Theorem 1:There exists a unique interior-point NE in an unstructured file sharing game on a parallel link

network.

Social Benefit at Nash equilibrium.As shown in [11], a single bottleneck link TCP connection game admits a
symmetric NE when users have the same Round Trip Times (RTT) and their benefit function includes throughput
and a cost proportional to the number of connections. This result can be extended to our uncontrained game. That
is, when all users have the same RTTs, the unique NE is symmetric, in the sense that all users have the same
number of connections at the NE.

Solving the optimization problem for a userwe can get the vector of connections of uset the symmetric
NE as:

ni; = (R—1)C;/(R?B).

)

Then, user’s benefit at the NE is
L

L
By =Y Cj/R-> (R-1)C;/R>.
j=1

j=1
Therefore, the total social benefit of the NE is

L
Bpe =Y _Cj/R.
j=1

1This is motivated by BitTorrent [3] where each peer always hastive connections open o different other peers.



Note thatB,,. is not related to the cost of users. It is simply a function of the total network capacity and the

number of users. As the number of users increases, the total social benefit of the NE goes to zero.

Reaction functions. The reaction function of a useris defined as the best response of usas a function (if it
exists) of the total number of connections of all other users. A response of isey = (n,1, nr2, ..., ny1,). SiNCe
in an unconstrained game users essentially play an independent game on each individual link, we can solve for a

user’s best response on each link separately. Specifically, for any,lwe have

R
Mpj = AIIMAY, (0,00 Bri (O 1kj)- (12)
k#r

For convenience, let_,; denotezk};r ng;. It is easy to show that

fiyj = f(nrj) = —n_rj +1/Cjn_r;/B. (13)

n,; is a continuous function of_,;. We note that in order to guarantee that the best response of iisem

interior point of its strategy space, we must have
npp >0 or n_p; < C]/,B (14)

As shown in Section IlI-D, we can use reaction functions to identify NEs by checking the intersecting point(s)
of the reaction function (best response) curves of all players. We can also use reaction functions to investigate the

best-response dynamics of the game playing process, as discussed later.

Stability of NE in Best-response Dynamics Suppose that users interact with each other using best-response in
a discrete time process, a so calleekt-response dynamigs2][11]. This process proceeds in discrete time steps
or rounds, and only one randomly chosen user makes a move at each round. Whenever a user makes a move,
calculates its best response to other users’ numbers of connections which are determined in previous steps. That is
the user who makes a move solves its optimization problem to maximize its benefit. If all users’ strategies converge
to or stabilize at some poini; as time goes to infinity, then, is a NE, and it isglobally stable Regarding an
unstructured file sharing game on a parallel link network, we have the following stability result.

Theorem 2:The unique NE is globally stable in the two-player version of the unstructured file sharing game on
parallel link network when both players use best-response to play the game.

Proof: We want to show that the best response of a user is a concave function of the other player's number

of connections. In the unconstrained game, users actually play independent games on different links. For a given

userr, the best response function or reaction function on Jirk given by (13), and re-stated as follows:

Tpj = —n—rj+1/Cin_r;/B,



wheren_, ; is the number of connections of all other users. It can be shown that

0%, /0n, ;= (~1/4),/C;/5 - =27 <.

Thus, the reaction function of useris a concave function of number of connections of other users. Then, from

[24], we know that in a two-player version of the game, Nash equilibrium is globally stable. |

Efficiency loss of Nash equilibrium
First note that the maximal system benefit is the solution of a straightforward optimization problem. The system
benefit can be represented as:

B= ZB—ZZGN ﬁZan (15)

r=1 j=1 r=1 j=1
We find that the maximal value @B is

7=1
Consider a homogeneous network where all links have the same capacity. Then w, have LC — gL, as

we need at least one connection for each link in order to get the bandwidth of each link. The efficiency loss of a

NE is given by
Bmaz LC - 6L
Loty = = . 17
T "B LC/R (A7)

This result essentially suggests that the efficiency loss of the unique NE is bounded. Howévér, afe fixed,

and letR — oo, thenL.;; — oo. This suggests that the system performance at NE can degrade arbitrarily if the

number of users becomes large.

Socially Responsible Users

Note that we can think of users as data senders in the game discussed above. Let the packet loss rate associats
with each link/pathj be p;. Suppose that the packet sending rate of a TCP connection of wsepath/link; is
T,;. The throughput of this connection is given by.; = 7,;(1 — p;). Not all packets coming to bottleneck link
j are delivered. The network resources before linkre partially wasted because that they carry data at a higher
rate than the actual delivery rate of ligk Therefore we can think of this extra traffic as a cost to the network and
that is proportional to the packet sending rdig. A user is considered as socially responsible if his/her benefit
function includes this cost term. That is, we habg(n,) = G,; — 72521 nr;Trj, Wherey € (0,1). Based on
[11], we can show that there exists a pure strategy unique NE because users actually play a game on each link
independently from other links. It also follows that the loss of efficiency of the NE is bounded as the unique NE
is an interior point in the strategy space. Note that the definition of loss of efficiency in unstructured file sharing
game is different from that of the single bottleneck link TCP connection game. The latter is defined as the ratio of
total sending rate from all users at NE over the minimum total sending rate. The latter is the efficiency loss from

network’s point of view, whereas the former is from user’s point of view.



C. Constrained Game

Consider another model where the total number of connections that are allowed to open by a user is fixed.
Formally, for any user, we havezf zr; = n,, Wheren, is the required total number of connections.

We refer to this game as eonstrained gameAs summarized in the following theorem, this game admits a
unique symmetric Nash equilibrium.

Please see Appendix Il for the proof of this theorem.

Theorem 3:There exists a unigue interior-point symmetric Nash equilibrium in a constrained unstructured file

sharing game in parallel-link network.

Remarks. It can be true that there aessymmetricNE. For example, suppose that there are two users and two links
with the same capacity, and each user is constrained to use two and only two connections. Then one NE is that
user 1 opens its two connections on link 1 and user 2 opens its two connections on link 2, or a NE could be that

user 1 opens its two connections on link 2, and user 2 opens its two connections on link 1.

An lllustrative Example for the existence and stability of NE. We use a simple example to illustrate the
Nash equilibrium proved in Theorem 3 . There are three usérd3, andC. There are two paths (or two links)
in a parallel link topology. Suppose that the capacity of link 1Cis = 25Mbps and the capacity of link 2 is
Cy = 100Mbps. Suppose that each user has to dgenonnections. As proved in Theorem 3, at Nash equilibrium,
each user will oped and 16 connections on link 1 and 2 respectively, becau$gn’ = C,/C2 = 1/4. That is,
at Nash equilibrium we havey), = nj = ng = (4,16).
Suppose users interact with each other udiegt-response dynami¢2][11]. If all users’ strategies converge
to or stabilize at some points as time goes by, then the stablized numbers of connections are the Nash equilibrium
strategies for all users. As shown in Figure 8, the best-response dynamics indeed converges to a stable point whict

corresponds to the Nash equilibrium obtained from the previous analysis.
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Fig. 8. An example of the best-response dynamics on two parallel links. This dynamic process converges to Nash equilibrium. The left

figure shows the benefit of three users. The right figure shows the numbers of connections.

Loss of Efficiency. Given the constraint that the total number of connections of ustrould be equal ta,., the

maximal value of (15) is given by, .. = Z]Lﬂ C; — ﬁZle n,. The system optimal performance is exactly the



Fig. 9. An example of star network.

Fig. 10. A three node topology.

same as the system performance at Nash equilibrium. Then, the Nash equilibrium has no efficiency loss, that is,

Leff = 1.

V. STAR NETWORK

In this section, we use a star network to approximately model a peer-to-peer file sharing overlay network, and
investigate the unstructured file sharing game on such a star network. Figure 9 presents one such example.

In the star network, we assume that a user has two asymmetric access links to the Internet. one downstream
link and one upstream link. This assumption is supported in a measurement study in [25], where it is found that
most users in current peer-to-peer networks use cable modem or ADSL to get connected to the Internet. Usually
the downstream link has higher capacity than the upstream link [25].

A userr uses its downstream link to get data from other peers. The downstream link of igse@r‘private” link
in the sense that this link is only used by usdtself. On the other hand, the upstream link of usés shared by
all other peers or users who are downloading files from us&¥e can think of the upstream link of useras a
“public” link from the point of view of userr.

In addition, similar to [14][15], we assume that in a peer-to-peer file sharing network, bottlenecks can occur at
access links, not in the core Internet. This assumption is a reasonable approximation of the current peer-to-peer file
sharing networks such as Gnutella and BitTorrent, where usually the data throughput is limited by the “last mile”
(cable or ADSL or modem) of a connection. Thus, in the star network shown in Figure 9, the Internet cloud can
be represented simply as a central node.

In the following, we first prove the existence of NE in unstructured file sharing game on a star network. We
then use examples to illustrate the best response dynamics of this game playing process, and finally we present ou

results on the loss of efficiency of NE.



A. Nash Equilibrium

Recall that the benefit of useris given by (1). In the following, we first present a lemma (Lemma 1) and later
use it to prove that a utility functionU,.(G,(n;)) is a non-decreasing, continuous, and concave function of user
r's number of connections, = (n,1,...,np,), Where P, represents the set of available paths of usand the
number of paths as well. Since we assume that @$h,) is an increasing and convex function of, it then
follows that the benefiB, is a non-decreasing, continuous, and concave functiam, of

Lemma 1 is introduced for the simple network in Figure 10, where a u$ers two paths4 — C — D and
B — C — D) to transfer data to destination node Both paths share a common lifkKD. Suppose that the
number of connections useropens on patl — C — D is n,;, and on pathB — C — D is n,e. Then we have
n, = (np1, Np2).

We assume that link'D is a private link of user, i.e., no other users use this link. This private link corresponds
to the downstream link of userin a star network. On the other hand, linkg” and BC' are shared by userand
other usersAC and BC' correspond to two public links of userin a star network.

Recall that throughputr,. obtained by user is a function ofn,. Lemma 1 shows tha¥, is a concave function
of n,.

Lemma 1:ThroughputG, of userr in Figure 10 is a concave function af. = (np1,n,2).

Proof: The strategy vector of useris n, = (n,ny). Letz = 2C 4 weCe
Then, the throughput obtained by useis
03 , if 2 > Cg
G(npl, npg) = . (18)
z L if 2<C4

First, we note that this function is continuous and increasing. Second, this function has two parts, with each part
being a concave function. Now we want to show that this function is a concave function eferywherdn its

domain.
Take any two pointsm! and n?. Without loss of generality, we assume thet satisfiesz < C3 and thatn?
satisfiesz > (3, as shown in Figure 11. We would like to show that

G(0n' + (1 - 6)n?) > 6G(n') + (1 — 6)G(n?),6 € [0,1].

If we connect pointm! andn? with a line, then this line intersects with the boundary of region C5 at point

n%. Then we have,

G(on' + (1 —n?) > G@On' + (1 -6)n°) (19)
> 0G(n') + (1 —6)G(n?) (20)
= 6G(n') + (1 - 6)G(n?) (21)

2U,(x) is assumed to be continuous, nondecreasing, and concave.
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Fig. 11. The domain of7,, the throughput of user r, can be divided into two regions. One regian3sCs, and the other region is
z S Cg.

(19) is true because that(x) is an increasing function at, andén® + (1 — §)n? > sn! + (1 — §)n°. (20) is
true because functiof is a concave function in region < Cjs. (21) is true because functiaid is a continuous
function.

An illustrative example. In Figure 10, suppose we chooékps as capacities for linkd — C and B — C and
2bps for link C — D. Userr wants to open some number of connections on paths C' — D (path1) and
B — C — D (path2) to transfer data fromd and B to destination noded). The numbers of connections or
sessions from other users on linkg' and BC' are100. We vary the numbers of connections from us@n pathl
and2, and then compute the throughput received by usés shown in Figure 12, we see that us&rthroughput

is indeed a concave function.

path 1

Fig. 12. Throughputy, of userr as a function of the number of connections on both paths. The left figure is a side view. The right figure

is a top view.

Consider the network in Figure 13, a generalized version of the network in Figure 10. In Figure 13, thife are
(multiple) paths along which usercan get data from the sender. All paths share a commonBidk A strategy
vector of user is n, = (n,1, ny2, ..., nypr) With M > 2. We can extend the result in Lemma 1 to show that a user
r’s throughput is also a concave functionwf. This is summarized in Lemma 2.

Lemma 2: Suppose that userhasM (M > 2) paths in the network shown in Figure 13, then the throughput



Fig. 13. A network where a user has multiple paths (or peers) to get data.

of userr is a concave function of its strategy vecioy = (1,1, 17,2, ..., Nrpr)-

Based on Lemma 2, we can show in the following theorem the existence of NE on a star network. One example
of such star network is shown in Figure 9.

Theorem 4:There exists a Nash equilibrium of unstructured overlay game on a star network (shown in Figure
9).

Proof: According to Lemma 2, each uses total throughput is a concave function of the vector of number

of connections,. Then it is easy to show that uses benefit or payoff functionB, is a concave function af,.
In addition, B, is continuous inn. Thus we have a multi-playeroncavegame. Based on the result in [23], we

conclude that Nash equilibrium exists in this game. |

An illustrative example. We use a simple star network shown in Figure 14 to illustrate the existence of NE proved
in Theorem 4. On this star network, there érénks AD, DA, BD, DB,CD, andDC. The capacities of all links
areCyp = 10,Cps = 20,Cgp = 30,Cpr = 40,Cep = 50, and Cpc = 60. There are three users associated
with nodesA, B and C respectively. For convenience, we refer to the user at nbdes userA. Note that each
user has two download paths with each path consisting of two links. For exampled lser two download paths
B — D — AandC — D — A. For any given download path, one link is shared with other users, and the other
link is a private link. For example, for uset, pathB — D — A has two links:BD and DA. Link BD is a link
shared with use€’'. Link DA is a private link of userd, which is shared by both of its patis — D — A and
C—D— A

User A’s strategy is a vector of number of connections on two available pathsa ke (np4,nc4). Similarly,
strategies of useB andC' are:ng = (nap,ncp) andng = (nac,npe)-

Consider the unstructured file sharing game played by useBs andC'. Each user tries to maximize its benefit
B, (r=A,B,C). We use best response dynamics to demonstrate the existence of a NE in this game. At the first
step, each user opens a random number of connections on two available paths. In the following steps, only one
player is randomly chosen to compute its best response at each step. As shown in Figure 14, the best respons

dynamics converges to a NE, which can be verified by checking the optimality of benefits of all three users.
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Fig. 14. The left figure shows a simple star topology with three users A, B, and C. The right figure shows the best response dynamics. All

three users’ benefits converge to the Nash equilibrium.

B. Loss of Efficiency

Consider the case where all downstream links have higher capacity than upstream links and users are homo-
geneous. We can show that in this case, the loss of efficiency of any NE in the game is bounded. However, if
users are aggressive in the sense that their benefit functions do not contain cost terms, then a unique NE is a poin
where all users open their maximum allowable number of connections. Clearly, the loss of efficiency of the NE is
unbounded if users can open arbitrarily large numbers of connections. In order to show these results, we need to
do a simple transformation as described below.

In the star topology shown in Figure 9, if all users’ private downstream links have much higher capacities than
the upstream links of those other peers, then this game can be thought of a variant of the game on a parallel link
network. For example, we can transform the simple star network in the left sub-figure of Figure 14 into Figure 15.
Center nodeD in Figure 14 is decomposed into six interconnected virtual ndeles D A., Dg4, DBy, Dcod, Dow.

Links between these six virtual nodes have infinite capacity. Néde decomposed into nodes;,,, and A,,.
Link D aqA40wn represents tl 3am link of node

Other links have similar inte

Fig. 15. Transformation of star network into equivalent parallel link network.

Based on the transformation illustrated in Figure 15, the result for the loss of efficiency at NE on a parallel link

network can be applied to a star network. That is, the loss of efficiency at NE of the unstructured file sharing game



can be arbitrarily large if the number of users becomes large in this special case.

We also consider another special case where users are aggressive in the sense that users do not have cost constre
and only care about their throughputs [11]. That is, user’s benefit function is represenfgdmas: = G, (n,). In
this special case, there exist a unique Nash equilibrium where all users open their maximum allowable number of

connections, and the price of anarchy can be unbounded when users can open arbitrary large number of connection:

Network Resource Utilization. Suppose that all downstream links have higher capacities than upstream links. Then
the capacities of all upstream links will be fully utilized at the NE. This is a good situation in terms of the network
resource utilization because the total throughput can be supported by the network is just the aggregate capacity of
these upstream links. Note that this is not always true for general network topologies, which is demonstrated in an

example in Appendix Ill. A similar example is given in [26].

VI. OVERLAY FORMATION GAME

In this section, we introduce awverlay formation gaméo study the Tit-for-Tat strategy adopted by BitTorrent
(BT) [3], one of the most popular peer-to-peer applications.

As before, we assume that the physical network is a star network where each peer is attached to a physical node
and the center node models the Internet, and peers connect to the center node via access links. However, unlike
the last section, here we assume that bottlenecks only occur at upstream access links. As before, we assume th:
peers always have demands that can be satisfied by each other, and that connections are always allowed.

A connection between a pair of peers can be thought of as a virtual link. Through setting up connections
between themselves, peers form an overlay network, in which each node represents a unique peer, and virtual links
are connections between peers. A pé@an get a share of the upload bandwidth (BW) of pgehrough the
connection (or virtual link) betweenand ;. In the mean time, other peers may want to get some share ofjseer
upload BW by setting up connections wih The upload BW of; is equally shared among all connections with
other peers. Note that a peer may want to get BW shares of all other peers’ upload BW and want to maximize its
received total BW. If all peers behave this way, we have a game among peers, and any stable point of this game is
an overlay network consisting of a set of virtual links among peer nodes. We call this gaoverday formation
game

We can think of theoverlay formation games a variant of amnstructured file sharing gameith two major
unique characteristics: 1) two peers set up a connection between themselves only when they both find it beneficial,
2) there can only be zero or one connection between a pair of peers. The first characteristic captures the reciprocatior
feature of the so calledit-for-Tat strategyin BitTorrent (BT) protocol [3]. According to Tit-for-Tat strategy each
peer uploads to the, peers (the default value & from which it can download at the highest rate, i.e., its best

uploaders.



The Tit-for-Tat strategy is generally considered robust. To the best of our knowledge, the only analytical support
for this belief is in [14]. The authors of [14] study how Tit-for-Tat can affect selfish peers who are able to set their
upload bandwidth in a BT network. Under several assumptions, they show that thegeasl BE at which each
peer uploads at the maximum rate. Note that in [14], for a given peer, the total number of other peers to set up a
connection with is fixed. However, we observe that BT clients can change the number of connections to open in

order to gain advantage or to improve their performance. We illustrate this observation in the following example.

An lllustrative Example. Consider10 peers divided into two groups. Five peers have physical upload bandwidth
C7 = 3 and the other five have bandwidtl, = 2. Suppose that the default number of connections,is= 3.
According to [14], peers would use all their upload bandwidth and would create the overlay shown in Figure 16,
where big circles and small circle respectively represent high-bandwidth and low bandwidth peers. Note that the
peers do not receive the same download rate, even if they belong to the same group. Four high-bandwidth peers
receive a download rate &f (= 3C1/3), while the peer connecting the two groups (p8en the figure) receives
only 8/3 (= 2C1/3 + C2/3). Similarly four low-bandwidth peers receive rates2fwhile the other receives/3.
According to [14] the formed overlay network is stable in the sense that no peer wants to change a link (or reduces
its uploading rate).

Let us now remove the constraint on the number of connections. For example$ peeides to increase its
number of connections tB. If all other peers keep.,, = 3, the new equilibrium is presented in Figure 17. Note

that peerS improves its performance, because its download rate increases3ftdmo 10/3 (= 5C3/3).

@ S /. m S@
Fig. 16. Regular Graph. Fig. 17. Peers can change numbers of connections.

This example shows that peers can benefit by changing their numbers of connections. This is formally supported
by a result in Section VI-B.1 regarding a homogeneous network where all peers have the same capacity. In the
rest of this section, we first formally introduce the overlay formation game in which peers act selfishly as player
S. We then study the network equilibria arising in this game and quantify the loss of efficiency using the analytical

framework of network formation games [20].

A. Model of Overlay Formation Game

We formally introduce the overlay formation game in this section. Assumptions are detailed in the previous
section. We refer to peers as players and to connections as links. As befaRe,2ef1,2,--- , R} denote the

set of players. The strategy of a playieis the set of intended connections playewants to establish, which is



denoted bys; = {s; ;| 7 € R\{i}}, wheres; ; = 1 means that player intends to create a link (open a connection)
with playerj ands; ; = 0 means that player does not intend to create such a link. With friefor-Tat strategy
both players have to agree in order to create a link, hence a link between playmalg is formed if and only
if s;; = s;; = 1. A strategy profiles = {s1,s2,--- ,sr} therefore induces a networKs) = {g; ;,i,j € R},
whereg; ; = 1 denotes the existence of lirk, j) andg; ; = 0 denotes the absence of lirik j). Given a network
g, we useg + g; ; or g — g; ; to denote the network obtained by adding or severing the (ink). We also let
Ni(g) ={j € R:j#1,9;; = 1} be the set of playet's neighbors in graply, and letn;(g) = |N;(g)|. A network
is symmetric ifn;(¢g) = n,Vi € R, i.e. all players have the same number of connections, also known as a regular
graph.

The payoff or benefit of player is given by its download rate minus the cost of opening connectiBns:
G — ®i(n;) = ZjeNi(g) Cj/nj — ®;(n;). As before, we assume thé; is a convex function of:;. The marginal
benefit for player to open a new connection with playgris:

bi(ni(9).nj(9)) = Bi(g+ i) — Bi(g)
= T M) + 1)+ Bilnlo))
A connection between two players can be set up only when both of them find this connection beneficial. This
coordination requirement makes the concept of Nash equilibrium (MdE)ally inadequate To address this issue,
the idea of NE has been supplemented with the requirement of pairwise stability [27], described below.
Definition 1: A network g is a pairwise equilibrium networKPEN) if the following conditions hold: 1) there is

a NE strategy profile which supporis 2) for g; ; = 0, Bi(g + gi;) > Bi(g) = Bj(g + gi,j) < Bj(g).

B. Equilibria in Homogeneous Networks

In this section we consider homogeneous networks in which all peers have the same upload capacity and payoff
function.

1) Overlay Network CharacterizatiorBased on the previous assumptions, our game is the local spillovers game
with strategic substitutes properties studied in [28]. Some of the following results (Theorems 5, 6 and 8) can be
derived from [28]. Please see Appendix IV for details.

Theorem 5:1f the number of players is even, a symmetric PEN always exists. Specificall§).if) < 0, the
empty network is a PEN; i(r —2,r—2) > 0, the complete network is a PEN;itk, k) < 0 < b(k—1,k—1), the

regular graph with degrek is a PEN. When the previous inequalities are strict, the degree of the PEN is unique.

Remarks. First, note that for a set oR players or nodes, iR is even, we can expect a PEN to be a symmetric or
regular graph of any possible degree frono R — 1; this is not true when the number of players is o8écond

this theorem states that the degree of a PEN can be determined by considering only the marginai(behgfit



for a pair of nodes with the same number of connectibnand in particular this degree is the smallest value

that makes(k, k) negative.Third, the symmetric network at equilibrium is not necessarily connected. Figure 18
shows two possible equilibria with = 8 players and degrek = 2. Finally, even when a symmetric network can
arise from player interaction according to Theorem 5, the degree of the network is in general different from the
default value used in current BitTorrent implementatiap £ 4). This means that the symmetric network created

by compliant peers in BitTorrent networks is not in general a PEN for our overlay formation game.

Fig. 18. Different Pairwise Symmetric Equilibria.

Besides symmetric PENs discussed in the above, we have the following theorem addressing asymmetric PENS.
Theorem 6:There can be at most one player or node not connected to any other players in a PEN and the rest
of the network is a symmetric network of a unique degree. In asymmetric networks with a single component, if
two players with the same number of connectién@.e. two nodes with the same degrieare connected to each
other, then any two players with fewer number of links thator two nodes with lower degrees thah must be

mutually connected.

Remarks. First, this property rules out two or more isolated players and interlinked stars with two or more central
players, but does allow a star to arise in equilibrfulNote that for file sharing purposes, an overlay with a star
topology is very inefficient: the operation falls back to the server-client paradigm with the center of the star acting
as the serveiSecondin some cases symmetric and asymmetric networks can be pairwise equilibria for a given set
of link capacities and cost functions (see [28] for examples).

The following theorem (not derived from [28]) shows some other restrictions as regards asymmetric networks
when the marginal benefit for playgto open a connection with playgronly depends on the number of connections
of playersi and j (as in our case). This new result rules out also star topologies. Please see Appendix V for a
detailed proof.

Theorem 7:In a scenario where a unique degrée is possible for the symmetric PENs, there can be at rhost

3An interlinked star network has a maximally connected group and a minimally connected group of players. In addition, the maximally

connected players are connected to all players while the minimally connected group has links only with the players in the maximally
connected set.



players with degree smaller than Say! the number of players with degree smaller thiarthere can be at most
(h — 1)l players with degree bigger than each of them with degree at madstt- [. If the cost function is linear
then there are no players with degree bigger than

Remark. Note that the degree of symmetric PENslepends only on the cost functi@n) and the capacity”,
and is independent from the number of play&sHence thedistancebetween a PEN and a symmetric PEN is

bounded and becomes less significant as the number of pl&yersreases. Formally:

R
A = {; Ini(gpEN) — h|} = 0.
Similarly the average payoff per player in a PEN converges to that of a symmetric PEN.
The following result shows that players having more connections gain higher payoffs than other players, sup-
porting the example introduced at the beginning of this section.
Theorem 8:Let g be a pairwise equilibrium network in whiefy(g) < n;(g). If Vu € N;(g), Fv € N;(g) s.t.n, =
ny, thenB;(g) < Bj(g).
Note that if player’s neighborhood is included in playgis neighborhood §; C NN;), the condition, Yu € N;(g),
Jv € Nj(g),s.t.n, = n,”", is satisfied.
2) Loss of Efficiency of Symmetric Equilibrign our game, given the number of players, the number of possible
overlays players can create is finite. Hence there is one netyygrkvith the highest total payofy ;g Bi(gopt)-

We define the efficiency loss of a PENas the ratio of the highest total payoff over the total payoff of the PEN:

ZieR Bi(goz)t)
ZiER Bi(g)
We note thatL.;; depends in general on the number of players, and the upload capacities and cost functions of

Less(r,C,®) =

those players. The following theorem states that; is unbounded even for the class of linear connection cost
functions @(n) = an). Therefore, the price of anarchy (the worst efficiency loss of all NEs) is inffinRkease
see Appendix VI for a detailed proof.

Theorem 9:For the class of linear connection cost functions, the loss of efficiency is unbounded. In particular,
given an even number of players and an upload capdcityM € R,3a* € RY s.t. Ly (r, C, @*) > M, where

®*(n) = a*n.
C. Dynamic Models

We investigate in this section how peers can dynamically reach a PEN. Here we consider lineab @g$ts: (
an;). We consider the following dynamic discrete-time process. Starting from an empty network, at each time a
player pair {,j) is randomly chosen. LinKi, j) is created (or kept) if both players find it beneficial. An existing

“This is different from what happens for selfish routing, where the price of anarchy is finite, and independent from the network topology

for networks in which edge latency does not depend in a highly nonlinear fashion on the edge congestion [29].



link is removed if at least one of the two players of that link does not find it useful. We are going to show that
this dynamic process always reaches a PEN.

Let us introduce some terminology according to [20]. A netwgrls adjacentto a networkg if ¢’ = g+ g, ; or
g = g—g; ; for some pair(, j). A network g’ defeatsanother networlg if either ¢/ = g—g; ; and B;(¢') > Bi(g),
orif ¢ = g+g;; with B;(¢") > B;(g) and B;(¢') > B;(g) with at least one inequality holding strictly. A network
game exhibitso indifferenceif for any two adjacent networks, one defeats the other.

According to this terminology in the dynamic process we described above, the current network is altered if and
only if the addition or deletion of a link would defeat the current network. The process leadsitopasving
path, i.e. a sequence of networks, go, ..., gk Where each networky is defeated by the subsequent (adjacent)
network g;.1. There are two kind of improving paths: those exhibiting cycles (which have infinite length) and
those terminating with a PEN (calledtable staty The following lemma (a theorem in [30]) characterizes when
there are no cycles and pairwise stable networks exist.

Lemma 3:Given G the set of all the possible networksif there exists a real valued functian: G — R such
that “g’ defeatsg” if and only if “w(g¢’) > w(g) andg’ and g are adjacent”, then there are no cycles. Conversely,
if the network game exhibits no indifference, then there are no cycles only if there exists a functiGh— R
such that ¢’ defeatsg” if and only if “w(g’) > w(g) and¢’ and g are adjacent”.

Based on this lemma, we have the following result.

Theorem 10:If the connection cost function is a linear functidrin) = an, the dynamic process introduced at

the beginning of Section VI-C always reaches a PEN.

Sketch of the proof.If h € {0,1,---,R— 1} is the degree of a symmetric equilibrium according to Theorem 5

andb(h,h) < 0 for h # R — 1, the following functionw : G — R:

R
=1

where
f(ni) = .
R(n; — h) otherwise
satisfies the relation in Lemma 3 for our overlay formation game, hence the dynamic process always reaches a
PEN. If h # R — 1 andb(h, h) = 0, then in a PEN there can be also nodes with degreel (as well as nodes

with degreed, 1,--- , h), in this case the following function can be considered:

fni) = .
R(n; — (h+1)) otherwise

The details of the proof are in Appendix VIII.



Simulations. We present some simulation results. We considered a number of players ranging from 100 to 10000
and a = 0.245, for which the degree of a symmetric PEN4sFor each setting we simulated 5000 runs of the
above dynamic process. Each run terminates with a PEN. We denote the average degree for this PEN over all

players asiyg.
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Fig. 19. Average node degree. Fig. 20. Total benefit.

Figure 19 shows the minimum and the meanigf, over all the runs. We see that &sincreases both the mean
and the minimum converge th This result confirms Theorem 7: @&increases the PENnvergeto a symmetric
one.

In Figure 20, the mean and the minimum of the total benefit are compared with the highest total benefit, which
can be directly evaluated from the results in Appendix VII. This figure shows also the convergence of the payoffs

of all PENs to the payoff of the symmetric PEN whénincreases.
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Fig. 21. Number of iterations per peer.

In addition, we present the number of iterations per peer in Figure 21. We observe that the average number of
iterations to reach a PEN is of the order Bf and hence the number of iteration per peer is of the ordeR.of
Let us consider this number of iterations in the context of BitTorrent (BT) [3]. Each peer in a BT network tries
to replace an existing connection with a new, better connection eweseconds. All peers do such replacement
simultaneously, unlike the sequential replacement in our simulation®? ®erations in our simulations corresponds

to 10R seconds in a BT network. For a population1@f) peers, the time needed to reach a PEN is of the order of
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Fig. 23. Convergence to the PEN: the benefit.

about17 minutes, which is typically faster than the average time between changes in the population of peers (due
to arrivals or departures). Figure 22 shows how the average and minimum degrees change during two simulation
runs respectively folR = 100 and for R = 1000. The initial values are equal t and converge ta. The time
scale represents time in a BT network; namélyiterations are represented bgs. We can observe that: 1) with
this time scale the evolution of the average degree seems independent from the number of players; 2) the network
converges quite rapidly to the PEN. In particular, the average degree reaghes. 95% of the final value, after
less than 80 seconds in both cases, or, equivalently, after less than 800 iteratidhs- fd0 and less than 8000
for R = 1000.

Finally Figure 23 shows the time evolution of the process as regards the total benefit. We can note that for both
runs, as the process begins the total benefit grows because of the high benefit of the initial connections, while it

falls down to the expected value when the network approaches the equilibrium.

VIlI. CONCLUSIONS

Motivated by unstructured file sharing networks such as BitTorrent [3], we introduced an unstructured file sharing
game and an overlay formation game to model the interaction among self-interested users who can open multiple
connections on multiple paths to accelerate data transfer. Users are modelled as players, and each user adjusts i

numbers of connections on its available paths to maximize its benefit.



We demonstrated by examples that there exist multiple stable network states, so called Nash equilibria (NE), in
the unstructured file sharing game on general networks. We further restrict our attention to parallel link networks
and star networks which are used to model unstructured file sharing networks. We proved the existence of NE in
several variants of the game on both networks. We found that the loss of efficiency of NE can be arbitrarily large
if users have no cost constraints. However, when there are cost constraints, the loss of efficiency is bounded. In
addition, we proved the global stability of NE in some variants of the game. Furthermore, we studied the Tit-for-
Tat strategy (built in BitTorrent [3]) through an overlay formation game. We proved the existence of equilibrium
overlays, and demonstrated the convergence of the dynamical game-playing process. Although the general belief is

that the Tit-for-Tat can prevent selfish behavior, we showed that it can still lead to an unbounded loss of efficiency.

ACKNOWLEDGMENT

The authors would like to thank Jim Kurose, Arun Venkataramani, and Chun Zhang for their helps. This research
has been supported in part by NSF under grant awards ANI-0085848, CNS-0519998, CNS-0519922, and EIA-
0080119. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: shadow prices, proportional fairness and stadnilitygll
of the Operational Research Sociewpl. 49, pp. 5-12, 1998.

[2] J. Mo and J. Walrand, “Fair end-to-end window-based congestion confedE/ACM Transactions on Networkingol. 8, no. 5, pp.
556-567, 2000.

[3] B. Cohen, “Bittorrent, http://www.bittorrent.com,” 2006.

[4] Wikipedia, “http://en.wikipedia.org/wiki/peer-to-peer.”

[5] Sprint-Labs, “Packet trace analysis, http://ipmon.sprintlabs.com/.”

[6] CacheLogic, “http://www.cachelogic.com.”

[7] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Resilient overlay networkBfbm 18th ACM SOSF2001.

[8] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-to-peer netwoAGNM iBIGCOMM 2002

(9]

[10]

D

E

D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstructured overlay topologies in modern p2p file-sharing sys&200a

T
[11] H. Zhang, D. Towsley, and W. Gong, “Tcp connection game: A study on the selfish behavior of tcp us€EEEIMCNP 2005

T

E

D

F

. Bonald and L. Massoulie, “Impact of fairness on internet performanceSI®METRICS/Performanc@001, pp. 82-91.

[12]
[13]
[14]
[15]

. Basar and G. OlsdeBynamic Noncooperative Game TheoryNew York: Academic Press, 1998.

. Koutsoupias and C. Papadimitriou, “Worst-case equilibtizgture Notes in Computer Sciene®l. 1563, pp. 404-413, 1999.

. Qiu and R. Srikant, “Modelling and performance analysis of bittorrent-like peer-to-peer networkeCNhSIGCOMM 2004.

. L. Piccolo, G. Neglia, and G. Bianchi, “The effect of heterogeneous link capacities in bittorrent-like file sharing systems.” in
HOT-P2P’04
[16] R. Johari and J. Tsitsiklis, “Efficiency loss in a network resource allocation gavietfiematics of Operations Researstol. 29(3),

2004.

[17] A. Akella, R. Karp, C. Papadimitrou, S. Seshan, and S. Shenker, “Selfish behavior and stability of the internet: A game-theoretic
analysis of tcp,” inACM SIGCOMM 2002



[18] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing and rate cont®@gimputer Communication Revigwol.
35:2, pp. 5-12, 2005.

[19] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-path tcp: A joint congestion control and routing scheme to
exploit path diversity on the internetEEE/ACM Transactions on Networking007.

[20] M. O. Jackson, “A survey of models of network formation: Stability and efficiency,Goup Formation in Economics: Networks,
Clubs and Coalitions New York: Cambridge University Press, 2004.

[21] L. Vicente and P. Calamai, “Bilevel and multilevel programming: A bibliography revidairnal of Global Optimizationvol. 5, pp.
291-306, 1994.

[22] J. Nash, “Equilibrium points in n-person games,’Rnoceedings of the National Academy of Sciend®s0.

[23] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave n-person gBrwmimetricavol. 33(3), pp. 520-534,
1965.

[24] H. Zhang, D. Towsley, and W. Gong, “Tcp connection game: A study on the selfish behavior of tcp users,
ftp://gaia.cs.umass.edu/pub/ZhangD&pConnectionGame.pdf, Tech. Rep., 2005.

[25] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement study of peer-to-peer file sharing systdhns¢eimdings of Multimedia
Computing and Networking2002.

[26] P. Key and L. Massoulie, “Fluid limits and diffusion approximations for integrated traffic models, msr-tr-2005-83,” Tech. Rep., 2005.

[27] M. Jackson and A. Wolinsky, “A strategic model of economic and social netwodksifnal of Economic Theorwol. 71, no. 1, pp.
44-74, 1996.

[28] S. Goyal and S. Joshi, “Unequal connectiorfigtthcoming in International Journal of Game ThepB006.

[29] T. Roughgarden, “The price of anarchy is independent of the network topologhCM Symposium on Theory of Computi2§02.

[30] M. Jackson and A. Watts, “The existence of pairwise stablenetwo8exul Journal of Economigcsol. 14(3), 2001.

APPENDIXI

AN EXAMPLE FOR THE SIMPLE RATE ALLOCATION MECHANISM

This example is to show that the simple rate allocation mechanism in Section 1lI-B cannot be extended to a
general network.

Suppose that there are two paghsand p. which belong to two userl andr2 respectively. These two paths
share a single common link Let userrl openn;,, number of connections op and user 2 opemns,, number
of connections oms.

Suppose that

vm € p1,m # 1, Cyynip, / Z Nwm > Cinip, [ (Np, + nap,).
weR

Here,n.,, represents the number of connections opened by wsan link m.

If we conclude that

Yip, = Cinap, /(n1p, + nap, ),

then we might be wrong. The reason is as follows.



It is possible that there is a link on p, satisfying

k€pak#1,Crnap,/ Y Mk < Cinap,/ Y 1y, Vi € pa,
weR weR

then user-2’s obtained rate is

Ck:n2p2 / Z Nuwk,

weR
and the actual allocated rate of ug@ron link I is Cynap,/ >, cr Mwk-

If we have

Cmnlpl/ Z Nwm > Cl - Canpg/ Z Nuwk

weR weR
> Clnlpl/(nlpl + n2p2)

then, the actual rate obtained by user 1 is

Cr = Cinap,/ Y Mk

weR
not

Clnlpl/(nlpl + n2p2)'

APPENDIXII

PROOF OFTHEOREM 3

Consider the Lagrangian of the constrained optimization problem of any givenr.user
L(n,) = Br(n,) + A\(n an

The optimal solution can be obtained by solving the followmg equations.

OL/On,; = 0,Yj (22)
AL/ = 0 (23)
That is,
R
OL)On,; = Lipr ks Ci—fB—-A=0 (24)

(g + Dz k)
L
OLION = np—> my=0 (25)

We consider a symmetric Nash equilibrium where all users have the same number of connections on each
path/link. Then, we get
Ci/ny; = Cj/ny;, Vi, j

7”]7



Combined wichjL:1 ny; = ny, We can get the vector of number of flows at Nash equilibrium. Specifically, for a

given userr, its number of connections at linkat Nash equilibrium is given by, = n,,Cj/Zﬁzl Ck.

APPENDIX I

AN EXAMPLE FOR UNDERUTILIZED NETWORK RESOURCES DUE TO SELFISH BEHAVIOR OF USERS

In the triangle network shown in Figure 24, consider that all links are bi-directional and all links have the same

capacityC. We haveCyp = Cpa = Cac = Coa = Cpe = Cop = C. There are six users:

User AB wants to transfer data from nodéto nodeB.
User BA wants to transfer data from node to node A.
User BC' wants to transfer data from node to nodeC.
User C' B wants to transfer data from node to nodeB.
User AC wants to transfer data from nodé to nodeC.

User C' A wants to transfer data from node to nodeA.

Consider that each user has two paths to transfer data and it can only open at most one connection on each patt

For clarity, in Figure 24, we only show connections opened by usBrand userBA. Assume that all users try

to maximize its total throughput, then at the NE, every user opens one connection on each of its two paths. Each

user gets a total throughput 2€'/3(= C/3 + C/3). Then, the total throughput from all six usersiis. However,

the total capacity provided by the networkG€'. Thus, the network resource is not fully utilized in this example.

A similar example is given in [26].

B C

Fig. 24. Triangle Network.

APPENDIX IV

PROOFS OFTHEOREMSS5, 6 AND 8

The theorems are derived from results in [28], in particular from Proposition 4.4, from the remarks about the

characterization of asymmetric equilibria after Proposition 4.4 and from Proposition 4.5. In this section we just

show that we can apply those results to our problem.



In section 4 of [28] the authors definel@cal spillovers gameas a network game where aggregate gross payoff
of player i can be written as:

mi(g) = Wi(ni(9) + D Ta(ni(9) + D Ts(n;(9)),

JENi(g) J¢Ni(9)
wheren;(g) is the number of links of player in graphg (n;(g) according to our notation).
We can recognize the same benefit function of our overlay formation game where:
U, (n;) is the cost of opening,; connections € ®(n;)),
Uy(n;) is the downloading rate usereceives from a peer with; connections ¢'/n;),
W3() is identically null.
In our game®() is a convex function and the downloading rate is a decreasing functior. ¢fence according
to the terminology of [28] our aggregate payoff function “satisfies the local spillovers property, concavity in own
links (¥;() is concave) and strategic substitutabilityo(k + 1) — U3(k + 1) < Wa(k) — ¥3(k + 1))". In this
case Proposition 4.4 about symmetric equilibria, remarks about the characterization of asymmetric equilibria after

Proposition 4.4 and Proposition 4.5 about payoff distribution hold.

APPENDIXV
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The result does not depend on the specific form of the payoff function we considered, it holds when the aggregate
payoff function satisfies the local spillover property, concavity in own links and strategic substitutability and the
marginal benefit depends only on the number of connections of playgerdj, i.e., whenW¥s() is identically null.

If h is the degree of symmetric PENgA — 1,h — 1) > 0 andb(h, h) < 0. The marginal benefib(n;,n;) =
Ui(n; +1) — ¥i(n;) + Pa(n; + 1) is a decreasing function of; (because¥,() is concave) and of; (because
of strategic substitutability). Hendgu,v) > b(h — 1,h — 1) > 0 for u,v < h. As a consequence, given a PEN,
all the players with degree smaller thanare mutually connected and their number is at niogbtherwise their
degree would be at leas).

Say! the number of players with degree smaller tiharThey can have at mogt— 1 connections and they are
mutually connected, i.e. they have- 1 connections with other players with less thartonnections. Hence, they
can have at mosth — 1) — (I — 1) = h — [ connections with players which have at leaAstonnections. Therefore
the number of players with more thanconnections is bounded ky. — 1) (< h?).

If the cost function is linear all the nodes have degree at rhost fact in this casé(n;,n;) depends only on
n; (b(ni,n;) = C/(n; + 1) — a = b(n;)). If n; > h, b(n;) > b(h) < 0, no player would create a connection with
a player that has already connections or more.

The remark after Theorem 7 follows from the fact that in a PEN the number of nodes with degree different from

h is bounded by: + (h — 1)l < h+ h? and that for each of these nodes the difference between its degrdeiand



bounded byh and byh + [ < 2h, respectively for players with less th&nconnections and for players with more

than h connectiond

APPENDIX VI
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Without loss of generality we can assume that 1.
Given R > 2 players and a symmetric equilibriawith degreek € {2,..., R — 2}, let us consider the network

g where all the players have degree equal toPoiteholds:

I _ ZiER Bi(QOpt)

<7 ZieR Bi(g)
2icr Bi(9) _
ZieR Bi(g)
_ YLt-e)
S (S t) - 0k)
R(1-®(1) 1-®(1)
R(1—®(k)) 1—&(k)

If the connection cos®(n) is a linear function ®(n) = an), in order to support an equilibrium with degrée

Y

we can considety such thatl/(k + 1) < a < 1/k (Theorem 5). We can chooge= 1/k(1 — €) with e > 0. In

this case
1—®(1)
Le = _—
U 1— (k)

 1l—ak

1-(1-e/k

- —
and the loss of efficiency is clearly unbounded.

APPENDIX VII

OPTIMAL NETWORKS

In this section we characterize the networks with the highest global payoff for our overlay formation game. We
observe that in the homogenous scenario the global pagef- ). g B; does not change when we permute the
players, because we are simply changing their labels. Without loss of generality we cdngigler 0

Theorem 11:1f C' < ®(1), the empty network is an optimal network.df > ®(1) and R is even a symmetric
network with degree one is an optimal network(If> ®(1), R is odd andC' < ®(2) a network with all the nodes

with degree one but one with degree zero is an optimal network. ¥ (1), R is odd andC' > ®(2) a network

®Here we want to show the existence of bounds independent ffomot to determine tight bounds.
®In Appendix VII we prove that network is a network with the optimal payoff, but this is not necessary for this proof.



with all the nodes with degree one but one with degree two is an optimal network. When the previous inequalities
are strict the optimal networks differ only for a permutation of the players.
First we note that the global payafs can be expressed as follows:
Bs(g) = ZBi(g) =
i€R

= X (5 - o) -

i€ER jEN,; n](g)

= > o-Y ey -

i€ER

n;(g)=1

= Y ©-2m9). 26)

i€R:
n;(g)=>1

If C < ®(1) then the empty (networly) is an optimal network, in fact for any network

Bs(g) = 3 (C—d(milg) <

i€R:
ni(g)=1

< ) (C-e)<

i€R:
n;(g)=1

S 0 = BS(QO)-

Similarly, if C > ®(1) and R is even then a symmetric network with degree og {s an optimal network, in

fact for any networky:

Bs(g) = Y, (C—2(m)) <

i€ER:

< Y (- am) <
< Y- a)=
= Bs(q).

Let us consider now' > ®(1) and R odd. Given a networl, there are two possibilities: 1) all the players have

at least a connection, or 2) there is at least one player without connections.



In case 1) there is at least one player -say pldy&vith two or more connections. Let consider the netwgrk

where that player has two connections and all the other players have only one. It holds:

Bs(g) = Y (C—®(m)) <

iER:
n;(g)=1

< Y (C-21)+(C-2) <

Yo (C=o1)+(C—o(2) =

i€R—{I}

= Bs(g12).

IN

In case 2) there is at least one player -say playewithout any connection. Let consider the netwgik where

that player has no connection and all the other players have only one. It holds:

Bs(g) = Y (C—®(m)) =

i€ER:
n;(g)=1

= Y (@) <

iER—{m}:
n;(g)=1

Y. (C-e)<

i€ER—{m}:
ni(g)=>1

S (C-a() =

i€ER—{m}

= Bs(g10)-

IN

IN

One out ofg12 and gy is an optimal network. The two networks differ only for the connections of three nodes.

The difference of their payoffs is:

B(g12) — Blgw) =
- <2 <§ - <1>(1)> 120 - @(2)) +
2 (o - @(1)) -
— -3

Hence ifC > ®(2) gi12 is an optimal network, while i’ < ®(2) g;¢ is an optimal network.

If the inequalities in the hypothesis are strict, then all the optimal networks differ only for a permutation of the
players. For example let us considér> ®(1) and R even. Given a symmetric network with degree gneall the
other symmetric networks with degree one have clearly the same payoff because of Eq. (26) and can be obtainec
by permutation of the players iy . Let us consider another netwogkwhich cannot be obtained by a permutation
of players ingy, g differs from g; at least for the degree of one player, say.iPlayer! has no connection or

has more than one. If playéris not connected iry, hence its contribution tdBgs(g) is null, if it is connected



C — ®(n;) < C —d(1) becausey; > 1. In both cases its contribution tBs(g) is smaller than its contribution in

g1, and it follows:

Bs(g) < Bs(g1),

henceg cannot be an optimal network. Similar reasoning leads to the result for the other cases.

APPENDIX VIII
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We prove the result foh € {1,2,--- R — 2} andb(h,h) < 0, the other casesH(0,0) < 0, h = R — 1,
h €{0,1,--- R —2}andb(h) = 0) can be carried on similarly. In this cagéh — 1,h — 1)¢,0.
We need only to check that the functian: G — R.:

where

f(ni){

R(n; — h) otherwise
satisfies the relation in Lemma 3 for our overlay formation game.

Part I: “¢' defeatsg” = “w(¢’) > w(g) andg’ andg are adjacent”

Clearly ¢’ and g are adjacent by definition of defeat.

If ¢’ defeatsg, then either 1)y’ = g — g;; and B;(¢’) > Bi(g) or 2) ¢’ = g + gi; and B;(¢') > Bi(g) and
Bj(g') = Bj(g). Note thatB;(g — gi;) > Bi(g) < b(ni(g'),n;(¢')) = b(ni(g) — 1,n;(g9) — 1) <0 < n;(g) > h.
Hence in case 1);(g) > h and

w(g) —w(g) = —f(nilg) —1) = f(ni(g) = 1) +
+f(ni(g)) + f(n;(9)) =
= (f(ni(g)) — f(ni(g) = 1)) +
+(f(nj(9)) = fni(g) — 1)) =
= (f(ni(g)) — f(ni(g) = 1)) + R.

If n; > h, f(ni(9)) — f(ni(g) — 1) = R, otherwisef(n;(g)) — f(ni;(g) — 1) > —1. In both cases:

w(g') —w(g) > 0.

The marginal benefib(n;,n;) is only a function ofn; and it decreases as; increases (see comments in
Appendix V). We are considering(h,h) = b(h) < 0 andb(h — 1,h — 1) = b(h — 1) > 0, henceb(k) is always
different from zero, andB;(¢') > Bi(g) < B;(¢’) > Bi(g). Hence ifg’ = g + g; ; defeatsg then B;(¢') > B;(g)



and B;(¢') > Bj(g). Note also thatB;(g + gi ;) > Bi(g) < b(ni(g9),n;(g)) > 0 < n;(g) < h. Hence in case 2)
nj(g) < h andn;(g) < h. It follows:

w(g) —w(g) = —f(nilg) +1) = f(ni(g) +1) +
+f(ni(g)) + f(n;(9)) =
= (f(ni(g)) — flni(g) + 1)) +
+(f(ny(9)) = f(ni(g) +1)) =

= 2>0.

Part Il: “w(¢’) > w(g) andg’ andg are adjacent= “¢’ defeatsy”
If ¢ =9+ gij
w(g) —w(g) = —flnilg) +1) = fn;(9) +1) +
+f(ni(g)) + f(n;(9)) =
= (f(ni(g)) = f(ni(g) + 1)) +
+(f(n;(g)) — f(n;(g9) + 1)),

and w(g’) — w(g) can be positive only ifn;(g) < h andnj(g) < h. In this caseb(n;(g),n;(g)) > 0 and
b(n;(g),ni(g)) > 0 andg’ defeatsg.
It g =9 —9ij
w(g) —w(g) = —flnilg) —1) = f(n(9) — 1) +
+/(ni(9)) + f(n;(9)) =
= (f(ni(g) — f(ni(g) — 1)) +
+(f(n;(g)) — f(n;(g) — 1)),

and w(g’) — w(g) can be positive only ifn;(g) > h or nj(g) > h. In this caseb(n;(¢'),n;(¢g’)) < 0 or

b(n;(g"),ni(g")) <0, henceg’ defeatsy.



