
Availability in BitTorrent Systems
Giovanni Neglia†, Giuseppe Reina†, Honggang Zhang∗
Don Towsley∗, Arun Venkataramani∗, John Danaher∗

†D.I.E.E.T. ∗Computer Science Dept.
Universit̀a degli Studi di Palermo, Italy University of Massachusetts Amherst

giovanni.neglia@ieee.org, g.reina@gmail.com{honggang, towsley, arun}@cs.umass.edu, jpdanaher@comcast.net

UMass Technical Report 06-41
First version: August 1th 2006
This version: August 4th 2006

Abstract— In this paper, we investigate the problem of highly
available, massive-scale file distribution in the Internet. To this
end, we conduct a large-scale measurement study of BitTorrent,
a popular class of systems that uses swarms of actively down-
loading peers to assist each other in file distribution. The first
generation of BitTorrent systems used a centraltracker to enable
coordination between peers, resulting in low availabiilty due to
the tracker’s single point of failure.

Our study analyzes the prevalence and impact of two recent
trends to improve BitTorrent availability: (i) use of multiple
trackers, and (ii) use of distributed hash tables (DHTs), both
of which also help balance load better. The study measured over
22,000 popular torrents in four different continents spanning
1,700 trackers and 25,000 DHT nodes over a period of several
months. We find that both trends improve availability, but for dif-
ferent and somewhat unexpected reasons. Our findings include:
(i) multiple trackers improve availability, but the improvement
largely comes from the choice of a single highly available tracker,
(ii) such improvement is reduced by the presence of correlated
failures, (iii) multiple trackers can significantly reduce the overlay
connectivity, (iv) the DHT improves information availability, but
induces a higher response latency to peer queries.

I. I NTRODUCTION

Peer-to-peer file distribution is rapidly displacing traditional
client-server distribution in the Internet. By some estimates [1],
BitTorrent, a popular class of peer-to-peer file distribution
systems, constituted about 30% of Internet backbone traffic
in June 2004. BitTorrent uses active peers to assist each other
in file distribution eliminating a single point of congestion,
the server. Thus, the capacity of BitTorrent systems increases
with the number of active peers enabling highly scalable file
distribution.

Although BitTorrent eliminates a single point of congestion
as regards data traffic, it continues to have a single point of
failure. The first generation of BitTorrent systems employed
a centralizedtracker to enable coordination between peers.
The tracker maintains the set of active peers, also called the
swarm, interested in a specific file. A peer joins the swarm
by announcing itself to the tracker, which returns a small
random subset of peers from the swarm. Peers use this subset
to connect to other peers to obtain missing chunks of the
file. If the tracker fails or is unreachable, the system becomes

unavailable to new peers, so they can not obtain the file or
contribute resources to the system.

Measurement studies [2] confirm low tracker availability
experienced by users of BitTorrent systems today. The massive
prevalence of BitTorrent and recent proposals to adapt BitTor-
rent’s techniques for more general forms of packet delivery [3]
including email attachments, software updates, and security
patches make BitTorrent availability an important problem. For
example, unavailability of security updates distributed using
BitTorrent can seriously impact the well-being of the Internet.

Two recent trends have emerged to tackle the problem of
tracker availability. First, is the support for multiple trackers
to increase the likelihood of at least one available tracker for
a given file (introduced at the end of 2003). Second, is the
integration of distributed hash tables (DHTs) with BitTorrent
clients that store information across the entire community of
BitTorrent users (introduced in May 2005). Section V and VI
describe in detail how these two mechanisms work in practice
today.

Our study investigates availability of BitTorrent systems
in the light of these trends. Availability depends on several
factors such as the multi-tracker or the DHT infrastructure
(simply DHT in what follows), the amount of information
they store, patterns of tracker and network failures, and the
amount of information shared across trackers and peers. We
quantitatively analyze the improvement in availability due to
the two mechanisms.

Our study considered 26,000 torrents using more than 1,700
trackers and 25,000 DHT nodes over a period of several
months. We find that multiple trackers as well as DHT-based
trackers improve availability, but for different and somewhat
unexpected reasons. Our major findings are as follows.
• Multiple trackers improve availability, but the improve-

ment largely comes from a single highly available tracker.
• The potential improvement from Multi-tracker is reduced

due to the presence of correlated failures.
• The use of multiple tracker can significantly reduce the

connectivity of BitTorrent overlay.
• DHT improves information availability, but induce a

higher response latency.

• Tracker and DHT show complementary characteristics
features. Current trend of combining multiple trackers and
DHT can provide high information availability with low
information response latency.

The rest of this paper is organized as follows. In Sec-
tion II we illustrate related works. After the description of the
measurements sets in Section III, we show results about the
trackers availability in Section IV. The improvement deriving
from the use of multiple trackers and of the DHT infrastructure
are respectively described in Sections V and VI.

II. RELATED WORKS

There are now many measurement studies about BitTorrent
traffic and operation. However they mainly focus on issues
different from peer information availability: amount and char-
acteristics of P2P traffic in the network [4], swarm evolution
dynamics depending for example on peer arrival pattern and
average connection time [5], [6], [7], [8], global download-
ing performance achievable by the peers [5], [8], the BT-
specific content sharing algorithms like the choke algorithm
or the content pieces selection algorithm [9] in particular
as regards their effectiveness in promoting cooperative user
behavior [10], [11].

The work most similar to ours is [2]. The authors focus on
suprnova.org, which at the time of the study was the most
popular website advertising BT contents (it was closed in
December 2004 as a consequence of legal actions). sprnova.org
was not just a website, but a complete architecture including a
mirroring system to balance user requests across multiple web-
sites, servers to store the torrent files, and human moderators
to eliminate faked contents. The measurements span from June
2003 to March 2004, and the authors investigate availability
of the architecture and also of the peers of a specific content.
Tracker availability appears a significant problem: only half
of the 1941 trackers they consider have an average uptime
of 1.5 days or more. At the same time trackers appear to
be more available than HTML mirrors and torrent servers
in suprnova.org architecture. Our results suggest that there
is a significant non-stationary effect affecting this kind of
measurements. Our study also addresses new features that
were not present (DHT), or not widespread (multi-tracker),
during the measurement campaign described in [2].

Separate from the specific BT framework, there are some
works about availability of distributed systems in the Internet
[12], [13], [14], [15]. In [12] the authors investigate peers
availability through a measurement campaign of the Overnet
file-sharing network [16]. They stress “aliasing errors” when
IP addresses are considered as identifiers for the peers and
show that availability of each peer significantly depends on the
measurement time interval (because peers join and leave the
system) and on time-of-day but is roughly independent from
the availability of other peers. Even if trackers should be stable
entities in the BitTorrent architecture we observed lifetime
effects in our availability measurements. In [13] three different
large distributed systems (PlanetLab, Domain Name Systems
and a collection of over 100 web servers) are considered. The

study identifies differences among temporal availability, Mean
Time To Failure (MTTF), Mean Time To Repair (MTTR),
Time To Failure (TTF) and Time To Repair (TTR). TTF
is the expected time to failure, given that the system has
already been in the working state for a specific timeT .
They show that good availability does not necessarily imply
good MTTF and MTTR and while MTTF and MTTR can
be predicted with reasonable accuracy, TTF and TTR are
much more difficult to predict. Besides these systems seem
to exhibit large-scale correlated failures (different from [12]).
Our study confirms the presence of correlated failures among
different trackers. [14] points out some limitations on using
average temporal availability evaluated on long time periods
and across many peers. In particular they show that temporal
affinity (i.e. similar temporal pattern of peer presence in the
system, due for example to day-of-time effects) and difference
in the availability distribution for different peers can increase
system global availability. They introduce a new metric to
characterize system performance considering the number of
peers in the system at a given instant and evaluate it through
two traces from Kazaa and Overnet networks. Although a
similar analysis could also be interesting in our case, it is
out of the scope of this paper. [15] is a measurement study
of Napster and Gnutella networks, trying to quantify content
popularity and peers presence in the system. They also show
a significant dependence of peer availability on the time of
the day. [17] looks at the availability of Kazaa peers mainly
to investigate potential benefits for file-sharing coming from
locality-awareness.

III. T HE DATA SETS

To share a file or group of files through BitTorrent, clients
first create atorrent file (or simply a torrent). A torrent
contains meta information about the files to be shared in the
info section and about the tracker which coordinates the file
distribution in theannouncesection. The content is identified
by the info-hashvalue, obtained by applying a hash function
to the info section of the torrent. In order to support multiple
trackers and DHT two new optional sections have been added:
the announce-listand thenodesones.

In our study we considered more than 22,000 torrents, found
mainly throughwww.torrentspy.com , one of the largest
BT search engine, and throughwww.btjunkie.org . We
developed a script, which automatically download the RSS
feeds of these sites and then download every new torrent
file indicated in the feeds. In what follows we are going in
particular to refer to the following sets.

TS1 : set of 7815 torrents advertised bywww.
torrentspy.com in March 2006.

TS2 : set of 4238 torrents advertised bywww.
torrentspy.com from May 15 to May 19, 2006.

TS3 : set of 15275 torrents advertised bywww.
torrentspy.com from May 20 to June 30, 2006.

BTJ2 : set of 1017 torrents automatically advertised by
www.btjunkie.com from May 11 to May 19,
2006.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Tracker Rank

T
or

re
nt

s
#

Fig. 1. Popularity of the Trackers in TS3&BTJ3

BTJ3 : set of 2312 torrents automatically advertised by
www.btjunkie.com from May 20 to July 01,
2006.

All these torrents specify more than 1,700 trackers and
more than 25,000 DHT nodes. Table I summarizes the main
information about trackers and nodes we can achieve from the
different sets. Note that in this paper we refer to Bram Cohen’s
BitTorrent client [18] as “Mainline” client1.

Figure 1 shows the distribution of the torrents across the
different trackers for sets TS2 and BTJ3. The 20 most popular
trackers manage more than 50% of all the torrents. Similar
results hold also for the other sets and also if we estimate
the popularity of each tracker directly by querying it with an
appositescraperequest .

IV. T RACKER RELIABILITY

In this section we first consider the availability of tracker
itself, without considering the specific contents they manage.

There are two different kind of trackers: those using HTTP
protocol for the communication with the client and those using
UDP protocol. The second possibility has been introduced in
order to reduce the load on trackers [19]. As Table I shows,
HTTP trackers are much more common. Also we noted that
most of the UDP trackers are associated to a HTTP tracker
(they have the same IP address).

The availability has been evaluated by probing periodically
the trackers (usually every 15 minutes). If the probe shows
that the tracker is working then the tracker is considered
available until the following probe. Unless otherwise specified
we consider the availability of the tracker as the fraction of
the time it was available over the total measurement time.

The way to probe the tracker in order to check if it is
working differs according to whether a tracker uses HTTP
or UDP. The availability of UDP trackers has been evaluated
by trying to establish anUDP handshakeas described in
the UDP tracker specification [19]. The tracker is consid-
ered unavailable if three consecutive attempts fail. HTTP
tracker availability has been evaluated trying to open a TCP
connection to the address specified in the announce key.

1Bram Cohen is the creator of BitTorrent protocol.

The tracker is considered not available if three consecutive
attempts to open the connection fail. This procedure can fail.
For example some trackers are implemented as modules of
Apache web-servers [20]: BitTorrent requests2 are identified
from the specific URL and forwarded to the tracker module.
Our measurements suggest that this is quite common. For
example out of 491 HTTP URLs extracted from TS2 set, at the
begin of June, 364 servers were answering to generic GETs,
and 209 of them were declaring themselves as Web servers
(181 Apache, 15 Microsoft IIS, 10 Lighttpd, 2 LiteSpeed, 1
nginx), most of them (142) were listening on port 80 (there
are 183 URLs with port 80 in the data set). In such cases
we would erroneously conclude that the tracker is available if
the tracker module is down, but the web-server is working
and accept incoming TCP connection. The problem is not
easy to solve. We thought to reveal the correct operation of a
tracker from answers to Announce3: the tracker is operating
if the answers are bencoded dictionaries, otherwise only the
web-server is working; but unfortunately, web-servers often
provide HTTP answers to Announce for not-existing torrents
(including torrents previously managed by the tracker), even
when the tracker module is working correctly. On the other
hand it is very unlikely, at least for Apache servers, that a
module is not working while the web-server is running. For
these reasons we assumed that the tracker module is working
whenever the web-server is available unless the module has
been uninstalled. Identifying uninstalled modules presents
difficulties similar to those illustrated above, and we decided
to rely on the following heuristic: we assume that the tracker
module has been uninstalled if all the following conditions are
satisfied: 1) the web server is available, 2) Announce requests
for different torrents which should be managed to the tracker4

do not receive a BitTorrent answer, 3)ScrapeAll requests do
not receive BitTorrent answers. In such a way we identified 16
web-servers where the BitTorrent module has been probably
uninstalled, interestingly TCP port 80 is common to all these
URLs except one, supporting the idea that these web-servers
not have been deployed specifically for BitTorrent operation.

We performed tracker availability measurements for many
months, probing the trackers every 15 minutes. We observed
that for some trackers the availability depends on the length of
the measurement time interval (a similar effect was observed
in [12] for the peers of the Overnet network) and in particular
decreases as the measurement time interval increases. Our
hypothesis is that probably these trackersdied, i.e., they stop
operating definitely. Figure 2 quantifies this non-stationary
effect. It shows the evolution of the number of live trackers
during a two months period. We assume that a tracker dies
when it starts being unavailable until the end of the measure-
ment period for at least two days. It appears that the number
of live trackers decreases from 426 to 354 (about 15%) over

2BitTorrent Announce or Scrape messages are simple HTTP GETs.
3Some trackers do not support Scrape requests, while all of them have to

support Announce ones.
4We consider up to 3 different torrents taken from torrentspynew data set

declaring the specific tracker.

set torrents# well-formed Trackers# Mainline Azureus
torrents # total HTTP UDP DHT nodes DHT nodes

TS1 7815 7815 654 621 33 10191 77
TS2 15275 15275 525 491 34 4546 21
TS3 7815 7815 1202 1146 56 18663 196
BTJ2 1017 1017 349 329 20 1491 0
BTJ3 2312 2312 532 494 38 3790 0

TABLE I

TORRENTSETS

200

250

300

350

400

450

27-May 3-Jun 10-Jun 17-Jun 24-Jun 1-Jul 8-Jul 15-Jul 22-Jul

L
ive

 T
r

ac
ke

rs
#

Fig. 2. Number of live Trackers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Availability

C
D

F

Trackers Availability

MultiTracker Torrent Availability

Single Tracker Torrent Availability

Fig. 3. Trackers availability

58 days, from the May 27 to July 24). From the data we can
roughly estimate that the average tracker death rate is about
2.6∗10−3 per day (= 62/(416∗58)), hence the tracker lifetime
is about 428 days.

Figure 3 shows the Cumulative Distribution Function (CDF)
of the availability of TS3 and BTJ3 trackers over a 21 days
period (dashed curve) starting from July 21. The curve is
similar for different periods and different sets, only the number
of unavailable trackers change quite significantly depending
on the measurement period (from 20% to 30%). This curve
is only partially representative because the availability at
the swarm level depends on the specific tracker specified in
the torrent and, as shown in Figure 1, the trackers are not
uniformly selected in the torrent. This effect is taken into
account in the other CDF in Figure 3 (solid curve), where

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

Time (h)

C
D

F

Avg downtimes (live trackers)

Avg downtimes (all the trackers)

Avg uptimes (live trackers)

Avg uptimes (all the trackers)

Fig. 4. CDF of average up-time and down-time over two months

the availability of each swarm has been considered for single-
tracker swarms (mainly the availability of each tracker in the
set has been weighted with its number of presences in the
torrents). We note a 25% jump in the CDF, it corresponds to
www.thepiratebay.org tracker (tracker.prq.to),
the most popular tracker in Figure 1. The availability of this
tracker changed a lot during our measurement campaign, from
0.5% during May 26-June 9 to 47% for the period which the
figure refers to. If we filter out this tracker, the availability at
the swarm level appears to be higher than the availability of
the trackers, mainly because many of the always unavailable
trackers (corresponding to the 30% initial jump in the blue
curve) are not used for single-tracker torrents, but are always
coupled with other trackers in multi-tracker torrents. Finally
the third curve in Figure 3 refers to multi-tracker torrents,
which we are going to address in the following section.

We investigated if there is a relation between tracker avail-
ability and the number of torrents the tracker is managing, but
there is no clear dependence .

Finally Figure 4 shows the Cumulative Time Distribution
(CDF) of the average uptime and downtime evaluated for all
the trackers in TS2 and BTJ2 and considering only the trackers
alive at the end of the measurement period. If we consider all
the trackers then almost half of the trackers appear to have an
average uptime smaller than 1.5 days as observed in [2]5, but
if we restrict to live trackers the average availability increases
significantly and about 70% of the trackers show an average
uptime longer than 1.5 days. As regards the distribution of the

5The authors do not address the issue of dead trackers.

downtime itself, 25% of the downtimes last more than half an
hour, 20% more than 1 hour and 10% more than 2 hours. This
suggests that tracker unavailability is due often to software or
machine crash rather than to temporary network problems.

V. M ULTI -TRACKER FEATURE

Multi-Tracker feature allows two or more trackers to take
care of the same content [21]. In addition to the mandatory
announce section in the torrent file, which specifies the tracker
URL, a new section, announce-list has been introduced. It
contains a list of lists of tracker URLs. Trackers in the same
list have load-balancing purpose: a peer randomly chooses one
of them and announces to it. All the trackers in the same list
exchange information about the peers they know. The different
lists of trackers are intended for backup purpose: a peer tries to
announce to a tracker in the first list, if announce fails, it tries a
tracker in the second list and so on6. On the next announce, it
repeats the procedure in the same order. Trackers in different
lists do not share information. There are two common way
to use multi-tracker feature: only for backup purpose when
the announce-list contains lists with a single tracker, and only
for load balancing purpose when the announce-list contains a
single list with many trackers. In our sets about 35% of the
torrents specify multiple trackers: 60% for backup, 25% for
load balancing and 15% for both backup and load balancing.

Multi-Tracker feature is clearly intended to improve the
availability of the information about the peers in the swarm.
In what follows we are going to quantify this improvement.

A. Correlation among different trackers

In order to quantify the benefit of multi-tracker we first need
to check if availabilities of different trackers can be considered
independent. From our measurements it appears that trackers
availabilities are more correlated than one could expect.

This result is similar to the conclusion in [12] for Planetlab
machines and webservers, and opposite from the remarks
in [13] for Overnet peers. In [12] the authors simply show
that the number of near-simultaneous failures does not seem
to follow a geometric distribution7, nor a beta-binomial distri-
bution which should be more suited to account for correlated
failures. In [13] the authors consider for all the host pairs
(A,B) the difference between the a priori probability that host
A is available and the same probability given that host B is
available. They observe that the difference is between 0.2 and
-0.2 for 80% of all the host pairs and conclude that there is
significant independence, even if there is a significant diurnal
pattern in single host availability.

Our analysis is based on 4 weeks availability measurements
for live trackers (trackers which where not completely un-
available during the measurement period) in TS2 and is more
accurate from the statistical point of view. For all the tracker
pairs8 we considered the contingency table and performed a

6 Some clients announce to one tracker in each list.
7A limitation of their analysis is that they assume a unique failure

probability for all the machines.
8We consider a tracker identified by IP address, protocol and port number

640

660

680

700

720

740

760

780

5-Jul 7-Jul 9-Jul 11-Jul 13-Jul 15-Jul 17-Jul 19-Jul 21-Jul 23-Jul 25-Jul

A
va

ila
b

le
 T

ra
ck

er
s#

Fig. 5. Number of Available Trackers Time Plot

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3
x 10

4

Frequency (days−1)

P
S

D
(f

)

Fig. 6. Power Spectral Density of the Number of Available Trackers

G-test [22]. We tested the null hypothesis that availabilities
of different trackers are independent with a Type I risk equal
to 5% and 1%. In order to use the G-test we had to discard
65% of the pairs. The test supported statistical dependence for
40% of the pairs and 30% of the pairs respectively with the
5% and 1% Type I risks. The G-test is an approximation of
the exact Fisher test, which is a combinatorial test, and hence
is unfeasible for the number of samples we are considering.
Nevertheless in order to check the G-test results we empirically
evaluated with Montecarlo method the statistical distributions
needed to perform the Fisher test. This approximate Fisher
test overcomes some limitation of the G-test allowing us to
consider a larger set of pairs (86%). The results of the G-test
are confirmed also on this larger set

One simple cause of correlation is that trackers could be
hosted in the same machine. Among the 406 trackers consid-
ered, there where 26 groups collecting 73 trackers having the
same IP. For all these pairs (except two) the G-test refused the
independence assumption, but they represent less than 1% of
the total number of pairs considered, hence this justifies only
a minimum part of the correlation individuated by the tests.

We think that this correlation is due to the fact that many
trackers show a strong daily pattern in their up-times and
down-times. This can be due to user behavior or a consequence
of tracker failures that can be recovered only when the user is

present. This thesis is partially supported by data in Section IV
showing that in many cases tracker unavailability is due to
software or machine failures rather than network unreachabil-
ity. Figure 5 shows the total number of available TS3 trackers
for three weeks in July 2006 with a 10 minutes resolution.
The daily pattern is confirmed by Figure 6, where the spectral
density, evaluated with the unmodified periodogram method
(see chapter 4 in [23] also for a discussion about the goodness
of this method in order to estimate spectral lines), exhibits a
peak corresponding to a 1-day periodicity9.

B. Availability Improvement

The presence of multiple trackers in the torrent clearly
increases peers information availability for the swarm because
it is sufficient that at least one of the trackers is available. If
failures at different trackers were independent we could simply
evaluate the unavailability of a group of trackers as the product
of the unavailabilities of each tracker. This assumption is not
corroborated by the data in the previous section, so we have to
consider for each tracker its availability temporal sequence and
then check if at a given time instant there is at least a tracker
available. We call this method to evaluate the availability of a
group of tracker ”time-aware”.

The CDF of the time-aware availability for multi-tracker
torrents is plotted in Figure 5 (dotted curve). This picture
shows a significant improvement coming from multi-tracker.
We note that this improvement does not derive from the combi-
nation of many trackers with low availability, but mainly from
the presence of a highly available one in the set of trackers.
This claim is supported by Figure 7. The figure shows the
availability improvement using all the trackers, in comparison
to the availability of the best tracker. The availability has been
evaluated both considering trackers availabilities independent
(dashed curve) and considering the availability time sequences
for all the trackers (solid curve). The figure suggests two main
remarks.First if we consider the time-aware curve the gain
in comparison to the most available tracker is quite small:
below 0.6% in 83% of the cases and below 2% in 95% of the
case.Secondthe availability correctly evaluated considering
the temporal sequence is smaller than that evaluated under
independence assumption. This was also expected because
tracker availabilities mainly exhibit a positive correlation due
to time-day effect: trackers tend to be available during the
same time periods.

Figure 8 gives some more insight. The figure shows the gain
distribution across all the tracker groups specified in the set10.
The gain has been normalized to the maximum achievable
improvement in comparison to the most available tracker. For
example if the most available tracker has a 95% availability,
and the presence of the other trackers raises the availability
up to 97%, the normalized improvement is 0.2 (= 2/(97 −

9The other peak corresponds to the total measurements scale and it is mainly
due to the average decrease of available trackers between July 16th and July
18th.

10Differently from Figure 7 two torrents which specify the same group of
trackers are considered as one.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Gain

C
D

F

Independence Assumption
Time-aware

Fig. 7. Multitracker Gain Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Gain

C
D

F

Fig. 8. Multitracker Normalized Gain Distribution for the different group of
trackers

95)). The figure shows that two situations occur very often.
For 30% of the groups (left part of the curve) there is no
gain in comparison to the most available tracker, as it was
already underlined by Figure 7. At the same time for 27% of
the groups (right part of the curve) the presence of the other
trackers raises the availability up to 100%, but we know from
Figure 7 that the absolute value is small.

C. Problems related to multitracker: swarm splitting

When the announce-list specifies a group of trackers for
load balancing, all the trackers should know all the peers in
the swarm. When the group of trackers is for backup, at a
given time only one tracker should know all the peers in
the swarm (but see also footnote 6). In reality things can
be different due to peer arrival and departure, tracker failure,
time intervals between tracker update. Besides there are also
some bad implementations of the torrent maker or of the client,
some examples are reported in [21], so that the peer swarm
could even be split into disjoint subsets. This would be clearly
harmful for content spreading. In what follows we use the term
“subswarm” to denote the subset of the swarm each tracker
manages, i.e., all the peers it knows about.

In order to evaluate if the risk of disjoint subswarms is
realistic, we considered all the 568 multi-tracker torrents
in TS3. On July 14th for each torrent we made multiple
Announce requests to each tracker in the announce-list in order

to discover the subswarm it was managing, i.e. the (IP, port)
pair of all the peers the tracker knew about. The whole process
took about 5 hours and collected more than 22,000 peers. Once
we had the subswarms, we built a graph as it follows: each
node in the graph corresponds to a peer and a link between
two nodes indicates that there is at least a subswarm that
includes the corresponding peers. Note that if two peers (say
P1 and P2) belong to the same subswarm then they could be
neighbors in BitTorrent overlay, this occurs when the tracker
managing the subswarm includes P1 (/P2) in the list of peers
of the response to an announce of P2 (/P1). For this reason
we call this graph as “potential neighbors graph”. An example
is shown in Figure 9: there are three partially overlapping
subswarms with peers4, 5 and 6 included in more than one
subswarm. Clearly if the graph has more than one component
than the subswarms are disjoint. Only 17 torrents (about 3%)
exhibited this problem: 16 had two components, 1 three. The
peer communities were quite small ranging from the 3 to 24
peers. In such cases if a piece of content was available only at a
single peer, it could be propagated only inside the subswarm
the peer belongs to (as far as the graph does not change).
The specific purpose of multi-tracker in these 17 torrents was
backup for 9 torrents and load balancing for 7 torrents.

Even when the graph is completely connected, we can
quantify subswarm overlap and then the possibility to spread
the content across the community. In particular we considered
two other performance metrics evaluated on graphs (beside the
number of connected components). One performance metric
is the connectivity degree: the number of links in the graph
divided by the maximum number of links, i.e. the number of
links of a fully meshed graph. For example the connectivity
of the graph in Figure 9 is0.5, because there are18 links out
of 36 possible links in a9 nodes graph. This metric refers
to the graph in its entirety. The other metric quantifies how
much connected is the worst connected subswarm. We adapt
the idea of graph conductance and we define the conductance
of a non-empty subswarmS (gS) as the number of links
connecting nodes of the subswarm (NS) with nodes outside
(NSc), normalized by the productNSNSc , i.e. the maximum
number of links. WhenNSc is equal to 0, we consider

Subswarm 1

Subswarm 2

Subswarm 3

P1

P2

P3

P4

P5

P6

P7

P8

P9

Fig. 9. Potential Neighbors Graph

Connectivity evolution

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

21/05/2006
12.00

22/05/2006
0.00

22/05/2006
12.00

23/05/2006
0.00

23/05/2006
12.00

24/05/2006
0.00

24/05/2006
12.00

25/05/2006
0.00

25/05/2006
12.00

Time

C
o

n
n

ec
ti

vi
ty

backup1

backup2

lb1

lb2

loadbalancing1

loadbalancing2

Fig. 10. Connectivity

Conductance evolution

0.2

0.4

0.6

0.8

1

1.2

21/05/2006
12.00

22/05/2006
0.00

22/05/2006
12.00

23/05/2006
0.00

23/05/2006
12.00

24/05/2006
0.00

24/05/2006
12.00

25/05/2006
0.00

25/05/2006
12.00

Time

C
o

n
d

u
ct

an
ce

backup1

backup2

lb1

lb2

loadbalancing1

loadbalancing2

Fig. 11. Conductance

gS = 111. Then we define the conductance of the community
as the minimum value ofgS among all the subswarms. For
example the conductances of the three subswarms in Figure 9
aregS1 = 2/(4 ∗ 5), gS2 = 9/(3 ∗ 6) andgS3 = 2/(5 ∗ 4) and
the community conductance is0.1.

For example in Figure 10 and Figure 11 we show the
temporal evolution of these metrics during a 3 days period for
6 torrents: two of them declare multiple trackers for backup
purpose, two for load balancing and two for backup and load
balancing.

Figures 12 and 13 show respectively the CDFs for the
connectivity and the conductance. In each figure there are 4
curves, one considers all the multi-tracker torrents, the others
refer to backup torrents, load-balancing ones and torrents for
both the purposes (LB&B in the legend). As it was expected
the performance are very good for pure load balancing, in
fact in this case the trackers periodically communicate each
other their subswarms. Performance can be bad for backup,
especially if we look at the conductance in Figure 13. It
appears that 27% of the worst connected subswarms have

11Note thatgS is always less than or equal to one.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Connectivity

P
(X

)

All

Backup

LB&B

LoadBalancing

Fig. 12. Connectivity Cumulative Distribution Function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Conductance

P
(X

)

All

Backup

LB&B

LoadBalancing

Fig. 13. Conductance Cumulative Distribution Function

a conductance smaller than 0.5, which indicates that on the
average nodes in the subswarm can at most discover half of the
nodes outside the subswarm. Figure 14 shows that connectivity
and conductance are highly correlated: usually a graph with a
low connectivity has also a low conductance, and vice versa.

VI. D ISTRIBUTED HASH TABLES

The latest versions of the most popular clients (Azureus,
Mainline, BitComet,µTorrent, BitLord and BitSpirit) imple-
ment the functionalities of a DHT node, so that all the peers,
independently from the content they are interested into (i.e.
from the swarm they are in) can form a single DHT infras-
tructure. The purpose of the DHT is to store the information
needed to contact peers interested into a specific content:
according to the common DHT language thekey is the info-
hash of the torrent, while thevalue is the contact information
(e.g. the IP and the port of a peer client). Theoretically the
DHT could completely replace the tracker, permitting the
operation oftrackerlesstorrents.

We said that all the BT clients could form a single DHT, in
reality this is not true, because there are currently two different
incompatible implementations (even if both are based on the
Kademlia model [24]): the Mainline one, and the Azureus
one. Except Azureus all the other clients are compliant with

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Conductance

C
o

n
n

ec
ti

vi
ty

Fig. 14. Connectivity vs Conductance

Mainline DHT specifications. Our measurement study focuses
on the Mainline DHT.

A. A Brief Overview of DHT Operation

When a new torrent is created, the program usually allows
the user to insert some DHT nodes. The DHT nodes can be
manually specified or are just randomly picked up from the
set of “good” (highly available) DHT nodes from the routing
table of the client12 . These DHT nodes act as bootstrap nodes,
in fact they are used to initialize the client routing table. The
routing table is updated from time to time according to the
protocol description in [25]. There are also other ways to
discover DHT bootstrap nodes to initialize the routing table,
for example if the peer is already in a swarm and is connected
to another peer, they can exchange DHT related informations.

In order to download the content, the BitTorrent client can
send requests to the set of DHT nodes in its routing table
closest13 to the infohash. The contacted nodes will reply with
the contact information of peers interested into the content, if
they know any, or with the contact information of the DHT
nodes in their own routing table closest to the infohash. The
timeout for a request is20 seconds in a Mainline client.

Table I shows the number of DHT nodes we found in
the torrents of our data sets. The higher number of Mainline
nodes is mainly due to BitComet torrent-maker, which adds
by default 10 nodes to each torrent.

B. Information availability through the DHT

Similarly to what we did for trackers, we have been mea-
suring the availability of DHT nodes. The DHT protocol [25]
implements a specific request, calledDHT ping, in order to
check if a DHT node is available, so we resort to DHT pings.
We considered a node unavailable when it did not answer to
three consecutive DHT pings. Figure 15 shows the Cumulative
Distribution Function of nodes availability evaluated during
one week: 70% of the nodes were always unavailable, while
the others show an availability nearly uniformly distributed

12Note that each BitTorrent client is at the same time a peer and a DHT
node.

13Kademlia DHT uses the XOR metric to compare keys and DHT nodes
identifiers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Availability

C
D

F

Fig. 15. Cumulative Distribution Function of DHT nodes availability

between 0% and 100%. The availability of the bootstrap nodes
clearly influence the speed of the query process.

In order to investigate the effectiveness of DHT networks,
we customized a Mainline client and conducted experiments
on a set of2569 torrents, those of TS3 with DHT nodes14.

The description of the our experiment follows. For each
torrent, we first erase the routing table and all the files
that keep the information of previous content downloading.
Namely, the client start with a clean slate for each torrent. Then
we let the client start contacting the DHT nodes in the torrent
file and trying to recover information about the peers. In the
mean time, all the nodes in the routing table are logged (recall
that the routing table is updated frequently). The measurement
stops when the client gets the first valid peer and the next
torrent is considered. Our experiment started at 20:15 on July
22, 2006, and it took about 34 hours to finish.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of nodes explored

C
D

F

Fig. 16. The cumulative distribution of the number of DHT nodes ever
explored before finding the first valid peer in a swarm.

149 torrents out of2569 were incorrectly encoded torrents, as our client
reported the following error: “bad data in responsefile - total too small”. This
happens when the product of number of pieces and the size of a piece is
larger than the total size of the file. All these three numbers are reported in
the .torrent file. Please refer to StorageWrapper.py in Bram Cohen’s BitTorrent
source code for details.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to get the first peer (sec)

C
D

F

Fig. 17. The cumulative distribution of the time needed to find the first valid
peer in a swarm.

Figures 16 and 17 respectively show the CDF of the number
of DHT nodes ever explored and of the time elapsed before
finding the first valid peer. We see that DHT is pretty effective
because for about93% of the torrents a peer can be found by
our client by exploring less than50 DHT nodes and in less
than 88 seconds. In the worst case the time needed was140
seconds and184 DHT nodes were. Figure 18

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

number of nodes explored

tim
e

to
 g

et
 th

e
fir

st
 p

ee
r

Scatter plot

Fig. 18. Time needed to discover the first peer vs Number of DHT nodes
explored.

For comparison, we also investigated the time needed to
find the first valid peer by just contacting trackers in the same
data set15. We put an upper limit of300 seconds for contacting
a tracker. That is, our client Wstops announcing to the tracker
after 300 seconds, even if the tracker does not answer. Our

15275 out of 2569 torrents are not considered valid for the experiment
In this case we considered only2294 valid torrents out of2569 torrents.9
torrents are incorrectly encoded, for other266 torrents our client reported
the following error message: “Aborting the torrent as it was rejected by the
tracker while not connected to any peers.” It is interesting to note that for
these266 swarms which were not handled by trackers, our client could still
find valid peers in the previous DHT experiment.

experiment started 21:33 on July 24, 2006, and finished at
22:54 on July 27, 2006. The CDF of the time needed to find
a peer for both trackers and DHT is plotted in Figure 19. As
expected, usually tracker can respond with valid peers faster
than DHT, in less than one second. However, note that about
30% trackers do not respond at all within300 seconds. On
the contrary in these experiments our client was always able
to get peers from the DHT in less than140 seconds. However,
we need to be cautious because our tracker experiment was
conducted one day later after we finished DHT experiments.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exploring time

C
D

F

get peers through tracker
get peers through DHT

Fig. 19. Comparison between DHT and Tracker. The cumulative distribution
of the time needed to find the first valid peer in a swarm.

Finally we compare the number of peers that can be
obtained by the tracker (or the trackers) specified in the torrent
and by the DHT (using the DHT nodes in the torrent as
bootstrap nodes). Figure 20 shows the number of peers a
client is able to collect by querying the DHT versus time.

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

exploring time

cu
m

ul
at

iv
e

nu
m

be
r

of
 p

ee
rs

 fo
un

d

Fig. 20. Number of Peers obtained by the DHT in 20 minutes vs Number
of Peers obtained by one query to the Trackers

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

Tracker Peers #

D
H

T
 P

ee
rs

 #

Fig. 21. Number of Peers obtained by the DHT in 20 minutes vs Number
of Peers obtained by one query to the Trackers

It is difficult to define the framework for a fair comparison
between DHT and trackers, we need to choose the time to
collect the peers through the DHT, the number of queries
to the tracker/trackers and the time between two consecutive
queries (if more than one). We considered the number of peers
harvested through the DHT in a 20 minutes time interval and
the number of peers achieved through a single query to the
trackers16. Figure 21 shows the results of our experiments for
117 torrents. The DHT was able to provide some peers in 16
out of 17 cases where trackers were unreachable. Nevertheless
when trackers are available they usually provide more peers
(only in 22 cases the DHT outperformed an available tracker).
From the figure it appears also that there is a strong correlation
between the number of peers achievable in the two ways.

VII. C ONCLUSIONS ANDFUTURE RESEARCH

In this paper we have analyzed the prevalence and impact of
the use of multiple trackers and DHT as regards the availability
of information about the peers. The main conclusion of our
study from the system design point of view is that trackers and
DHT should be both considered in order to architect highly
available BitTorrent systems.

A distinguishing feature of our study in comparison to
previous works is the focus on the information availability
rather than on the peers itself. At the same time one of its
limitations is that we do not we did not check the “quality”
of the information we receive (e.g. if the peers provided by
the trackers or by the DHT are updated) and the effect of
lack of information or bad information on the spreading of
the content (e.g. in the case of multiple trackers how low
conductance slow down the file diffusion). We repute these
issues meaningful and we deserve them for future research.

From a traditional distributed systems perspective, BitTor-
rent is a complex system using three different forms of failure

16Most of the trackers specify a minimum time interval between two
announce queries equal to 30 minutes, 1 hour or 2 hours (even if they usually
do not enforce it). Hence a client should not announce more than once in a
20 minutes interval if the tracker is available.

robustness: a primary-backup as well as a structured peer-to-
peer overlay for the control plane and an unstructured peer-to-
peer overlay for the data distribution plane. Our measurement
study is a first step towards understanding the interaction of
diverse fault-tolerance and scalability paradigms to provide a
single massive-scale distributed service.

REFERENCES

[1] “Cachelogic,” http://www.cachelogic.com.
[2] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bittorrent

p2p file-sharing system: Measurements and analysis,” inProc. of 4th
International Workshop on Peer-to-Peer Systems (IPTPS’05), February
2005.

[3] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil, “An architecture
for internet data transfer,” inProc. of the 3rd Symposium on Networked
Systems Design and Implementation (NSDI ’06), 2006.

[4] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos,
“Is p2p dying or just hiding?” inProc. of IEEE Globecom, November
2004, dallas, TX, USA.

[5] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A. Hamra, and
L. Garćes-Erice, “Dissecting bittorrent: Five months in a torrent’s
lifetime,” in Proc. of the 5th Passive and Active Measurement Workshop,
April 2004.

[6] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ment, analysis, and modeling of bittorrent-like systems,” inProc. of ACM
SIGCOMM Internet Measurement Conference, (IMC’05), New Orleans,
LA, October 2005.

[7] D. Erman, D. Ilie, and A. Popescu, “Bittorrent session characteristics
and models,” inProc. of HET-NETs 05 - 3rd International Working
Conference on Performance Modelling and Evaluation of Heterogeneous
Networks, 2005.

[8] J. R. Nicoll, M. Bateman, A. Ruddle, and C. Allison, “Challenges in
measurement and analysis of the bittorrent content distribution model,”
in Proc. of International Postgraduate Symposium on the Convergence
of Telecommunications, Networking and Broadcasting, 2004, liverpool
John Moores University.

[9] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Understanding bittorrent:
An experimental perspective,” EURECOM,INRIA, Tech. Rep., Novem-
ber 2005, http://hal.inria.fr/inria-00000156/en/.

[10] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu,
“Influences on cooperation in bittorrent communities,” inProc. of 3rd
Workshop on Economics of P2P Systems (P2P Econ), August 2005,
philadelphia, PA, USA.

[11] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting bittorrent
for fun (but not profit),” inProc. of 5th International Workshop on Peer-
to-Peer Systems (IPTPS’06), 2006.

[12] R. Bhagwan, S. Savage, and G. M. Voleker, “Understanding availability,”
in 2nd International Workshop on Peer-to-Peer Systems, February 2002,
berkeley, CA, USA.

[13] P. Yalagandula, S. Nath, H. Hu, P. B. Gibbons, and S. Seshan, “Presence-
based availability and p2p systems,” inFirst Workshop On Real Large
Distributed Systems (WORLDS), 2004.

[14] R. J. Dunn, J. Zahorjan, S. D. Gribble, and H. M. Levy, “Presence-based
availability and p2p systems,” inProc. of the 5th IEEE International
Conference on Peer-to-Peer Computing, September 2005, konstanz,
Germany.

[15] J. Chu, K. Labonte, and B. N. Levine, “Availability and popularity
measurements of peer-to-peer systems,” inProc. of ITCom: Scalability
and Traffic Control in IP Networks, July 2002, boston, MA, USA.

[16] “Overnet website,” http://www.overnet.com.
[17] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan,

“Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload,” in Proc. of 19-th ACM Symposium on Operating Systems
Principles, October 2003, bolton Landing, NY, USA.

[18] “Bram cohen’s bittorrent client,” http://www.bittorrent.com/index.html.
[19] “Udp tracker protocol specification,” http://xbtt.sourceforge.net/udp

trackerprotocol.html.
[20] “mod bt,” http://www.crackerjack.net/modbt/.
[21] “Multitracker description,” http://wiki.depthstrike.com/index.php/P2P:

Protocol:Specifications:Multi%tracker.
[22] T. Dunning,Accurate Methods for the Statistics of Surprise and Coin-

cidence, C. Linguistics, Ed., March 1993, vol. 19.

[23] P. Stoica and R. Moses,Introduction to Spectral Analysis. Upper Saddle
River, NJ, USA: Prentice-Hall, 1997.

[24] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” inProc. for the 1st International
Workshop on Peer-to-Peer Systems (IPTPS ’02), 2003, 7-8 March 2002
- MIT Faculty Club, Cambridge, MA, USA.

[25] “Dht protocol specification,” http://www.bittorrent.org/DraftDHT
protocol.html.

