Game Theory: introduction and applications to computer networks

Introduction

Giovanni Neglia INRIA – EPI Maestro 3 February 2014

Part of the slides are based on a previous course with D. Figueiredo (UFRJ) and H. Zhang (Suffolk University)

Always an equilibrium with small Loss of Efficiency?

□ Consider only affine cost functions, i.e. $c_{\alpha}(x) = a_{\alpha} + b_{\alpha}x$

We will use the potential to derive a bound on the social cost of a NE

$$\supset P(f) \leftarrow C_S(f) \leftarrow 2 P(f)$$

Always an equilibrium with small Loss of Efficiency?

Consider only affine cost functions

i.e. $c_{\alpha}(x) = a_{\alpha} + b_{\alpha}x$

We will use the potential to derive a bound on the social cost of a NE

○ P(f) <=
$$C_{s}(f)$$
 <= 2 P(f)
□ P(f) = $\sum_{\alpha \epsilon \in} P_{\alpha} = \sum_{\alpha \epsilon \in} \sum_{t=1,...,f\alpha} c_{\alpha}(t)$ <=
 $<= \sum_{\alpha \epsilon \in} \sum_{t=1,...,f\alpha} c_{\alpha}(f_{\alpha}) = \sum_{\alpha \epsilon \in} f_{\alpha}c_{\alpha}(f_{\alpha}) = C_{s}(f)$
□ P(f) = $\sum_{\alpha \epsilon \in} P_{\alpha} = \sum_{\alpha \epsilon \in} \sum_{t=1,...,f\alpha} (a_{\alpha} + b_{\alpha}t) =$
 $= \sum_{\alpha \epsilon \in} f_{\alpha}a_{\alpha} + b_{\alpha}f_{\alpha}(f_{\alpha} + 1)/2 >= \sum_{\alpha \epsilon \in} f_{\alpha}(a_{\alpha} + b_{\alpha}f_{\alpha})/2$
 $= C_{s}(f)/2$

Always an equilibrium with small Loss of Efficiency?

Consider only affine cost functions

i.e. $c_{\alpha}(x) = a_{\alpha} + b_{\alpha}x$ $\square P(f) <= C_{S}(f) <= 2 P(f)$

- □ Let's imagine to start from routing f_{Opt} with the optimal social cost $C_S(f_{Opt})$,
- Applying the BR dynamics we arrive to a NE with routing f_{NE} and social cost C_S(f_{NE})
- $\Box C_{S}(f_{NE}) \leq 2 P(f_{NE}) \leq 2 P(f_{Opt}) \leq 2 C_{S}(f_{Opt})$
- The LoE of this equilibrium is at most 2

Same technique, different result

- Consider a network with a routing at the equilibrium
- Add some links
- Let the system converge to a new equilibrium
- The social cost of the new equilibrium can be at most 4/3 of the previous equilibrium social cost (as in the Braess Paradox)

Loss of Efficiency, Price of Anarchy, Price of Stability

Loss of Efficiency (LoE)

- \odot given a NE with social cost $C_{S}(f_{NE})$
- \odot LoE = $C_{S}(f_{NE}) / C_{S}(f_{Opt})$
- Price of Anarchy (PoA) [Koutsoupias99]
 - Different settings G (a family of graph, of cost functions,...)
 - $\odot X_g$ = set of NEs for the setting g in G
 - \bigcirc PoA = sup_{g & G} sup_{NE & Xg}{ $C_S(f_{NE}) / C_S(f_{Opt})$ } => "worst" loss of efficiency in G
- Price of Stability (PoS) [Anshelevish04]
 - \bigcirc PoS = sup_{g & G} inf_{NE & Xg}{ $C_S(f_{NE}) / C_S(f_{Opt})$ } => guaranteed loss of efficiency in G

Stronger results for affine cost functions

- We have proven that for unit-traffic routing games the PoS is at most 2
- For unit-traffic routing games and singlesource pairs the PoS is 4/3
- □ For non-atomic routing games the PoA is 4/3
 - non-atomic = infinite players each with infinitesimal traffic
- For other cost functions they can be much larger (even unbounded)

Performance Evaluation

Sponsored Search Markets

Giovanni Neglia INRIA – EPI Maestro 4 February 2013

Coogle	digital photo camera	Q Giovanni Neglia 0 + Sha
Google	digital prioto camera	Ciotanin togia
Search	About 426,000,000 results (0.25 seconds)	
Web Images Maps Videos News	Digital Photography Review www.dpreview.com/ Digital Photography Review: All the latest digital camera reviews and digital imaging news. Lively discussion forums. Vast samples galleries and the largest Reviews - Side-by-side camera comparison - Nikon D4 - D1 / D800 - Cameras Digital cameras: compare digital camera reviews - CNET Re	Ads (i) <u>Appareil Photo Numérique</u> www.pixmania.com/Photo Spécialiste des Appareils Photo. Meilleurs prix & livraison express. 255 people +1'd or follow Pixmania
Shopping More	Digital cameras . compare digital camera reviews - CNLT rev. reviews.cnet.com/digital-cameras/ Digital camera reviews and ratings, video reviews, user opinions, most popular digital Get photo-artistry & on-the-fly flexibility with the Samsung NX100. Makes	Digital Photo Cameras prixmoinscher.com/Digital+Photo+Cameras Grand choix de Digital Photo Cameras à des prix à couper le souffle !
Valbonne Change location	Best 5 digital cameras - 100 - \$200 Digital cameras Digital camera - Than 12X Digital camera - Wikipedia, the free encyclopedia	caméras OEM CMOS USB2.0 www.framos-imaging.com résolutions VGA à 10Mp, SDK mini caméras carte, trigger LED
Show search tools	en.wikipedia.org/wiki/Digital_camera Jump to <u>Displaying photos</u> : Many digital cameras include a video output port. Usually sVideo, it sends a standard-definition video signal to a television, <u>Amazon.com: Digital Cameras: Camera & Photo: Point & Sho</u>	Digital photo cameras www.shopzilla.fr/ +1 Très grande sélection de digital photo cameras à petits prix

How it works

- Companies bid for keywords
- On the basis of the bids Google puts their link on a given position (first ads get more clicks)
- Companies are charged a given cost for each click (the cost depends on all the bids)

Some numbers

- □ ≈ 95% of Google revenues (46 billions\$) from ads
 - o investor.google.com/financial/tables.html
 - 87% of Google-Motorola revenues (50 billions\$)

🗖 Costs

- o "calligraphy pens" \$1.70
- o "Loan consolidation" \$50
- o "mesothelioma" \$50 per click
- Click fraud problem

Outline

Preliminaries

- Auctions
- Matching markets
- Possible approaches to ads pricing
- Google mechanism

References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Types of auctions

1st price & descending bids
 2nd price & ascending bids

Game Theoretic Model

- □ N players (the bidders)
- □ Strategies/actions: b_i is player i's bid
- For player i the good has value v_i
- p_i is player i's payment if he gets the good
- Utility:
 - \circ v_i-p_i if player i gets the good
 - 0 otherwise
- Assumption here: values v_i are independent and private
 - i.e. very particular goods for which there is not a reference price

Game Theoretic Model

- N players (the bidders)
- □ Strategies: b_i is player i's bid
- **Utility**:
 - \circ v_i-b_i if player i gets the good
 - \circ 0 otherwise
- Difficulties:
 - Utilities of other players are unknown!
 - Better to model the strategy space as continuous
 - O Most of the approaches we studied do not work!

- Player with the highest bid gets the good and pays a price equal to the 2nd highest bid
- There is a dominant strategies
 - I.e. a strategy that is more convenient independently from what the other players do
 - Be truthful, i.e. bid how much you evaluate the good (b_i=v_i)
 - Social optimality: the bidder who value the good the most gets it!

$b_i = v_i$ is the highest bid

Bidding more than v_i is not convenient

$b_i = v_i$ is the highest bid

Bidding less than v_i is not convenient (may be unconvenient)

$b_i = v_i$ is not the highest bid

Bidding more than v_i is not convenient (may be unconvenient)

$b_i = v_i$ is not the highest bid

Bidding less than v_i is not convenient

Seller revenue

- N bidders
- Values are independent random values between 0 and 1
- Expected ith largest utility is (N+1-i)/(N+1)
- Expected seller revenue is (N-1)/(N+1)

- Player with the highest bid gets the good and pays a price equal to her/his bid
- Being truthful is not a dominant strategy anymore!
- □ How to study it?

Assumption: for each player the other values are i.i.d. random variables between 0 and 1

o to overcome the fact that utilities are unknown

- Player i's strategy is a function s() mapping value v_i to a bid b_i
 - \circ s() strictly increasing, differentiable function \circ 0≤s(v)≤v → s(0)=0
- We investigate if there is a strategy s() common to all the players that leads to a Nash equilibrium

- Assumption: for each player the other values are i.i.d. random variables between 0 and 1
- Player i's strategy is a function s() mapping value v_i to a bid b_i
- Expected payoff of player i if all the players plays s():

 $O U_i(s,...s,...s) = v_i^{N-1} (v_i - s(v_i))$

prob. i wins

i's payoff if he/she wins

- Expected payoff of player i if all the players play s():
 - $O U_i(s,...s,...s) = v_i^{N-1} (v_i s(v_i))$
- □ What if i plays a different strategy t()?
 If all players playing s() is a NE, then :
 U_i(s,...s,...s) = v_i^{N-1} (v_i-s(v_i)) ≥ v_i^{N-1} (v_i-t(v_i)) = U_i(s,...t,...s)
- Difficult to check for all the possible functions t() different from s()
- Help from the revelation principle

The Revelation Principle

All the strategies are equivalent to bidder i supplying to s() a different value of v_i

- Expected payoff of player i if all the players plays s():
 - $\bigcirc U_i(v_1,...v_i,...v_N) = U_i(s,...s,...s) = v_i^{N-1} (v_i-s(v_i))$
- What if i plays a different strategy t()?
- By the revelation principle:
 ∪_i(s,...t,...s) = U_i(v₁,...v_N) = v^{N-1} (v_i-s(v))
 If v_i^{N-1} (v_i-s(v_i)) ≥ v^{N-1} (v_i-s(v)) for each v
 - (and for each v_i)
 - Then all players playing s() is a NE

□ If $v_i^{N-1}(v_i-s(v_i)) \ge v^{N-1}(v_i-s(v))$ for each v (and for each v_i)

• Then all players playing s() is a NE

□ $f(v)=v_i^{N-1}(v_i-s(v_i)) - v^{N-1}(v_i-s(v))$ is minimized for $v=v_i$

- i.e. (N-1) $v_i^{N-2}(v_i-s(v)) + v_i^{N-1}s'(v_i) = 0$ for each v_i
- $o s'(v_i) = (N-1)(1 s(v_i)/v_i), s(0)=0$

 \bigcirc Solution: $s(v_i)=(N-1)/N v_i$

All players bidding according to s(v) = (N-1)/N v is a NE

Remarks

• They are not truthful

• The more they are, the higher they should bid

Expected seller revenue

- $O((N-1)/N) E[v_{max}] = ((N-1)/N) (N/(N+1)) = (N-1)/(N+1)$
- Identical to 2nd price auction!
- A general revenue equivalence principle

Outline

Preliminaries

- Auctions
- Matching markets
- Possible approaches to ads pricing
- □ Google mechanism

□ References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

v_{ij}: value that buyer j gives to good i

How to match a set of different goods to a set of buyers with different evaluations

Which goods buyers like most? Preferred seller graph

How to match a set of different goods to a set of buyers with different evaluations

Which goods buyers like most? Preferred seller graph

 Given the prices, look for a perfect matching on the preferred seller graph
 There is no such matching for this graph

Which goods buyers like most? Preferred seller graph

But with different prices, there is

Which goods buyers like most? Preferred seller graph

But with different prices, there is
Such prices are market clearing prices

Market Clearing Prices

They always exist

- And can be easily calculated if valuations are known
- They are socially optimal in the sense that they maximize the sum of all the payoffs in the network (both sellers and buyers)

Outline

Preliminaries

- Auctions
- Matching markets

Possible approaches to ads pricing

□ Google mechanism

References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

How to rank ads from different companies

Ads pricing as a matching market

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

- Problem: Valuations are not known!
- I... but we could look for something as 2nd price auctions

The VCG mechanism

- The correct way to generalize 2nd price auctions to multiple goods
- Vickrey-Clarke-Groves
- Every buyers should pay a price equal to the social value loss for the others buyers
 - \bigcirc Example: consider a 2nd price auction with $v_1 > v_2 > ... v_N$
 - With 1 present the others buyers get 0
 - Without 1, 2 would have got the good with a value v_2
 - then the social value loss for the others is v_2

The VCG mechanism

- The correct way to generalize 2nd price auctions to multiple goods
- Vickrey-Clarke-Groves
- Every buyers should pay a price equal to the social value loss for the others buyers
 - If V_B^S is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B,
 - If buyer j gets good i, he/she should be charged V_{B-j}^S V_{B-j}^{S-i}

VCG example

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

VCG example

VCG example

This is the maximum weight matching
1 gets 30, 2 gets 10 and 3 gets 2

VCG example

If 1 weren't there, 2 and 3 would get 25 instead of 12,

Then 1 should pay 13

VCG example

- If 2 weren't there, 1 and 3 would get 35 instead of 32,
- Then 2 should pay 3

VCG example

- If 3 weren't there, nothing would change for 1 and 2,
- Then 3 should pay 0

The VCG mechanism

- Every buyers should pay a price equal to the social value loss for the others buyers
 - If V_B^S is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B,
 - If buyer j gets good i, he/she should be charged V_{B-j}^S V_{B-j}^{S-i}
- Under this price mechanism, truth-telling is a dominant strategy

Outline

Preliminaries

- Auctions
- Matching markets
- Possible approaches to ads pricing
- Google mechanism

References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Google's GSP auction

- Generalized Second Price
- **\Box** Once all the bids are collected $b_1 > b_2 > ... b_N$
- Company i pays b_{i+1}
- In the case of a single good (position), GSP is equivalent to a 2nd price auction, and also to VCG
- But why Google wanted to implement something different???

GSP properties

Truth-telling may not be an equilibrium

GSP example

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

If each player bids its true evaluation, 1 gets a payoff equal to 10
 If 1 bids 5, 1 gets a payoff equal to 24

GSP properties

Truth-telling may not be an equilibrium

There is always at least 1 NE maximizing total advertiser valuation

GSP example

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

Multiple NE
 1 bids 5, 2 bids 4 and 3 bids 2
 1 bids 3, 2 bids 5 and 3 bids 1

GSP properties

- Truth-telling may not be an equilibrium
- There is always at least 1 NE maximizing total advertiser valuation
- Revenues can be higher or lower than VCG
 - Attention: the revenue equivalence principle does not hold for auctions with multiple goods!
 - Google was targeting higher revenues...
 - ... not clear if they did the right choice.

GSP example

Multiple NE

1 bids 5, 2 bids 4, 3 bids 2 → google's revenue=48
 1 bids 3, 2 bids 5, 3 bids 1 → google's revenue=34
 With VCG, google's revenue=44

Other issues

- Click rates are unknown and depend on the ad!
 - Concrete risk: low-quality advertiser bidding high may reduce the search engine's revenue
 - Google's solution: introduce and ad-quality factor taking into account actual click rate, relevance of the page and its ranking
 - Google is very secretive about how to calculate it => the market is more opaque
- Complex queries, nobody paid for
 Usually engines extrapolate from simpler bids